
Driving Use Case: Stormwater Networks

Gaining insight into Sensor Placement for Stormwater using Network Structure, Behavior, and Semantics

STEP: Semantics-Aware Sensor Placement for Monitoring Community-Scale Infrastructure

Generating Realistic Anomalies Placement Optimization and Refinement Experimental Results

• Urban cities and communities rely on 
built utility infrastructures such as water, 
gas and power as critical lifelines 

• These engineered systems face issues of 
resilience: urban growth, climate change, 
and aging have given rise to multiple 
modes of failure which are difficult to 
handle due to their continuous, transient, 
or sporadic nature.

• The advent of Internet-of-Things (IoT) 
ecosystems and new data-driven 
methods show great promise for enabling 
next-generation smart monitoring 
solutions for improved operational 
efficiency and decision support. 

Motivation

•Stormwater networks consist of catch basins, 
network channels, and outfalls.
•They transport rainwater and other nuisance 
flows from cities and communities to receiving 
waters, such as rivers, bays, and oceans.
•During this process, pollutants and 
contaminants can also be transported, which 
can lead to water quality impairments 
downstream. 
•Regulations (e.g., amendment to the US Clean 
Water Act of 1987) prohibit pollutant discharge 
into MS4s 
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How should IoT/sensor 
placements be designed to detect

and trace anomalies to enable 
practical decision support for 

stormwater network community 
lifelines?

Purpose and Responsibilities State-of-the-Art Approaches

Rapid and effective 
monitoring of stormwater 
networks is essential to 
prevent discharges and 

take appropriate 
corrective actions 

•Mainly consist of inspections, 
citizen reports, and manual site 
visits. Test kits and lab 
analysis are utilized to 
understand water quality. 
•Is costly and ineffective for 
understanding discharges into 
the network
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Test Kits and Equipment for Water Quality Sampling

•Stormwater networks are large and 
geo-distributed, with regional 
catchment areas, and have 
thousands of potential entry points
•Pollutants can be transient, 
spontaneous, and heterogeneous in 
nature, making it difficult to detect 
and trace in the network

Other Challenges
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The STEP Workflow

•Several aspects of the network can provide 
insight into effective sensor placements 
•Structural Aspect: Physical properties and 
characteristics of network junctions (nodes) 
and conduits (edges)
•Behavioral Aspect: Responses to various 
stimuli in the network, and their impact
•Semantic Aspect: Influences from specific 
land uses of a community on anomalies

•Use historical data and network 
semantics to construct a set of 
new realistic anomalies 
•Leverage key topological and 
empirical properties to enable 
graph partitioning and MILP 
placement optimization
•Refine computed placement 
using the STEP toolkit and 
interactive dashboard for 
practical deployments

Extracting anomalies from historical data
•Simulate anomalies uniformly in network 
and cache into database
•Cluster anomalies into profiles based on 
the similarity of their impact in the network
•Map historical instances of anomalies to 
constructed profiles to estimate likelihood 
of occurrence

Generating new anomalies through semantics
•Select an anomaly profile from which to generate a 
new anomaly 
•Pick semantic land use “cause” from anomaly profile
•Pick origin node based on nearby area of selected 
semantic land use
•Sample all other properties of the new anomaly 
based on average / standard deviation of values in 
profile (duration, amount, phenomenon produced)

Placement Optimization

Placement Refinement

•Partition stormwater graph based on key network properties; select nodes that 
maximize 𝓑𝓣𝓝, and minimize 𝓑𝓒 and 𝓢𝓔
•Find ideal placements on partitioned subgraphs using MILP optimization
•Merge subgraph placement solutions, and adjust locally

•Ideal placement generated 
algorithmically may be infeasible in 
practice due to external factors, such as 
potential vandalism, location-specific 
communication issues, and physical 
barriers preventing human access
•The STEP toolkit includes a dashboard 
for domain experts to refine a potential 
placement as needed
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Anaheim Coyote Creek DS Newport

# Nodes # Edges Area (km2)
354 348 109.06

# Nodes # Edges Area (km2)
691 691 119.89

# Nodes # Edges Area (km2)
1034 1014 187.24

# Nodes # Edges Area (km2)
981 981 209.24

# Nodes # Edges Area (km2)
1522 1507 389.93

Experimental Setup
•6 EPA SWMM networks of varying sizes 
provided by Orange County Public Works
•7 primary semantic land uses
•5 real types of sensors considered1,2,3

•1292 historical grab samples of anomalies 
from 30 different locations from 2006-2022
•6 baseline comparison algorithms
•Measured number of anomalies detected, 
traceability, and node coverage

  AGRICULTURE   COMM_SERV   INDUSTRIAL   MIX_COMM
  MIX_URBAN   HI_DENSITY   LO_DENSITY   OTHER

# Nodes # Edges Area (km2)
349 346 82.18
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Algorithm 2: Sensor Placement
Input: Graph G , Sensors S, Anomalies A, int #?0AC ,

Budget ⌫
Output: Placement X

1 ?;024<4=CB  ;; ⌧BD1B  ;; 14BC  0; E?0AC  =D;;

2 for 8  1..#?0AC do
3 for E 9 2 V , for each subgraph do
4 B2>A4  

F2>E�BTN(E 9 ) +
FCA
2 �BC(E 9 ) +

FCA
2 �SE(E 9 )

5 if B2>A4 < 14BC then 14BC  (B2>A4, E 9 ) ;
6 ⌧BD1B  ⌧ .�33(?;8C (E?0AC )

7 =>34B  ⌧4C%0AC8C8>=#>34B (⌧BD1B )
8 ?;024<4=C  ?;024<4=C [ (4=B>A8I4 (=>34B)
9 for ⌧ 0  ⌧BD1B do
10 A0  –

E 2V0 A(E )
11 ⌫0  ⌫ · |A0 |

|A | ; // Budget for subgraph

12 X0  Use MILP to solve Eqn. 7 with budget ⌫0

13 Add X0 to ?;024<4=CB

14 X  �3 9DBC%;024<4=C (?;024<4=C,⌘>?B = 5)
15 return X

primary constraints considered in the formulation: 7b limits
the budget allowed, while 7c limits the number of sensors
measuring a speci�c phenomenon at a node.

max
’

U: 2A

’
G 9; 2X

G; 9F2>E⇠$+ (G; 9 ,U: ) + G; 9FCA)'(G; 9 ,U: ) (7a)

subject to:
’
B; 2S

’
E9 2V

G; 92;  ⌫2 (7b)

’
B; 2S(? )

G; 9  1 8E 9 2 V8? 2 P (7c)

Lastly, we merge the placement solutions obtained by the
MILPs. Then, each node in the placement is adjusted based
on whether its migration to an adjacent node can improve
the global coverage and traceability objectives.

