

STEP: Semantics-Aware Sensor Placement for Monitoring Community-Scale Infrastructure Andrew Chio¹, Jian Peng², Nalini Venkatasubramanian¹ ¹University of California, Irvine, ²Orange County Public Works Gaining insight into Sensor Placement for Stormwater using Network Structure, Behavior, and Semantics

Motivation

- Urban cities and communities rely on built utility infrastructures such as water, gas and power as *critical lifelines*
- These engineered systems face issues of resilience: urban growth, climate change, and aging have given rise to *multiple modes of failure* which are difficult to handle due to their *continuous*, *transient*, or *sporadic* nature.
- The advent of Internet-of-Things (IoT) ecosystems and new data-driven methods show great promise for enabling next-generation smart monitoring solutions for improved operational efficiency and decision support.

How should IoT/sensor placements be designed to detect and trace anomalies to enable practical decision support for stormwater network community lifelines?

- network channels, and outfalls.
- •During this process, pollutants and can lead to water quality impairments downstream.
- into M Preprocessing Topological

Node v

Generating Realistic A

Domain Expert

Simulators

(EPA SWMM¹)

Extracting anomalies from historical data

- •Simulate anomalies uniformly in network and cache into database
- •Cluster anomalies into *profiles* based on the similarity of their impact in the network
- •Map historical instances of anomalies to constructed profiles to estimate likelihood of occurrence

Generating new anomalies through semantics

- •Select an anomaly profile from which to generate a new anomaly
- •Pick semantic land use "cause" from anomaly profile
- •Pick origin node based on nearby area of selected semantic land use
- •Sample all other properties of the new anomaly based on average / standard deviation of values in profile (duration, amount, phenomenon produced)

¹EPA. 2023. EPA Stormwater Management Model (SWMM). https://www.epa.gov/water- research/storm- water- management- model- swmm

Anomalies

Reference: Andrew Chio, Jian Peng, and Nalini Venkatasubramanian. 2023. STEP: Semantics-Aware Sensor Placement for Monitoring Community- Scale Infrastructure. In The 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys '23), November 15–16, 2023, Istanbul, Turkey. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3600100.3623752 Acknowledgements: This work is supported by the UC National Laboratory Fees Research Program Grant No. L22GF4561, and National Science Foundation NSF Grants No. 1952247 and 2008993.

placement as needed

Driving Use Case: Stormwater Networks Catch Basin Network / visits. Test kits and lab **Channels**

https://g

State-of-the-Art Approaches Mainly consist of inspections, citizen reports, and manual site analysis are utilized to

- •Several aspects of the network can provide insight into effective sensor placements
- <u>Structural Aspect</u>: Physical properties and and conduits (edges)
- stimuli in the network, and their impact
- <u>Semantic Aspect</u>: Influences from specific land uses of a community on anomalies

nd Refinement	Expe
ness Centrality BTN	
alies passing through nodes $\lim_{\alpha \to a} \mathbb{1} [time(\alpha_k, v_k^*, v_j) \le \tau]$	•6 EPA SWMM networks of varying 50 provided by Orange County Pub
a Complexity BC	•7 primary semantic land uses
f morging/colitting at padas	•5 real types of sensors consider (*
$BC_{pa(v_j)}^{max} + \sum_{v_i \in pa(v_j)} \frac{\mathcal{B}C(v_i)}{\mathcal{B}C_{pa(v_j)}^{max}} - 1 \text{else}$ where: $\mathcal{B}C_{pa(v_j)}^{max} = \max_{v_i \in \mathcal{B}C_{pa(v_j)}} \mathcal{B}C(v_i)$	•1292 historical grab samples of a from 30 different locations from
$pa(v_j) = \max_{v_i \in pa(v_j)} bc(v_i)$	•6 baseline comparison algorithm
Entropy SE	•Measured number of anomalies
s of distribution of upstream	traceability, and node coverage
$\sum_{u_m \in \mathcal{U}(v_i)} \lambda_m \cdot \left(-P(u_m) \log P(u_m)\right)$	Table 1: Sensors considered in placemen. Phenomenon Accuracy Hardware & Depl. Cost Op. ()
$= \sum_{v_i \in \mathcal{V}_{v_j}^{u_p}} \left(\frac{Area(v_i, u_m)}{\sum\limits_{u_m \in \mathcal{U}} Area(v_i, u_m)} \right)$	Turbidity11.6%\$100\$3 50 Depth1 mm\$150\$3Temperature $0.5^{\circ}C$ \$200\$5
operties; select nodes that	Electric Cond. 10% \$150\$3Velocity5 mm/s\$150\$3
ng MILP optimization	•STEP detected \sim 35% \sim 32% and $\overset{\circ}{\sim}$
ally	more anomalies for the small, $\sqrt{20^{0^{\circ}}}$
	medium, and large networks thar
Map Visualization ~ Global Network Properties Junctions 1522 Conduits 1507 Subc 1854	the best baseline \mathfrak{F}_{50}^{60}
i Total Area 100455 Node Density 54.3	•The traceability provided by the
Avg Flow Complexity 2.57 Avg Centrality 6.39	SIEP placement was ~30%, ~43 $\overset{\circ}{}_{\underline{\beta}_{20}}$ and ~3% better than the best $\overset{\circ}{}_{\underline{\beta}_{20}}$
Junctions Conduits 2 Subcatchments 3 Node: J64	baseline for the small, medium a
Elevation: 688.3800 Max Depth: 20.0000 Branching Complexity: 1.0000	large sized networks
Betweenness Centrality: 1.0000 Loguna 664 Loguna 664	•Additional results provided in pa
	¹ S Catsamas et al., <i>Characterisation and development of a novel low-cost rad</i> $\overset{\textcircled{0}}{{_{\scriptstyle U}}}$ ³⁰⁻ ² B. Shi et al. <i>A low-cost water depth and electrical conductivity sensor for det</i> $\overset{\textcircled{0}}{{_{\scriptstyle U}}}$ ²⁰⁻
ithub.com/andrewgchio/STEP	³ M Wang et al., An Innovative Low-cost Turbidity Sensor for Long-term Turbic $\begin{bmatrix} 0 & 10 \\ 0 & 0 \end{bmatrix}$
	1000 ⁴

OCPublicWorks