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Abstract—This paper presents SmartSPEC, an approach to
generate customizable smart space datasets using sensorized
spaces in which people and events are embedded. Smart space
datasets are critical to design, deploy and evaluate robust systems
and applications to ensure cost-effective operation and safety/-
comfort/convenience of the space occupants. Often, real-world
data is difficult to obtain due to the lack of fine-grained sensing;
privacy/security concerns prevent the release and sharing of
individual and spatial data. SmartSPEC is a smart space simu-
lator and data generator that can create a digital representation
(twin) of a smart space and its activities. SmartSPEC uses a
semantic model and ML-based approaches to characterize and
learn attributes in a sensorized space, and applies an event-
driven simulation strategy to generate realistic simulated data
about the space (events, trajectories, sensor datasets, etc). To
evaluate the realism of the data generated by SmartSPEC, we
develop a structured methodology and metrics to assess various
aspects of smart space datasets, including trajectories of people
and occupancy of spaces. Our experimental study looks at
two real-world settings/datasets: an instrumented smart campus
building and a city-wide GPS dataset. Our results show that
the trajectories produced by SmartSPEC are 1.4x to 4.4x more
realistic than the best synthetic data baseline when compared to
real-world data, depending on the scenario and configuration.

Index Terms—smart space, sensor, simulation, trajectory

I. INTRODUCTION

With the emergence of IoT and support technologies (e.g.,
Edge networks, storage), community infrastructure - including
buildings and homes - are becoming more interconnected,
fueling the creation of smart spaces. We characterize a smart
space ecosystem using four basic entities: (i) spaces, which
constitute the geographical layout of the smart space; (ii) peo-
ple, who represent the inhabitants of spaces; (iii) semantic
events, which describe the actions of people in spaces; and
(iv) sensors, which observe various phenomena in the space.
These entities are highly interrelated: sensors observe people
attending events in spaces. In an example university scenario,
professors and students move to offices and lecture halls
to attend semantic events such as meetings, lectures and
seminars. Their movements are captured by various sensors,
such as WiFi Access Points (APs), Bluetooth beacons, etc.

Smart space ecosystems enable multiple benefits such as
optimization of space/energy usage in organizations, e.g.,
through personalized heating, ventilation and air conditioning
(HVAC) systems. Ongoing work in the research community
also aims to address system-level challenges such as facilitat-

ing the development of sensor-based smart applications [1],
sensor planning and operator placement to reduce network
latency [2], [3], middleware platforms to manage data flows for
timely, reliable data exchange [4], support for privacy-aware
collection and storage of user data [5], [6], Edge-to-Cloud
computation for predictive analytics [7], and formal methods
for dependable execution of pervasive applications [8], [9].

Such smart space approaches, among others, must be tested
and validated using “smart space datasets” - obtaining such
datasets is nontrivial. One challenge is the cost and complexity
of data collection, including purchasing and deploying sen-
sors, recruiting participants and reliably gathering and storing
data. Secondly, such data must be preprocessed to preserve
participant privacy and adhere to data privacy regulations.
Furthermore, creating and exploring hypothetical situations
such as fires, floods, earthquakes, etc., and their impact on
the smart space ecosystem at scale is challenging. This may
require adapting an existing dataset to model dynamic change
(e.g., building damage in a fire can result in inaccessible exits).
This can also be useful in performing scalability studies (e.g.,
to evaluate the impact of activities with many participants.) Re-
cent events have also emphasized the importance of studying
interactions among users and organizational policies in spaces
(e.g., exposure tracing and social distancing during COVID).

Researchers often rely upon offline modeling and simulation
techniques to explore complex scenarios (e.g., human activity
models, fire spread simulators, etc.). When working with
general-purpose simulation toolkits, it is often challenging
to ensure that results are realistic for the desired space and
setting. Variability in the movements of people over time
and the dynamic nature of events add to the complexity of
capturing realism. Proper evaluation of smart space datasets
must determine the degree of realism i.e., how closely do
synthetic datasets model their real-world counterparts. How-
ever, such evaluation is not straightforward. Recent literature
has illustrated the utilization of digital twins to assist in
realistically modeling specific spaces and activities [10], [11].

In this paper, we present SmartSPEC, an event-driven
approach centered around people to generate customizable
smart space datasets using a flexible model of a smart space
ecosystem incorporating spaces, people, events, and sensors.
To facilitate the definition of models, we use input data
from sensors (e.g., WiFi/Bluetooth), and apply ML-based ap-



proaches to extract higher-level metamodels that characterize
the components of a smart space. The metamodels in turn
are used to generate synthetic datasets. We further develop a
structured methodology to assess the realism of the produced
synthetic datasets. Our experimental results show the realism
of datasets generated by SmartSPEC in real-world settings at
the building level/city scale. Our key contributions are:
• A framework to generate multiple realistic, customizable

smart space datasets using semantics of a provided set of
spaces, people, events, and sensors.

• A learning mechanism that extracts models of people,
events, and semantic trajectories from input seed data.

• A methodology to assess realism of generated smart space
datasets using well-established similarity measures and
clustering techniques (e.g., for trajectories, occupancy).

• Validation of the SmartSPEC system and concept by
leveraging multiple real-world instrumented smart spaces
and hypothetical settings.

We organize the rest of the paper as follows: §II discusses
related works on smart space modeling while §III presents
our SmartSPEC architecture. §IV and §V covers the process
to learn SmartSPEC models and generate synthetic data. §VI
and §VII discuss our methodology to assess realism and our
experimental validation. §VIII discusses future directions.

II. RELATED WORK

We describe related literature in datasets for indoor/outdoor
spaces and generative models for synthetic data generation.

Generating Indoor Space Datasets. Several tools have
been developed to enable applications for indoor smart spaces.
Diasim [12] provides an event-driven framework to run sensor-
based applications in actual/simulated environments with sup-
port for monitoring, visualizing and debugging deployed ap-
plications. Here, the logic for interactions between simulated
entities must be manually encoded, requiring significant effort.
IE Sim [13] focuses on a GUI-based interface to model
interactions with simulated environments, including Activities
of Daily Living (ADL) for normal and abnormal activities
(e.g. hazard scenarios). Persim-3D [14] generates datasets for
complex activity scenarios where end-users can define space
structures, interior elements (e.g., appliances), and sensors.
OpenSHS [15] is an open-source 3D smart home simulator
for data generation that provides methods for generating large
representative smart home ADL datasets. These efforts focus
on low-level human activities (e.g., eating, standing up) in the
scope of small spaces (e.g., a single room), and are generally
inadequate to describe movements of people over large spaces,
such as in multistory buildings, which is the focus of our work.

