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Abstract— Stormwater networks are critical utility infras-
tructures designed to drain rainwater and nuisance flows,
such as excess irrigation and groundwater seepage from urban
communities. During this process, they can transport pollutants
(e.g., pesticides, oils, and greases) to receiving waters such as
rivers, bays and oceans. A recurring problem faced by these
systems are dry weather flows (DWFs), where illicit discharges
are introduced and propagated in the network during periods
with no rain. Current techniques for monitoring DWFs consist
of manual inspections and grab samples, which are costly and
inefficient. However, with advances in sensing and communica-
tion, the Internet-of-Things (IoT) has enabled new opportunities
for enhanced decision support and control. This paper proposes
a quick and efficient physics-based backwards inference model
to identify potential sources of pollutant discharges in DWFs,
given time-series IoT observations and knowledge embedded
in domain-expert simulations. Our approach leverages the
underlying physics that drives flow propagation in stormwater
systems, and optimizes multiple least-squares regressions to find
potential DWF sources and their associated flows. We evaluate
our backwards inference model on six real-world stormwater
networks provided by domain experts, and show its efficacy in
reconstructing anomalies.

I. INTRODUCTION

Stormwater networks, also known as municipal separate
storm sewer systems (MS4s), are a utility infrastructure con-
sisting of thousands of catch basins, outfalls, and channels.
The system transports rainwater and nuisance flows (e.g.,
excess irrigation, groundwater seepage) from urban cities to
receiving waters such as rivers, bays, and oceans. However,
these networks can also carry pollutants like pesticides, oils,
and sewage, which may be introduced by illegal dumping,
incidental discharge or illicit non-MS4 pipeline connections.
This can lead to water quality impairments downstream, such
as increased harmful bacteria, algal blooms, and fish kills.

To address this, regulations like the 1987 amendment of
the US Clean Water Act [1] require permits for urban MS4
discharges, and generally prohibit non-MS4 connections and
their associated pollutants. However, enforcement against
violators and remediation is challenging due to the difficulty
of tracing discharge origins, which could be transient in
nature and occur over large catchment areas. In this context,
source identification and mitigation efforts like [2], [3] focus
on dry weather flows (DWFs), which occur during dry
weather/low flow conditions with no rain. These discharges
are easier to identify, and managing them also improves
water quality during wet weather.

Several aspects of DWF discharges make source identifi-
cation difficult. One key challenge is the transient and sudden

nature of DWFs, where pollutants can appear abruptly, cause
significant harm, and dissipate before source tracking and
clean up measures can be initiated. Another challenge comes
from the large, geo-distributed scale and complex nature of
MS4s. For instance, catch basins in typical cities lie every
100-150m, and connect to increasingly larger underground
storm pipes before daylighting. Thus, DWFs from small
urban drainage areas can originate from any of thousands of
potential points, making it hard to quickly identify pollutant
sources and take corrective measures.

Current state-of-the-art methods for monitoring DWFs are
inadequate for enforcing stormwater permits [2], [4], [5].
This typically involves visual inspections, citizen reports, and
water quality sampling, where domain experts employ test
kits and lab analysis. For example, Orange County Public
Works conducts 5 site visits each for 30 selected stormwater
outfalls each summer, where approximately an hour was
spent for observation, testing, and sampling at each site.
These practices are costly, time-consuming, and ineffective:
capturing an ongoing illegal discharge event is extremely
unlikely; and lab results, which require 3-5 weeks to process,
are impractical to act upon. However, with the rise of water
quality and flow sensing technologies, the Internet of Things
(IoT) has shown great promise in enabling low cost, real-time
and continuous monitoring, and quick analysis capabilities,
which can support effective decision-making and control.