Placement Re�nement. While our algorithm generates
an “ideal” solution, deploying sensors at these locations may
be infeasible or ill-advised. For instance, external factors
such as potential vandalism, location-speci�c communica-
tion issues, and physical barriers preventing human access
can require changes to a proposed placement. To aid domain
experts in constructing and re�ning a sensor placement so-
lution, we develop a STEP interactive toolkit that provides
user-level visualization for each step of our approach. This
allows a human-in-the-loop (i.e., domain expert) to insert
regional infrastructure networks, generate ideal placements,
and alter the suggested placement as desired. Such what-
if analysis can leverage domain expert feedback from the
�eld and is critical in e�ective community scale deployments.
More details on the toolkit are presented later in §7.

6 EXPERIMENTS
We evaluate the STEP framework for six real-world stormwa-
ter networks. We compare STEP against multiple baseline
techniques for sensor placement, and analyze the number of
anomalies detected, their traceability, and nodes coverage.

6.1 Experimental Setup
Real-world Networks. STEP is evaluated on six real-world
stormwater networks covering cities in Southern California
in the US. The networks were provided by Orange County
Public Works (OCPW) and de�ned using EPA SWMM [22].
Fig. 2 visualizes the structure of the networks and summa-
rizes basic properties. We leverage the de�nition of sub-
catchments within the EPA SWMM models to specify the
region surrounding nodes in the network. Three categories
of semantic land uses are de�ned: (i) high priority land uses
with priority _=3: agriculture, commercial-service, indus-
trial; (ii) medium priority land uses with priority _=2: mixed
commercial and mixed urban; (iii) low priority land uses with
priority _=1: hi-density residential, lo-density residential.

Historical Data. We use historical grab sample data pro-
vided by OCPW, which details instances where anomalous
behavior was reported in a network and several water quality
metrics were captured. The dataset contains 1292 historical
grab samples from 30 di�erent locations between 2006 and
2022 throughout each evaluated stormwater network.
Sensors. We specify the water quality sensors to deploy

in Table 1. Each sensor measures a di�erent phenomenon,
and was developed by [13, 43, 47]. The sensor costs vary
from $100 to $150 for hardware and deployment. Recurrent
costs for continued operation and maintenance (e.g. cellular
dataplan, battery replacements) range from $300 to $350 per
year, based on rates at which these sensors stop logging data.
The accuracy of the sensor is a constant or a percentage of
the quantity of themeasured phenomenon, and is empirically
derived. In our simulations, we assume that sensors can only
observe an anomaly if the percent di�erence between its
observed value and its simulated value is under 30%.

Table 1: Sensors considered in placement
Phenomenon Accuracy Hardware & Depl. Cost Op. Cost
Turbidity 11.6% $100 $300
Depth 1 mm $150 $350

Temperature 0.5�⇠ $200 $300
Electric Cond. 10% $150 $300

Velocity 5 mm/s $150 $350

Anomalies. To obtain the empirical measurements nec-
essary to compute the metrics de�ned in §5, we construct
two sets of anomalies. First, we de�ne 5 anomaly instances
uniformly across all nodes in each network. These anomalies
have a random duration of 30±5 minutes and �ow rate of
0.2±0.2 cfs. The set of phenomena produced is randomly

•STEP detected ~35%, ~32% and ~1% 
more anomalies for the small, 
medium, and large networks than 
the best baseline
•The traceability provided by the 
STEP placement was ~30%, ~43% 
and ~3% better than the best 
baseline for the small, medium and 
large sized networks
•Additional results provided in paper

1S Catsamas et al., Characterisation and development of a novel low-cost radar velocity and depth sensor. In SPN 2022.
2 B. Shi et al. A low-cost water depth and electrical conductivity sensor for detecting inputs into urban stormwater networks. In Sensors 2021.
3 M Wang et al., An Innovative Low-cost Turbidity Sensor for Long-term Turbidity Monitoring in the Urban Water System. In ICUD 2021.
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Figure 4: Evaluation of Network Node Traceability vs Budget

anomalies detected. The average percent di�erence between STEP
and the baseline approaches for the highest budget limit evaluated,
ranged between 35.66�528.13% for small networks, 32.08�309.10%
for medium networks, and 0.74�206.90% for the large network. This
implies that using the STEP approach, which leverages semantics
in addition to structural and behavioral aspects of the network was
e�ective for monitoring the semantically generated anomalies. We
observe that the largest factor in determining the actual proportion
of anomalies captured lies in the number of nodes in the network.
That is, the smallest networks (Coyote Creek Upstream and Santa
Ana Upstream) have the highest proportion of anomalies captured,
while the largest network (Newport Beach) has the smallest. We
note that since the budget range used in the evaluation is similar
for each size of network, the placement proposed for the largest
network was unable to be signi�cantly distinguished from other
solutions. In general, this result shows that our approach was able

to propose a sensor deployment that can e�ectively monitor the
network for anomalies.

Traceability. We next examine the degree to which anomalies
can be traced to a potential source. Fig. 4 reports the traceability of
anomalies observed in the network. We plot the average proportion
of nodes that were eliminated as potential sources for each anomaly.
Note that if an anomaly is undetected, no nodes can be eliminated.
The average percent di�erence between the traceability enabled by
STEP and the baselines for the largest budget limit, ranged from
30.30�671.65%, 43.12�400.36%, and 2.95�272.75%, for the small,
medium, and large sized networks. We similarly �nd that the size of
the network most impacts the traceability - since smaller networks
were generally able to detect more anomalies, they were also able
to apply reasoning to eliminate potential source nodes. This show
that STEP deployed sensors in locations that balanced the tradeo�
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Traceability. We next examine the degree to which anomalies
can be traced to a potential source. Fig. 4 reports the traceability of
anomalies observed in the network. We plot the average proportion
of nodes that were eliminated as potential sources for each anomaly.
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Number of anomalies detected for sampled small, medium and large network
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Note that if an anomaly is undetected, no nodes can be eliminated.
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Figure 1: STEP Components and Work�ow

placement to maximize the coverage and traceability of anomalies.
Finally, we develop an interactive toolkit to facilitate e�ective de-
ployments and incorporate domain-expert feedback.

3 MODELING NETWORK STRUCTURE AND
BEHAVIOR

We model key elements of the infrastructure network and de�ne
several properties based on its structure and behavior.

Infrastructure Network Model. The geo-distributed infras-
tructure network ismodeled as a directed acyclic graphG = (V , E),
where node E 9 2 V is a junction (candidate location for instrumen-
tation) and edge (E8 , E 9 ) 2 E is a conduit with �ow from E8 to E 9 .
G is characterized by several properties to model the physics of
�ow/contaminant propagation. Let ?0(E 9 ) be the direct parents of
E 9 in G , and ?0C⌘(E8 , E 9 ) be the path of nodes observing �ow from
E8 to E 9 .

Community Model. To model the community, let semantic
land use D< 2 U express how citizens utilize and interact with the
land (e.g., industrial, residential, etc.). We observe that each D< can
produce di�erent types of anomalies in the network. For instance,
industrial areas are more likely to release harmful chemicals than
residential areas. For node E 9 , let U(E 9 ) denote the semantic land
uses near E 9 , and �A40(E 9 ,D<) denote the area near E 9 with land
use D< . Each D< is assigned a priority _< (de�ned by a domain
expert) that represents the importance of monitoring anomalies
from D< .