Generating Outdoor Environment Datasets. Techniques
to model trajectories of people in outdoor spaces has tradition-
ally used coarse mobility models such as Lévy flights [16]–
[20] and Preferential Attachment processes [21]–[23]. Such
models help characterize the movement of people statistically;
they are not designed to capture realistic smart space trajec-
tories. Early work by Brinkoff [24] focuses on network-based

trajectory generation in the context of road/railway networks
and relies upon A* search to generate subsequent trajecto-
ries. MWGen [25] expanded on this to generate trajectories
utilizing a database system to simulate human movement over
large distances via multiple modes (e.g., bus, walk). Trajectory
generation in road networks [26] has utilized semantic labels
and user input to manually define mobility models consisting
of prescribed stops and mode of transportation. However, this
greatly increases the amount of effort required to configure a
simulation. In comparison, SmartSPEC considers more com-
plex semantic relationships such as people-event interactions.
Markov models have also been used to simulate trajectories
using mobile devices [27]; this approach requires call detail
records and GPS data to recreate trajectories following human
travel patterns such as the return probability (i.e., probability of
returning to a previously visited area (i.e., return probability)
and the distance traveled from a starting “home” point (i.e.,
radius of gyration). While such heuristics can help characterize
general human mobility, they do not provide mechanisms to
specify the mobility for individuals, which is our focus.

Generative Models. A notable emerging direction in mod-
eling human trajectories leverages Generative Adversarial Net-
works (GANs) to produce synthetic mobility traces [28]–
[31]. These methods typically train two competing neural
network models: the generator model creates new synthetic
examples which the discriminator must classify as real or
fake. Gupta [31] integrates multiple Long Short-Term Memory
(LSTM) neural networks with a novel “pooling” layer in a
GAN architecture augmented with social contexts to produce
small-scale trajectories. This is augmented by Rossi [28]
who proposed new evaluation metrics to optimize a GAN
architecture utilizing LSTM to predict an entire distribution
of potential human trajectories. Similar techniques are utilized
for outdoor environments: Ouyang [30] leverages a location-
major trajectory representation with a non-parametric GAN
consisting of multiple convolution and filter layers. Through
this process, local mobility patterns are extracted, and then
reapplied to generate appropriate trajectories. Kulkarni [29]
takes a different approach and instead advocates for the usage
of non-parametric copulas generative models, which relies
on learning an implicit dependence structure using marginal
densities and a copula density. While these methods are new
and promising in generating realistic human trajectories, it is
difficult to ensure that both space semantics alongside people-
event interaction semantics are learned and enforced. This is
exacerbated by the notorious difficulty to train GANs.

In contrast to the above methods and approaches, Smart-
SPEC focuses on generating realistic smart space datasets
by creating realistic event-based semantic trajectories. Our
approach also learns models governing the generation directly
from seed data, thus reducing the human effort required.

III. THE SMARTSPEC APPROACH

The high-level SmartSPEC architecture consists of two main
components (see Fig. 1): (i) Scenario Learning uses input
seed data and a priori knowledge of the underlying space



and sensors to learn higher-order SmartSPEC concepts; and
(ii) Scenario Generation takes SmartSPEC data to generate
a synthetic dataset from which a smart space dataset (e.g.,
trajectory dataset, sensor observation dataset, etc.) can be
derived. We use the data models below to define a scenario and
its variations (i.e., by defining a new set of people and events),
which drives the generation of new observable phenomena in
the smart space. The SmartSPEC toolkit and a detailed manual
with instructions on operating the system is on GitHub [32].

Fig. 1: SmartSPEC approach.

The first component, Scenario Learning (see §IV) takes
input sensor observation data alongside a priori knowledge
of the underlying smart space and its deployed sensors to
accomplish three goals: (i) extract semantic events/people that
explain the observed phenomena in the smart space; (ii) learn
metamodels of events/people to enable the generation of new
scenarios; and (iii) learn higher-order metatrajectories, which
is a data-driven approach to generate the movement of people
between spaces. These outputs are given to the Scenario
Generation component (see §V), which will proceed in three
steps. First, the Entity Generator will use the events/people
metamodels to create a new set of events/people. This is passed
to the Synthetic Data Generator alongside a configuration file
to generate log files for data generators such as the Trajectory
Generator and Sensor Observation Generator, among others,
to produce smart space datasets. This synthetic data can be
given to applications utilizing smart space datasets.

Below, we describe the attributes of each model utilized by
SmartSPEC. In general, we define a smart space ecosystem as
a 4-tuple of sets (C,P, E ,S), which represent a set of spaces,
people, semantic events, and sensors, respectively. SmartSPEC
enables the generation of new scenarios through the definition
of metadata models for events and people, which we describe
as a set of MetaEventsME and MetaPeopleMP . SmartSPEC
requires that models for spaces and deployed sensors are
defined a priori, as they are not learned nor generated for
new scenarios. We leave such generation as future work; one
example space generation strategy is presented in [33].

Space Model. Let C = (crd, adj, cap) denote a logical

space in SmartSPEC, where coordinates crd and neighboring
spaces adj are used to encode a reachability graph, and cap
represents the maximum capacity of the space.

Person Model. Let person P be defined by the 2-tuple
(TP, aff), where TP denotes a time profile (defined later),
which details the expected time that a person enters/exits
the simulated space and aff is a probability model for the
person’s affinity to different types of events. For example,
a specific grad student may attend evening classes from 4-
7pm (represented by time profile TP ) and has a high affinity
towards study events (represented by event affinity aff ).

Event Model. Let a semantic event E be defined by the 3-
tuple (TP,Ce, att), where TP denotes a time profile (defined
later), which details when the event is held, and Ce defines the
event’s hosting space. att expresses attendance requirements
as a map of the types of people to the event. For the university
campus scenario, one example of a semantic event is a specific
lecture held in space 100 (represented by Ce), occurring daily
between 10-11am (represented by TP and requires one faculty
member and 30 students (represented by att).

