250P: Computer Systems
Architecture

Lecture 8: Dynamic ILP
Branch prediction

Anton Burtsev
October, 2021



Branch prediction



Pipeline without Branch Predictor

In the 5-stage pipeline, a branch completes in two cycles 2>
If the branch went the wrong way, one incorrect instr is fetched -
One stall cycle per incorrect branch



Pipeline with Branch Predictor

Branch
Predictor

In the 5-stage pipeline, a branch completes in two cycles 2>
If the branch went the wrong way, one incorrect instr is fetched -
One stall cycle per incorrect branch



1-Bit Bimodal Prediction

* For each branch, keep track of what happened last time
and use that outcome as the prediction

* What are prediction accuracies for branches 1 and 2 below:

while (1) {
for (1=0;I<10;1++) { branch-1
}
for (J=0;j<20;)++) { branch-2
}



2-Bit Bimodal Prediction

* For each branch, maintain a 2-bit saturating counter:
If the branch is taken: counter = min(3,counter+1)
If the branch is not taken: counter = max(0,counter-1)

* |If (counter >= 2), predict taken, else predict not taken

* Advantage: a few atypical branches will not influence the
prediction (a better measure of “the common case”)

* Especially useful when multiple branches share the same
counter (some bits of the branch PC are used to index
Into the branch predictor)

* Can be easily extended to N-bits (in most processors, N=2)

6



Bimodal 1-Bit Predictor

The table keeps track of what the branch did last time




Correlating Predictors

* Basic branch prediction: maintain a 2-bit saturating
counter for each entry (or use 10 branch PC bits to index
Into one of 1024 counters) — captures the recent
“common case” for each branch

* Can we take advantage of additional information?
> If a branch recently went 01111, expect O; if it
recently went 11101, expect 1; can we have a
separate counter for each case?
> If the previous branches went 01, expect O; if the
previous branches went 11, expect 1; can we have
a separate counter for each case?

Hence, build correlating predictors



Global Predictor

10 bits

CAT

The table keeps track of the common-case
outcome for the branch/history combo




| ocal Predictor

Also a two-level predictor that only
uses local histories at the first level

Use 6 bits of branch PC to
index into local history table

—p 10110111011001 14-bit history

indexes into
next level

Table of 64 entries of 14-bit
histories for a single branch

10



| ocal Predictor

6 bits

—>XOR —

64 entries

The table keeps track of the common-case
outcome for the branch/local-history combo

11



Local/Global Predictors

* Instead of maintaining a counter for each branch to
capture the common case,

= Maintain a counter for each branch and surrounding pattern

= If the surrounding pattern belongs to the branch being
predicted, the predictor is referred to as a local predictor

= If the surrounding pattern includes neighboring branches,
the predictor is referred to as a global predictor

12



Tournament Predictors

* A local predictor might work well for some branches or
programs, while a global predictor might work well for others

* Provide one of each and maintain another predictor to
identify which predictor is best for each branch

Alpha 21264
1K entries in level-1
1K entries in level-2

4K entries
12-bit global history

Branch PC — 4K entries

Total capacity: ?

Table of 2-bit
saturating counters 13



Predication

* A branch within a loop can be problematic to schedule

* Control dependences are a problem because of the need
to re-fetch on a mispredict

* For short loop bodies, control dependences can be
converted to data dependences by using
predicated/conditional instructions

14



Predicated or Conditional Instructions

If (R1==0)
R2=R2+ R4
else
R6 = R3 + R5
R4 = R2 + R3

R7 =1R1

R2 = R2 + R4 (predicated on R7)
R6 = R3 + R5 (predicated on R1)
R4 = R8 + R3 (predicated on R1)

15



Predicated or Conditional Instructions

* The instruction has an additional operand that determines
whether the instr completes or gets converted into a no-op

* Example: lwc R1, 0(R2), R3 (load-word-conditional)

will load the word at address (R2) into R1 if R3 is non-zero;
If R3 Is zero, the instruction becomes a no-op

* Replaces a control dependence with a data dependence
(branches disappear) ; may need register copies for the

condition or for values used by both directions

if (R1==0)
R2=R2 + R4
else
R6 = R3 + R5
R4 =R2 + R3

R7 =IR1;

R2 = R2 + R4 (predicated on R7)
R6 = R3 + R5 (predicated on R1)
R4 = R8 + R3 (predicated on R1)

16



Thank you!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

