WordSleuth Stanton 1

WordSleuth: Deducing Social Connotations
from Syntactic Clues

Shannon Stanton
Honors Thesis 2011

WordSleuth Stanton 2

WordSleuth: Deducing Social Connotations
from Syntactic Clues

Shannon Stanton

University of California, Irvine
Information and Computer Science
Campus-wide Honors Program
sstanton@uct.edu
shannonnstanton@gmail.com

0. Abatract

The realm of social and emotional connotation is often thought to be the purview of
humans rather than machines. Namely, humans are generally capable of recognizing
social connotations including emotions (such as embarrassment), intentions (deception
and persuading), attitudes (confidence and disbelief), and tone (formality, politeness,
rudeness), and recent work has suggested that machines may also be capable of this feat
(Pearl and Steyvers 2010). This study extends the work done by Pearl and Steyvers,
improving the data gathering methodology, feature extraction, and machine learning
classification. Prior to the WordSleuth project, a major barrier to researching social cues
transmitted through text has been a lack of annotated data. WordSleuth. an online
Game-With-a-Purpose (von Ahn 2008), solves this problem, creating an effective means
of encouraging a wide variety of participants to genérate and annotate data. Salient
linguistic features can then be extracted from the data gathered and used to train and
test machine learning algorithms, effectively teaching machines to identify social
connotations in text. In particular, as machines still currently lag behind human
capabilities, this study extends Pearl and Steyvers' work by examining more complex
hinguistic features and exploring more sophisticated machine learning methods, with the
aim of substantially improving machine recognition of social connotation.

1. Introduction

An important question in computational linguistics research is how non-linguistic
information, such as emotions, intentions, attitudes, and tone, can be derived from
language text. People are generally capable of it, but so far, machines have lagged
significantly behind human capability. One approach is to identify possible features
humans use, such as low level syntactie cues, and extract them from the input, allowing
machine learning algorithms to make use of them, potentially even better than humans.
This research project focuses on low level syntactic clues present in plain text,

The primary technical barrier to research in social connotation up until this project
was a lack of socially annotated data. In order to extract such social information from
text, we must first have a reference point constituted by sufficient examples of each
category' 4 database of reliable messages reflecting human perceptions of both the
intended and perceived social information. We therefore cannot simply automate the
process (until after this project), since the machine learning itself requires training data

WordSleuth Stanton 3

to learn from. We need also a diversity of examples and styles to generalize from, so
simply annotating existing works may be insufficient, and is, at the very least, extremely
time-consuming. While some sources of information annotated for select specific
categories exist, such as a database for deception created from the online game Mafia
Wars (Zhou and Sung 2008), these socurces do not reflect the breadth of social
connotations we are looking for. Thus, the goal is to obtain messages generated and
annotated by many people. Simple survey techniques ean only bring in so much data due
to limited scope and appeal. Pearl and Steyvers' (2010) solution to this problem: a game,
specifically, a game-with-a-purpose (von Ahn 2006), that can automate the acquisition of
data and inerease the amount provided by volunteers by making participation more
enjoyable (Pearl and Steyvers 2010). We call that game WordSleuth.

2. Creating WordSleuth
2.1 The function and purpose of the WordSleuth game

WordSleuth's game play is bimodal, facilitating the gathering of both new
annotated messages and annotations of old messages. In the first mode, message
generation, players are presented with a contextual picture for inspiration and one of
eight social cues, and asked to create a message that expresses that cue more than any of
the others, without using particular taboo words that might. make the task of
identification too easy: This mode enables the generation of new annotated data, but that
alone would be insufficient: we also want to gather data about people's perceptions of the
message's social category.

Ly DUt Play the Game Inntructions Profide 1oy

Word Sleuth O

Test your sacial language intelligence.

15250 F Q127 #2011 Aatiaty Posr

je that mon Cedriy

persuading tha

Al tags
£ a1}

Don't use any ot these taboo words:
PEMSUMIE
persiaded, i

You will do as I Did, minion?

Illustration 0: Message Creation Mode

WordSleuth Stanton 4

In the second mode, cue identification, players are presented with a message and
the contextual image used to generate it, and asked to identify which of the eight social
cues the message best communicates. This mode allows users to peer review each others'
submissions, providing information about whether messages identified represent "good”
examples of their social cue. Ideally. messages that are the best examples of their
category are always agreed upon, while the worst examples show a high degree of
confusion among the guessers. It also increases the appeal of the game play, as it appears
players have a strong preference to the relatively simpler task of identification, perhaps
because it is faster and less cognitively taxing, providing more instant gratification.

It has been shown that this type of communal effort. of non-experts is capable of
producing data as reliable as that generated by few experts (von Ahn 2006). For
convenience and ease of comparison, the following tables show the initial results obtained
by Pearl and Steyvers' participants, when the database included 1176 messages and 3198
annotations. The reliability of the data increased dramatically when we considered
messages that hiave been agreed upon for at least 50% of at least two annotations (Pearl
and Steyvers 2010).