This paper focuses on the problem of DWF source identi-
fication, where pollution sources of DWFs within MS4s are
inferred using observations from pre-deployed IoT sensors.
Through this analysis, stormwater agencies can start to
reliably detect pollution incidents and enforce stormwater
permit regulations. To understand the evolution of DWFs,
domain expert simulations are typically run and cached to es-
timate potential network states. This can be computationally
expensive and memory intensive, making it impractical for
real-time analysis on large, geo-distributed networks where
quick decision support and control is essential. We address
these issues by leveraging the physics of flow propagation
to gain insight for a quick and efficient backwards inference
model. The key contributions of this paper are as follows:
• A review of related literature for pollution source identifi-
cation and the role of physics in simulations (§II)
• A physics-based backward inference model for potential
DWF origins, given IoT sensor observations. A salient fea-
ture of this contribution is a physics approximation that
balances model fidelity with the computational requirements



of backwards inference. (§III and §IV)
• An evaluation of our model with six real-world stormwater
networks and discussion on future directions (§V, §VI)

II. RELATED WORKS

In this section, we examine related works for techniques
of source identification in networked systems, and the role
that physics-based models play for inference.

Source Identification in Networked Systems. The prob-
lem of anomaly source identification has been studied in
many different networked systems domains, from smart
grids [6], to healthcare [7]. In these settings, research efforts
have explored the modeling of the underlying systems and
their operations to study the different types of impacts that an
anomaly could have in the network. In this paper, we focus
on source identification as it applies to the water domain.
Techniques to identify the source of an anomaly are rich
and varied in the water domain. Traditional methods rely on
physically observing, sampling, and post hoc lab analysis to
identify a water quality anomaly [2], [8], [9]. However, low
probability of encountering an observable anomaly in the
field (less than 0.01 percent) and delays in obtaining results
and uncertainties in pinpointing potential upstream origins,
makes source identification oftentimes infeasible.

In general, given the dynamic and unpredictable nature
of the anomalies and complexity of the MS4, solutions
for source identification are usually not unique. A com-
mon approach is the Bayesian approach, where unknown
variables (e.g., the pollutant origin) are treated as random
variables, and iteratively updated using data from sensors.
The Bayesian approach was first applied to the drinking
water setting in [10] to estimate a contaminant’s release
history; they considered a formulation that only used the
distance from the source. This was extended in [11] to
address mixed uncertainty in models; they cast the source
identification problem as a minimax problem. However,
Bayesian methods can be expensive to run, since they update
probabilities in a continuous manner using distributions of
variables. Later works, such as [12], [13] have looked to
addressed this issue by considering a more sparse input, and
locally accurate approximations using Markov Chain Monte
Carlo methods. Other than Bayesian methods, optimization-
based approaches have also been proposed, which utilize
greedy heuristics [14] and evolutionary algorithms [15], [16].
This typically provides faster computation times, at the cost
of yielding sub-optimal solutions. Machine learning [17]
and other recent advances in deep learning [18], [19] also
show promise, but generally require large amounts of data,
combined with heavy manual tuning and computation to
produce accurate solutions.

Role of physics-based models. The nature and behavior
of flows and pollutants in the interconnected MS4 systems
are governed by fundamental laws of physics, such as the
conservation of mass and energy. This provides a basis on
which domain expert simulations are built, and run to gain
insight into potential future or past events. Examples include
the start of an anomaly, and a rapid changes in network

states. Source identification approaches can be categorized
by how the underlying physics and simulation models are
used. Many approaches adopt a “black box” methodology,
where physics-based simulations are run on a predefined
set of inputs and cached [20]–[23]. This reduces the source
identification problem to a search for an appropriate sample
input. However, the accuracy and reliability of these methods
depend on the quality of their inputs, and can require massive
compute and memory resources. Other works involve physics
in a “white box” manner, such as in [24]–[26]. While
this exposes the complexity of the embedded physics and
necessitates deep knowledge of the domain, the underlying
computational model can be exploited to study the effect of
specific inputs. Our work is set in the context of the latter
case, and aims to construct a backwards inference model for
stormwater networks by deriving a close approximation of
the physics to directly interact with governing equations of
stormwater flow dynamics.

III. PROBLEM FORMULATION

We first present models of the stormwater infrastructure
network, and the physics of flow propagation. Then, we
define dry weather flow (DWF) anomalies and sensors.

