

238P: Operating Systems

Lecture 1: Introduction

Anton Burtsev
September, 2018

Class details

● Graduate
● 75 students

● Instructor: Anton Burtsev
● Meeting time: 3:30pm-4:50pm (Tue/Thu)

● Discussions: 4:00pm-4:50pm (Fri)
– Regular discussion sections
– Feel free to stop by my office with questions (DBH 3066)

● 2 TAs
● Web page

● https://www.ics.uci.edu/~aburtsev/238P/

https://www.ics.uci.edu/~aburtsev/238P/

More details

● 4-5 homeworks
● Implement a shell
● Explain whats on the stack
● Implement a system call
● Change file system layout

● Midterm
● Final
● Grades are curved

● Homework: 60%, midterm exam: 15%, final exam: 25% of your grade.
● You can submit late homework 3 days after the deadline for 60% of your

grade

This course

● Inspired by
● MIT 6.828: Operating System Engineering

https://pdos.csail.mit.edu/6.828/2016/
● Adapted for undergraduate students

● We will use xv6
● Relatively simple OS kernel (only 9K lines of code)
● Reasonably complete UNIX kernel
● https://pdos.csail.mit.edu/6.828/2016/xv6.html

● xv6 comes with a book
● https://pdos.csail.mit.edu/6.828/2016/xv6/book-rev9.pdf

● And source code printout
● https://pdos.csail.mit.edu/6.828/2016/xv6/xv6-rev9.pdf

https://pdos.csail.mit.edu/6.828/2016/
https://pdos.csail.mit.edu/6.828/2016/xv6.html
https://pdos.csail.mit.edu/6.828/2016/xv6/book-rev9.pdf
https://pdos.csail.mit.edu/6.828/2016/xv6/xv6-rev9.pdf

Another Book

“Operating Systems: Three Easy Pieces”
(OSTEP) Remzi H. Arpaci-Dusseau and Andrea
C. Arpaci-Dusseau
● Free online version

http://pages.cs.wisc.edu/~remzi/OSTEP/

http://pages.cs.wisc.edu/~remzi/OSTEP/

Course organization

● Lectures
● High level concepts and abstractions

● Reading
● Xv6 book + source code
● Bits of OSTEP book

● Homeworks
● Coding real parts of the xv6 kernel

● Design riddles
● Understanding design tradeoffs, explaining parts of xv6

Prerequisites

● Solid C coding skills
● Xv6 is written in C
● You need to read, code and

debug
● All homeworks are in C
● Many questions will require

explaining xv6 code

● Be able to work and code in
Linux/UNIX

● Some assembly skills

How to succeed?

● Read the source

What is an operating system?

PC Hardware

CPU

● 1 CPU socket
● 4 cores
● 2 logical (HT) threads each

Memory

Memory abstraction

I/O Devices

Multi-socket machines

Dell R830 4-socket server

Dell Poweredge R830 System Server with 2 sockets
on the main floor and 2 sockets on the expansion

http://www.dell.com/support/manuals/us/en/19/poweredge-r830/r830_om/supported-configu
rations-for-the-poweredge-r830-system?guid=guid-01303b2b-f884-4435-b4e2-57bec2ce225a&
lang=en-us

http://www.dell.com/support/manuals/us/en/19/poweredge-r830/r830_om/supported-configurations-for-the-poweredge-r830-system?guid=guid-01303b2b-f884-4435-b4e2-57bec2ce225a&lang=en-us
http://www.dell.com/support/manuals/us/en/19/poweredge-r830/r830_om/supported-configurations-for-the-poweredge-r830-system?guid=guid-01303b2b-f884-4435-b4e2-57bec2ce225a&lang=en-us
http://www.dell.com/support/manuals/us/en/19/poweredge-r830/r830_om/supported-configurations-for-the-poweredge-r830-system?guid=guid-01303b2b-f884-4435-b4e2-57bec2ce225a&lang=en-us

What does CPU do internally?

CPU execution
loop

● CPU repeatedly reads
instructions from
memory

● Executes them
● Example

 ADD EDX, EAX, EBX
 // EDX = EAX + EBX

What is stack?

Stack

● It's just a region of
memory
● Pointed by a special

register ESP

● You can change ESP
● Get a new stack

Why do we need stack?

Calling functions

// some code...
foo();
// more code..

● Stack contains information for how to return
from a subroutine
● i.e., foo()

Stack

● Main purpose:
● Store the return address

for the current procedure
● Caller pushes return

address on the stack
● Callee pops it and jumps

Stack

● Main purpose:
● Store the return address

for the current procedure
● Caller pushes return

address on the stack
● Callee pops it and jumps

Simple observation

● Hardware executes instructions one by one

Goal: Run your code on a piece of hardware

● Read CPU manual
● A tiny boot layer

● Initialize CPU
● Jump to the entry point of

your program
– main()

● This can be the beginning
of your OS!

How do you learn a new programming
language?

Hello world

printf(“Hello world\n”);

Print out a string
● On the screen or serial line

A more general interface
● First device driver

Device drivers

● Abstract hardware
● Provide high-level interface
● Hide minor differences
● Implement some optimizations

– Batch requests

● Examples
● Console, disk, network interface
● ...virtually any piece of hardware you know

OS is like a library that provides a
collection of useful functions

Goal: Want to run two programs

● What does it mean?
● Only one CPU

● Run one, then run
another one

Very much like car sharing

Time sharing

● Programs use CPU in turns
● One program runs
● Then OS takes control
● Launches another program
● Then another program runs
● OS takes control again
● ...

