# SmartSPEC: Customizable Smart Space Datasets via Event-Driven Simulations



**Andrew Chio<sup>1</sup>**, Daokun Jiang<sup>1</sup>, Peeyush Gupta<sup>1</sup>, Georgios Bouloukakis<sup>2</sup>, Roberto Yus<sup>3</sup>, Sharad Mehrotra<sup>1</sup>, Nalini Venkatasubramanian<sup>1</sup>

Virtual, March 23, 2022

IEEE PerCom 2022



<sup>1</sup> University of California, Irvine

<sup>2</sup> Télécom SudParis, IP Paris

<sup>3</sup> University of Maryland, Baltimore County





## IoT-Enabled Smart Spaces



## Towards Smarter Buildings: The Need for Realistic Data

#### Heterogeneity, Scalability, Portability, Robustness



Fire Evacuation in a High-Rise Building

- Realistic data is necessary to test and validate smart space approaches in heterogeneous human environments
  - Evaluating robustness of algorithms
  - Failure testing
  - Scalability testing
  - Operating in extreme scenarios

# Challenge: Obtaining Real Data

#### **Deployment of Sensors**

• Cost & sensor placement





#### **Recruitment of Participants**

- Reluctance to share data
- Time-consuming
- Limited in scale



#### **Preservation of Participant Privacy**

- Data regulations
- Leakage of sensitive data



#### FERPA

Family Educational Rights and Privacy Act





# Generating Realistic Synthetic Data with Simulators

#### Challenge: Modeling smart spaces accurately

- Variability/dynamicity of activities
- Faithfulness to reality

#### <u>Approach 1</u>: Extend previously captured dataset<sup>1</sup>

 Issue: violates causality, limited to initial space

#### <u>Approach 2</u>: Generate data randomly based on sensor models<sup>2</sup>

• Issue: random ≠ realistic

#### <u>Approach 3</u>:

# Create dataset based on interactions of people and their activities<sup>3</sup>

• Issue: *Semantic Explainability* - Why people visit the spaces that they do?



|      | ?   |               |
|------|-----|---------------|
| 20°C | Tem | perature Data |

Brushing

Walking

Activities of Daily Living

Toileting

<sup>1</sup>Replication, Modification, Sampling: Tay et al., UpSizeR (Information Systems '13)
 <sup>2</sup>Random Data Generation: Mockaroo, Hoag and Thompson, PSDG (ACM SIGMOD Record '07)
 <sup>3</sup>Activities of Daily Living: Alshammari et al., OpenSHS, Sensors '17
 Mobility Models and Trajectory Models: Rhee et al., IEEE/ACM TON '11; Alessandretti et al., Nature '20
 Trajectory Models: Brinkoff, GeoInformatica '02; Pelekis et al., ACM Sigspatial '15
 Generative Models: Gupta et al., CVPR '18; Rossi et al., Pattern Recognition '21

# The SmartSPEC Approach

### Exploit semantics to generate realistic synthetic smart space datasets



## The Contributions of this Paper



## SmartSPEC : Semantic Model



#### Smart Space: A Semantic Characterization



9

## SmartSPEC : Scenario Learning



## SmartSPEC : Scenario Learning



## Learning Events through Occupancy

|   |         |         |                     | С | ccupar            | ncy |
|---|---------|---------|---------------------|---|-------------------|-----|
| Ρ | erson P | Space C | DateTime t          |   | $\lambda_D^{\mu}$ |     |
| ł | ob12b6  | 1100    | 2017-09-01 08:43:57 |   |                   | 1   |
| 8 | 813a99  | 1100    | 2017-09-01 08:45:12 |   |                   |     |
| : | 18bcad  | 1100    | 2017-09-01 08:45:38 |   |                   | 2   |
| 1 | 81d9c1  | 1100    | 2017-09-01 08:46:20 |   |                   | 2   |
| 1 | 81d9c1  | 1100    | 2017-09-01 08:46:23 |   |                   |     |
| Į | 500bba  | 1100    | 2017-09-01 08:47:23 |   |                   |     |
|   | f079e1  | 1100    | 2017-09-01 08:47:36 |   |                   | 4   |
| 8 | 8700e1  | 1100    | 2017-09-01 08:47:49 |   |                   |     |
|   | 84ea3f  | 1100    | 2017-09-01 08:48:21 |   |                   |     |
| ļ | 500bba  | 1100    | 2017-09-01 08:49:38 |   |                   |     |
|   |         |         |                     |   |                   |     |

| Dataset D |
|-----------|

| Person P | Space C | DateTime t          |
|----------|---------|---------------------|
| f28c94f  | 1412    | 2017-09-01 08:19:00 |
| f20a461  | 6029    | 2017-09-01 08:19:00 |
| 238be6   | 3231    | 2017-09-01 08:19:07 |
| 238be6   | 3231    | 2017-09-01 08:19:26 |
|          |         |                     |