Stormwater Infrastructure Network. Let the directed
acyclic graph G = (V , E ) denote the geo-distributed
stormwater network, with junction nodes V which represent
potential DWF insertion points (e.g., catch basins), and
conduit edges E ⊂ V × V which represent pipes that
propagate flow between nodes via gravity. Each junction
vj ∈ V is characterized by its physical location (xj , yj) and
invert elevation zj . Each conduit eij ∈ E is characterized by
its length Lij , frictional roughness fij , and cross-sectional
shape Sij , and its slope is derived using the elevations of
its ends. These attributes are used to simulate the physics of
network flow, which carries the pollutants of interest.

Physics of Flow Propagation. The propagation of flow in
stormwater networks is governed by the conservation of mass
(Eq.1a) and momentum (Eq.1b). These equations relate many
physical quantities: distance x, time t, flow area A, flow
rate Q, hydraulic head H , friction slope Sf and gravity g.

∂A

∂t
+

∂Q

∂x
= 0 (1a)

∂Q

∂t
+

∂(Q2/A)

∂x
+ gA

∂H

∂x
+ gASf = 0 (1b)

These equations are often solved using Euler’s method
and the United States Environmental Protection Agency
Storm Water Management Model (EPA SWMM) [27] is
one the most widely used implementations. This open-
source stormwater simulator models and solve for several
complex and time-varying interactions between runoff, flow
routing, DWFs, backwater effects, losses and more. This
is accomplished through a dynamic wave analysis method
which solves Eq. 1a and 1b by expressing them as functions
of Q and H . Then, finite approximations are made and the
implicit backwards Euler method is applied for each junction



and conduit. This is a discrete process that iteratively finds
values for Q and H through the following update functions:

Qt+∆t =
Qt +∆Qiner +∆Qpres

1 + ∆Qfric

(2a)

∆Qiner = 2Ū(Āt+∆t − Āt) + Ū2 (Adn −Aup)

L
∆t (2b)

∆Qpres = −gĀ (Hdn −Hup)

L
∆t (2c)

∆Qfric = gη2 |Ā|∆t

R̄4/3
(2d)

Ht+∆t = Ht +
∆t/2(

∑
Qt +

∑
Qt+∆t)

(ASN +
∑

ASL)t+∆t
(2e)

The flow rate Qt+∆t in Eqn. (2a) is updated through
changes in inertia ∆Qiner, pressure ∆Qpres, and pipe fric-
tion ∆Qfric, as shown in Eqn. (2b), (2c), and (2d), respec-
tively. These quantities depend upon the hydraulic head at
the upstream and downstream ends (denoted as Hup and
Hdn), and the flow area at the upstream and downstream ends
(denoted as Aup and Adn). The updated flow rate values are
then used to compute the hydraulic head for the next timestep
in Eqn. (2e). The fidelity of this model is further enhanced
by other details described in [27] and Appx. A. However,
this makes EPA SWMM difficult to use for inference as it
introduces non-differential equations. Thus, we apply several
approximations to achieve differentiability.

Approximations for Differentiability. Here, we describe
key approximations to the dynamic wave analysis method in
EPA SWMM [27], so that a computational graph can be de-
rived with automatic differentiation, and used for inference.
Additional computational details can be found in Appx. A.

First, we remove the boundary conditions to identify
whether a node is considered “dry”, i.e., no flow at node.
This is done to allow the computational graph to be derived
without introducing a dependence on the value of a variable.
While this can create discrepancies where dry nodes in the
simulation have small flows, our experiments in §V show
its negligible impact for inference applications. We also
remove limitations on critical and surcharged flows in the
network, which occur when pipes are (intuitively) full; this
does not realistically occur for our driving use case with
DWF anomalies, as we consider periods without rainfall.
By extension, support for backflow propagation in pipes is
removed, since this can only occur after a pipe is surcharged.
Next, we increase the number of iterations used to converge
to a stable solution to a constant, instead of terminating early.
Lastly, discrete functions, e.g., weight factors measuring the
super-criticality of flows, are approximated with continuous,
differentiable equations. Through these modifications, the
simulation becomes differentiable, enabling fast nonlinear
solvers to be used for backwards inference. Our implemen-
tation is found on GitHub [28].