E 2 a E o - "";m e v o i g)
f5gilaz2d Efgifszs

532 282383 ggsgzégﬂ

32 E 5532z £R2E88s8
deception 48 05,1001 67 .07.03 .2) deception .36 .08 .19 .08 .08 .09 .06.08
politeness. .03 .71 ,03 .00 .01 .00.13 .09 politeness .05:.49.12.12.05.,01 .12.05
rudeness 03 ,00.92 .00 .04 .02.02 .00 rudeness 06 .06.63.04 .07 .07 .01 .07
embarrassment .04 08.05.69 .00.11 .01 .02 embarrassment .02.01 .11.76..06 .03 .01 .00
confidence .01 .04.02 .01 .82.01.01 .09 confidence .06 .01 .04 .08 .68 .02 .03 .08
disbeliel 05 03.02 .02 05,82 .00 .02 disbelief .08 .03 .08 .02 .09,56 .02.12
farmality {12 ,34.02.01 .03 .03 46 .10 formality .00.26.06 ,03 ,00.06.43.(5
persuading .03 .05 .01 .60 .05.03 .01 .82 persuading .05.06.09.03.1(.03.02.61

Table 3: Confusion matix for the human participants, Table 4: Confusion niatrix for Ihe machine leariing clas-
wheere The mitjority of paiticipants agreed on o message™s sifier. The rows sepresent the intended socil information
intended socia) Infeanation i!ﬁt.] al I_L"i!.\'l 1w P&ﬂiﬁi]‘amﬁ for il'lnc.\"!\'ilgC'\’\"hi:IL' the colunmns Teprese nt the tabeled so-
fabeled the message, The rows represent the intended 5o gjal information.

cial information for 5 message while the columns repre-

sent the labsled social information, averaged uver mes- (Pear] and Steyvers 2010)

sages and parlicipants.
(Peail and Steyvers 2010)

WordSleuth was originally created as an offline game, which limited its
effectiveness in reaching participants and.gathering data. A much larger database is
required to truly generalize about such a nebulous subject as social connotations.

2.2 Bringing WordSleuth online

A solution to the data deficit problem is putting the game online (see

WordSleuth Stanton 5

http:ligwg 1.edu/ for the current instantiation), increasing its accessibility to the
general pubhc and increasing the amount of data generated. HTML templates were used
for the webpages forming the front end of the system, driven by Perl CGI scripts. More
modern, flashy methods such as Ruby-on-Rails were contemplated and discarded in favor
of quick prototyping and known compatibility with popular browsers. Finally, the front-
end system was integrated with a mySQL database, an improvement in efficiency,
availability, and methodelogy from the text files previously used.

Results to date are promising. Since bringing the game online in January 2011,
the number of annotations has increased dramatically while the number of messages
created has nearly doubled. As of May 2011 the database contains just over 3,500
messages and 20,000 annotations.

g I

o i

58w 8 pd 2 2/

,.g e ,3 5 'a d £ g !

' 'EEERRERE]

s 28 88 8% 8|

confidence 81 .03 02 .01 .01 .07 .03 .02]
deception .08 .60 .04 .03 .02 .13 .05 .05
disbelief .03 .03 .79 .03 .01 .02 .03 .04
embarrassment .01 .03 .07 .78 .02 .01 .05 .02
formality 04 .02 .02 .02 .46 .09 .34 .02 |
persuading .08 .05 .01 .00 .02 .77 .04 .02 .“{
politeness 02 .02 .01 .02 .13 .07 .72 .02
rudeness 02 .01 .04 .02 .01 .04 .01 85|

Table 0: Human annota tmns for d’atabase (as of Ma Ly 2011)
Mean accuracy: Q.74

WordSleuth Stanton 6

'?,'
8 g g =y E 2 @

B > ; ;
EENEREEI

g g .8 .5 # g 5 g

s 24 888728 E;

confidence 87 01 .01 .00 .01 .06 .02 01|
deception .05 .76 .02 .02 .01 .09 .03 02|
disbelief .02 .02 .86 .03 .01 .01 .03 .03}
embarrassment .00 .03 .05 .86 .02 .01 .03 .01 [
formality .02 .00 .00 .01 .68 .04 .24 .01}
persuading .05 .04 .01 .00 .01 .84 .03 .01f
politeness 02 .02 .00 .01 .10 .04 .80 01!
rudeness 01 .01 .03 .02 .01 .03 .01 88|

Table 1° Human annotations for reliable messages (as of May 2011)
Mean accuracy- 0.84

In general, the expansion of the database has seen an increase in user accuracy in
identifying the intended social cue, as well as the reduction of certain ambiguities.
Confusion of deception for confidence, for example, has been halved, even without
filtering for reliably annotated messages. Rudeness is still easiest for users to identify,
but by a slimmer margin. However, some sources of confusion remain prominent, for
example formality for politeness, and less so, the reverse.