#### Occupancy $\lambda_D^{C,t_s,t_e}$

• Number of unique people from dataset *D* that are in space *C* during time period (*t<sub>s</sub>*, *t<sub>e</sub>*).

For each space C

## Learning Events

#### Intuition:

#### Algorithm 1: Extracting Events, Learning MetaEvents.



10  $\mathcal{ME} \leftarrow makeMetaEvents(clusters)$ 

11 return  $\mathcal{E}, \mathcal{ME}$ 

#### Create time-series of occupancy in space C on date d

Use *Change Point Detection* to learn when one event ends, and another starts



Presence  $\rightarrow$  Occupancy  $\rightarrow$  Events

## Learning Events



#### Algorithm 1: Extracting Events, Learning MetaEvents.



- 10  $\mathcal{ME} \leftarrow makeMetaEvents(clusters)$
- 11 return  $\mathcal{E}, \mathcal{ME}$



Use *Change Point Detection* to learn when one event ends, and another starts

Use Agglomerative Clustering to learn types of events

Intuition: Agglomerative Clustering

- Each event starts in its own cluster, and is merged with other "nearby" clusters
- Terminates once distance between clusters  $\geq$  threshold  $\epsilon$
- Cluster distance based on set of attendees and time of event

#### Jaccard Index

- Given two sets A and B, define similarity ratio  $r = \frac{card(A \cap B)}{card(A \cup B)}$
- *Interpretation*: r = 1 only if A = B.

Presence  $\rightarrow$  Occupancy  $\rightarrow$  Events

## Learning People-Event Interactions

#### Learned Events:

- Event  $e_1$ : attendees = { $p_1, p_2, p_3$ }
- Event  $e_2$ : attendees = { $p_2$ ,  $p_3$ }
- Event  $e_3$ : attendees =  $\{p_1\}$
- Event  $e_4$ : attendees =  $\{p_3\}$

Characterize people based on attended events attended:  $\{e_1, e_3, e_5\}$  attended:  $\{e_1, e_5\}$  attended:  $\{e_1, e_2, e_4\}$ 

Person  $p_1$ 

• Event  $e_5$ : attendees = { $p_1$ ,  $p_2$ }

Apply Agglomerative Clustering to group people by similarity of attended events (until a threshold  $\epsilon$ )

Person  $p_2$ 

Person  $p_3$ 

## **SmartSPEC : Scenario Generation**



## SmartSPEC : Scenario Generation



## Entity Generator: Generating Events and People

Given types of events and profiles of people, how can we create a new set of events and people for our synthetic dataset?



## Synthetic Data Generator: Generating Synthetic Data





- Get date/time that person is in the smart space
- Choose an event to attend, preferably a previously attended periodic event

Semantic Constraints on spaces, people, events



Estimate travel time; estimated arrival must be within a threshold  $\epsilon$ 

Move to an event space

Record data in log file

## SmartSPEC : Assessing Realism



## SmartSPEC : Assessing Realism



### Assessing Realism of Smart Space Datasets



| Person P | Space C | DateTime t          |
|----------|---------|---------------------|
| f28c94f  | 1412    | 2017-09-01 08:19:00 |
| f20a461  | 6029    | 2017-09-01 08:19:00 |
| 238be6   | 3231    | 2017-09-01 08:19:07 |
| 238be6   | 3231    | 2017-09-01 08:19:26 |
|          |         |                     |

#### How to quantify the realism of D, D'?

- Occupancy: a space's perspective of the dataset
- *Trajectory*: a person's perspective of the dataset

# Similarity of Space's Occupancy



- Occupancy of space C: number of unique people in space C during time period  $(t_s, t_e)$ .
- Occupancy Distance is the mean squared error in occupancy over time.