DWF Anomalies. We define a DWF anomaly αk ∈ A as
an illicit discharge event that introduces pollutants into the
stormwater network over time. We characterize each anomaly
by its origin node v∗k representing a source location, and

a DWF inflow curve Qdwf
v∗
k

(t), representing the amount of
flow introduced at v∗k at time t. This inflow is bound by[
Qmin, Qmax

]
, representing the minimum and maximum

inflows at v∗k. We assume that Qdwf
v∗
k

has a limited-time
injection profile, in order to mimic a potential illegal dump-
ing. This makes anomalies transient in nature: they have a
limited time in the network over which detection is possible,
as shown in Fig. 1. We note that the problem of anomaly
detection, where anomalies are identified by a rapid change
in water quality parameters (e.g., pH, temperature, electric
conductivity and turbidity) are fundamentally related to, and
propagated by, flow in the network. However, this is out of
the scope of this paper, and left as a future extension.

Sensors. A flow sensor sl ∈ S measures the flow rate
at an instrumented node with a periodicity of λl seconds.
We denote the flow rate data captured by sl by the time
series

{
Qobs

sl
(t)

}
t∈T

. Fig. 1 shows the observations made by
a sensor downstream, from which our goal is to reconstruct
the upstream flows, which we detail next.

IV. METHODS

In this section, we present the general overview of our
DWF backwards inference model, which relies on optimizing
a least-squares regression over a set of candidate nodes.

Problem Statement and General Approach. Consider
a DWF anomaly αk that introduces an unknown amount of
flow Qdwf

v∗
k

at node v∗k. Then, suppose that S∗ ⊆ S is the
set of sensors deployed in the network that observe αk. Let{
Qobs

sl

}
sl∈S∗ denote the flow rate observations made at times

t ∈ T. The source identification problem then infers the flow
Qinf

v∗ to be introduced at node v∗ that would most likely
produce

{
Qobs

sl

}
sl∈S∗ , for a set of candidate nodes V∗. For

this, we leverage the differentiable physics model in §III,
which produces a set of simulated edge flows

{
Qsimu

sl

}
sl∈S∗

from an anomaly at v∗. Fig. 1 illustrates this problem: given
sensor observations, construct the inferred flows (orange) that
would best match the ground truth flows (blue).

Our approach begins by identifying a set of potential
sources V∗ that could reasonably produce the set of ob-
servations

{
Qobs

sl

}
sl∈S∗ . For each identified source v∗ ∈

V∗, we formulate a least squares regression whose solution
provides an associated DWF flow Qinf

v∗ that would need to be
introduced at v∗ to generate the observations

{
Qobs

sl

}
sl∈S∗ .

We note that the solution to the source identification problem
is oftentimes not unique, as several equally-likely origins
and corresponding flows could produce the same set of
observations. In this paper, we focus on identifying all such
potential sources (and their associated flows), which can then
be provided to a domain expert for further analysis. We
assume that sensors are already deployed in the network,
and that flow is a approximate indicator of the pollutants
and contaminants of interest.

Finding potential source nodes. Our backwards inference
first constrains the search space of potential source nodes.
Since gravity is the main force propagating flow between
nodes in a stormwater network, we can limit the set V∗ to
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Fig. 1. An example of flow propagation in a sample network

those that lie upstream of all sensors observing the anoma-
lous flow. Moreover, we note that the lack of observations at
a sensor can also provide insight into eliminating impossible
origin nodes. However, due to the transient nature of the
DWF anomalies, distinguishing between the absence of an
anomaly, and one that cannot be detected (e.g., too low
flow) without observations is impossible. Therefore, we use
a distance threshold τd to ensure that the nodes removed are
local to a sensor. Note that the selection of τd is closely
tied to the expected transient behavior of anomalies in the
network. Intuitively, if τd is large, then our approach caters
to DWF anomalies that occur over longer timescales and/or
have larger impacts in the network. On the other hand,
when τd is small, our approach increasingly considers very
transient anomalies with small DWF injection profiles. For
both cases, however, a number of potential source nodes
could be falsely eliminated. Future work will identify suitable
values for τd by leveraging domain expert knowledge and
feedback, with insights extracted from historical data.