2.8 Improvement Feature: Taboo word list

One potential complication that may arise with gathering data in a ¢competitive
framework is the possibility of amassing messages that are artificially representative of
their classifications. Players motivated by point gain may specifically craft messages
that are trivial to guess by including the social tag in the message or using words that are
tao closely related to the tag. For example, the task of identifying "politeness” in a
message is trivialized if every message assigned to that category has the word "please".
Therefore, users should be prevented from using select words. Rejecting messages
containing variations of the tag and the tag itself was a simple starting point and solved
the first half of the problem, but we also needed some way of tracking words that were
becoming over represented in the database. Our solution was to dynamically generate a
list of taboo words based on the theory of mutual information.

Mutual information is a'measure of the inter-dependence of two variables (Peng
2005): in this case, word frequency and social category. Two independent, variables
should have a mutual information score of G, while two variables that are dependent and

WordSleuth Stantoen 7

closely related will have a higher score than two non-closely related. The following
gquation was used, '
Mutual Information(x, y)= logM
(p(x)}xp(¥))
where,
p(xy)= probability of word x givencategory v ,
plx)=probability.of word x among all words ,
ply)=probability of category y among all categories

For each social category, the words with the highest mutual information score are
declared to be taboo in the game, and players are not allowed to use them when
generating a message for that particular category. Common words, such as articles and
pronouns, should be automatically excluded, since they are evenly distributed among all
the categories.

Taboo list functionality was implemented with a Perl script to calculate the mutual
information scores for each word in each social category in the ¢urrent database, set to
update approximately once per day. Thus the taboo lists are dynamically updated to
reflect the state of the database, automatically without requiring the direct supervision of
the researchers. The following code fragment illustrates the implementation of the
mutual information caleulation:

calculate p(x) = # occurences of word/#total words
my $px = $wordrrequency{$word}/$totalwords;
#r:a?cu?ua te p(y) = #occurences of a given tag/totalMessages I
my $py = $tagCount{$category}/$totalMessages; ,
#ca 7cu?ate pixly) = #word x in tag y/#words in tag y
if (4 exists $wordCount{$category} || $px ==0) #7F Spy 75 0, E
y
2
ki
ks

bigger problems to be alerted to (7e. social tag not existing)
fpointwiseMutualnfo = 0;
else

my $pxGy = $count/$wordcount{$category};
$pointWiseMutualinfo = ‘Iog($pxoy/$px/$p») #log(p(x|y)/
(p(x)* ip $202,

$mutua1Inf0{$cate-or
AR T

Code_Fragment 1- tabooLzstGeuera tor pl A calcu]a tmg mutua] mforma ::zon

For example, as of May 2011 each category yielded the following taboo werds:

Category Taboo List: Top 7

confidence wil, modest, mvp, talkies, rule, scruffles, sorts

deception recommend, spreadsheet, dastardly, issue, nerdy, jan,

dishelict beats, megaphone, guitar, twenty, vat, goatse, smoothly

WordSleuth Stanton 8

SALRNRENIONE stew, conscious, mins, grease, mighty, private, spade

tormahity

e]:tvery, ahuse, form, grammy, greetings; martin,

|

persuading mlllmn, thoumd reasons; captain, poverty, carrots, tonie

politeness nicely, grateful, buniping; rough, shore, orphans, scores
rudeness kangaroo, facts, uicalled, scum, listed, spotty, gmgers
Table 2: Taboo list results (as of May 2011)

Many of these words are intuitively related to their given category: “modest” in
confidence, “recommend” in deception, “millien”, “thousand”, “reasons” for persuading,
etc. However, many appear at first glance to be out of place.

A useful, if unexpected, outcome of applying this methedology was the
identification of words that were non-intuitively highly correlated with particular
categories. For example, just after the game went online in January 2011, the taboo list
generator vielded “nancy” for confidence. Yet “nancy” does not seem to be a word that one
would intuitively associate with the social category confidence; it seems rather arbitrary.
In fact, that unigram was an artifact of the message generation system. In the
beginning, when the gamie was offline and the database relatively small, a user happened
to use the name “Nancy” in several messages for the category confidence. Because there
were so few repeated words in general and that one happened to be used enough in a
particular category, it had a relatively high mutual information score, even though it may
not bé truly representative of the category. Making “naney” taboo for the confidence
category prevents users from creating additional instances correlating the unigram to the
category, thus eventually lowering its mutual information score. Thus, taboo
functionality reduces the effect of coincidental correlation.