# Similarity of People's Trajectory



| Person P | Space C | DateTime t          |
|----------|---------|---------------------|
| 238be6   | 3231    | 2017-09-01 08:19:07 |
| 238be6   | 3231    | 2017-09-01 08:19:26 |
| 238be6   | 3254    | 2017-09-01 08:20:50 |
| 238be6   | 3256    | 2017-09-01 08:21:13 |
|          |         |                     |

- Trajectory of person P: sequence of spaces C visited by P over datetime t
   Should we naïvely compare all trajectories against each other?
  - Should we naively compare all trajectories against each other?

# Similarity of People's Trajectory



| Person P | Space C | DateTime t          |
|----------|---------|---------------------|
| 238be6   | 3231    | 2017-09-01 08:19:07 |
| 238be6   | 3231    | 2017-09-01 08:19:26 |
| 238be6   | 3254    | 2017-09-01 08:20:50 |
| 238be6   | 3256    | 2017-09-01 08:21:13 |
|          |         |                     |

• **Control Variables** are applied to *partition* trajectories into comparable bins. e.g.,  $V = (t_s, t_e) = (1:00, 1:30)$  contains trajectories with  $t_s \approx 1:00$ ,  $t_e \approx 1:30$ .



#### Distance Function $\Phi$

 $t_s, t_e = (1:00, 1:00)$ 

 $\Phi(\land \land \land \land)$ 

#### $t_s, t_e = (1:00, 1:30)$

|                 | •••• | 1:30 | 1:00 | $t_s$ |
|-----------------|------|------|------|-------|
| $t_s$ , $t_e$ = |      | L >  | A /  | 1:00  |
| Ф(              |      | ⇒ ¥  | Ø    | 1:30  |
| - (             |      | Ø    | Ø    |       |

$$f_{e} = (1:30, 1:30)$$

$$\Phi(3^{\circ}, 3^{\circ}, 3^{\circ})$$

#### Distance Function $\Phi$

- Let  $\phi(\delta_D^{(i)}, \delta_{D'}^{(j)})$  be a function that computes the distance between two trajectories
- e.g., Fréchet Distance Metric



 $\Delta_D^V{\prime}$ 

How do we compare multiple trajectories against one another?

 $\Delta_{D'}^{V}$ 

| <i>t<sub>s</sub> t<sub>e</sub></i><br>1:00<br>1:30<br> | 1:00<br>^ / / /<br>Ø<br>Ø | 1:30<br>7<br>7<br>0<br>Ø | ····<br>···<br>··· | $t_s, t_e = (1:00, 1:00)$<br>$\Phi(\Lambda \land \Lambda \land \Lambda)$ | 1 0<br>0 1     | $\frac{1}{ V }$ | Trajectory Distance<br>$\sum_{\substack{\nu \in V \\ (i), \delta^{(j)}) \in M}} \Phi(\delta^{(i)}, \delta^{(j)}) + \alpha ( \Delta_D^{\nu}  -  \Delta_{D'}^{\nu} )$ |
|--------------------------------------------------------|---------------------------|--------------------------|--------------------|--------------------------------------------------------------------------|----------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        | Δ                         | V<br>D                   |                    | $t_s, t_e = (1:00, 1:30)$<br>$\Phi(7, 5, 7)$                             | 1 1<br>0 0     |                 | Penalty Term for difference                                                                                                                                         |
| $t_s$ $t_e$ 1:00                                       | 1:00                      | 1:30                     |                    | $t_s, t_e = (1:30, 1:30)$                                                | 0 1 0          |                 | in trajectory set sizes                                                                                                                                             |
| 1:30<br>                                               | Ø                         | Ø                        |                    | $\Phi(\mathcal{Y}, \mathcal{Y})$                                         | 1 0 0<br>1 0 0 |                 |                                                                                                                                                                     |

#### Distance Function $\Phi$

•

• Match trajectories between corresponding bins

Matching matrix *M* does not need to be injective

#### Interpreting Dataset Similarity

How to determine if generator G produces realistic datasets?

 $D'_{i,k}$ 

# Compare distances between pairs of real datasets

How do **real** datasets vary against other **real** datasets?

How well does synthetic data mimic the seed from which it was produced?

# Compare distances between pairs of real and simulated datasets

How do **real** datasets differ from **synthetic** datasets?

# Compare distances between pairs of real datasets

How do **real** datasets vary against other **real** datasets?



Simulated  $\approx$  Real?



How well have we extracted patterns from one dataset and applied them to the next?

# Compare distances between pairs of real and simulated datasets

How do **real** datasets differ from **synthetic** datasets?