We detail the general process of finding potential source
nodes in the first part of Alg. 1. We start by initializing V∗ to
the set of all nodes in the graph G (line 1). We then iterate
through each deployed sensor sl ∈ S , and obtain the set
of nodes that lie upstream of sl’s location within distance
τd (lines 2-4). The set of potential nodes is then constrained
based on if sl observed the anomaly (line 5-6), or not (line 7-
8). We describe the rest of the algorithm later.

Formulating the Least Squares Regression. For each
candidate origin node v∗, we construct a least squares
regression that attempts to match the set of ground truth
flows in the network. We simulate the values

{
Qsimu

sl

}
sl∈S ,

which were computed under the assumption that v∗ is the
origin. Then, the least squares optimization problem is:

argmin
Q

dwf
v∗

∑
sl∈S∗

∑
t∈T

(
Qobs

sl (t)−Qsimu
sl (t;Qdwf

v∗ )
)2

(3a)

s.t. Qmin ≤ Qdwf
v∗ (t) ≤ Qmax ∀t ∈ T (3b)

Eqn. (2a) to (2e) ∀t ∈ T (3c)

The regression objective in Eqn. (3a) minimizes the dif-
ference between observed flow values Qobs

sl
(t) and the the-

oretical physics-based flow values Qsimu
sl

(t;Qdwf
v∗ ), across

the sensors observing the flow sl ∈ S∗ for each time step
t ∈ T. The constraint in (3b) limits the search space for
the injected flow, and the constraints of (3c) dictate how
Qsimu

sl
(·) is computed based on the dynamics of the system.

Algorithm 1: Source Inference
Input: Graph G , Sensors S , Observations

{
Qobs

sl

}
sl∈S ,

float τq , float τd, float τo
Output: Potential anomalies A∗

// Compute set of potential origin nodes
1 V∗ ← ∅
2 for sl ← S do
3 v ← GetDeployedNode(sl)
4 Vup ← GetUpstreamNodes(v,G , τd)
5 if ∃ t : Qobs

sl (t) ≥ τq then
// sl observed the anomaly at some time

6 V∗ ← V∗ ∩ Vup

7 else
// sl did not observe the anomaly

8 V∗ ← V∗ − Vup

// Find flow curves for potential sources
9 M ← map()

10 for v∗ ← V∗ do
11 objval, Qinf ← solve Eqn. (3), assuming source v∗

12 M [src]← (objval,Qinf)

13 minobjval← min
objval, ∈M.values()

{objval}

14 A∗ ← {(src,Qinf) : ∀(src, (objval,Qinf)) ∈M :
|minobjval − objval| ≤ τo}

15 return A∗

The second half of Alg. 1 explains how our least squares
regression is leveraged for backwards inference. After obtain-
ing the set of potential source nodes V∗, we construct the
associated least squares regression for each node v∗ ∈ V∗

(lines 9-12). We note that this step can be parallelized for
improved computation time for inference. The last step looks
to pick sources nodes and accompanying DWF flows that
could all potentially realistically occur - we return all such
solutions that are within a threshold τo of the minimum
objective value found (lines 13-15).

V. EXPERIMENTS AND RESULTS

In this section, we evaluate our physics-informed back-
wards inference model on six real-world stormwater net-
works. Our experiments examine the impacts of the approx-
imations, and the quality of the resulting inferences.

Experimental Setup. Our evaluation leverages six real-
world stormwater networks provided by Orange County
Public Works. These networks are defined using EPA
SWMM [27], and consist of: three small networks of
∼350 to 700 nodes and edges over a ∼100 km2 area
(Fig. 2(a), 2(b), 2(c)); two medium networks of ∼1000 nodes
and edges over a ∼200 km2 area (Fig. 2(d), 2(e)); and
one large network of ∼1500 nodes and edges over a ∼400
km2 area (Fig. 2(f)). To fit with our implementation of the
backwards inference model, we modify all network conduits
to consist of rectangular pipes; we leave the extension of our
model to different cross-sections as future work.