Eventually, as the database grows, trends can be examined to set an appropriate
absolute boundary on the mutual information scere, rather than simply using the highest
relative scores. The taboo list should eventually resemble the game for which it was
named and represent words that are highly correlated for each category within the
current database. It is important to note that this will not necessarily reflect the
correlation present in general language usage, since this model actively discourages high
correlations. Therefore, taboo list functionality increases both the depth and breadth of
data represented by discouraging trivially obvious words such as the ¢ategories
themselves and by dynamically identifying and reducing eoincidentally high correlations
of words to categories.

3. Using WordSleuth

The data gathered in the WordSleuth database cannot be simply directly fed to a
computer and expect coherent results. It must first be parsed and processed for salient,
numerable features. Furthermore, many feature are only present for a few messages,
listing only those features present for each message reduces the dimensionality of the
data set, thus inereasing the efficiency of the algorithms.

WordSleuth Stanton 9
3.1 Features

Originally, Pearl and Steyvers used 12 features extracted for each message: the
number of word types, number of word tokens, ratio of types to tokens, number of
punetuation marks, number of question marks, number of exclamation marks, number of
main clauses, average characters per word, mean log frequency of words used, and lists of
unigrams, bigrams, and trigrams that appear more than orice in the data set. This
project added the following features: number of interrobangs, ratio of exclamation to
question mark, average words per main clause, number of sub-clauses; average words per
sub-clause, and accuracy and precision scores for human perfermance on each message.
For example, interrobangs appear in the disbelief category more often than others, while
formslity and deception are often expressed with numerous sub-clauses distancing the
speaker from the audience. Accuracy and precision scores give a sense of the usefulness
of a particular message as an exemplar. Accuracy is calculated as the percentage of times
a particulat message was correctly identified, while precision represents a measure of the
agreement (or lack of confusion) of the guessers, calculated as a percentage of the
maximum possible entropy. Maximum erntropy (which is 3 bits for an 8 category choice)
represents the state of maximum confusion (each category is guessed 1/8 of the time), and
thus the lowest precision (0). Minimum entropy (0) represents complete certainty {such
as when all guessers guess the same category) and thus the highest degree of precision
(1.0 or 100%). Thus precision is calculated:

recision—(H"“""—Hx)
p‘ H-HHI.\‘
where,
H =Y plx)slog,——
*{plx))
and,
11111111
H =H Pl o R PR R R R =3
- mas (88888888)

I considered several ways to caleulate precision, such that precision should
repréesent the amount of agreement of the guessers on a particular message.

First, T considered precision to be simply the frequency of the most common guess,
but quickly realized some flaws with this hypothesis. This calculated precision could
never be lower than aceuracy, and yet it oceurs in other domains that precision is lower
than accuracy. Furthey, this metric would not be sufficiently fine-grained. For example;
consider 2 messages, one that is guessed 50% one category and 50% another, to be
represented (.5, .5) for short, and the other, that is guessed 50% one category, 25%
another. and 25% a third (5. .25, .25). In both cases, this ealculation for precision would
yield .5, but it seems intuitively that the second case represents a higher degree of
confusion among the participants, since more categories were under consideration.

Next, 1 considered various ways of penalizing precision based on the number of
categories guessed. However, this method is ingufficiently fine-grained as well. Censider
2 messages, the first (.5, .25, .25) and the second (.5, .24, .01). Simply accournting for the

WordSleuth Stanton 10

most commonly guessed and the number of categories would calculate the same precision
for each of these messages, but again intuition says the second one might represent a
lower degree of confusion, since the third category has so few guessers compared to the
other two. Precision should take into acéount the relative frequency of each category
guessed as well.

The entropy ratio calculation solves these problems. It is possible for a message to
have lower precision than accuracy (such as, for example, (.3, .1, .1, .1, .1, .1, .1, .1)), and
there is sufficiently high granularity to distinguish the aforementioned cases.

8.2 Algorithms

Preliminary research with the machine learning algorithm Sparse Multinomial
Logistic Regression (Pearl and Steyvers 2010) showed performance nearly on par with
human performance, but not quite. Just as there is variation among the performance of
individual humans on learning tasks, different machine learning algerithms vary in
performance, with their own sets of strengths and weaknesses. This paper examines
additional algorithms in an attempt to reach human proficiency.

3.2.1 KNN: K-Nearest-Neighbors
3.2.1.1 KNN Background

As a “peer pressure” multinomial classification algorithm, K-Nearest-Neighbors
operates on an inductive principal of classifying a test data point based on the training
data points proximate to it. Each unknown data point adopts the classification of those
closest to it, or, in the case of disagreement, the most common classification of nearby
training points. Let there be two subsets of data, one for training whose classifications
are known to the algorithm and one for testing whose classifications are unkniown to the
algorithm, but known to.the evaluator of algorithms. (Here the “correct classification” is
defined as that specified by the user when the message was generated.) For each data
point in the test data, KNN calculates the Euclidean distance between that data point
and each data point in the training subset. It then assigns the clagsification of the test
data point to the most common classification of the K training cases with the smallest
distances.