Sensor Model. We de�ne a sensor B; 2 S with the 3-tuple
(?; , n

022
; , 2; ), which describes a sensor measuring phenomenon ?;

with Gaussian error n022; . Its cost 2; includes purchasing hardware,
deploying it in the �eld, and maintaining it over time. We let S(? )
be the set of sensors measuring ? .

Anomaly Model. We de�ne a transient anomaly U: 2 A using
the 5-tuple (E⇤: , C

B
: , C

4
: ,P: ,D: ), which describes an anomaly origi-

nating at node E⇤: with duration (CB: , C
4
: ). The phenomena P: are

produced by U: , and detected by a sensor B; i� its measured phe-
nomenon ?; is in P: . The anomaly is more likely to be produced
by the land use D: . We use A(E8 ) to denote the set of anomalies
whose origin node is E8 . We let C8<4 (U: , E

⇤
: , E 9 ) be the time taken

for U: to propagate from E⇤: to node E 9 (which is 1 if �ow from E⇤:
cannot reach E 9 ).

De�nition: Placement. We represent a candidate placement,
X, as a matrix whose entries G; 9 = 1 i� a sensor B; is deployed at
node E 9 , and 0 otherwise.

De�nition: Node Coverage. A typical de�nition of network
coverage is purely structural, i.e. based on how many nodes fall
within sensor range. In contrast, we de�ne coverage as the ability
to capture a set of anomalies in the network. We look to optimize
the node coverage ⇠$+ , i.e., the proportion of nodes monitored
by the placement X, wrt. the set of anomalies A, as in Eqn. 1a. A
node E8 is covered by X if at least d% of the anomalies originating
at E8 can be detected by downstream sensors in X, as shown in
Eqn. 1b. This implies that sensor B; must observe anomaly U: , i.e.,
?; 2 P: , and the propagation time to an instrumented node E 9
is bounded by g , i.e., C8<4 (U: , E

⇤
: , E 9 )  g . We express these with

$⌫(;,:) and %) (:, 9). Note that E 9 must lie downstream of E⇤: in
G for C8<4 (U: , E

⇤
: , E 9 ) to be bounded by g . The indicator function

“1 [BC<C]” is 1 if statement BC<C is true, and 0 otherwise.

⇠$+ (X,A,G) = 1
|V |

’
E8 2V

2>E4A43 (E8 ,X,A(E8 )) (1a)

2>E4A43 (E8 ,X,A(E8 )) =

1
266664

’
U: 2A(E8 )

’
E9 2V

’
B; 2S

G; 9$⌫(;,:)%) (:, 9) � d |A(E8 ) |
377775

(1b)

De�nition: Traceability. We de�ne traceability to describe the
degree to which sensor observations can help track the origin of an
anomaly. LetGD?

E9 be the upstream subgraph of node E 9 induced from
the nodes VD?

E9 upstream of E 9 . Then, let GD?
E9 ,U: ,X

be an induced

subgraph of GD?
E9 , consisting of nodes E8 where the anomaly U:

originating at E⇤: would �rst be observed by a sensor at E 9 . Then,
the traceability )' for placement X is the average proportion of
nodes that lie in each GD?

E9 ,U: ,X
, for the given anomalies A, as in

Eqn. 2.

)' (X, A, G ) = 1
|A |

’
U: 2A

’
B; 2S(P: )

’
E9 2V

����VD?
E9 ,U: ,X

����
� ��V �� (2)

De�nition: BetweennessCentrality. Identifying nodes through
which more �ow propagation occurs can indicate natural deploy-
ment candidates. The betweenness centrality of a node E 9 empiri-
cally measures the number of anomalies observed at E 9 before time
threshold g , as shown in Eqn. 3.

BTN(E9 ) =
’

U: 2A
1
⇥
C8<4 (U: , E

⇤
: , E9 )  g

⇤
(3)

De�nition: BranchingComplexity. The complexity of branch-
ing in a network, i.e., merges/splits at nodes, is important in deter-
mining its traceability. Networks with high branching have more
junctions through which �ows combine, which then requires more
sensors to monitor. We de�ne branching complexity BC in Eqn. 4,
which formalizes the notion that an upstream graph of a “chain”
structure is easier to trace than a complex “tree” structure.

BC(E9 ) =

8>>>>>><
>>>>>>:

1 if IsRoot(E9 )

BC<0G
?0 (E9 ) +

’
E8 2?0 (E9 )

BC(E8 )
BC<0G

?0 (E9 )
� 1 else

where: BC<0G
?0 (E9 ) = max

E8 2?0 (E9 )
BC(E8 )

(4)
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placement to maximize the coverage and traceability of anomalies.
Finally, we develop an interactive toolkit to facilitate e�ective de-
ployments and incorporate domain-expert feedback.

3 MODELING NETWORK STRUCTURE AND
BEHAVIOR

We model key elements of the infrastructure network and de�ne
several properties based on its structure and behavior.

Infrastructure Network Model. The geo-distributed infras-
tructure network ismodeled as a directed acyclic graphG = (V , E),
where node E 9 2 V is a junction (candidate location for instrumen-
tation) and edge (E8 , E 9 ) 2 E is a conduit with �ow from E8 to E 9 .
G is characterized by several properties to model the physics of
�ow/contaminant propagation. Let ?0(E 9 ) be the direct parents of
E 9 in G , and ?0C⌘(E8 , E 9 ) be the path of nodes observing �ow from
E8 to E 9 .

Community Model. To model the community, let semantic
land use D< 2 U express how citizens utilize and interact with the
land (e.g., industrial, residential, etc.). We observe that each D< can
produce di�erent types of anomalies in the network. For instance,
industrial areas are more likely to release harmful chemicals than
residential areas. For node E 9 , let U(E 9 ) denote the semantic land
uses near E 9 , and �A40(E 9 ,D<) denote the area near E 9 with land
use D< . Each D< is assigned a priority _< (de�ned by a domain
expert) that represents the importance of monitoring anomalies
from D< .

Sensor Model. We de�ne a sensor B; 2 S with the 3-tuple
(?; , n

022
; , 2; ), which describes a sensor measuring phenomenon ?;

with Gaussian error n022; . Its cost 2; includes purchasing hardware,
deploying it in the �eld, and maintaining it over time. We let S(? )
be the set of sensors measuring ? .

Anomaly Model. We de�ne a transient anomaly U: 2 A using
the 5-tuple (E⇤: , C

B
: , C
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: ,P: ,D: ), which describes an anomaly origi-

nating at node E⇤: with duration (CB: , C
4
: ). The phenomena P: are

produced by U: , and detected by a sensor B; i� its measured phe-
nomenon ?; is in P: . The anomaly is more likely to be produced
by the land use D: . We use A(E8 ) to denote the set of anomalies
whose origin node is E8 . We let C8<4 (U: , E

⇤
: , E 9 ) be the time taken

for U: to propagate from E⇤: to node E 9 (which is 1 if �ow from E⇤:
cannot reach E 9 ).

De�nition: Placement. We represent a candidate placement,
X, as a matrix whose entries G; 9 = 1 i� a sensor B; is deployed at
node E 9 , and 0 otherwise.

