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Abstract—Next-generation stream processing systems for com-
munity scale IoT applications must handle complex non-
functional needs, e.g. scalability of input, reliability/timeliness of
communication and privacy/security of captured data. In many
IoT settings, efficiently batching complex workflows remains
challenging in resource-constrained environments. High data
rates, combined with real-time processing needs for applications,
have pointed to the need for efficient edge stream processing
techniques. In this work, we focus on designing scalable edge
stream processing workflows in real-world IoT deployments
where performance and privacy are key concerns. Initial efforts
have revealed that privacy policy execution/enforcement at the
edge for intensive workloads is prohibitively expensive. Thus, we
leverage intelligent batching techniques to enhance the perfor-
mance and throughput of streaming in IoT smart spaces. We
introduce BATCHIT, a processing middleware based on a smart
batching strategy that optimizes the trade-off between batching
delay and the end-to-end delay requirements of IoT applications.
Through experiments with a deployed system we demonstrate
that BATCHIT outperforms several approaches, including micro-
batching and EdgeWise, while reducing computation overhead.

Index Terms—Edge Computing, Stream Processing, Privacy

I. INTRODUCTION

The widespread availability of low-cost sensing devices and
ubiquitous network connectivity has led to the emergence of
pervasive monitoring of physical spaces. This has attracted
the interest of infrastructure providers, who are increasingly
adopting IoT technologies to collect and analyze data for
improving operational efficiency [1]. The adoption of IoT
devices in building and facility management systems is gaining
traction, with benefits such as enhanced energy efficiency [2].

With real-time IoT data, there is a growing need to scalably
handle high volumes and sporadic arrival patterns to ensure
timely and accurate analysis on workloads. Robust execution
of IoT applications requires reliable and non-lossy workflows
to capture and process data. IoT data from smart infrastruc-
tures reflect human activities and behaviors, which can contain
sensitive and personally identifiable information [3], [4]. Such
information can be misused by data consumers for unintended
purposes, leading to potential privacy violations. Numerous
privacy operations require substantial computational resources,
and applications using live data have strict performance and
latency standards, such as Service Level Agreements (SLAs).

Existing stream processing engines, e.g., Apache Kafka,
Storm, Flink, and Spark Streaming enable the real-time pro-
cessing of high-volume data streams at the edge. The next
generation of IoT stream processing systems must consider

approaches that explicitly consider privacy/security, along with
performance and scalability. Architectures must support flexi-
ble integration of diverse mechanisms and policies to achieve
a balance between performance, privacy/security at scale [5].

This paper addresses these composite concerns by focusing
on designing scalable and efficient stream processing tech-
niques with privacy in mind. We envision a general model for
IoT data sharing in physical spaces involving three key compo-
nents: data providers, data consumers, and data subjects [6].
Data providers generate and store IoT data, data consumers
use this data to develop innovative services, and data subjects
have control over their personal data and can choose to share
it with specific data consumers and establish access policies.

Given the potential for data misuse by service providers, it
is essential to limit data sharing [7]. This can be achieved
by implementing privacy-preserving mechanisms, such as
anonymization, aggregation, data encryption, and policy-based
access, during data processing and sharing [8]. The require-
ments for privacy differ among applications and data subjects;
the heavy I/O demands of the workload, combined with
policy checks at the individual data subject level, result in
performance challenges. A solution is to perform privacy
computation at the edge, within the trust boundary of the data
provider. This allows data providers to enforce data privacy
policies and ensure that sensitive information is protected from
unauthorized access or misuse [5].

In this paper, we propose a novel IoT data processing
middleware called BATCHIT that integrates a range of novel
methods at the edge. Recent work has shown the value and
feasibility of data processing at the edge without connectivity
to a cloud backend [9]–[14]. Our system leverages edge
computing to enable efficient and scalable processing of IoT
data while also ensuring data privacy and security. We model
an edge environment as a stream processing engine that ingests
raw data and processes it through a workflow, which we
represent as a directed acyclic graph (DAG) [10], [11].