There is some concern about efficiency. For n test cases and d training cases, the
algorithm runs in at minimum O(n*d) time and can do no better, making it inefficient for
large values of n or d. In reality, because of the way we parse features, n depends on both
the number of messages and the number of features parsed, and thus grows rather.
quickly. KNN may not be practical if the database continues to grew in size as hoped.

To begin with, KNN was run on the database toward the end of May 2011 and fed
only the features originally extracted by Pear]l and Steyvers in 2010. Next, KNN was
applied to the additional low level features. In both cases, performance was averaged
over values of N ranging from 1 to 55.

WordSleuth
3.2.1.2 KNN Results
g
8 =] g B g ® m |
[U=t ' ol | . f
%Aﬁ_gﬁ ;::g_ g
,‘83,%,5,5"& o
confidence: .80 .04 01 02 .02 .06 .02 .03
deception .09 56 .03 .01 .00 .11 .01 .00 ||
disbelief 03 .02 .79 .02 .03 .04 .04 .03
embarrassment .02 .06 .03 .79 .02 .02 .03 .02 J
formality .02 .01 .01 .02 .60 .03 .31 .00 !
persuading .07 .06 .02 .01 .03 .76 .03 .02
politeness 03 .02 .03 .11 02 05 71 02/
rudeness .02 .01 .07 .03 .00 .06 .01 .80
Table 3: KNNon May 2011 data, original features
Mean accuracy 0.76
g_
g g @ _éu 2 w|
ES¥ESTEE
822 g B35 J)
s34 84288 E
confidence 17 .14 .12 .10 08 .12 .16 .10
deception .13 .13 .16 .09 .12 .16 .09 .12|
disbelief 12 .10 .13 .12 .14 .16 .12 .10
embarragsment .06 .16 .11 .11 .16 .14 .15 .11|
formality 10 .15 .14 .18 .10 .10 .15 .07 |
persuading 13 .13 .16 .11 .13 .08 .15 .12
politeness 15 08 .16 .08 .15 .16 .18 .13
rudeness 12 .09 .12 .11 .11 .09 .15 .20

Mean accuracy 0.24

Stanton 11

Notably, KNN's mean performance on the original features is equivalent to human

WordSleuth : Stanton 12

performance on all messages. Surprisingly, KNN performed much worse with all features
than with the original features alone. However, KNN is sensitive to dimensionality and
proximity, and it may be that the new features confused the algorithm by creating the
llusion of proximity.

KNN is a naive algorithm in that it overlooks certain patterns apparent in the
data, such as clustering. Furthermore, as an inductive algorithm, it is only able to learn
from the training set. Thus, it is unable to make use of test cases themselves, which
would be particularly beneficial when the differing categories are highly interspersed, as
is the case here. Transductive clustering suffers neither of these deficiencies.

3.2.2 Transductive Clustering

The primary difference between induction and transduction in this case is the
ability to make use of information from unlabeled points in the test subset (Chapelle,
Scholkopf, and Zien 2006). While inductive KNN would only use training data near a
test point, transduction alse considers other as yet unlabeled test points and is able to
make use of their proximity once labeled. Furthermore, clustering is able to take
advantage of the patterns that exist in the data beyond the first level of nearby points.

[T TG AT R L TRl ﬁf'

Hlustratlon € T}ammg pmnt A (go]d
hexagon), test points @ and R

For example, consider Illustration 1: if training point A is near test point @, and Q
is near test point R, transductive clustering is able to infer that A and Q@ and R should
have the same label, since they form a cluster, because the unlabeled test point Q
between A and R joins them together. Both KNN and transductive clustering would label
both @ and R with category gold hexagon, but with differing underlying logic. Inductive
KNN would label Q according to A {gold hexagon). and then R according to A (also gold
hexagon), and not explicitly understand that @ and R are the same category, because it is
blind to point R when considering point Q (and vice-versa). This difference in logic
becomes moré salient if thete is an additional training point of a different category, as
follows.

WordSleuth Stanton 13

Hlustmﬁon ﬂ'mmg pomtsA (go]d hexagon) andB (b]ue d1amnd)
and test points @ and R. Distances x and y such thatx <y < 2x.

Now consider Illustration 2, in which anecther training point B exists (labeled with
category blue diamond), closer to R than A is to R, and of a different label than A. KNN
(K=1) would label R accarding to B, rather than according to A, since R is nearer to B,
though intuitively A and R should probably belong in the same cluster, and thus the same
category label. This intuition grows stronger with the introduction of more unlabeled
points; as shown in Illustration 3.

It : S E e M;
ﬂluatmtton 3 Ada’:txonal uulabe]ed data pomts enhance the intuition
of two clusters, where the left cluster should be gold hexagon, and
the right cluster blue diamond.