Sensor Model. We model a sensor S focusing on the char-
acteristics that SmartSPEC requires to generate a smart space
dataset. Thus, S is defined by the 3-tuple (mob, cov, int),
where mob denotes the mobility pattern of the sensor (i.e.,
static or mobile) and cov is either a list of covered spaces
if the sensor is static (e.g., a thermometer), or a person if
the sensor is mobile (e.g., accelerometer in a phone). Sensors
produce observations in periodic intervals int.

Time Profile. Time profiles describe a pattern of when
events occur/when people enter or exit the simulated smart
space. We represent a time profile TP as a list of 6-tuples
(ds, de, per, ts, te, texp) which represents an “active” time pe-
riod for an “active” day; its semantics depend on the object it
describes. In a time profile, (ds, de) denotes a date range where
an active day occurs with periodicity per. Within an active
day, the active time is specified by (ts, te), which expresses a
“mean” time with “std” minutes for the starting/ending time.
We use texp to express an expected duration of time whose
semantics also depend on the modeled object: for people, it
denotes the amount of time they must spend in the space
while for events, its denotes the expected time commitment
necessary to attend the event. An example time profile for a
Monday seminar event during a semester can be expressed
as follows: (2022-01-03,2022-06-06,M,11:00,13:00,(110,15)).
Note that while the event spans 2 hours, an individual is only
expected to attend N (110, 15) mins.

Using SmartSPEC. The three modes of operation of Smart-
SPEC to generate a smart space dataset are represented in
Fig. 2. These modes vary in the level of user involvement/au-
tomation and control with respect to the generation of models
and metamodels for both people and events. First, the user
defines the relevant Space and Sensor entities according to
the models above 1 . Then, relevant metamodels for people
and events must be defined: this can be done manually 2a
or automatically (with the Scenario Learning component of
SmartSPEC) 2b. Users may modify the automatically gen-
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Fig. 2: SmartSPEC workflow.

erated metamodels if desired. After metamodels are defined,
the user can either manually define a corresponding set of
people and events 3a, or use the entity generator in 3b to
do that automatically. Once again, the produced entities can
be modified if desired. Finally, the the user configures the
Scenario Generation component and executes it 4 .

IV. SCENARIO LEARNING IN SMARTSPEC

To learn semantic events and people, SmartSPEC uses sensor
observation data and a priori knowledge of a smart space and
its deployed sensors. We accomplished this by utilizing change
point detection algorithms [34] to extract events, and then
characterizing people based on the log of events they attend.
We will learn metamodels for events/people (which we refer
to as MetaEvents/MetaPeople) using agglomerative clustering
methods [35]. Lastly, we use time-series methods to derive
MetaTrajectories to help generate the synthetic data.

We define a connectivity log dataset D to consist of a series
of triples (dt, P, C), denoting that person P was in space C
at datetime dt. D can readily be derived from any wireless
connectivity technology such as WiFi, Bluetooth beacons, and
cellular [36]. Such technologies are pervasive and available
in many smart spaces: buildings usually have WiFi Access
Points (APs) deployed to provide Internet connectivity. Note
that, to obtain a more realistic output from SmartSPEC, D
should be extracted from a scenario for which we want to
generate the synthetic dataset. While one could potentially
utilize a connectivity dataset obtained from one scenario to a
new scenario, bias and spurious correlations must be removed
from SmartSPEC data (e.g., using a technique like in [37]),
although that is out of the scope of this paper.

Learning Events/MetaEvents from Smart Space Data.
Given a connectivity log D, we identify individual events in
each space and group them into higher-order MetaEvents. For
example, in a university campus scenario, the set of seminars
can be extract first, then grouped into a seminar metaevent
from which additional instances of seminars can be generated.

MetaEvent Model. Formally, a MetaEvent ME is a 4-
tuple (TP, Cme, att, Eme), where TP and Cme are lists of
time profiles and spaces from which events can be generated,
respectively. Each metaevent uses att to describe a mapping
of metapeople (defined later) to normal distribution parameters
(i.e., mean, stdev) to determine a possible attendance set. The

Algorithm 1: Extracting Events, Learning MetaEvents.
Input: Dataset D, Spaces C, Date start, Date end, int b
Output: Events E , MetaEvents ME

1 E ← ∅
2 for d← start . . . end do
3 for c← C do
4 data← D.query(space = c, day = d)
5 ts← computeOccupancy(data,minutes = b)
6 bkpts← changePointDetection(ts)
7 E ← E ∪ createEvents(c, bkpts)

8 distMat← computeDistanceMatrix(E)
9 clusters← doAgglomerativeClustering(distMat)

10 ME ← makeMetaEvents(clusters)
11 return E , ME

set Eme stores events that are characterized by ME.
The process of learning events is detailed in Alg. 1 and

relies heavily on change point detection [38] to determine
when one event ends and the next starts. For each day d and
space C in D, we compute a time-series of occupancy counts
in C in blocks of b minutes (e.g., for b = 10, we count the
occupancy from 8:00-8:10, 8:10-8:20, etc.). Then, we apply a
change point detection algorithm on the occupancy time-series
to produce breakpoints denoting when events start and end. In
the implementation of our evaluation metric, we use a change
point detection Python package called ruptures [39].

We use agglomerative clustering with single linkage to
cluster events into metaevent models; this unsupervised ML
model initializes all events in its own group, then merges
groups in order of the closest distance. We define the distance
between two evens as the weighted sum of: the difference
between respective start/end times and the Jaccard Index
metric between attendees. We note that distance between
semantics of spaces is excluded because it is too context-
specific. With a measure of event distance defined, we group
events until a user-defined threshold is met.

Learning People-Event Interactions, MetaPeople. The
key characteristic defining the behavior of a person is the set
of events they attend. Thus, with the set of events previously
learned, SmartSPEC characterizes each person with their at-
tended events and then groups them into MetaPerson models.

MetaPerson Model. Let a metaperson MP be a 3-tuple
(TP, aff,Pmp), where TP is a list of time profiles and aff
describes the event affinity, which details a probability model
for attendance. We store the set of associated people in Pmp.

We use the set of attended events to infer both the event
affinity aff and time profile TP for a person P. Namely,
P will be more likely to attend an event they have previously
attended, and TP defines its active times, assuming that P will
try not to miss their events. MetaPeople are generated anal-
ogously to MetaEvents: agglomerative clustering with single
linkage is utilized; the distance between people is defined to
be the weighted sum of the difference between time profiles
TP and the Jaccard Index between attended metaevents.