To enable privacy, BATCHIT applies a workflow of privacy
operators to the data stream. We address the performance
challenge by implementing a smart batching strategy that
optimizes the trade-off between the batching delay and the
end-to-end delay requirement posed by IoT applications. Our
system computes appropriate batch sizes for data processing
operations based on the computational capabilities of edge
devices and delay requirements. We verify our results on
a large-scale deployed system across a University campus



to collect WiFi access data. Our experimental evaluation
shows that BATCHIT achieves superior performance while
meeting privacy needs, maintaining service-level performance
agreements (SLA), and increasing throughput as compared to
existing approaches. Key contributions in this work include:

• Measurement studies that indicate the need for intelligent
batching in privacy-enabled IoT workflows (§2)

• Formulation of the intelligent batching problem for I/O
intensive IoT workloads and efficient heuristics (§3)

• Design of efficient and practical batch-aware worker
scheduling techniques deployment at the edge (§4)

• Design, implementation, and validation of BATCHIT in a
long-running campus-wide deployment (§5)

II. ENABLING SCALABLE EDGE STREAMING

To understand the challenges involved in efficiently pro-
cessing IoT data-sharing workflows, we conducted a prelim-
inary real-world deployment of IoT-enabled applications in
at the University of California, Irvine campus with multiple
instrumented buildings, or “smart spaces”. We collaborated
with the university’s network infrastructure team, campus
information security and privacy committees, and multiple
university departments to design and develop a testbed with
application workloads.

Our system consists of 200 buildings with 2,000 WiFi
AP’s, which produces several million daily records. In our
setting, users can define sets of policies, which results in many
unique or overlapping policies. A workflow was developed
and deployed at the campus technology operations site where
network infrastructure is managed; this workflow implemented
IoT operators to appropriately process the captured data and
routed this to multiple distributed consumers that utilized the
data for executing smart IoT applications including room level
occupancy, flow monitoring, COVID exposure alerts, building
concierge etc. [15]–[18].

A. The Need for Intelligent Batching

In our initial deployment studies, we found that the cost
of policy execution and enforcement at the edge for this I/O
intensive workload is costly; and scaling to a large number of
users in real-time environments was challenging. We found
that batching is a natural solution to enhance performance
and throughput of streaming and I/O intensive activities [9].
With this intuition in mind, we implemented a simple (naive)
approach to support batching of computation. Our preliminary
experiments were encouraging and illustrated that the through-
put of the system can be significantly improved.

The key issue with batching is that it introduces latency for
applications and additional overhead in the system. Different
services require different service level agreements (SLAs) and
often have strict restrictions on processing delays associated
with their data [19], [20]. This implies that we needed dif-
ferent levels of batching in the workflows associated with
applications/services. Another challenge to ensure application
reliability is that the system works in a stable manner without

dropping data items (due to out-of-memory issues). Further-
more, an operator’s throughput exhibits unpredictability and
varies with the number of input data items for processing.
An important research question is that of determining how to
perform batching for complex workloads and workflows in an
efficient manner so as to optimize throughput, support bounded
latency, ensure reliability and reduce processing overheads.

Several works study dynamic micro-batching techniques
for improving the performance for workload tasks. Recently,
[21] created a stream query processing system that allocates
network and computational resources at the edge. It considers
data locality, resource constraints and operator placement for
stream queries. Stout [22] implements dynamic batching for
increasing the throughput of cloud applications, but only
considers average performance values and the batch parameter
cannot be tuned to comply with user-defined SLOs. Grand-
SLAm [23] uses dynamic batching for processing micro-
service requests and increases the system throughput while
complying with SLOs, which accounts only for synthetic Pois-
son workloads, and not generic/bursty ones. AWS Batch [24]
automatically provides the system with the optimal number
of resources based on its workload, but does not support
serverless computing yet. Window-based approaches, such as
[25] also build workflow graphs and adapt based on network
load. However, this creates a large resource burden and is not
practical for constrained edge deployments.