Goal: Want to run two programs

● Exit into the kernel
periodically

● Context switch
● Save state of one

program
● Restore state of

another program

What is this state?

State of the program

● Roughly it’s
● Registers
● Memory

● Plus some state (data structures) in the kernel
associated with the program
– Information about files opened by the program, i.e. file

descriptors
– Information about network flows
– Information about address space, loaded libraries,

communication channels to other programs, etc.

Saving and restoring state

● Note that you do not really have to save/restore
in-kernel state on the context switch
● It’s in the kernel already, i.e., in some part of the

memory where kernel keeps its data structures
● You only have to switch from using one to using

another
– i.e., instead of using the file descriptor table (can be as

simple as array) for program X start using at file
descriptor table for program Y

Saving and restoring state

● All you have to save are internal structures of
the CPU, i.e.
● Registers
● Note CPU has more registers then just

– General registers, i.e., EAX, EBX, …
● 8 general registers in x86 32bit mode
● 16 general registers in x86 64bit mode

Intel x86 64bit
Execution

Environment

https://software.intel.com/sites/default/files/managed/a4/60/253665-sdm-vol-1.pdf

https://software.intel.com/sites/default/files/managed/a4/60/253665-sdm-vol-1.pdf

General registers

More registers...

● This is a bit misleading…
● CPU also has registers that describe state of

● Segments
● Page tables
● Interrupt tables
● Etc.

● If they don’t change you don’t have to
save/restore them

But anyway… if you want to run two programs

● Exit into the kernel
periodically

● Context switch
● Save state of one

program
● Restore state of

another program

What about memory?

● Two programs, one memory?

Time-share memory

● Well you can copy in and out the state of the
program into a region of memory where it can
run
● Similar to time-sharing the CPU

Time-share memory

● Well you can copy in and out the state of the
program into a region of memory where it can
run
● Similar to time-sharing the CPU

● What do you think is wrong with this approach?

Time-share memory

● Well you can copy in and out the state of the
program into a region of memory where it can run
● Similar to time-sharing the CPU

● What do you think is wrong with this approach?
● Unlike registers the state of the program in memory

can be large
● Takes time to copy it in and out

Space sharing: virtual address
spaces

● Illusion of a private memory for each application
● Keep a description of an address space
● In one of the registers

● OS maintains description of address spaces
● Switches between them

Address spaces and paging

Address spaces and paging

Paging idea

● Break up memory into 4096-byte chunks called
pages
● Modern hardware supports 2MB, 4MB, and 1GB

pages

● Independently control mapping for each page of
linear address space

Notice the main difference: time-sharing vs space
sharing

Space sharing is like renting a some
rooms in an office building

Staying in control

Staying in control

● What if one program fails to release the CPU?
● It will run forever. Need a way to preempt it. How?

Scheduling

● Pick which application to run next
● And for how long

● Illusion of a private CPU for each task
● Frequent context switching

Isolation

● What if one faulty program corrupts the kernel?
● Or other programs?

No isolation: open space office

Isolated rooms

Each process has a
private address space

Each process maps the kernel

● It's not strictly required
● But convenient for system calls
● No need to change the page table when process

enters the kernel with a system call
● Things are much faster!

P1 and P2 can't access each
other memory

● What about communication?
● Can we invoke a function in a kernel?

Files and network

● What if you want to save some data to a file?

● What if you want to save some data?
● Permanent storage

● E.g., disks

● But disks are just arrays of blocks
● wrtie(block_number, block_data)

● Files
● High level abstraction for saving data
● fd = open(“contacts.txt”);
● fpritnf(fd, “Name:%s\n”, name);

Remember our console driver
● Print a string on the screen or serial line

A more general interface
● First device driver

● File system and block device provide similar
abstractions

● Permanent storage
● E.g., disks

● But disks are just arrays of blocks
● wrtie(block_number, block_data)

● Files
● High level abstraction for saving data
● fd = open(“contacts.txt”);
● fpritnf(fd, “Name:%s\n”, name);

File system and block layer

● Reliable storage on top of raw disc
blocks

● Disks are just arrays of blocks

wrtie(block_number, block_data)
● Human readable names (files)

● High level abstraction for saving data

fd = open(“contacts.txt”);

fpritnf(fd, “Name:%s\n”,
name);

What if you want to send data over the
network?

● Similar idea
● Send/receive Ethernet packets (Level 2)
● Two low level

● Sockets
● High level abstraction for sending data

● Linux/Windows/Mac

Recap
● Run multiple programs

● Each has illusion of a private memory and CPU
– Context switching
– Isolation and protection

● Management of resources
– Scheduling (management of CPU)
– Memory management (management of physical memory)

● High-level abstractions for I/O
● File systems

– Multiple files, concurrent I/O requests
– Consistency, caching

● Network protocols
– Multiple virtual network connections

Questions?

Virtualization

● Want to run a Windows application on Linux?

● Want to run a Windows application on Linux?

What is the
problem?

● Hardware is not
designed to be
multiplexed

● Loss of isolation

Virtual machine

Efficient duplicate
of a real machine
● Compatibility
● Performance
● Isolation

Trap and emulate

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