In these networks, we assume that homogeneous flow
sensors that generate observations with periodicity λ=30s
are deployed. Our experimental results are obtained wrt.
a set of 100 anomalies that were constructed randomly
for each network: each anomaly was assigned a randomly
chosen origin node, with a inflow curve that has a peak
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Fig. 2. EPA SWMM Networks used for Evaluation

flow magnitude of |0.25±0.2| cfs, and start and end times
chosen randomly between 0 and 2 hours. Our experiments
were conducted on an M1 MacBook Pro with 16 GB of
memory and 10 CPU cores. Our backwards inference model
is implemented in Julia, using the JuMP [29] interface to
Ipopt [30] and the MA57 linear solver [31] for optimization.
We publish our backwards inference model on GitHub [28].

Comparison Baseline. We compare our backwards infer-
ence model with a standard “black-box” approach [20]–[23]
to source identification, which caches edge flows across a
large set of predefined anomalies and “infers” an anomaly
by searching for the best match to a given set of sensor
observations. We simulated and cached 10 anomalies uni-
formly across all junctions of each network, for a total
of ∼3000−15000 cached anomalies for each network, de-
pending on its size. Corresponding peak flow and duration
parameters were chosen in the same manner as the set of
anomalies used for evaluation.

A. Impact of Approximations for Differentiability

Our first experiment examines the impact of the approx-
imations on the accuracy of modeling and solving for flow
dynamics. To this end, we simulate edge flows produced by
EPA SWMM for each anomaly created for evaluation. This is
then compared with our differentiable version, and the mean
square error (MSE) between edge flows is reported, as seen
in Table I. In order to avoid artificially improving the MSE,
we exclude edges that were not impacted by the anomaly
using a minimum flow threshold of 0.0001 cfs.

TABLE I
IMPACT OF APPROXIMATIONS

Network Avg MSE

Anaheim 2e-3 ± 2e-2
Coyote Creek Downstream 9e-6 ± 1e-5

Coyote Creek Upstream 3e-4 ± 2e-3
Newport 3e-6 ± 4e-6

Santa Ana Downstream 1e-2 ± 8e-4
Santa Ana Upstream 1e-5 ± 1e-5
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(b) Differentiable Version
Fig. 3. Comparison of edge flows from a typical anomaly

This shows that the approximations made were negligible:
the differentiable variant closely models and solves for flow
dynamics as EPA SWMM does. This is illustrated in Fig.3,
which plots a typical anomaly simulated using EPA SWMM
(Fig.3(a)), and our differentiable version (Fig.3(b)). Note that
inference results for this anomaly did not change with 75% or
100% instrumentation, and so these lines are omitted. Thus,
this key contribution of our work is suitable for inference.

B. Evaluation of the Backwards Inference Model

We next examine the accuracy and time taken to reproduce
an anomaly’s flow curve using sensor observations. We
consider varying levels of instrumentation in the network,
ranging from 10% to 100% of the nodes having sensors.
Fig. 4 reports the MSE between each of the 100 evaluated
anomaly’s ground truth flows, and our model’s corresponding
inferred flows for the true origin of the anomaly. Our infer-
ence model was able to reconstruct the anomaly inflow with
little error: the average MSEs across the small, medium, and
large networks was 0.02, 0.018, and 0.023, when 10% of the
network was instrumented, and all decrease to ∼0 as the level
of instrumentation increased. This is due to the redundancy
of detection, which allows our model to optimize the inferred
inflow to be consistent with all captured observations. In
comparison, the baseline standard (depicted with colored
dashed lines for each network) follows the same trend, but
generally performs worse than our inference model, and
only marginally improves as the level of instrumentation
increases. We show these trends using the thicker black
lines in Fig. 4, which plots the average MSEs over all



networks. The standard deviation averaged across networks is
represented by the tan region (our inference model) and light
green region (baseline), which decreases as more sensors
were instrumented. For our inference model, this ranges from
0.016−0.032 when 10% of the network was instrumented,
to 0.0−0.01 when the network is fully instrumented, and
is always smaller than that of the baseline standard. To
visualize these MSEs, Fig. 5 plots the ground truth and
inferred inflows for different levels of instrumentation for
the anomaly plotted in Fig 3, as well as the best baseline
result with full instrumentation.
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Fig. 4. MSE in Backwards Inference
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Fig. 5. Comparison of Inferred Flows from a typical anomaly