Empirical results from our operational system show that
increasing the batch size of input data items leads to higher
throughput due to amortized processing for each execution
(blue line in Fig. 1). The batching profile for an anonymization
operator (orange line) indicates that the overall latency at the
operator is lower for larger batch sizes due to lowered upfront
costs for each execution, but progressively scales sub-linearly
due to the cost of aggregation increasing with the number of
items in a batch. The goal then is to schedule an operator’s
execution when the number of data items in its input queue
reaches a certain threshold, i.e. a planned batch size.
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Fig. 1: Profiling batching effectiveness for operators

B. BATCHIT: System Architecture and Workflow
The intuition behind BATCHIT is to utilize batching of

data items at the operator level to increase system throughput
while satisfying the various latency requirements. We address
the following questions for effective platform development:
(1) What are appropriate batch sizes for operators to balance
throughput and latency needs of various data producers and
products?; (2) How do we keep track of operator queues
and schedule the operator to execute with minimal overhead?;
(3) How does the system adapt to the workload dynamicity?



Fig. 2: An overview of the system
BATCHIT features three main components to address the

above challenges. As shown in Fig. 2, the Batch Alloca-
tion module computes adequate batch sizes for operators to
balance the throughput and end-to-end latency requirements,
considering the operator’s batch profile and current work-
load. The planned batch sizes are provided to the Operator
Scheduling module, which monitors operator queue lengths
in real-time and schedules the operator execution accordingly.
The Dynamicity Adaptation module checks the data arrival
rate at each operator and invokes batching adjustment if the
current workload diverges significantly. Together, the above
techniques will allow us to dynamically adjust batch sizes
based on the computational capabilities of the edge devices
and the end-to-end delay requirements of the application.

BATCHIT focuses on achieving a balance of throughput.
We use an edge server to receive data streams from multiple
sources (IoT devices, sensors) where sensor stream is associ-
ated with a data subject if it captures personal information.
For example, in our Wi-Fi AP association data, the owner
of the device that connects to the infrastructure is the data
subject. Each data point that enters the stream that is associated
with a data subject is transformed through a workflow of data
processing and privacy operators to yield a result. We refer to
this as a data product, which is in turn shared with service
providers. In our model, we assume that data subjects provide
data sharing policies upfront and that data policies remained
fixed during a time window of the stream. Policies can be
updated and changed, but we consider this an offline operation.

III. MODELING BATCHIT COMPONENTS AND EXECUTION

A. Workflows and Operators

A workflow is a rooted DAG G = (V,E), with node
vj ∈ V denoting a set of operators and directed edges
ei,j denoting data flow from operator vi to vj , as seen in
Fig. 3. We define data items as the input events, raw sensor
readings, and any derivative forms computed afterwards in
the system. In general, data items are processed starting at
a source operator v0 representing input data, and ends at sink
operators v∗j ∈ V ∗ ⊂ V representing data products that
end users/applications require. Each workflow in our model
contains a single source, but possibly multiple data product
sinks. Each operator vj also maintains an input data item queue
Q that buffers any received data items until a planned batch
size is reached. Selectivity of an edge ei,j is defined as the
ratio of input data items at vi to output data items at vj .

Fig. 3: Example of BATCHIT Workflow.

• Stateful vs. Stateless Operator: Maintaining a shared “state”
between data items can affect processing and execution times
for a stateful operator. Such operators may also not benefit
from parallelism since data must be processed sequentially,
and this can also present added overhead costs. For example,
a differential privacy operator uses a privacy budget ϵ to track
and control the cumulative privacy loss incurred during a
sequence of data access or computations.
• Blocking vs. Non-blocking Operator: Blocking operators,
such as anonymization operators that aggregate data, require
the complete set of necessary inputs before they can begin
processing - this can amplify delays in the workflow, partic-
ularly for larger anonymization tasks where the data volume
is higher. In contrast, non-blocking operators like those used
for anonymizing IoT data identifiers, are designed to process
data immediately upon its arrival, avoiding such delays.