3.2.2.1 Transductive Agglomerative Clustering

Transductive Agglomerative Clustering works by merging nearby points into
clusters (Gashler 2011). Once a labeled point is merged inta a cluster, the entire cluster
gains the label of that point, and thus do all the unlabeled points within the cluster. In
theory this sounds plausible. However, the mean accuracy of this algorithm was only

WordSleuth Stanton 14

about 0.13 {below the baseline of 0.15), when tested with 10 repetitions of 10-fold eross-
validation. Upon closer examination of the algorithm, one finds that clusters of differing
labels are never joined, which bodes ill for data that shows many small, interspersed
clusters. or clusters that have some conflicting labels. These are in fact the
characteristics inherent to the current WordSleuth data set.

3.2.2.2 Transductive Graph Cutting

Transductive Graph Cutting uses a min-cut/max-flow algorithm to separate out the
various labels present in the data and deliminate clusters accordingly (Gashler 2011).
When run on the May 2011 data set with only ‘the original features present with both 10
repetitions of 10-fold cross-validation and 10 repetitions of 2-fold cress-validation, the
mean accuracy was 0.97, much higher than the other algorithms or human annotations.
A result so high seemed to indicate the potential of overfitting; to truly determine,
additional testing data is required, but running 2 fold cross-validation to reduce the ratio
of training to test data suggests the results are robust. When run on the same data set
and cross-validation, but with all features extracted, the mean accuracy was 0.98,
showing that the additional features did not cause this algorithm the level of confusion as
inductive KNN experienced.

4. Future Directions

With additional time, the WordSleuth project could benefit from further research
done in several areas, including additional feature research and machine learning
techniques. For example, this paper enly examines relatively low level syntactic clues;
the success of certain classifiers relative to humans on such low level cues suggests that
humans may cue into these low level clues, but they probably also use higher level data,
including sentence structure. Input messages could be parsed into syntax trees to
examine high level syntactic structures: I began tentative work on approximating these
structures with simple parts of speech tagging which shows promise, but time constraints
did not permit. Additional machine learning algorithms not examined in this paper,
including additional inductive and transductive algorithms would be interesting to look
into, and combining the strengths of multiple algorithms with methods such as bagging
could yield more powerful, consistent, and robust results.

WordSleuth Stanton 15
5. Works Cited

Gashler, Mike. Waffles. } . March 2011.

Pearl, L. & Steyvers, M. (2010). Identifying Emotions, Intentions, & Attitudes in Text
Using a Game with a Purpose. Proceedings of NAACL-HLT 2010 Workshop on
Computational Approaches to Analysis and Generation of Emotion in Text. Los
Angeles, CA: NAACL.

Peng, H.C,, Long, F., and Ding, C., "Feature selection based on mutual information:
criteria of max-dependency, max-relevance, and min-redundancy," IEEE
Transactions on Pattern Analysis and Machine Intelligence, Veol. 27, No. 8,
pp. 1226-1238, 2005.

von Ahn, L. 2006. Games With A Purpose. IEEE Computer Magazine, June 2006: 96-98.

Zhou, L., Burgoon, J.; Nunamaker; J., and Twitchell, D. 2004. Automating lingwistics
based cues for detecting deception in text-based asynchronous computer mediated
communication. Group Decision and Negotiation, 13- 81-106.

Zhou, L. and Sung, Y. 2008. Cues to deception in online Chinese groups. Proceedings of
the 415t Annual Hawail international Conference on System Sciences, 146.
Washingten, DC: IEEE Computer Society.

WordSleuth Stanton 16
6. Appendix Contents: code written specifically for WordSleuth
6.1 Taboo list generation script: taboo_list_generator.pl

6.2 Feature extraction script’ get_features shamu.pl

6. Appendix: WordSleuth Code

6.1 Taboo list generation script’
taboo_list_generatorpl

#/usr/bin/perl
use strict;

this script should be passed the

following arguments:

1. the name of the input file

hint: The input file needs to be

formatted such on each line, the tag

comes first, separated by

:** then the messade, then a new
ine.

And do make sure the

messages don't contain thé delimiter.

2. the number of taboo words to get

my %taboolists = &main($ARGV[0],
$ARGV[1]); #wrap main
print "Result: gn

while (my($k, $v) =
%ach(%ta ooL1sts))

r-'nt (ll$k ",JO'in("-,
" @$v) u\nn)’
}
sub main
my $numArgs = $#ARGV + 1;

if ($#ARGV+L =
exactly 2 args

2) # must have

print "Please s ec1fy the proper
arguments next time\n";

print “You should spec1f¥ the
name of the input file and t e number
of taboo words per category\n";

exit;

if ($ARGV[1] < 0) # check validity of

?econd arg
pr1nt "Invalid arg 2, please try

again\n";
_ exit;
}

foreach my $argnum (0 .. $#ARGV)

print "$ARGV[$argnum]\n";