We also report the average inference time for our model
in Fig. 6. Our results show that the level of instrumentation
is directly proportional with the inference time. On average,
with 10% instrumentation, it took 256±129s, 248±8s, and
258s to produce the inferred flow for the small, medium,
and large networks, respectively, and increases to 819±171s,
1170±64s, and 1291s with full network instrumentation.
While the time to search cached values is significantly less
than the computation needed for inference, we note the
tradeoff in the accuracy of results, as well as the storage
and offline time needed. In particular, producing this cache
across the six networks took ∼3 days, and used ∼14.3GB of
memory, which can become prohibitive to run as the network
grows. Thus, we show that our model is able to reproduce
anomaly flows both accurately and quickly, which is essential
in supporting real-time control for managing anomalies.

C. Degeneracy of Inference Results

Lastly, we report the degree of degeneracy in the inference
results. As mentioned in §IV, the source identification prob-
lem is difficult due to the indistinguishability between poten-
tial upstream anomaly origins. Thus, it is critical to reduce
the number of potential sources reported, to enable practical
decision support for domain experts and practitioners.
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Fig. 6. Time Taken in Backwards Inference
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Fig. 7. Degeneracy in Backwards Inference

In Fig. 7, we report the number of other equally-likely po-
tential sources (and corresponding inflows) that were found
by our inference model, apart from the true anomaly. This
represents nodes at which a specific inflow could result in
downstream edge flows consistent with sensor observations.
As the number of observations increases in the network, the
degree of uncertainty on the source of the anomaly decreases.
We note that other methods of reducing the size of the
degenerate set include introducing prior probabilities on the
potential source nodes, which we leave as future work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a physics-based backwards
inference model for stormwater infrastructure systems. Our
approach identifies the physical properties of an anomaly
in a two step process. First, we use a constraint-based
method to eliminate unlikely anomaly source nodes. Then,
a least squares regression problem was formulated, whose
solution would infer a potential injection profile. We then
enabled quick and efficient optimization of this regression
using fast nonlinear solvers, combined with a unique set
of approximations made on the modeling and solving of
stormwater flow dynamics. Our experiments leveraged six
real-world stormwater networks, and showed the negligible
impacts of the approximations, as well as the efficacy of
the backwards inference, even in the case of partial network
observability. Future directions include the integration of this
model into an end-to-end system for source identification
in stormwater networks. In this respect, it is expected that
network topology and domain expert feedback will further
enrich the observed sensor data. We aim to more closely
analyze the observability of the internals of the system to
better understand the sensitivity of the different components
of the system. Additionally, we will examine the scalability
and robustness of the model to incorporate better approxi-
mations of the physics, and applications towards other types
of networks and anomalies.



APPENDIX A
DETAILS ON APPROXIMATIONS FOR DIFFERENTIABILITY

Here, we describe the details concerning the approxima-
tions made to enable differentiability in our approach. We
note that Eqn. (2) expresses the main discretization of the
fundamental physics in Eqn. (1a) and (1b). However, in
practice, EPA SWMM [27] employs several additional error
correction computations which make it difficult to infer the
computational graph.

Our first approximation removed boundary conditions for
negligible flows. We note that the EPA SWMM implemen-
tation follows a scheme closer to that of Eqn. (4), where Ā
is the average flow area at the node, and ϵA is a minimum
flow area threshold. Thus, our implementation only considers
Eqn. (2a).

Qt+∆t =

{
Eqn. (2a) if Ā ≥ ϵA
Qt else

(4)

Critical and surcharged flows only occur when flow in a
conduit reaches or exceeds its maximum “capacity”. Several
conditions are applied in EPA SWMM which dictate whether
a normalized flow should replace Qt+∆t . These conditions
check that: (i) Qt+∆t > 0; (ii) the conduit is not already in
a critical state, nor is it under an edge case with one critical
and one dry end; (iii) the upstream flow velocity exceeds a
critical velocity. Eqn. (5) shows the normalized flow used
under these conditions, where n is the Manning roughness
coefficient, and R is the cross-sectional flow radius.