De�nition: Node Coverage. A typical de�nition of network
coverage is purely structural, i.e. based on how many nodes fall
within sensor range. In contrast, we de�ne coverage as the ability
to capture a set of anomalies in the network. We look to optimize
the node coverage ⇠$+ , i.e., the proportion of nodes monitored
by the placement X, wrt. the set of anomalies A, as in Eqn. 1a. A
node E8 is covered by X if at least d% of the anomalies originating
at E8 can be detected by downstream sensors in X, as shown in
Eqn. 1b. This implies that sensor B; must observe anomaly U: , i.e.,
?; 2 P: , and the propagation time to an instrumented node E 9
is bounded by g , i.e., C8<4 (U: , E
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: , E 9 )  g . We express these with

$⌫(;,:) and %) (:, 9). Note that E 9 must lie downstream of E⇤: in
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: , E 9 ) to be bounded by g . The indicator function

“1 [BC<C]” is 1 if statement BC<C is true, and 0 otherwise.

⇠$+ (X,A,G) = 1
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De�nition: Traceability. We de�ne traceability to describe the
degree to which sensor observations can help track the origin of an
anomaly. LetGD?

E9 be the upstream subgraph of node E 9 induced from
the nodes VD?

E9 upstream of E 9 . Then, let GD?
E9 ,U: ,X

be an induced

subgraph of GD?
E9 , consisting of nodes E8 where the anomaly U:

originating at E⇤: would �rst be observed by a sensor at E 9 . Then,
the traceability )' for placement X is the average proportion of
nodes that lie in each GD?

E9 ,U: ,X
, for the given anomalies A, as in

Eqn. 2.
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De�nition: BetweennessCentrality. Identifying nodes through
which more �ow propagation occurs can indicate natural deploy-
ment candidates. The betweenness centrality of a node E 9 empiri-
cally measures the number of anomalies observed at E 9 before time
threshold g , as shown in Eqn. 3.

BTN(E9 ) =
’

U: 2A
1
⇥
C8<4 (U: , E
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: , E9 )  g

⇤
(3)

De�nition: BranchingComplexity. The complexity of branch-
ing in a network, i.e., merges/splits at nodes, is important in deter-
mining its traceability. Networks with high branching have more
junctions through which �ows combine, which then requires more
sensors to monitor. We de�ne branching complexity BC in Eqn. 4,
which formalizes the notion that an upstream graph of a “chain”
structure is easier to trace than a complex “tree” structure.

BC(E9 ) =

8>>>>>><
>>>>>>:

1 if IsRoot(E9 )

BC<0G
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placement to maximize the coverage and traceability of anomalies.
Finally, we develop an interactive toolkit to facilitate e�ective de-
ployments and incorporate domain-expert feedback.

3 MODELING NETWORK STRUCTURE AND
BEHAVIOR

We model key elements of the infrastructure network and de�ne
several properties based on its structure and behavior.

Infrastructure Network Model. The geo-distributed infras-
tructure network ismodeled as a directed acyclic graphG = (V , E),
where node E 9 2 V is a junction (candidate location for instrumen-
tation) and edge (E8 , E 9 ) 2 E is a conduit with �ow from E8 to E 9 .
G is characterized by several properties to model the physics of
�ow/contaminant propagation. Let ?0(E 9 ) be the direct parents of
E 9 in G , and ?0C⌘(E8 , E 9 ) be the path of nodes observing �ow from
E8 to E 9 .

Community Model. To model the community, let semantic
land use D< 2 U express how citizens utilize and interact with the
land (e.g., industrial, residential, etc.). We observe that each D< can
produce di�erent types of anomalies in the network. For instance,
industrial areas are more likely to release harmful chemicals than
residential areas. For node E 9 , let U(E 9 ) denote the semantic land
uses near E 9 , and �A40(E 9 ,D<) denote the area near E 9 with land
use D< . Each D< is assigned a priority _< (de�ned by a domain
expert) that represents the importance of monitoring anomalies
from D< .

Sensor Model. We de�ne a sensor B; 2 S with the 3-tuple
(?; , n

022
; , 2; ), which describes a sensor measuring phenomenon ?;

with Gaussian error n022; . Its cost 2; includes purchasing hardware,
deploying it in the �eld, and maintaining it over time. We let S(? )
be the set of sensors measuring ? .

Anomaly Model. We de�ne a transient anomaly U: 2 A using
the 5-tuple (E⇤: , C

B
: , C

4
: ,P: ,D: ), which describes an anomaly origi-

nating at node E⇤: with duration (CB: , C
4
: ). The phenomena P: are

produced by U: , and detected by a sensor B; i� its measured phe-
nomenon ?; is in P: . The anomaly is more likely to be produced
by the land use D: . We use A(E8 ) to denote the set of anomalies
whose origin node is E8 . We let C8<4 (U: , E

⇤
: , E 9 ) be the time taken

for U: to propagate from E⇤: to node E 9 (which is 1 if �ow from E⇤:
cannot reach E 9 ).

De�nition: Placement. We represent a candidate placement,
X, as a matrix whose entries G; 9 = 1 i� a sensor B; is deployed at
node E 9 , and 0 otherwise.

De�nition: Node Coverage. A typical de�nition of network
coverage is purely structural, i.e. based on how many nodes fall
within sensor range. In contrast, we de�ne coverage as the ability
to capture a set of anomalies in the network. We look to optimize
the node coverage ⇠$+ , i.e., the proportion of nodes monitored
by the placement X, wrt. the set of anomalies A, as in Eqn. 1a. A
node E8 is covered by X if at least d% of the anomalies originating
at E8 can be detected by downstream sensors in X, as shown in
Eqn. 1b. This implies that sensor B; must observe anomaly U: , i.e.,
?; 2 P: , and the propagation time to an instrumented node E 9
is bounded by g , i.e., C8<4 (U: , E

⇤
: , E 9 )  g . We express these with

$⌫(;,:) and %) (:, 9). Note that E 9 must lie downstream of E⇤: in
G for C8<4 (U: , E

⇤
: , E 9 ) to be bounded by g . The indicator function

“1 [BC<C]” is 1 if statement BC<C is true, and 0 otherwise.

⇠$+ (X,A,G) = 1
|V |

’
E8 2V

2>E4A43 (E8 ,X,A(E8 )) (1a)
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’
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E9 2V
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377775
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De�nition: Traceability. We de�ne traceability to describe the
degree to which sensor observations can help track the origin of an
anomaly. LetGD?

E9 be the upstream subgraph of node E 9 induced from
the nodes VD?

E9 upstream of E 9 . Then, let GD?
E9 ,U: ,X

be an induced

subgraph of GD?
E9 , consisting of nodes E8 where the anomaly U:

originating at E⇤: would �rst be observed by a sensor at E 9 . Then,
the traceability )' for placement X is the average proportion of
nodes that lie in each GD?

E9 ,U: ,X
, for the given anomalies A, as in

Eqn. 2.