B. Worker Execution Model and Worker Pool

BATCHIT represents computing resources using workers,
which are abstractions for computation and execution in the
CPU. Let W be the maximum number of concurrently execut-
ing workers, i.e., the system has a worker pool of W workers.
When idle, workers are assigned an operator to execute non-
preemptively from a processing queue, as shown in Fig. 3. In
contrast to dedicating workers for each operator, the worker
pool model helps reduce contention and performs better on
resource-constrained edge machines.

Batch Sizes: A key factor affecting the efficiency of workers
in this model is the batch size of each operator vj ∈ V . Let
B = {bj(t) : j ∈ 1 . . . |V |}, denote a batch size plan, where
bj(t) is the planned batch size for vj for a time period t.

Data Arrival and Service Rates: We formalize the data
arrival rate λj(t) as a function of the selectivity si,j(t) of an
edge ei,j at time t. Here, si,j(t) represents a measurement of
the rate of values transferred from one node to another when a
batch is processed, The data arrival rate λj(t) at the operator
vj is then defined recursively in Eq. 1 as the sum of data
arrival rates of direct predecessors, weighted by selectivity.

λj(t) =

{
λ0(t) if IsRoot(vj)∑

ei,j∈E (λi(t) · si,j(t)) otherwise
(1)

We next define the service rate µj(t) of operator vj in Eq. 2,
which denotes the speed at which data items of a batch can be
processed. Here, µj(t) depends on the batch size bj(t) and the
total delay D(vj , t) which consists of accumulating the batch,
scheduling it to a worker, and processing it (described later).

µj(t) = bj(t)/D(vj , t) (2)



Batching, Scheduling and Processing Delay: Let dj(t)
denote the total delay experienced by an operator vj at the time
period t, which consists of: (i) the batching delay wb(vj , t) in
Eq. 3a, representing the delay for accumulating data items
in a batch; (ii) the scheduling delay ws(vj , t) in Eq. 3b,
representing the delay for allocating the batch to a worker;
and (iii) the processing delay wp(vj , t) in Eq. 3c, representing
the delay in processing the data items of the batch. For an
operator vj , we compute wb(vj , t) by dividing the batch size
bj(t) by the data arrival rate λj(t). After the batch is filled, we
estimate a worse-case delay for ws(vj , t), which assumes that
all items “ahead” of the new batch are processed sequentially.
Finally, we assume that wp(vj , t) is computed offline in an
empirical manner. However, parameters related to the type
of operator (i.e., blocking/non-blocking, stateful/stateless) will
further affect the processing time. In particular, the processing
time of a blocking operator with block size βi is the maximum
between an empirically derived value, and the time taken for
βi data items to arrive, i.e., βi/λi(t). Similarly, the processing
time of a stateful operator is the sum of empirical derived
values and the time taken for state initialization σjtin, where
σj is the state initialization time, and tin is equal to 1 iff the
initialization should occur and else 0.

wb(vj , t) = bj(t)/λi(t) (3a)

ws(vj , t) =
∑|Q(t)|

i=1
wp(vi) (3b)

wp(vj , t) =


max(wp(vj),

βi
λi(t)

) + σjtin if vj is both
max(wp(vj),

βi
λi(t)

) if vj is blocking
wp(vj) + σjtin if vj is stateful
wp(vj) otherwise

(3c)

C. The Batch Size Planning Optimization Problem

We first identify two key performance aspects for the sys-
tem: throughput and end-to-end latency. Then, we formulate
the batch size planning optimization problem, which aims to
find optimal batch sizes for each operator in the workflow.

The Throughput Requirement: In general, each operator
needs to process data items at a service rate larger than its
data arrival rate (i.e., throughput). In doing so, the operator
avoids accumulating data items the input queue indefinitely,
which can lead to data loss or memory errors. We use the
concept of traffic intensity measurements in queuing theory to
model this requirement. For an operator vj , its traffic intensity
is the ratio of its data arrival rate λj(t) and its service rate
µj(t), measured during a time period t, as shown in 4. To
avoid data loss and exponentially increasing queuing latency,
we bound Λj(t) by a user-defined threshold (1− ϵ).