Learning MetaTrajectories. SmartSPEC uses metatrajec-
tories to describe the paths that a person can take to move
between two (nonadjacent) spaces. First, we create estimates



for the start/end times that a person is in a space given
timestamps from D: when a sensor consecutively observes
a person, SmartSPEC assumes that there is a high likelihood
that they are in the same space. Let valid denote the amount
of time between consecutive entries to be considered as the
staying in the same space; this allows some consecutive sensor
observations to be merged to yield start/end times. Then, we
label spaces in which the duration of time spent inside was
greater than some user-defined threshold. This partitions a
person’s trajectory into sub-trajectories, each of which start
and end at a labeled space. A path between two spaces is
selected from one of the previously learned trajectories.

V. SCENARIO AND DATA GENERATION IN SMARTSPEC

The Scenario Generation component consists of three steps:
(i) Entity Generation uses previously learned metaevent/meta-
person models to generate a new set of events/people, which
is given to the (ii) Synthetic Data Generator which combines
them with space/sensor entities, producing a log dataset from
which (iii) data generators such as the Trajectory Generator
and the Sensor Observation Generator can produce trajectory
and sensor observation smart space datasets, respectively.

Entity Generation. As described in the SmartSPEC mod-
els, and event is characterized by the 3-tuple (TP,Ce, att);
we derive each of these attributes from a metaevent, which
is characterized by (TP, Cme, att, Eme). Alg. 2 describes the
event generation process. First, a metaevent ME is selected
from which an event is generated with probability proportional
to the size of the Eme. The event time profile TP and space
Ce are chosen at random from the list of time profiles TP and
spaces Cme, respectively. However, if Ce cannot host an event
at TP , then another space is selected; if none exist, then the
current event is discarded and the process to generating a new
event restarts. The event attendees att is obtained by sampling
the normal distribution parameters for each metaperson in att.
The process to generate a new event is overloaded to generate
a new person P = (TP, aff): a metaperson is chosen from
which both TP and aff are determined.

Synthetic Data Generation. SmartSPEC generates syn-
thetic datasets by simulating people who attend events during
their active times in the simulated space, as seen in Alg. 3.

For each person P ∈ P and for each active date and time
d, ts, te ∈ ds . . . de, obtained from P’s associated time profile
(Lines 2,3), P will (i) choose an event to attend using the

Algorithm 2: CreateEvent
Input: MetaEvents ME , Events E , float distThresh
Output: Event E

1 ME ← selectMetaEvent(ME)
2 TP ← selectT imeProfile(TP )
3 Ce ← selectNonConflictingSpace(Cme, E)
4 if Ce = null then
5 return GenerateEvent(ME − {ME})
6 att← map()
7 for a, (µ, σ)← att do
8 att[a]← N (µ, σ).sample(1)

9 return E(TP,Ce, TP,ME)

Algorithm 3: Synthetic data generation.
Input: Date ds, Date de, People P , Events E , Spaces C
Output: LogFile log

1 log ← ∅
2 for P ← P do
3 for d, ts, te ← P.queryActiveDateT ime(ds . . . de) do
4 t ← ts
5 while t ≤ te do
6 E ← P.findPreviousEvent(d, t)
7 if ! E is null then
8 path← getPath(P.space, E.space)
9 else

10 attd← ∅
11 for E ← E do
12 if !E.hasSpaceCapacity(t)

or !E.hasPeopleCapacity(P)
or E.conflictsWith(P.prevEvents)
then

13 continue
14 Pe ← getPath(P.space, E.space)
15 arrival← t + Pe.estTravelT ime()
16 if |arrival − E.startT ime| ≥ ε then
17 continue
18 attd← attd ∪ {(E , Pe)}
19 E, path← select(attd, P.eventAffinity)

20 for c← path do
21 Block until Ce.cap(d, t) ≤ Ce.maxCap
22 Move P to c, updating t
23 log.record(P, c, t)

24 log.record(P,E.space, E.te)
25 P.recordAttendance(E)
26 t ← E.te

27 return log

input semantic models (Lines 6-19); and (ii) move to attend
the event, recording their movements (Lines 20-26). In the
event selection process, previous commitments to (periodic)
events attended periodic events will be considered first (Line 6)
before new events. However, if P must select a new event, they
consider both physical constraints such as the space capacity
of the event’s hosting space and the expected travel/wait
time, as well as semantic constraints imposed by attendee
capacities and their prior commitments (i.e., from previously
attended events) (Lines 12). The specific paths and timestamps
yielding a person’s simulated movement are detailed by a
metatrajectory and are recorded (Lines 24,25).

Trajectory and Sensor Observation Generation. We
define a semantic trajectory as a series of 5-tuples
(P,E,C, ts, te), which denotes the space C and time t from
which the whereabouts of a person P can be mapped as they
move to attend some semantic event E. We extract a semantic
trajectory from a log by enumerating over the timestamped
sequence of visited spaces and events; note that the log
produced from Alg. 3 records such information. Similarly, to
generate a sensor observation dataset, we use the synthetic data
logs and the sensor model to determine which movements are
captured. In Alg. 4 we define, for a log entry (P,E,C, t),
cover as the subset of sensors covering the space C at



Algorithm 4: Sensor observation generation.
Input: Sensors S, Trajectories traj
Output: Observations obs

1 obs← ∅
2 for t← traj do
3 cover ← S.coverage(t.space, t.timestamp)
4 sensors← chooseSensors(cover, t)
5 for s← sensors do
6 ts← chooseObsT ime(s, t)
7 obs.record(t.person, ts, s)

8 return obs

time t. A user-defined filter is applied to cover to address
application-specific intermittent behavior. For each sensor s,
an observation time is recorded into an observation dataset.
Note that generating sensor observations is dependent upon the
user applications and sensor, and thus needs to be customized.

VI. ASSESSING REALISM OF SMART SPACE DATASETS

In this section, we will describe the methodology used to
assess the degree of realism between two smart space datasets,
as such a metric is not yet well-defined to the best of our
knowledge. Consider two smart space datasets D and D′,
such that D is a log of real-world phenomena, while D′ is
a synthetically generated log. Each dataset consists of a series
of 3-tuples (P,C, dt) denoting the space C ∈ C that a person
P ∈ P is in at datetime dt. We assume that both datasets take
place in the same set of spaces C.