Stanton 17

open{(inputFile, $ARGV[0]);

my %chart; #category tag => hash of
word to frequency

my %wordCount; #number of total words
in a given category tag

my %wordFrequency; #tota1 times the
word appears overall all tags

my $totalwords = 0;

my $totalMessages = 0;
my %tagcount;

while (<inputFile>)

my($1ine) = $_; # store local $_
in temp

chomp($line); # strip Tine of
trailing newline

parse line into social tag and
message .
which are deliminated by ¥***

print "\n$line\n\n";

#my($tag, $message) = ($line
=~ /A(*)\S+***\S+(*I$/);
y $1ine =~ /ACIN\s+\F**\5+(. %)
"' my $tag = $1;

my $message = $2;

print "tag: 6 $tag 9\n";

if (exists $tagCount{$tag})
$tagcount{$tag} +=1;

else

{Stachunt{$tag} =

itota1MeSsages +=1;

#print "message: 6 $message\n";
#for debugging

$message =~ s/7/'/qg; #convert all
mystery ticks to apostrop hes

#$message =~ s/'//g; #remove all
apostrophesj

#print "message: $message\n”;
#for debugging

$messa?e =~ s/[A"\w]l/ /g;
#replace all punctuation besides
apostrophes/underscores with white
space
$message

1c($message);

6. Appendix: WordSleuth Code

#print "message: 3Imessage\n";
#for debugging

my @words = split(/\s+/,

$message); #deliminate on one or more

white spaces

#print "words: "; #for debu%ging

#print join(':', @words); #for
debugging _
print "\n"; #for debugging

foreach (@words)

my $word = $_;

#print " my word! $word: \n";
#for debugging

next 1f ($word eq "'
‘\'*"); #ignore these non-words

$totalwords +=1;
#print "has $totalwords
words!\n"; #for debugging
if
(exists($wordrreguency{$word}))
$wordrFrequency{$word} +=1;
else

$wordFrequency{3$word} = 1;

}f (exists{$wordcount{$tag}))

_ #print "old tag"; #for
debugging _
$wordCOunt{$tag} +=1;
#print “ $wordCount{$tag}
" #f%r debugging

else
#print "new tag"; #for

debugging
~ $wordCount{$tag} = 1;

}f (exists($chart{$tag}{$word}))

#print "charting old word";

#for debugging
_ $chart{$tag}{$word} +=1;

else

{

|| $word eq

Stanton 18

#print “charting new word™”;
#for debugging
Schart{$taﬁ}{$word} = 1;
_ #print "$chart{$tag}{$_}";
#for %gbugging

}
print hashes for clarity, or
comment out if desired
print "\nwordCount: \n"; #for
debuggin
whiTe (my($k, $v) =
each (%wordCount))

print "$k -> $v\n";
print "\nwordFrequency: \n";
while (my($k, $v) =
each(%wordFrequency))

print "$k -> $v\n";

while € myCsk, V) = eachCichart)

print "\n$k: \n";
?hi1e (my($1, $u) = each(%$v))

print “$1 -> $u, ";
)
my %mutualinfo; #category =>

while (my($category,$v) =
each(%chart))

while (my($word, $count) = each(%

$v))

' my $pointwiseMutualinfo = 0;
}f ($totalwords == 0)

print "No words found,
bye\n"; .
exit;
if ($totalMessages ==0)
print "No messages found,
bye.\nu ; .
) ex1t;
calculate p(Xx) = # occurences

of word/#total words _ ,
my $px = $wordFrequency{$word}/

6. Appendix: WordSleuth Code

$totalwords; o _

#calculuate p(y) = #occurences
of a given tag/totalMessages

my $py = $tagCount{$category}/
$totalMessages;

#calculate p(xly) = #word x in
tag y/#words in tag y

if (! exists A
$wordCount{$category} || $px ==0) #if
$?y is 0, bigger problems to be
alerted to (1e. social tag not
existing)

$pointwiseMutualInfo = 0;
else

ny $pxGy = $count/
S$wordCount{$category};

%foﬁntwiseMutua]Info =
log($pxGy/$px/$py); #1og(p(xly)/
(POY*py)))

$mutualInfo{$category}{$word} =
$pointwiseMutualInfo;

}

my %tabooLists;

print "Final Results:\n";
while (my(S$key,$val) =
%ach(%mutua11nfo))

my $tempKey = $key; A
my %templ = %{$mutualInfo{$key}};
my @temp = sort {$templ{3b} «<=>
$templ{$a}} keys %templ;
$tabooLists{$key} = (O;
print "argl: $ARGV[1]\n";
, for (my $7 = 0; $i < $ARGV[1];
$1++%

“print "temp[$i]: $temp[$il\n";
ush(@{$tabooLists{Skey}},
$temgfgi]);

print “Skey: \n"; |
while (my($kl,$v1) = each(%$val))
print "$k1 -> $vi, ™;

¥

print "\n";
1
print "total words: Stota]wor_ds_\n-i;
print_"total messages:
$totalMessages\n";

return %tabooLists;
} # end subroutine main

Stanton 19

6. Appendix: WordSleuth Code

6.2 Feature extraction script:
get_features shamu.pl

#!/usr/bin/per’
use switch;

usage:

Stanton 20

consistent.