Λj(t) = λj(t)/µj(t) (4)

The End-to-end latency Goals: Generating each data product
requires raw data to be processed by the operators in the
workflow. The end-to-end delay of a data product is then the
sum of delays incurred by all the predecessor operators of the
corresponding sink node in the workflow, which we denote

as D(vj , t) for the time period t. Eq. 5 defines a recursive
function to find the end-to-end latency, which is the sum of
the maximal end-to-end delay among all its upstream operators
and the delay incurred by the operator itself, dj(t).

D(vj , t) = max
vi,vj∈E

D(vi, t) + dj(t)

where dj(t) = wb(vj , t) + ws(vj , t) + wp(vj , t)
(5)

The Optimization Problem: We formulate batch size plan-
ning as an optimization problem in 6. We assume that
sla(v∗j ) denotes the service-level agreement, which represents
an agreed upon time for operator v∗j to produce a data product.
Our formulation is as follows:

argmin
B

{
max

v∗
j ∈V ∗

{
D(v∗j , t)− sla(v∗j )

sla(v∗j )

}}
(6a)

subject to:
Λj(t) ≤ 1− ϵ,∀t (6b)∑

j
bj(t) ≤ C, ∀t (6c)

The objective function shown in 6a captures the goal of
optimizing the latency performance and fairness. Note that
any value that does not violate a service level agreement
sla(v∗j ) will be negative, while any violating value is positive.
Hence, ratio of D(v∗j , t) − sla(v∗j , t) to sla(v∗j , t), for each
v∗j in V ∗ is the normalized latency violation across all data
products. The objective function aims to minimize the largest
latency violation among all data products. The constraint in
6b represents the throughput requirement, while the constraint
in 6c denotes the system memory limit requirement.

Complexity of Batch Size Determination: The batch size
planning problem can be shown to be NP-hard, by reduc-
ing from the Online Variable-Sized Bin Packing problem
(OVBP) [26]. The reduction considers items arriving over
time and a set of resizable bins. Here, items correspond to
data products v∗j , while resizable bins represent operators with
dynamic batch sizes bj . The OVBP objective aims to maximize
the space utilization, which is equivalent in BATCHIT as
minimizing the maximum service-level agreement violation
across all operators. The dynamic adjustment of batch sizes at
operator also corresponds with the online nature of OVBP.

IV. BATCH SIZE DETERMINATION HEURISTIC

There are several difficulties in determining the optimal
batch size for an operator vj at runtime. For example, if
the planned batch size for vj is too small, then the overall
throughput performance of the system could suffer. However,
using a larger batch size will incur a longer batching delay,
which may then result in a SLA violation of a dependent data
product. In our approach, we aim to dynamically change the
batch sizes for each operator to be as large as possible (to
enable higher throughput), without violating SLA constraints.

Alg. 1 selects an optimal batch profile from a set of
candidate batches for each operator in the workflow at a time
period t. We start by initializing B∗ as a mapping of operators



Algorithm 1: Batch Size Expansion Algorithm
Input: Cand. batch set Bcand = {bcand

i }i∈1...|Bcand|, time t
Output: Optimal Batch Profile, B∗

1 B∗ ← map(); V viol ← ∅
2 for vj ∈ V do
3 for bcand

i ← Bcand do
4 if Λbcand

i
j (t) > 1− ϵ then B∗[vj ]← bcand

i

5 if vj not in B∗ then V viol ← V viol ∪ {vj}
// Check planned batch sizes

6 if |V viol| = 0 && ∀v∗j ∈ V ∗ : D(v∗j , t)− sla(v∗j ) < 0,
using B∗ then return B∗

7 else return BatchSizeReduction(B∗, V viol)

to their new batch sizes, and V viol as a set of operators
for which an appropriate candidate batch size in Bcand does
not exist (line 1). For each operator vj , we find the smallest
batch size satisfying the condition Λ

bcand
i

j (t) > 1−ϵ to ensure

sufficient throughput (lines 2-4). Here, we note that Λbcand
i

j (t)
denotes the traffic intensity for operator vj when the candidate
batch size bcandi is applied. If no such batch size exists within
Bcand, we add vj to V viol (line 5). Finally, if all operators in
V were able to obtain a new batch size B∗, and the resulting
configuration had no SLA constraint violations, we return B∗

(line 6). Otherwise, it is sent to Alg. 2 to reduce the batch
sizes of violating operators (line 7).