A. Space Occupancy Similarity

We use occupancy of spaces as one of the mechanisms to
assess the similarity of D and D′ wrt. the behavior of the
recorded people. Formally, we define the occupancy λC,ts,teD

as the number of unique people in dataset D who are in the
space C during the time period (ts, te). Then, we partition
the time period (ts, te) into b blocks for which occupancy
counts are measured. We directly compare the difference in
occupancy using the mean squared error, as seen in Eqn. 1.

OccDist(D,D′) =
1

|C| |b|
∑

C,ts,te

∣∣∣λC,ts,te
D − λC,ts,te

D′

∣∣∣2 (1)

B. People Trajectory Similarity

The second mechanism used to compare smart space datasets
is semantic trajectories as defined in §V. Given datasets D and
D′, let δ(i)D and δ(j)D denote the ith and jth semantic trajectory
extracted from trajectory sets ∆D and ∆D′ (corresponding
to D,D′, respectively. To isolate the effect of confounding
variables in our similarity metric, we introduce the notion of
control variables to partition ∆D and ∆D′ into “bins”. Let
V be a set of control variables that we wish to keep constant
between compared trajectories; we propose setting V to be the
rounded time period (ts, te) for which a trajectory starts and
ends (i.e., discretizing the starting/ending times into intervals).
That is, a bin corresponding to V = (ts, te) will contain
trajectories starting around ts and ending around te. Then, let
∆V
D denote the subset of trajectories in the bin corresponding

to V, as illustrated in Fig. 3. This process yields partitioned
trajectories ∆V

D and ∆V
D′ from D and D′, respectively.

To compare ∆V
D against ∆V

D′ , a distance metric between
individual trajectories must be defined: let φ

(
δ
(i)
D , δ

(j)
D′

)
be a

function that takes two trajectories and returns the “distance”
between them. In our work, we propose using the Fréchet
distance metric [40]–[42] for its sensitivity properties. Given
this distance metric, we can then compute a cost matrix of
distances between trajectories in ∆V

D and ∆V
D′ to make a

minimum-cost matching MAT ; this is an application of the
unbalanced assignment problem [43]. Since the size of each
of the trajectory sets can be different (and thus one trajectory
from the smaller set can be matched with multiple trajectories
from the larger set), we define the distance between a given
matching

(
δ(i), {δ(j1), . . . δ(jn)}

)
as the total distance between

δ(i) and each δ(jk), k ∈ 1 . . . n. We additionally penalize the
difference in the sizes of the trajectory sets, weighted by the
constant α. Thus, our proposed distance similarity metric for
semantic trajectory sets ∆D and ∆D′ is the sum over control
variables V and matching MAT of the individual trajectory
distance φ

(
δ
(i)
D , δ

(j)
D′

)
, as shown in Eqn. 2.

TrajDist(D,D′) =
1

|V|
·
∑
v∈V

∑
(δ(i),{δ(jk)})∈MAT(∑

k

φ
(
δ
(i)
D , δ

(j)
D′

)
+ α|∆v

D −∆v
D′ |

)
(2)

C. Interpreting Dataset Similarity

While the metrics above help to quantify the similarity of
smart space datasets D, D′, we must further define a method-
ology to interpret the similarity of the values obtained in order
to determine the degree of realism between D, D′.

To this end, suppose that we split a real-world dataset D
into multiple smaller datasets {Di} (e.g., by the week in which
the data was measured). Then, using Di as training data for
the generator G, we can produce k simulated datasets D′i,k.
Let RSi denote the set of values obtained by comparing the
Real dataset Di against each Simulated dataset D′i,k, wrt. the
metric described in §VI-A or §VI-B. We also define RRi
to be the set of values obtained by comparing Di against
each of the other datasets Dj , where j 6= i, i+ 1. Intuitively,
RSi represents the distribution of similarity between synthetic

Fig. 3: Extraction of trajectories and placement into bins.

Fig. 4: Comparison of real and simulated datasets.



datasets and real-world datasets, while RRi represents the
distribution of similarity between only real-world datasets.
This process is depicted in Fig. 4. After computing RRi and
RSi, we run an ANOVA test with significance level α, which
produces a p-value; if p-value ≤ α, then the simulated dataset
is distinguishable from the real dataset. Otherwise, there is not
enough evidence to support the hypothesis that the simulated
dataset is distinguishable from the real-world dataset.

D. Sensitivity Analysis of the Trajectory Distance Metric

We analyze the sensitivity of the trajectory distance metric
proposed above wrt. changes in their trajectories. We will
show that the proposed trajectory distance metric using the
Fréchet distance is resistant against small deviations in spaces,
up to a threshold set for each pair of matched trajectories.
Intuitively, this enables the metric to express that multiple
realistic scenarios can exist for a given real-world trajectory
dataset, without penalizing for any and all deviations.

Let ∆P = {δP } and ∆Q = {δQ} be sets of trajectories
to compare using the trajectory distance metric proposed
above. We assume that the metric φ computes the Fréchet
distance. Let δP = [C1

P , . . . C
n
P ] and δQ = [C1

Q, . . . C
m
Q ]

denote arbitrary trajectories in ∆P and ∆Q, respectively,
which consists of a sequence of spaces. WLOG, assume that
n ≤ m. For the sensitivity analysis, suppose that δ

′

Q denotes a
modified trajectory, where one element has been changed: (i) a
new space C∗Q is added to δQ; or (ii) a space C∗Q is removed
from δQ. Let ∆

′

Q denote a new set where δ
′

Q replaces δQ.
We adapt the definition of the (discrete) Fréchet distance

from [42] as shown in Eqn. 3. Intuitively, let L denote a list
of pairs of spaces from δP and δQ such that it starts with
(C1

P , C
1
Q), ends with (CnP , C

m
Q ) and the trajectories inferred

from the resulting list match δP and δQ (after removing
consecutive duplicates). Then, ‖L‖ can be defined to be the
maximum displacement between two paired spaces.