Qt+∆t = min
{
Qt+∆t , Qnorm

}
,where

Qnorm =
1.49

n
AupR

2/3
up

√
L2 − (Hup −Hdn)2

(5)

Next by extension, since we assume that critical and
surcharged flows do not occur in the network, we additionally
discard a postprocessing step in EPA SWMM that modifies
the sign of Qt+∆t , as shown in Eqn. (6).

Qt+∆t =

{
Qt+∆t if Qt ·Qt+∆t > 0

0.001 ∗ sign(Qt+∆t) else
(6)

Lastly, EPA SWMM leverages piecewise-defined weight
factors that measure the closeness to criticality in conduits.
These weight factors are used in modifying the average flow
area and radius to be more numerically stable, i.e., Ā

′
=

Aup+σ(Ā−Aup) and R̄
′
= Rup+σ(R̄−Rup). Our approach

replaces the computation of σ with Eqn. (7).

σ =

(
1 + exp

(
10 ∗

(
| Ū | /

√
gĀ/W̄ − 0.75

)))−1

(7)

ACKNOWLEDGEMENTS

This work is supported by the UC National Laboratory Fees
Research Program Grant No. L22GF4561, and NSF Grant No.
1952247. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

REFERENCES

[1] C. Copeland, “Clean water act: a summary of the law.” Congressional
research service, Library of Congress Washington, DC, 1999.

[2] B. Bernstein et al., “Assessing urban runoff program progress through
a dry weather hybrid reconnaissance monitoring design,” Environ.
Monit. Assess., vol. 157, 2009.

[3] K. Halbach et al., “Small streams–large concentrations? pesticide mon-
itoring in small agricultural streams in germany during dry weather
and rainfall,” Water Research, vol. 203, 2021.

[4] A. Barbosa et al., “Key issues for sustainable urban stormwater
management,” Water research, vol. 46, no. 20, 2012.

[5] M. K. Leecaster et al., “Assessment of efficient sampling designs for
urban stormwater monitoring,” Water research, vol. 36, no. 6, 2002.

[6] H. Jiang et al., “Fault detection, identification, and location in smart
grid based on data-driven computational methods,” IEEE Trans. Smart
Grid, vol. 5, no. 6, 2014.

[7] H. Rossman et al., “A framework for identifying regional outbreak and
spread of covid-19 from one-minute population-wide surveys,” Nature
Medicine, vol. 26, no. 5, 2020.

[8] H. Lee et al., “Design of stormwater monitoring programs,” Water
research, vol. 41, no. 18, 2007.

[9] D. Li et al., “Municipal separate storm sewer system (ms4) dry weather
flows and potential flow sources as assessed by conventional and
advanced bacterial analyses,” Environmental Pollution, 2023.

[10] M. F. Snodgrass et al., “A geostatistical approach to contaminant
source identification,” Water Resour. Res., vol. 33, no. 4, 1997.

[11] A. Y. Sun, “A robust geostatistical approach to contaminant source
identification,” Water Resour. Res., vol. 43, no. 2, 2007.

[12] L. Zeng et al., “A sparse grid based bayesian method for contaminant
source identification,” Advances in Water Resources, vol. 37, 2012.

[13] J. Zhang et al., “Efficient bayesian experimental design for contami-
nant source identification,” Water Resour. Res., vol. 51, no. 1, 2015.

[14] B. K. Banik et al., “Greedy algorithms for sensor location in sewer
systems,” Water, vol. 9, no. 11, 2017.

[15] M. M. Aral et al., “Identification of contaminant source location and
release history in aquifers,” J. Hydrol. Eng., vol. 6, no. 3, 2001.

[16] K. Han et al., “Application of a genetic algorithm to groundwater
pollution source identification,” J. Hydrol, vol. 589, 2020.
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