)' (X, A, G ) = 1
|A |

’
U: 2A

’
B; 2S(P: )

’
E9 2V

����VD?
E9 ,U: ,X

����
� ��V �� (2)

De�nition: BetweennessCentrality. Identifying nodes through
which more �ow propagation occurs can indicate natural deploy-
ment candidates. The betweenness centrality of a node E 9 empiri-
cally measures the number of anomalies observed at E 9 before time
threshold g , as shown in Eqn. 3.

BTN(E9 ) =
’

U: 2A
1
⇥
C8<4 (U: , E

⇤
: , E9 )  g

⇤
(3)

De�nition: BranchingComplexity. The complexity of branch-
ing in a network, i.e., merges/splits at nodes, is important in deter-
mining its traceability. Networks with high branching have more
junctions through which �ows combine, which then requires more
sensors to monitor. We de�ne branching complexity BC in Eqn. 4,
which formalizes the notion that an upstream graph of a “chain”
structure is easier to trace than a complex “tree” structure.

BC(E9 ) =

8>>>>>><
>>>>>>:

1 if IsRoot(E9 )

BC<0G
?0 (E9 ) +

’
E8 2?0 (E9 )

BC(E8 )
BC<0G

?0 (E9 )
� 1 else

where: BC<0G
?0 (E9 ) = max

E8 2?0 (E9 )
BC(E8 )

(4)

Ability to use observations to 
track the origin of an anomaly

Objective: Traceability 𝑻𝑹
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placement to maximize the coverage and traceability of anomalies.
Finally, we develop an interactive toolkit to facilitate e�ective de-
ployments and incorporate domain-expert feedback.

3 MODELING NETWORK STRUCTURE AND
BEHAVIOR

We model key elements of the infrastructure network and de�ne
several properties based on its structure and behavior.

Infrastructure Network Model. The geo-distributed infras-
tructure network ismodeled as a directed acyclic graphG = (V , E),
where node E 9 2 V is a junction (candidate location for instrumen-
tation) and edge (E8 , E 9 ) 2 E is a conduit with �ow from E8 to E 9 .
G is characterized by several properties to model the physics of
�ow/contaminant propagation. Let ?0(E 9 ) be the direct parents of
E 9 in G , and ?0C⌘(E8 , E 9 ) be the path of nodes observing �ow from
E8 to E 9 .

Community Model. To model the community, let semantic
land use D< 2 U express how citizens utilize and interact with the
land (e.g., industrial, residential, etc.). We observe that each D< can
produce di�erent types of anomalies in the network. For instance,
industrial areas are more likely to release harmful chemicals than
residential areas. For node E 9 , let U(E 9 ) denote the semantic land
uses near E 9 , and �A40(E 9 ,D<) denote the area near E 9 with land
use D< . Each D< is assigned a priority _< (de�ned by a domain
expert) that represents the importance of monitoring anomalies
from D< .

Sensor Model. We de�ne a sensor B; 2 S with the 3-tuple
(?; , n

022
; , 2; ), which describes a sensor measuring phenomenon ?;

with Gaussian error n022; . Its cost 2; includes purchasing hardware,
deploying it in the �eld, and maintaining it over time. We let S(? )
be the set of sensors measuring ? .

Anomaly Model. We de�ne a transient anomaly U: 2 A using
the 5-tuple (E⇤: , C

B
: , C

4
: ,P: ,D: ), which describes an anomaly origi-

nating at node E⇤: with duration (CB: , C
4
: ). The phenomena P: are

produced by U: , and detected by a sensor B; i� its measured phe-
nomenon ?; is in P: . The anomaly is more likely to be produced
by the land use D: . We use A(E8 ) to denote the set of anomalies
whose origin node is E8 . We let C8<4 (U: , E

⇤
: , E 9 ) be the time taken

for U: to propagate from E⇤: to node E 9 (which is 1 if �ow from E⇤:
cannot reach E 9 ).

De�nition: Placement. We represent a candidate placement,
X, as a matrix whose entries G; 9 = 1 i� a sensor B; is deployed at
node E 9 , and 0 otherwise.

De�nition: Node Coverage. A typical de�nition of network
coverage is purely structural, i.e. based on how many nodes fall
within sensor range. In contrast, we de�ne coverage as the ability
to capture a set of anomalies in the network. We look to optimize
the node coverage ⇠$+ , i.e., the proportion of nodes monitored
by the placement X, wrt. the set of anomalies A, as in Eqn. 1a. A
node E8 is covered by X if at least d% of the anomalies originating
at E8 can be detected by downstream sensors in X, as shown in
Eqn. 1b. This implies that sensor B; must observe anomaly U: , i.e.,
?; 2 P: , and the propagation time to an instrumented node E 9
is bounded by g , i.e., C8<4 (U: , E

⇤
: , E 9 )  g . We express these with

$⌫(;,:) and %) (:, 9). Note that E 9 must lie downstream of E⇤: in
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: , E 9 ) to be bounded by g . The indicator function

“1 [BC<C]” is 1 if statement BC<C is true, and 0 otherwise.

⇠$+ (X,A,G) = 1
|V |

’
E8 2V

2>E4A43 (E8 ,X,A(E8 )) (1a)

2>E4A43 (E8 ,X,A(E8 )) =

1
266664

’
U: 2A(E8 )

’
E9 2V

’
B; 2S

G; 9$⌫(;,:)%) (:, 9) � d |A(E8 ) |
377775

(1b)

De�nition: Traceability. We de�ne traceability to describe the
degree to which sensor observations can help track the origin of an
anomaly. LetGD?

E9 be the upstream subgraph of node E 9 induced from
the nodes VD?

E9 upstream of E 9 . Then, let GD?
E9 ,U: ,X

be an induced

subgraph of GD?
E9 , consisting of nodes E8 where the anomaly U:

originating at E⇤: would �rst be observed by a sensor at E 9 . Then,
the traceability )' for placement X is the average proportion of
nodes that lie in each GD?

E9 ,U: ,X
, for the given anomalies A, as in

Eqn. 2.

)' (X, A, G ) = 1
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De�nition: BetweennessCentrality. Identifying nodes through
which more �ow propagation occurs can indicate natural deploy-
ment candidates. The betweenness centrality of a node E 9 empiri-
cally measures the number of anomalies observed at E 9 before time
threshold g , as shown in Eqn. 3.

BTN(E9 ) =
’

U: 2A
1
⇥
C8<4 (U: , E
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: , E9 )  g

⇤
(3)

De�nition: BranchingComplexity. The complexity of branch-
ing in a network, i.e., merges/splits at nodes, is important in deter-
mining its traceability. Networks with high branching have more
junctions through which �ows combine, which then requires more
sensors to monitor. We de�ne branching complexity BC in Eqn. 4,
which formalizes the notion that an upstream graph of a “chain”
structure is easier to trace than a complex “tree” structure.