φ(δP , δQ) = min
{
‖L‖ : L is a coupling of δP , δQ

}
,

where L = [(Cf1
P , Cg1

Q ), . . . (Cfm
P , Cgm

Q )],

f : {1..m} → {1..n}; g : {1..m} → {1..m},
f1 = g1 = 1, fm = n, gm = m,

∀i∈1..m : fi+1 ∈ {fi, fi+1}, gi+1 ∈ {gi, gi+1}
‖L‖ = max{d(Cfi

P , C
gi
Q )}

(3)

There are three main factors that determine the total trajec-
tory distance as defined in Eqn. 2: (i) the choice in metric (in
our case, we propose using the Fréchet distance, which enables
us to inherit some of its properties); (ii) the matching produced
by the unbalanced assignment problem; and (iii) the control
variables used to bin trajectories. In our analysis, we will focus
upon the effects produced by (ii), as different metrics will
provide different properties and the effects of binning will
depend entirely on the control variables chosen by the user.

Case 1. |∆P | = |∆Q| = 1. Since there is only one trajectory
in each set ∆P ,∆Q, there will be only one possible matching.
The properties of φ(∆P ,∆Q) will be the same as φ(δP , δQ).
Therefore, φ(∆P ,∆

′

Q) = φ(δP , δ
′

Q): the total distance will

change only if the added/removed space C∗Q modified the
previous maximum pair in L. Thus, a key property of using
the Fréchet distance is that the total distances is resistant
against small changes in trajectories. This allows multiple
trajectories to potentially yield the same total distance, which
allows variation in trajectory sets to exist without penalty.

Case 2. |∆P | = 1, |∆Q| = q. In this case, the match-
ing will be between δP ∈ ∆P to each δQ ∈ ∆Q as
no other matching exists. The change between φ(∆P ,∆

′

Q)
and φ(∆P ,∆Q) is bounded by the change in Case 1:
φ(∆P ,∆

′

Q) = φ(∆P ,∆Q) − φ(δP , δQ) + φ(δP , δ
′

Q). One
difference from Case 1 is the term α|q − 1|, where α is a
user-defined penalty for differences in trajectory set sizes.

Case 3. |∆P | = p, |∆Q| = 1. On the other hand, if we
suppose that δQ is modified into δ

′

Q, then there will be a larger
effect on the total distance as compared to Case 2: every δP
must recompute their distance from the newly modified δ

′

Q.
Case 4. |∆P | = p, |∆Q| = q. In this last case, it is

possible for the matching between trajectories in ∆P and ∆Q

to change, thus changing the total trajectory distance. If we
suppose that δQ is modified into δ

′

Q and the matching between
the two trajectory sets does not change, then, the change in
the total trajectory distance will be equivalent to case 1,2 or
3. Otherwise, if the matching does change, then only newly
reassigned pairs can contribute to the final total distance.

VII. EXPERIMENTS

We evaluate the accuracy of SmartSPEC using two real-
world datasets and baselines based on human activity models.
We examine the learned models from the Scenario Learning
component and the synthetic data produced from the Scenario
Generation component. We also demonstrate the utility of
SmartSPEC with additional hypothetical scenarios.

Datasets. We evaluated the realism of datasets produced
by SmartSPEC with respect to two real-world datasets. The
first dataset contains WiFi connectivity events captured in
a 6 floor campus building at the University of California,
Irvine, instrumented with 64 WiFi APs. The building has 4
lecture halls, 10 classrooms, 125+ faculty offices, 90+ research
labs, along with other facilities, as seen in 5a. Our dataset
spanned 5 weeks and contained an average of 300K device
connections each week. We cleaned this dataset by removing
entries that were outside of the range [8:00,21:00] to eliminate
extreme outliers. To lighten the effect of people who only
pass by the building without attending any semantic events
inside, we removed entries that connected fewer than 10 times
in a week. Due to the intermittent nature in which devices
connect to WiFi APs, we associated each connection with a
validity period of 10 minutes, which assumes a person’s spatial
presence for at most 10 minutes. Then, we use the resulting
connectivity dataset with the methodology of §VI to extract
necessary aspects of smart space datasets for evaluation.

To show the generality of SmartSPEC, the second dataset
we used contains GPS trajectories collected in Beijing,
China by Microsoft Research Asia as part of the GeoLife
project [44]–[46]. Out of the 182 users spanning over 5 years



(a) Bren Hall, UC Irvine.
(b) Geolife GPS.

Fig. 5: Real-world datasets.

featured in the dataset, we examine 63 users over ∼2 years
who indicated walking in their trajectory logs, for an average
of of 36K GPS logs per month. Fig. 5b shows the GPS traces
used. To define a notion of “spaces” from the GPS coordinates,
we used OpenStreetMap [47] to extract 1,150 points of interest
(POI) in Beijing, and clustered each GPS coordinate to its
nearest POI, yielding a connectivity dataset.

Experimental Setup. The campus dataset was partitioned
into 5 periods of 1 week each, whereas the Geolife dataset
was partitioned into 28 periods of 1 month each. In both
experiments, we learn a set of metaevents/metapeople for each
week-long or month-long period. Here, we considered time
in blocks of 5 minutes and applied a exponential moving
average function to smoothen the resulting occupancy time-
series. Each simulation spans for the same amount of time
and uses the same number of events/people as their asso-
ciated seed data (i.e., ∼1650/∼4800 people per week for
the campus scenario and ∼200/∼7 people per month for the
city scenario). For the scenario generation phase, we created
a default “leisure” event that people would attend if there
were no other suitable events; this “leisure” event occurs at
designated outdoor space for 10±2 minutes. For each set of
learned metaevents/metapeople, we generated 3 simulations
and average their results. Configuration files and metamodels
used in the experiments are available on GitHub [32].

Baselines. Smart space dataset generation is based on
realistic semantic trajectories in SmartSPEC. We compared our
approach against four heavily studied human mobility models
commonly used in application domains requiring simulations
(e.g., transportation, urban planning, disaster management,
etc.) [48]. Each model realistically replicates human mobility
while differing in the mechanism used to select the next space.

In the Random Waypoint (RAND) mobility model [16],
[17], [49], [50] and its variants, people select the next space to
visit at (mostly) random without any restrictions. The Brown-
ian Motion (BROW) mobility model [51], [52] is similar to the
RAND model, but constrains the next space to be adjacent to a
person’s current space. However, to address the shortcomings
of the RAND and BROW models, the Lévy flight model
(LÉVY) was introduced [16]–[20], which imposed a power-
law probability distribution on the potential spaces to visit
based on their distance from a person’s current space with
power law frequency. Our last baseline mobility model relies
on exponential preferential return [21]–[23], which augments
the LÉVY mobility model so that a person is more likely to
select a previously visited space next. This proceeds in one
of two cases: (i) the LÉVY model is used to select a new
space to visit; or (ii) a previously visited space is chosen with

probability proportional to the number of times visited.
In each mobility model, all people enter the simulated

space in the morning (sampled from 10:00 ± 2 hrs), exit the
simulated space in the evening (sampled from 18:00 ± 2 hrs)
and take the shortest path to move to their next location. In
each visited space, a person spends 60 ± 20 minutes before
selecting the next space. SmartSPEC learns such values for
various profiles of people with the training smart space dataset.