## Experiment: 2 Distinct Scenarios

#### Scenario 1: Campus

- 6 floor campus building: 125+ faculty offices, 10 classrooms, 4 lecture halls
- 64 WiFi Access Points (WiFi APs)
- 5 weeks of WiFi connectivity events, ~300K connections/week, partitioned into 5 periods of 1 week each



Bren Hall, UC Irvine

1<sup>st</sup> Floor Blueprint

#### Scenario 2: City – GeoLife GPS Trajectories<sup>1</sup>

- GPS trajectories in city of Beijing, China
- 1150 points of interest to cluster GPS data
- 63 people over 28 months, ~36K GPS data/month, partitioned into 1-month periods





GeoLife GPS Trajectories

Learned types of events / profiles of people from both scenarios

<sup>1</sup>Zheng et al., "Geolife: A collaborative social networking service among user, location and trajectory." IEEE Data Eng. Bull., vol. 33, no. 2.

#### **Events**

- 510 "ground truth" events
- Best-effort mapping of events to WiFi APs
- Average paired difference between:
  - Event Start Time:  $15 \pm 18 mins$
  - Event End Time:  $21 \pm 27 mins$



## **Baselines and Metrics**

#### **Mobility Model Baselines**

- *Random Waypoint (RAND)*: Next visited space is random
- Brownian Motion (BROW): Next visited space is adjacent
- Lévy Flight (LÉVY): Next visited space is chosen by following a power law distribution on distance
- Exponential Preferential Return (EPR): Same as Lévy Flight but selects previously visited spaces with higher probability

#### **Comparison Metrics**

- *Trajectory Distance*: Average paired Fréchet distance controlled over start/end times
  - Start/End Times on 30-minute blocks
- *Occupancy Distance*: Average difference in occupancy
  - Over 5-minute intervals
- Averaged results from 3 simulations, comparing against next week (campus scenario) or month (city scenario)

|           | Week 1 | Week 2 | Week 3 | Week 4 |
|-----------|--------|--------|--------|--------|
| Real      | 185.65 | 188.67 | 191.31 | 194.60 |
| SmartSPEC | 263.92 | 252.09 | 272.43 | 240.99 |
| RAND      | 789.8  | 754.07 | 740.23 | 606.74 |
| BROW      | 533.27 | 479.68 | 501.39 | 407.32 |
| LÉVY      | 760.3  | 713.53 | 713.18 | 583.97 |
| EPR       | 693.38 | 554.26 | 635.81 | 459.4  |

#### Campus Scenario

Trajectory Similarity (m)

|           | Week 1 | Week 2 | Week 3 | Week 4 |
|-----------|--------|--------|--------|--------|
| Real      | 6.67   | 5.45   | 7.29   | 5.96   |
| SmartSPEC | 8.63   | 10.0   | 7.16   | 8.61   |
| RAND      | 14.20  | 13.92  | 14.01  | 13.65  |
| BROW      | 12.29  | 12.37  | 12.75  | 12.34  |
| LÉVY      | 13.83  | 13.49  | 13.64  | 13.23  |
| EPR       | 14.75  | 12.86  | 14.83  | 10.05  |

Occupancy Difference

- On average, there was a 35% difference in trajectory distances between SmartSPEC and the campus dataset
- On average, there was a **36% difference in occupancy counts per space** between SmartSPEC and the campus dataset.
- Most mobility models do significantly worse.

SmartSPEC produces trajectories and occupancy counts that are close to real data on the scope of a campus building

# Evaluating Realism in City Scenario

- On average, there was a 13% difference in trajectory distances between SmartSPEC and the GeoLife dataset
- On average, there was a **37% difference in occupancy counts per space** between SmartSPEC and the GeoLife dataset.
- Brownian motion baseline creates similar trajectories to real data, but have very different occupancy

SmartSPEC produces trajectories and occupancy counts that are close to real data on the scope of a city

#### **City Scenario**









wifi\_ap,cnx\_time,client\_id
1,2017-04-09 07:30:31,81
9,2017-04-09 10:39:13,72
8,2017-04-09 10:40:08,72
...