BC(E9 ) =

8>>>>>><
>>>>>>:

1 if IsRoot(E9 )

BC<0G
?0 (E9 ) +

’
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Degree of merging/splitting at nodes
Branching Complexity 𝓑𝓒

STEP: Semantics-Aware Sensor Placement for Monitoring Community-Scale Infrastructure BuildSys ’23, November 15–16, 2023, Istanbul, Turkey

Preprocessing

Community semantics
learning from 
land use data

Placement 
Optimization 

Select graph partition

Optimization for
Sensor Placement

Placement 
Refinement

Interactive 
Dashboard

What-if Analysis

Network 
Graph

Community
Land Use
Semantics

Historical
Data

Site Visit
Reports

Models
& Data Domain

Experts

Stormwater Infrastructure

Simulator

Topological
Information

Empirical
Information

Figure 1: STEP Components and Work�ow

placement to maximize the coverage and traceability of anomalies.
Finally, we develop an interactive toolkit to facilitate e�ective de-
ployments and incorporate domain-expert feedback.

3 MODELING NETWORK STRUCTURE AND
BEHAVIOR

We model key elements of the infrastructure network and de�ne
several properties based on its structure and behavior.

Infrastructure Network Model. The geo-distributed infras-
tructure network ismodeled as a directed acyclic graphG = (V , E),
where node E 9 2 V is a junction (candidate location for instrumen-
tation) and edge (E8 , E 9 ) 2 E is a conduit with �ow from E8 to E 9 .
G is characterized by several properties to model the physics of
�ow/contaminant propagation. Let ?0(E 9 ) be the direct parents of
E 9 in G , and ?0C⌘(E8 , E 9 ) be the path of nodes observing �ow from
E8 to E 9 .

Community Model. To model the community, let semantic
land use D< 2 U express how citizens utilize and interact with the
land (e.g., industrial, residential, etc.). We observe that each D< can
produce di�erent types of anomalies in the network. For instance,
industrial areas are more likely to release harmful chemicals than
residential areas. For node E 9 , let U(E 9 ) denote the semantic land
uses near E 9 , and �A40(E 9 ,D<) denote the area near E 9 with land
use D< . Each D< is assigned a priority _< (de�ned by a domain
expert) that represents the importance of monitoring anomalies
from D< .

Sensor Model. We de�ne a sensor B; 2 S with the 3-tuple
(?; , n

022
; , 2; ), which describes a sensor measuring phenomenon ?;

with Gaussian error n022; . Its cost 2; includes purchasing hardware,
deploying it in the �eld, and maintaining it over time. We let S(? )
be the set of sensors measuring ? .

Anomaly Model. We de�ne a transient anomaly U: 2 A using
the 5-tuple (E⇤: , C

B
: , C

4
: ,P: ,D: ), which describes an anomaly origi-

nating at node E⇤: with duration (CB: , C
4
: ). The phenomena P: are

produced by U: , and detected by a sensor B; i� its measured phe-
nomenon ?; is in P: . The anomaly is more likely to be produced
by the land use D: . We use A(E8 ) to denote the set of anomalies
whose origin node is E8 . We let C8<4 (U: , E

⇤
: , E 9 ) be the time taken

for U: to propagate from E⇤: to node E 9 (which is 1 if �ow from E⇤:
cannot reach E 9 ).

De�nition: Placement. We represent a candidate placement,
X, as a matrix whose entries G; 9 = 1 i� a sensor B; is deployed at
node E 9 , and 0 otherwise.

De�nition: Node Coverage. A typical de�nition of network
coverage is purely structural, i.e. based on how many nodes fall
within sensor range. In contrast, we de�ne coverage as the ability
to capture a set of anomalies in the network. We look to optimize
the node coverage ⇠$+ , i.e., the proportion of nodes monitored
by the placement X, wrt. the set of anomalies A, as in Eqn. 1a. A
node E8 is covered by X if at least d% of the anomalies originating
at E8 can be detected by downstream sensors in X, as shown in
Eqn. 1b. This implies that sensor B; must observe anomaly U: , i.e.,
?; 2 P: , and the propagation time to an instrumented node E 9
is bounded by g , i.e., C8<4 (U: , E

⇤
: , E 9 )  g . We express these with

$⌫(;,:) and %) (:, 9). Note that E 9 must lie downstream of E⇤: in
G for C8<4 (U: , E

⇤
: , E 9 ) to be bounded by g . The indicator function

“1 [BC<C]” is 1 if statement BC<C is true, and 0 otherwise.

⇠$+ (X,A,G) = 1
|V |

’
E8 2V

2>E4A43 (E8 ,X,A(E8 )) (1a)

2>E4A43 (E8 ,X,A(E8 )) =

1
266664

’
U: 2A(E8 )

’
E9 2V

’
B; 2S

G; 9$⌫(;,:)%) (:, 9) � d |A(E8 ) |
377775

(1b)

De�nition: Traceability. We de�ne traceability to describe the
degree to which sensor observations can help track the origin of an
anomaly. LetGD?

E9 be the upstream subgraph of node E 9 induced from
the nodes VD?

E9 upstream of E 9 . Then, let GD?
E9 ,U: ,X

be an induced

subgraph of GD?
E9 , consisting of nodes E8 where the anomaly U:

originating at E⇤: would �rst be observed by a sensor at E 9 . Then,
the traceability )' for placement X is the average proportion of
nodes that lie in each GD?

E9 ,U: ,X
, for the given anomalies A, as in

Eqn. 2.

)' (X, A, G ) = 1
|A |

’
U: 2A

’
B; 2S(P: )

’
E9 2V

����VD?
E9 ,U: ,X

����
� ��V �� (2)

De�nition: BetweennessCentrality. Identifying nodes through
which more �ow propagation occurs can indicate natural deploy-
ment candidates. The betweenness centrality of a node E 9 empiri-
cally measures the number of anomalies observed at E 9 before time
threshold g , as shown in Eqn. 3.

BTN(E9 ) =
’

U: 2A
1
⇥
C8<4 (U: , E

⇤
: , E9 )  g

⇤
(3)

De�nition: BranchingComplexity. The complexity of branch-
ing in a network, i.e., merges/splits at nodes, is important in deter-
mining its traceability. Networks with high branching have more
junctions through which �ows combine, which then requires more
sensors to monitor. We de�ne branching complexity BC in Eqn. 4,
which formalizes the notion that an upstream graph of a “chain”
structure is easier to trace than a complex “tree” structure.

BC(E9 ) =

8>>>>>><
>>>>>>:

1 if IsRoot(E9 )

BC<0G
?0 (E9 ) +

’
E8 2?0 (E9 )

BC(E8 )
BC<0G

?0 (E9 )
� 1 else

where: BC<0G
?0 (E9 ) = max

E8 2?0 (E9 )
BC(E8 )

(4)

# of anomalies passing through nodes
Betweenness Centrality 𝓑𝓣𝓝

STEP: Semantics-Aware Sensor Placement for Monitoring Community-Scale Infrastructure BuildSys ’23, November 15–16, 2023, Istanbul, Turkey

Preprocessing

Community semantics
learning from 
land use data

Placement 
Optimization 

Select graph partition

Optimization for
Sensor Placement

Placement 
Refinement

Interactive 
Dashboard

What-if Analysis

Network 
Graph

Community
Land Use
Semantics

Historical
Data

Site Visit
Reports

Models
& Data Domain

Experts

Stormwater Infrastructure

Simulator

Topological
Information

Empirical
Information

Figure 1: STEP Components and Work�ow

placement to maximize the coverage and traceability of anomalies.
Finally, we develop an interactive toolkit to facilitate e�ective de-
ployments and incorporate domain-expert feedback.