In Alg. 2, we take B∗ as provided in Alg. 1, the set of
operators violating their SLA constraints V viol, and a batch
reduction factor γ for reducing batch sizes. We start by sorting
violating operators in descending order of violation severity
(line 1). Then, we reduce the batch sizes for operators in
V viol by a factor of γ, which continues while at least one
of the batch sizes has not been reduced to 1. (line 2-4).
Then, if the new batch size bcandi satisfies the traffic intensity
constraint Λbj

i (t) ≤ 1 − ϵ, we remove the violating operator
from V viol, and set the new batch size in B∗ (line 5). If this
new modification yields a batching profile configuration that
does not violate any of the SLA constraints, then we return
B∗ as the set of new planned batch sizes (line 6).

Algorithm 2: Batch Size Reduction Algorithm
Input: Cand. batch set Bcand = {bcand

i }i∈1...|Bcand|,
Violating operators set: V viol, Reduction factor γ

Output: Optimal Batch Profile, B∗

1 Sort elements vj ∈ V viol by bj
λj

, in descending order
2 while ∃ vj ∈ V : bj ̸= 1 do
3 for vi ∈ V viol do
4 bj ← bj ∗ γ // reduce batch size

5 if Λbj (t) ≤ 1− ϵ then B∗[vj ]← bcand
i ;

V vio ← V vio \ {vj}
6 if ∀ v∗j ∈ V ∗ : D(v∗j , t)− sla(v∗j ) < 0, using B∗

then return B∗

7 return Error: system is too overloaded

V. WORKER SCHEDULING

The worker scheduling model uses the operators’ expected
batch sizes to select the corresponding batch to execute when
there is an idle worker. This selection is based on an earliest
deadline first greedy policy, i.e., choose the operator with the
earliest deadline. The algorithm relies on two types of queues
for scheduling. The batch-ready queue includes the operations
that have sufficient data items (i.e., ≥ their batch size) while
the candidate-ready queue records the operations that are close
to (but not) fulfilling their batch size requirement.

Alg. 3 descibes the process of scheduling a batch to a
worker. It accepts a queue of batches Q and the current time
t as input. If the queue is not empty (i.e., there are batch-
ready items in Q), then it selects the batch with the earliest
deadline and the item is removed from Q and returned (line 3-
4). Otherwise, if there are no items in the queue (i.e., none
of the batches are completely full), it selects the batch that
is the most full. Let C be a set of potential batches that
could be scheduled to a worker. Note that only the blocking
characteristic of an operator will prevent its selection at this
stage. Hence, all blocking operators vj whose current batch
size is larger than the block requirement βj , as well as any
non-blocking operator are added to C (line 8-9). Then, we
select the batch that has the highest percentage of its batch
filled to be allocated to the worker (line 10-11).

Algorithm 3: Operator Scheduling Algorithm
Input: Queue Q, Time t
Output: Batch to schedule on a worker
// Queue has batches ready for processing

1 if |Q| ̸= 0 then
2 batch← argmin{minvj∈V sla(v∗j )− t}
3 Q.remove(batch)
4 return batch

// schedule candidate if no ready batches
5 C ← ∅
6 for vj ∈ V do
7 currBatch← current batch of vj
8 if IsBlockingOp(vj) ∧ |currBatch| ≥ βj ∨
9 ¬IsBlockingOp(vj) then C ← C ∪ {vj}
// x is the batch associated with vj

10 batch← argmax vj ∈ C |x|
bj

11 return batch

VI. VALIDATION AND EXPERIMENTS

This section presents BATCHIT’s experimental results, in-
cluding its performance comparison with typical stream pro-
cessing and micro-batching methods, focusing on throughput
and latency. It explores BATCHIT’s scalability, adaptability,
and the effects of key configuration settings, particularly in
customizing batching strategies for varied input requirements.
The experiments involved a workflow encompassing access
control, encryption, data aggregation, and pseudoanonymiza-
tion, detailed in Fig. 4.