A. Evaluating Learned Models

SmartSPEC performs an event-driven generation of semantic
trajectories where people move to spaces to attend events. We
validate the process of learning metatrajectories by comparing
generated trajectories against the expected path that individuals
take (shortest path in graph). We evaluate learned events by
their comparing event occupancy counts against ground truth.
We perform this validation based on the campus dataset only,
for which we know ground truth.

MetaTrajectories. To evaluate the learned people directly,
we must establish ground truth by identifying a number of
device owners and tracking the types of events they attend as
well as recording times at which they enter/exit the sensorized
space. However, obtaining such data at scale is challenging and
poses many privacy concerns. Hence, we instead evaluated the
quality of metatrajectories which represent movement patterns
of individuals between nonadjacent spaces. We compare such
paths produced by the MetaTrajectory Learner against real
paths extracted from data. We consider the shortest path algo-
rithm as a baseline. Our evaluation followed the methodology
shown in Fig. 4 - namely, we split the campus dataset into
periods of 1 week and compared the current week against
the consecutive week. Tab. I shows the distance between
metatrajectories computed using Eqn. 2.

TABLE I: Avg. MetaTrajectory Distance (m).

Week 1 Week 2 Week 3 Week 4
Real 21.93 20.85 20.68 21.37

SmartSPEC 21.63 21.03 20.69 19.44
Shortest Path 12.00 13.35 10.63 12.27

Our results show that the learning of metatrajectories by
SmartSPEC results in realistic paths between non-adjacent
spaces. In general, the shortest path resulted in realistic
situations only when the source and destination spaces were
physically located near each other. We find that the average
difference between real-world trajectories and shortest path
trajectories is much greater than when using SmartSPEC.

Event Occupancy. We compared events learned by Smart-
SPEC against ground truth events that were formally ad-
vertised in the campus building. In particular, we consulted
the campus-wide schedule of classes for logistical data on
courses (e.g., time, periodicity, enrollment), and other adver-
tised events (e.g., seminars, club meetings), and identified a
total of 510 events out of an average of 1,424 events learned
by SmartSPEC each week. We made a best-effort attempt to
map each event (and their associated enrollments) to WiFi APs
regions. Note that, since we are mapping events to regions,
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Fig. 6: Histogram of differences in event occupancy.

more than one event can happen in the same region at the same
time and in those cases we will combine them into a single
event. For instance, the region that covers two classrooms will
be associated with two classes at the same time. This means
that the attendance to the event that combines them both will
be the sum of the attendance to both classes. Additionally, we
assumed that attendance in ground truth events (e.g., courses)
was typically 30-70% of official enrollment counts/maximum
occupancy of hosting spaces to account for absentees.

In our analysis, we made a best-effort attempt to match
each ground truth event with its learned counterpart based on
their start/end times. The average paired difference in start/end
times was 15±18 and 21±27 minutes, respectively. In Fig. 6,
we plotted the difference in occupancy between learned and
ground truth events and found that a majority of events had
minimal differences in occupancy. We note that it is infeasible
to capture all ground truth events for comparison: people can
spend time in the building while not attending any formal event
(e.g., wait in lobby), which helps explain the heavy tails.

B. Evaluating Generated Semantic Trajectories

We evaluate realism of the produced semantic trajectories
for two real-world datasets and compare them against the
baselines, using the methodology and metrics in §IV and §VI.

We split the campus dataset into periods of 1 week and
binned the extracted semantic trajectories using rounded half-
hour intervals of start/end times as control variables (i.e.,
each trajectory was characterized by the closest half-hour for
which their start/end times fall). In Tab. II, we report the
average similarity in semantic trajectories, measured as the
distance (m) as explained in §VI, over all bins. We add a
row “Real” to Tab. II which represents the comparison of
real semantic trajectories to each other. The results show
that, in general, SmartSPEC was able to produce semantic
trajectories whose distance from extracted real-world semantic
trajectories was close to that of other real-world semantic
trajectories: on average, there was only a difference of 35%
between the “real” dataset and the SmartSPEC dataset, while
the other had an average percent change of 280%, 153%,
264%, and 208%, as listed. An interesting outcome was that
the BROW baseline seemed to do better than other baselines;
we observe this phenomena because in the BROW mobility
model, people select to move to adjacent locations, where they
stay for some time. Overall, this produces semantic trajectories
largely located in only one area, which allows the distance

TABLE II: Avg. trajectory similarity (m) in campus dataset.

Week 1 Week 2 Week 3 Week 4
Real 185.65 188.67 191.31 194.60

SmartSPEC 263.92 252.09 272.43 240.99
RAND 789.8 754.07 740.23 606.74
BROW 533.27 479.68 501.39 407.32
LÉVY 760.3 713.53 713.18 583.97
EPR 693.38 554.26 635.81 459.4

to be approximated with a simple max. We observe this
phenomenon for the Geolife dataset as well. It is clear that
SmartSPEC was able to significantly outperform all baselines
in the campus scenario.

For the Geolife dataset, we made splits of 1 month, but
kept the same binning strategy as described above. Since this
dataset spans over 2 years, we report the range of semantic tra-
jectory distances (km) computed using the boxplots in Fig. 7a.
Our result similarly show that SmartSPEC was able produce
semantic trajectories in a large city setting that were close to
that of real-world semantic trajectories: the average percentage
difference was -13% compared to the 177%, 18%, 159% and
159% of the RAND, BROW, LÉVY and EPR baselines. It is
clear that the RAND, LÉVY, and EPR baselines were unable
to produce realistic semantic trajectories: the resulting values
were significantly larger than what was expected. For the
BROW baseline, we observed the same phenomena as with the
campus dataset: the produced semantic trajectories are mostly
in one area. However, since the Geolife dataset is set on the
scale of a city, the effect of producing semantic trajectories in
one area is more noticeable - people will typically not walk
across the entire city to get from one place to the next. Overall,
SmartSPEC outperforms the baselines for the Geolife dataset.
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Fig. 7: Geolife dataset distances.