3 MODELING NETWORK STRUCTURE AND
BEHAVIOR

We model key elements of the infrastructure network and de�ne
several properties based on its structure and behavior.

Infrastructure Network Model. The geo-distributed infras-
tructure network ismodeled as a directed acyclic graphG = (V , E),
where node E 9 2 V is a junction (candidate location for instrumen-
tation) and edge (E8 , E 9 ) 2 E is a conduit with �ow from E8 to E 9 .
G is characterized by several properties to model the physics of
�ow/contaminant propagation. Let ?0(E 9 ) be the direct parents of
E 9 in G , and ?0C⌘(E8 , E 9 ) be the path of nodes observing �ow from
E8 to E 9 .

Community Model. To model the community, let semantic
land use D< 2 U express how citizens utilize and interact with the
land (e.g., industrial, residential, etc.). We observe that each D< can
produce di�erent types of anomalies in the network. For instance,
industrial areas are more likely to release harmful chemicals than
residential areas. For node E 9 , let U(E 9 ) denote the semantic land
uses near E 9 , and �A40(E 9 ,D<) denote the area near E 9 with land
use D< . Each D< is assigned a priority _< (de�ned by a domain
expert) that represents the importance of monitoring anomalies
from D< .

Sensor Model. We de�ne a sensor B; 2 S with the 3-tuple
(?; , n

022
; , 2; ), which describes a sensor measuring phenomenon ?;

with Gaussian error n022; . Its cost 2; includes purchasing hardware,
deploying it in the �eld, and maintaining it over time. We let S(? )
be the set of sensors measuring ? .

Anomaly Model. We de�ne a transient anomaly U: 2 A using
the 5-tuple (E⇤: , C

B
: , C

4
: ,P: ,D: ), which describes an anomaly origi-

nating at node E⇤: with duration (CB: , C
4
: ). The phenomena P: are

produced by U: , and detected by a sensor B; i� its measured phe-
nomenon ?; is in P: . The anomaly is more likely to be produced
by the land use D: . We use A(E8 ) to denote the set of anomalies
whose origin node is E8 . We let C8<4 (U: , E

⇤
: , E 9 ) be the time taken

for U: to propagate from E⇤: to node E 9 (which is 1 if �ow from E⇤:
cannot reach E 9 ).

De�nition: Placement. We represent a candidate placement,
X, as a matrix whose entries G; 9 = 1 i� a sensor B; is deployed at
node E 9 , and 0 otherwise.

De�nition: Node Coverage. A typical de�nition of network
coverage is purely structural, i.e. based on how many nodes fall
within sensor range. In contrast, we de�ne coverage as the ability
to capture a set of anomalies in the network. We look to optimize
the node coverage ⇠$+ , i.e., the proportion of nodes monitored
by the placement X, wrt. the set of anomalies A, as in Eqn. 1a. A
node E8 is covered by X if at least d% of the anomalies originating
at E8 can be detected by downstream sensors in X, as shown in
Eqn. 1b. This implies that sensor B; must observe anomaly U: , i.e.,
?; 2 P: , and the propagation time to an instrumented node E 9
is bounded by g , i.e., C8<4 (U: , E

⇤
: , E 9 )  g . We express these with

$⌫(;,:) and %) (:, 9). Note that E 9 must lie downstream of E⇤: in
G for C8<4 (U: , E

⇤
: , E 9 ) to be bounded by g . The indicator function

“1 [BC<C]” is 1 if statement BC<C is true, and 0 otherwise.

⇠$+ (X,A,G) = 1
|V |

’
E8 2V

2>E4A43 (E8 ,X,A(E8 )) (1a)

2>E4A43 (E8 ,X,A(E8 )) =

1
266664

’
U: 2A(E8 )

’
E9 2V

’
B; 2S

G; 9$⌫(;,:)%) (:, 9) � d |A(E8 ) |
377775
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De�nition: Traceability. We de�ne traceability to describe the
degree to which sensor observations can help track the origin of an
anomaly. LetGD?

E9 be the upstream subgraph of node E 9 induced from
the nodes VD?

E9 upstream of E 9 . Then, let GD?
E9 ,U: ,X

be an induced

subgraph of GD?
E9 , consisting of nodes E8 where the anomaly U:

originating at E⇤: would �rst be observed by a sensor at E 9 . Then,
the traceability )' for placement X is the average proportion of
nodes that lie in each GD?

E9 ,U: ,X
, for the given anomalies A, as in

Eqn. 2.

)' (X, A, G ) = 1
|A |

’
U: 2A

’
B; 2S(P: )

’
E9 2V

����VD?
E9 ,U: ,X

����
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De�nition: BetweennessCentrality. Identifying nodes through
which more �ow propagation occurs can indicate natural deploy-
ment candidates. The betweenness centrality of a node E 9 empiri-
cally measures the number of anomalies observed at E 9 before time
threshold g , as shown in Eqn. 3.

BTN(E9 ) =
’

U: 2A
1
⇥
C8<4 (U: , E

⇤
: , E9 )  g

⇤
(3)

De�nition: BranchingComplexity. The complexity of branch-
ing in a network, i.e., merges/splits at nodes, is important in deter-
mining its traceability. Networks with high branching have more
junctions through which �ows combine, which then requires more
sensors to monitor. We de�ne branching complexity BC in Eqn. 4,
which formalizes the notion that an upstream graph of a “chain”
structure is easier to trace than a complex “tree” structure.

BC(E9 ) =

8>>>>>><
>>>>>>:

1 if IsRoot(E9 )

BC<0G
?0 (E9 ) +

’
E8 2?0 (E9 )

BC(E8 )
BC<0G

?0 (E9 )
� 1 else

where: BC<0G
?0 (E9 ) = max

E8 2?0 (E9 )
BC(E8 )

(4)

Skewness of distribution of upstream 
land uses

Semantic Entropy 𝓢𝓔

BuildSys ’23, November 15–16, 2023, Istanbul, Turkey Andrew Chio, Jian Peng, and Nalini Venkatasubramanian

Physics-informed model for infrastructure behavior. Net-
work behavior, as a response to stimuli (e.g., anomalies), are funda-
mentally governed by physical laws of the conservation of mass
(Eqn. 5a) and momentum (Eqn. 5b). The Environmental Protection
Agency Storm Water Management Model (EPA SWMM) [22] is
a simulator developed by domain experts that models and solves
these equations to portray the operation of the network. Multiple
physical attributes are utilized, including the distance G , time C , �ow
area �, �ow rate & , hydraulic head � , friction slope (5 and gravity
6. Details on solving these equations are provided in [22].

m�

mC
+ m&

mG
= 0 (5a)

m&

mC
+ m (&2/�)

mG
+ 6� m�

mG
+ 6�(5 = 0 (5b)

4 SEMANTICS-AWARE MODELING AND
GENERATION OF ANOMALIES

We show how potential anomalies are extracted from past data
to inform the sensor deployment process. Our work�ow pro�les
anomalies from historical water quality grab sample data, and cor-
relates potential origins with nearby community-level semantics.
STEP then generates new potential anomalies based on the land
uses in the network.

