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Class details

● Graduate
● 75 students

● Instructor: Anton Burtsev
● Meeting time: 3:30pm-4:50pm (Tue/Thu)

● Discussions: 4:00pm-4:50pm (Fri)
– Regular discussion sections
– Feel free to stop by my office with questions (DBH 3066)

● 2 TAs
● Web page

● https://www.ics.uci.edu/~aburtsev/238P/

https://www.ics.uci.edu/~aburtsev/238P/


  

More details

● 4-5 homeworks
● Implement a shell
● Explain whats on the stack
● Implement a system call
● Change file system layout

● Midterm
● Final
● Grades are curved

● Homework: 60%, midterm exam: 15%, final exam: 25% of your grade.
● You can submit late homework 3 days after the deadline for 60% of your 

grade



  

This course

● Inspired by 
● MIT 6.828: Operating System Engineering 

https://pdos.csail.mit.edu/6.828/2016/
● Adapted for undergraduate students 

● We will use xv6
● Relatively simple OS kernel (only 9K lines of code)
● Reasonably complete UNIX kernel
● https://pdos.csail.mit.edu/6.828/2016/xv6.html

● xv6 comes with a book
● https://pdos.csail.mit.edu/6.828/2016/xv6/book-rev9.pdf

● And source code printout 
● https://pdos.csail.mit.edu/6.828/2016/xv6/xv6-rev9.pdf

https://pdos.csail.mit.edu/6.828/2016/
https://pdos.csail.mit.edu/6.828/2016/xv6.html
https://pdos.csail.mit.edu/6.828/2016/xv6/book-rev9.pdf
https://pdos.csail.mit.edu/6.828/2016/xv6/xv6-rev9.pdf


  

Another Book

“Operating Systems: Three Easy Pieces” 
(OSTEP) Remzi H. Arpaci-Dusseau and Andrea 
C. Arpaci-Dusseau
● Free online version

http://pages.cs.wisc.edu/~remzi/OSTEP/

http://pages.cs.wisc.edu/~remzi/OSTEP/


  

Course organization

● Lectures
● High level concepts and abstractions

● Reading
● Xv6 book + source code
● Bits of OSTEP book

● Homeworks
● Coding real parts of the xv6 kernel

● Design riddles
● Understanding design tradeoffs, explaining parts of xv6



  

Prerequisites 

● Solid C coding skills
● Xv6 is written in C
● You need to read, code and 

debug
● All homeworks are in C
● Many questions will require 

explaining xv6 code

● Be able to work and code in 
Linux/UNIX

● Some assembly skills



  

How to succeed?

● Read the source



  

What is an operating system?



  

PC Hardware



  

CPU

● 1 CPU socket
● 4 cores
● 2 logical (HT) threads each



  

Memory



  

Memory abstraction



  

I/O Devices



  

Multi-socket machines



  

Dell R830 4-socket server

Dell Poweredge R830 System Server with 2 sockets 
on the main floor and 2 sockets on the expansion 

http://www.dell.com/support/manuals/us/en/19/poweredge-r830/r830_om/supported-configu
rations-for-the-poweredge-r830-system?guid=guid-01303b2b-f884-4435-b4e2-57bec2ce225a&
lang=en-us
 

http://www.dell.com/support/manuals/us/en/19/poweredge-r830/r830_om/supported-configurations-for-the-poweredge-r830-system?guid=guid-01303b2b-f884-4435-b4e2-57bec2ce225a&lang=en-us
http://www.dell.com/support/manuals/us/en/19/poweredge-r830/r830_om/supported-configurations-for-the-poweredge-r830-system?guid=guid-01303b2b-f884-4435-b4e2-57bec2ce225a&lang=en-us
http://www.dell.com/support/manuals/us/en/19/poweredge-r830/r830_om/supported-configurations-for-the-poweredge-r830-system?guid=guid-01303b2b-f884-4435-b4e2-57bec2ce225a&lang=en-us


  

What does CPU do internally?



  

CPU execution 
loop

● CPU repeatedly reads 
instructions from 
memory

● Executes them
● Example

  ADD EDX, EAX, EBX
  // EDX = EAX + EBX



  



  

What is stack?



  

Stack

● It's just a region of 
memory 
● Pointed by a special 

register ESP

● You can change ESP
● Get a new stack



  

Why do we need stack?



  

Calling functions

// some code...
foo();
// more code..

● Stack contains information for how to return 
from a subroutine 
● i.e., foo()



  

Stack

● Main purpose:
● Store the return address 

for the current procedure
● Caller pushes return 

address on the stack
● Callee pops it and jumps



  

Stack

● Main purpose:
● Store the return address 

for the current procedure
● Caller pushes return 

address on the stack
● Callee pops it and jumps



  

Simple observation

● Hardware executes instructions one by one



  

Goal: Run your code on a piece of hardware

● Read CPU manual
● A tiny boot layer

● Initialize CPU
● Jump to the entry point of 

your program
– main()

● This can be the beginning 
of your OS!



  

How do you learn a new programming 
language?



  

Hello world

printf(“Hello world\n”);



  

Print out a string
● On the screen or serial line



  

A more general interface
● First device driver



  

Device drivers

● Abstract hardware
● Provide high-level interface
● Hide minor differences
● Implement some optimizations

– Batch requests

● Examples
● Console, disk, network interface
● ...virtually any piece of hardware you know



  

OS is like a library that provides a 
collection of useful functions



  

Goal: Want to run two programs

● What does it mean?
● Only one CPU

● Run one, then run 
another one



  

Very much like car sharing



  

Time sharing

● Programs use CPU in turns
● One program runs
● Then OS takes control
● Launches another program 
● Then another program runs
● OS takes control again
● ...