#### Sample Seed Data

| [learners]  |                |                |
|-------------|----------------|----------------|
| start       | = 2017-04-01   |                |
| end         | = 2017-05-01   |                |
| unit        | = 5            |                |
| validity    | = 10           |                |
| smooth      | = EMA          |                |
| window      | = 10           |                |
| time-thresh | = 30           |                |
| occ-thresh  | = 1            |                |
|             |                |                |
| [filepaths] |                |                |
| spaces      | = data/demo/Sp | paces.json     |
| sensors     | = data/demo/Se | ensors.json    |
| metaevents  | = data/demo/Me | etaEvents.json |
| metapeople  | = data/demo/Me | etaPeople.json |
|             |                |                |
|             |                |                |

Sample Configuration File for Scenario Learning

## SmartSPEC: Workflow



| [people]       |     |
|----------------|-----|
| number = $500$ |     |
| generation =   | all |

```
[events]
number = 5000
generation = diff
```

```
[synthetic-data-generator]
start = 2018-01-08
end = 2018-01-29
```

```
[filepaths]
```

| metapeople | = data/demo/MetaPeople.json |  |
|------------|-----------------------------|--|
| metaevents | = data/demo/MetaEvents.json |  |
| spaces     | = data/demo/Spaces.json     |  |
| sensors    | = data/demo/Sensors.json    |  |
| people     | = data/demo/People.json     |  |
| events     | = data/demo/Events.json     |  |
| output     | = data/demo/output/         |  |
|            |                             |  |

#### Sample Configuration File for Scenario Generation

## SmartSPEC: Workflow



| [people]<br>number = 50<br>generation | 0<br>= all                  |
|---------------------------------------|-----------------------------|
| [events]                              |                             |
| number = $50$                         | 00                          |
| generation                            | = diff                      |
|                                       |                             |
| [synthetic-                           | data-generator]             |
| start = 201                           | 8-01-08                     |
| end = $201$                           | 8-01-29                     |
|                                       |                             |
| [filepaths]                           |                             |
| metapeople                            | = data/demo/MetaPeople.json |
| metaevents                            | = data/demo/MetaEvents.json |
| spaces                                | = data/demo/Spaces.json     |
| sensors                               | = data/demo/Sensors.json    |
| people                                | = data/demo/People.json     |
| events                                | = data/demo/Events.json     |
| output                                | = data/demo/output/         |
|                                       |                             |

#### Sample Configuration File for Scenario Generation

PersonID, EventID, SpaceID, StartDatetime, EndDatetime 17,2698,1100,2018-01-15 09:51:50,2018-01-15 09:54:20 33,4200,1422,2018-01-15 09:59:55,2018-01-15 10:46:04 42,613,1420,2018-01-15 09:57:27,2018-01-15 10:44:10 60,1660,1422,2018-01-15 09:59:19,2018-01-15 10:37:00 71,401,1433,2018-01-15 09:59:55,2018-01-15 10:44:30 95,3609,1425,2018-01-15 09:58:32,2018-01-15 10:46:58 134,4200,1422,2018-01-15 09:58:26,2018-01-15 10:41:59 134,0,1100,2018-01-15 09:46:19,2018-01-15 09:48:21 166,1015,1300,2018-01-15 09:59:55,2018-01-15 10:47:16 175,1038,1200,2018-01-15 09:46:53,2018-01-15 09:49:37 177,3335,1422,2018-01-15 09:56:56,2018-01-15 10:41:38

Sample of Synthetic Data Output



Sample Generated Dataset

# SmartSPEC: Applicability and Utility



TIPPERS: Testbed for IoT-based Privacy-Preserving PERvasive Spaces

- Design robust, experimental testbed
- Explore privacy technologies
- Real-world deployments

#### NAVWAR Trident Warrior:

- Explore potential benefits of IoT technologies for naval use cases
- Day in the life of a sailor in mission-critical scenarios and non-mission-critical scenarios
  - Simulated activities on a Navy Ship



- Realistic and Semantically Explainable data are required to test and validate smart space approaches
- We developed SmartSPEC: an **event-driven** smart space simulator
  - Customizable smart space datasets using models of entities in smart space ecosystems.
  - ML techniques to learn profiles of people and types of events from seed data
- We presented a **structured methodology to evaluate the realism of synthetic data**.
- Our experiments show that SmartSPEC produces data that is **1.4x -4.4x** more realistic than baselines.
- The SmartSPEC approach can also be employed to generate synthetic sensor data.
- Our code is publicly available on GitHub: <a href="https://github.com/andrewgchio/SmartSPEC">https://github.com/andrewgchio/SmartSPEC</a>