Let the historical water quality grab sample datasetD be a set of
5-tuples (C , E , 5 ,>, ? ), representing a �ow 5 that propagates water
quality observations > of a phenomenon ? at node E at time C . In
MS4s, observed phenomena include turbidity, temperature, �ow
rate, etc. [9]. We assume such data is captured by water agencies
for regulatory compliance.

Extracting anomalies from water quality data. We describe
how physical features of anomalies are extracted from historical
data, and used to learn a semantic map. This starts by construct-
ing a uniformly distributed set of anomalies which may occur in a
given network, and simulating their propagation using a physics-
based simulator like [22]. Anomalies are then grouped based on
their initial features and simulated behavior in the network using
agglomerative clustering [20]. These groups represent pro�les of
anomalies with similar impact in the network. Each grab sample
measurement in D is matched to the closest anomaly pro�le above.
This is used to identify a set of potential origin nodes, and their
corresponding start and end times. Note that the phenomena pro-
duced by the historical anomaly is given, and labeled by domain
experts using simple thresholds.

The semantic map constructed using historical data depends
on the origin node of the anomaly, and the semantic land uses
that lie upstream. To identify a correlation between semantic land
uses and di�erent sets of phenomena, we construct a probabilistic
semantic map based on the anomalies extracted from D . For each
node E at which historical data was captured, letMD?

E denote the
total area of each semantic land use D that lies upstream of E . We
then sum MD?

E across these nodes for each semantic land use, and
normalize as needed. After this semantic map is constructed, we
iterate through the set of historical anomalies, and assign a semantic
land use “cause”, based on the set of potential origin nodes.

Generating new anomalies using semanticsWe use the se-
mantic map M constructed above to generate # new potential

Algorithm 1: Generate Semantic Anomalies
Input: Graph G = (V , E ) , Historical Anomalies A⌘8BC ,

SemanticMap M, int #
Output: Anomalies AB4<

1 AB4<  ;
2 for 8  1..# do
3 D:  %82:!0=3DB4 (A⌘8BC ,M)
4 E⇤: , C

B
: , C

4
:  %82:$A868=�=3⇡DA0C8>= (V ,D: ,M)

5 P:  %82:%⌘4=><4=0 (D: )
6 AB4<  AB4< [ {�=><0;~ (E⇤: , C

B
: , C

4
: , P: ,D: ) }

7 return AB4<

anomalies for the infrastructure network.We construct a new anom-
aly U: by selecting a candidate semantic land use D: to serve as
the “cause” of the anomaly. Here, each D: has weight equal to
the number of historical anomalies that correlated with D: inM.
This semantic land use is leveraged in selecting all other physi-
cal aspects of the new anomaly. In particular, the candidate origin
node E⇤: is chosen with weight equal to the semantic land use area
�A40(E⇤: ,D: ), i.e., nodes with more area for D: are chosen with
higher likelihood. The time period (CB: , C

4
: ) is chosen by sampling a

normal distribution on the start/end time of historical anomalies
caused by D: . Lastly, the set of phenomena P: produced is chosen
based on the correlation to D: in M.

5 THE INTEGRATED STEP SOLUTION AND
PLACEMENT ALGORITHM

The STEP approach solves the heterogeneous sensor placement
problem by integrating structural, behavioral and semantic proper-
ties of an infrastructure network. We introduce a novel information
theoretic abstraction called semantic entropy, and utilize it with the
network properties de�ned in §3 to develop a scalable solution for
coverage and traceability.

De�nition: Semantic Entropy. The skewness in the distribu-
tion of upstream semantic land uses can provide insight into the
potential causes of an anomaly. For instance, if an anomaly occurs
in a region primarily consisting of a speci�c semantic land use, it
becomes easier to attribute the anomaly to that particular land use.
This can be utilized to develop a knowledge base for identifying
the potential causes of new anomalies. Eqn. 6 de�nes the semantic
entropy SE for semantic land usesU; in the graph GD?

E9 .
SE(U, GD?

E9 ) =
’

D< 2U (E9 )
_< ·

�
�% (D< ) log% (D< )

�

where: % (D< ) =
’

E8 2V
D?
E9

©≠≠
´

�A40 (E8 ,D< )Õ
D< 2U

�A40 (E8 ,D< )
™ÆÆ
¨

(6)

We adapt the information-theoretic de�nition of entropy in [42]
to measure the skewness of semantic land uses. Let % (DD?< ) indicate
the proportion of the total area allocated for land use D< 2 U in
the nodes of GD?

E9 ,?,X
, to the total area of regions in GD?

E9 . Then, the

semantic entropy is de�ned as the sum of �% (DD?< ) log % (DD?< ), over
all semantic land usesD< 2 U, weighted by priority _< ofD< . This
represents the weighted average amount of “information” (i.e., bits)
needed to describe the upstream distribution of semantic land uses.

Time t Node v Flow f Obs. o
2017-05-23, 10:02 FVES@D05 0.03 Turbidity: 1.2

2017-06-30, 08:22 FVES@D05 0.14 Elec. Cond.: 906

2019-05-15, 08:00 COF07S01 0.28 Turbidity: 4.03

2019-07-24, 09:10 COF07S01 0.21 Temp. : 26.24

2019-08-07,08:28 GC02S0172DS 0.09 Elec. Cond.: 6113

2019-07-17,08:25 IRVF06P06 0.11 Turbidity: 3.5

… … … …
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1EPA. 2023. EPA Stormwater Management Model (SWMM). https://www.epa.gov/water- research/storm- water- management- model- swmm

Andrew Chio1, Jian Peng2, Nalini Venkatasubramanian1

https://www.rawpixel.com/image/3286119/free-photo-image-ocean-water-sea
https://creativecommons.org/publicdomain/zero/1.0/
https://commons.wikimedia.org/wiki/File:Small_bay_in_Jersey.jpg
https://creativecommons.org/licenses/by-sa/2.0/
https://www.flickr.com/photos/mypubliclands/35846436403
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:Erosion_matting_in_a_storm_water_channel_in_Wagga_Wagga.jpeg
https://creativecommons.org/licenses/by-sa/3.0/
https://www.rawpixel.com/image/6082103/emergency-sign
https://creativecommons.org/publicdomain/zero/1.0/
https://www.pexels.com/photo/drone-shot-of-moving-automobiles-on-an-expressway-9716288/
https://en.m.wikipedia.org/wiki/File:UCI_Donald_Bren_Hall.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://en.m.wikipedia.org/wiki/File:UCI_Donald_Bren_Hall.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://www.flickr.com/photos/134605195@N07/42934506404
https://creativecommons.org/licenses/by-nc/2.0/
https://www.flickr.com/photos/andyarthur/5708429262
https://creativecommons.org/licenses/by/2.0/