Comparison with Baseline Approaches: To evaluate the
techniques used in BATCHIT, we compare with the following



Fig. 4: Wi-Fi Access Point Association Data Workflow
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baseline techniques: (1) No Batching: The batch size is set to
1 for all operators. Whenever an operator has data-item/s in
its input data queue, the operator is scheduled to be executed
with the first data in the queue; (2) Micro-batching: Similar to
Spark Streaming, the system works in two phases: batching
and processing; (3) Edgewise: A stream processing engine
designed specifically for edge computing hardware [10].
Overall Throughput and Latency Performance: In our
experiments, we used a Raspberry Pi 4, with a quad-core
A57 ARM V8 processor with 8GB of RAM as our edge
system. We differentiated the processing size of micro-batch
systems to show that map-reduce architectures do not work
with large batch sizes. In terms of performance, an existing
edge processing engine, Edgewise [10] is the most capable
of the techniques we tested for handling an increasing rate
of traffic besides BATCHIT. However, our system is capable
of maintaining a 100% SLA Satisfaction rate for an ingestion
rate that is 50% greater than EdgeWise as shown in Fig. 5.

Fig. 5 shows the results of the Average Delay-SLA satis-
faction rate with respect to an increasing data ingestion rate
on the same edge system across the four approaches. Because
there are different latency goals across each data product in a
workflow, the latency performance is measured as the average
delay-SLA satisfaction rate among all data products. The rapid
decay rate of each curve indicates when the data ingestion rate
(arrival rate) surpasses the defined threshold (1− ϵ), resulting
in a steep decrease in SLA satisfaction. Hence, the number
of data items buffered in the system increases indefinitely,
eventually leading to a memory overflow error that crashes
the system in each experiment.
Resource Tuning: In our experiments, we found that increas-
ing the RAM capacity of the edge device leads to a near-
linear improvement in its throughput capability. Moreover, it is
evident that higher tolerance values are associated with higher
throughput rates. In BATCHIT, we implement workers using a
Java thread-pool. We tried multiple configurations of workers
on our edge device, but found that there was a significant drop-
off when scaling past 6 threads, which can be seen in Fig. 7b.
As such, all our experiments considered a worker pool of 6.
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Lastly, we explored how often our online dynamic batching
approach would execute, as shown in Fig. 6. We tested the
following approaches: (1) consecutive checking after each
release of a data product, (2) different time window duration’s,
and (3) the dynamic batch tuning that BATCHIT uses. The
interval of periodic checking is based on offline profiling
where we view the ingestion patterns of historical data and
use data samples to tune the edge device. This offline training
occurs once per day and the adjusted sampling rate is applied
to the live system after analysis. Our results indicate that the
best performing approach in terms of latency violation was
checking every second, but this introduces an extremely high
overhead cost. As a result, the conditional trigger mechanism
in BATCHIT only incurs a slightly higher latency cost, but
significantly reduces the amount of computation overhead. The
use of the latency tuning makes BATCHIT more scalable, as
shown in Fig. 5.

VII. CONCLUSION

In this paper, we introduced BATCHIT, a processing middle-
ware leveraging intelligent fine-grained batch tuning to balance
batching-induced delay and end-to-end delay for IoT stream-
ing applications. The key feature of BATCHIT is its ability to
dynamically determine the optimal batch size for each operator
during runtime, based on predefined thresholds for SLA vio-
lations. To design BATCHIT, we thoroughly evaluate various
batching strategies, operator categorization techniques, mem-
ory models, and worker scheduling approaches. Our evaluation
shows the benefit of intelligent batching and latency tuning
across a real-world scenario. Furthermore, BATCHIT surpasses
existing approaches by effectively maintaining service-level
performance agreements and enhancing overall throughput.
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