  

Goal: Want to run two programs

● Exit into the kernel 
periodically

● Context switch
● Save state of one 

program
● Restore state of 

another program



  

What is this state?



  

State of the program

● Roughly it’s
● Registers
● Memory

● Plus some state (data structures) in the kernel 
associated with the program
– Information about files opened by the program, i.e. file 

descriptors
– Information about network flows
– Information about address space, loaded libraries, 

communication channels to other programs, etc.



  

Saving and restoring state

● Note that you do not really have to save/restore 
in-kernel state on the context switch
● It’s in the kernel already, i.e., in some part of the 

memory where kernel keeps its data structures 
● You only have to switch from using one to using 

another
– i.e., instead of using the file descriptor table (can be as 

simple as array) for program X start using at file 
descriptor table for program Y



  

Saving and restoring state

● All you have to save are internal structures of 
the CPU, i.e.
● Registers
● Note CPU has more registers then just 

– General registers, i.e., EAX, EBX, …
● 8 general registers in x86 32bit mode
● 16 general registers in x86 64bit mode



  

Intel x86 64bit 
Execution 

Environment

https://software.intel.com/sites/default/files/managed/a4/60/253665-sdm-vol-1.pdf

https://software.intel.com/sites/default/files/managed/a4/60/253665-sdm-vol-1.pdf


  

General registers



  

More registers...

● This is a bit misleading…
● CPU also has registers that describe state of 

● Segments
● Page tables
● Interrupt tables
● Etc.

● If they don’t change you don’t have to 
save/restore them



  

But anyway… if you want to run two programs

● Exit into the kernel 
periodically

● Context switch
● Save state of one 

program
● Restore state of 

another program



  

What about memory?



  

● Two programs, one memory? 



  

Time-share memory

● Well you can copy in and out the state of the 
program into a region of memory where it can 
run
● Similar to time-sharing the CPU



  

Time-share memory

● Well you can copy in and out the state of the 
program into a region of memory where it can 
run
● Similar to time-sharing the CPU

● What do you think is wrong with this approach?



  

Time-share memory

● Well you can copy in and out the state of the 
program into a region of memory where it can run
● Similar to time-sharing the CPU

● What do you think is wrong with this approach?
● Unlike registers the state of the program in memory 

can be large
● Takes time to copy it in and out



  

Space sharing: virtual address 
spaces

● Illusion of a private memory for each application
● Keep a description of an address space
● In one of the registers

● OS maintains description of address spaces
● Switches between them



  

Address spaces and paging



  

Address spaces and paging



  

Paging idea

● Break up memory into 4096-byte chunks called 
pages
● Modern hardware supports 2MB, 4MB, and 1GB 

pages

● Independently control mapping for each page of 
linear address space



  

Notice the main difference: time-sharing vs space 
sharing



  

Space sharing is like renting a some 
rooms in an office building



  

Staying in control



  

Staying in control



  

● What if one program fails to release the CPU?
● It will run forever. Need a way to preempt it. How? 



  

Scheduling

● Pick which application to run next
● And for how long

● Illusion of a private CPU for each task
● Frequent context switching



  

Isolation



  

● What if one faulty program corrupts the kernel?
● Or other programs? 



  

No isolation: open space office



  

Isolated rooms



  

Each process has a 
private address space



  

Each process maps the kernel

● It's not strictly required
● But convenient for system calls
● No need to change the page table when process 

enters the kernel with a system call
● Things are much faster!



  

P1 and P2 can't access each 
other memory



  

● What about communication? 
● Can we invoke a function in a kernel? 



  

Files and network



  

● What if you want to save some data to a file? 



  

● What if you want to save some data? 
● Permanent storage

● E.g., disks

● But disks are just arrays of blocks
● wrtie(block_number, block_data)

● Files
● High level abstraction for saving data
● fd = open(“contacts.txt”);
● fpritnf(fd, “Name:%s\n”, name);



  

Remember our console driver
● Print a string on the screen or serial line



  

A more general interface
● First device driver



  

● File system and block device provide similar 
abstractions

● Permanent storage
● E.g., disks

● But disks are just arrays of blocks
● wrtie(block_number, block_data)

● Files
● High level abstraction for saving data
● fd = open(“contacts.txt”);
● fpritnf(fd, “Name:%s\n”, name);



  

File system and block layer

● Reliable storage on top of raw disc 
blocks

● Disks are just arrays of blocks

wrtie(block_number, block_data)
● Human readable names (files)

● High level abstraction for saving data

fd = open(“contacts.txt”);

fpritnf(fd, “Name:%s\n”, 
name);



  

What if you want to send data over the 
network? 

● Similar idea
● Send/receive Ethernet packets (Level 2)
● Two low level

● Sockets
● High level abstraction for sending data



  

● Linux/Windows/Mac 



  

Recap
● Run multiple programs

● Each has illusion of a private memory and CPU
– Context switching
– Isolation and protection

● Management of resources
– Scheduling (management of CPU)
– Memory management (management of physical memory)

● High-level abstractions for I/O
● File systems

– Multiple files, concurrent I/O requests
– Consistency, caching

● Network protocols
– Multiple virtual network connections



  

Questions?



  

Virtualization



  

● Want to run a Windows application on Linux? 



  

● Want to run a Windows application on Linux? 



  

What is the 
problem? 

● Hardware is not 
designed to be 
multiplexed

● Loss of isolation



  

Virtual machine

Efficient duplicate 
of a real machine
● Compatibility
● Performance
● Isolation



  

Trap and emulate
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