C. Evaluating Generated Occupancy

We evaluate the realism of the synthetic datasets produced
by SmartSPEC wrt. occupancy. We use the same datasets
that were generated for the semantic trajectory analysis and
computed the occupancy of each space in 10 minute intervals.

The results for the campus dataset, as listed in Tab. III,
show that the occupancy of spaces inferred by the semantic
trajectories of people generated by SmartSPEC was close to
occupancy found from our real-world data. On average, there
was a 36% change in the occupancy counts per space in the
synthetic dataset produced by SmartSPEC, compared to the



120%, 96%, 114%, and 107% change in the datasets produced
by the RAND, BROW, LÉVY, and EPR mobility models,
respectively. Thus, SmartSPEC does much better than each
of the baselines wrt. occupancy in the campus dataset.

We present the results for Geolife in Fig. 7b as a boxplot
which shows the average occupancy difference per space,
over all 1-month dataset splits. The results show a -37%
difference in occupancy when comparing real space occupancy
and SmartSPEC occupancy. In contrast, the RAND, BROW,
LÉVY, and EPR baselines all have around a 68.5% difference.
In fact, each of the baselines also has similar behavior in terms
of the distribution of the occupancy difference found: they
have the same average and interquartile range, with a heavy,
one-sided tail. This implies that most of the 1-month datasets
that were synthetically produced are similar to each other, but
that there was a number of outlying datasets skewed results to
high occupancy levels. We observe that SmartSPEC produces
datasets that vary less from real-world data; there are also
fewer outlying occupancy differences.
TABLE III: Occupancy difference per space in campus dataset.

Week 1 Week 2 Week 3 Week 4
Real 6.67 5.45 7.29 5.96

SmartSPEC 8.63 10.0 7.16 8.61
RAND 14.20 13.92 14.01 13.65
BROW 12.29 12.37 12.75 12.34
LÉVY 13.83 13.49 13.64 13.23
EPR 14.75 12.86 14.83 10.05

D. Applicability and Utility of SmartSPEC

To demonstrate the applicability of SmartSPEC and utility of
its generated datasets, we constructed a “daily life” scenario in
two different settings: a mall and an airport. In the mall setting,
we simulated store personnel, customers (both regular and
infrequent) and mall management and present a visualization
of their occupancy at a certain point in time in Fig. 8.
Similarly, we simulated airport security personnel, passengers,
restaurant staff and others for the airport scenario and visualize
a snapshot of part of the airport in Fig. 9. Such datasets
can be used to study hypothetical situations and optimize
space usage. For example, in the mall setting, we can use the
occupancy counts to identify spaces with high traffic - these
spaces can guide the placement for a new shop or be used
as a heuristic to know when physical advertisements are best
distributed. Alternatively, occupancy levels in an airport setting
can be used to help optimize the time taken for passengers
to board/deboard a plane (e.g., by hypothetically changing
the gates that airplanes use), or to identify densely populated
areas that require more security/monitoring. In both scenarios,
the smart space dataset generated by SmartSPEC can also
be leveraged to generate other sensor data such as potential
WiFi connectivity events, changes in temperature registered
by the HVAC sensors, or number of people in pictures taken
by security cameras. SmartSPEC may also aid in enabling
resilience of critical facilities under extreme scenarios; this can
be done thought the modeling of activities such as evacuations
and sheltering in natural and man-made disasters such as

Fig. 8: Occupancy in a simulated mall.

Fig. 9: Occupancy in a simulated airport.
structural fires and active shooter events, which can help in
designing spaces that improve public safety.

VIII. CONCLUSIONS AND FUTURE WORK

We presented SmartSPEC, an event-driven smart space sim-
ulator and data generator that produces customizable smart
space datasets using models of spaces, people, events and
sensors. In SmartSPEC, we ease the process of defining such
models by applying ML techniques to extract higher-level
metamodels of people and events from input connectivity
data. Through this process, we describe new scenarios and
generate new synthetic datasets. We also introduced a new
structured methodology to evaluate the realism of synthetic
data. The experimental results show that SmartSPEC generates
realistic datasets in different situations using input seed data.
However, the quality of the generated dataset is obviously
limited by the quality of the metamodels derived from the seed
data. Reusing such metamodels in domains other than the one
for which they were created remains an open challenge for
SmartSPEC. We are planning to explore the generalization of
people and event metamodels extracted from input datasets
by removing domain-specific bias. To strengthen the usability
of SmartSPEC, we are developing graphical tools to simplify
the process of modeling the geographical component of the
space itself, thus alleviating the effort required to dynamically
change the layout. Finally, we envision that SmartSPEC can be
used as a starting point towards the design of next-generation,
reconfigurable spaces and flexible buildings.
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Tech. Rep., 1994.

[43] L. Ramshaw and R. E. Tarjan, “On minimum-cost assignments in
unbalanced bipartite graphs,” HP Labs, Palo Alto, CA, USA, Tech. Rep.
HPL-2012-40R1, 2012.

[44] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting locations
and travel sequences from gps trajectories,” in 18th Int. Conf. on World
Wide Web.

[45] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma, “Understanding
mobility based on gps data,” in 10th Int. Conf. on Ubiquitous Computing.

[46] Y. Zheng, X. Xie, W.-Y. Ma et al., “Geolife: A collaborative social
networking service among user, location and trajectory.” IEEE Data Eng.
Bull., vol. 33, no. 2.

[47] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org ,” https://www.openstreetmap.org, 2017.

[48] G. Solmaz and D. Turgut, “A survey of human mobility models,” IEEE
Access, vol. 7.

[49] R. Gallotti, A. Bazzani, S. Rambaldi, and M. Barthelemy, “A stochastic
model of randomly accelerated walkers for human mobility,” Nature
Communications, vol. 7, no. 1.

[50] V. Zaburdaev, M. Schmiedeberg, and H. Stark, “Random walks with
random velocities,” Physical Review E, vol. 78, no. 1.

[51] P. G. Lind and A. Moreira, “Human mobility patterns at the smallest
scales,” Communications in Computational Physics, vol. 18, no. 2.

[52] R. Groenevelt, E. Altman, and P. Nain, “Relaying in mobile ad hoc
networks: The brownian motion mobility model,” Wireless Networks,
vol. 12, no. 5.