:? Conditionals: Seem to behave
unexpectedly when combined with
increments

(+= and ++). Beware.

Strict: Not compatible with use
strict; so don't!

get_features_shamu.pl -createdinput # for éxtracting features from

$createdfilename -guessedinput
$humanfilename -outputbase
$outputfilebasename

Modified by Sshannon Stanton for
parsing the current database format
Requires 2 input files:
human_guesses and created_items (in
tab deliminated format)

Can be fetched from database at
httg
g?d =gwap

human_guesses:

gquess_i1d message_id time_stamp
guesser session correct_social_tag
guessed_socia1_tag guessed_correctly

created_items:

message_id message time_stamp
creator difficulty session_id
set_socijal_tag picture_file

times_guessed times_guessed_correctly

flags

some notes on style:

Generally: Tend toward explicit,
verbose code. This 4is for research,
and that research is not about
Perl subtleties, and ,

future researchers needn't spend
hours on Perl subtTeties.

Ampersands: As I understand it,
Perl 5 no longer requires & preceding
function

calls. However, since they
(generally) improve syntax
highlighting

and point out that a (user
dgfined) function is being called,
I'm

keepin% them in the code.
Apologies Tor inadvertant
inconsistency.

Parameters to subroutine calls:
&foo; and &foo(); are in fact
different.

References: I don't like them.
avoid using them in this script.
Underscores: Are not currently

I

://madlab.ss.uci.edu/pma/index.ph #1saEx

messages

assumes input takes the form of an
gxgeT spreadsheet dumped to a txt
11é _

for example:

#

#Alias Timestamp Social Cue
Interaction SessionID
AliasR MessageID Message

Guess Correct PictureFile
timel deception generate
"32532787" "1" Oh sure -
we're just here for some fresh air,
see the sites, that kind of thing.
we have absolutely no intention of
making a mess in your nice pond,

nope. we would never ever do
something like that. spick and
span, that’s us.
 20451652.phg
#LisaEX timelQ embarrassnent
generate "32532787" "10"

Holy crap, I had no idea that
you were the Green Trio.please go
ahead. I can’'t beljeve I didn’t
recognize you.must be my low blood
sugar, the heat, I'm so sorry..go
right ahead.

20451652.png.
#labsubjectl8 4/30/09 11:24

persuading generate "596770"

'1026239" If you take care of
all four kids, I'11 buy you the new
mattress that you wanted!

20819897 .png

#

all entries are separated by tabs

The script produces several

separate output files.

The first

($outputfilebasename.messageinfo) has
the following format

#
#

MessageID\tMessageCOntent\tSOCia1Goa1
Intended\tGenerator\tFeaturel\tFeatur

6. Appendix: WordSleuth Code

e2...\tFeaturen

596770\tIf you take care of all
four kids, I'11 buy you the new
mattress that you
ganted!\tpersuading\t...

with the following features
;nc1uded

(1) how often guessed right
(requires counts of correct guesses
for message and total guesses for
message)

(la-1h) how often guessed as
particular socialCues (deception,
politeness, rudeness, embarrassment,
confidence, disbeiief, formality,
persuading

The second output file
($outputfilebasename.featurelist) has
;he following 2-column format
#
$feature_idnum\t$feature_description
- 1\ twordTokens

2\twordTypes

dhi %

§&é| word: forgot
'56431 bigram: forgot my
'§6643 | trigram: forgot my shoes

current features extracted:

WP BRHW

(2) word types in message (unique
words- in message)

(3) word tokens in message (total
words in message)

(4) type to token ratio (use type
and token counts to calculate)

(5) # of punctuation_marks in
message (can include e111Esis)

(5a) # of questions marks in
message

(5b) # of exclamation marks in
message

(6) # of separate
sentences/questions in message (main
clauses) _

(7) average word length per message
(8) mean og frequency of words
used {compared against words used in
all messages)

(9 through (n) count of vocabulary
item used (

used once)

Design decisions: for considerin

oesn't include words only

Stanton 21

(bl) through (bn) count of bigrams
used (doesn't include bigrams only
used once)

(t1l) through (tn) count of trigrams
used (doesn't include trigrams only
used once)

The third output file
($outﬁutfi1ebasename.messagefeatures)
has the foellowing 3-column sparse
gata format

:# $message_idnum\t$feature_idnum|

t$feature_value
ﬁ 108898\ t343\t2

Note: only non-zero values are
Tisted (this is what nakes it a
sparse data fermat)

The fourth output file is the
.userinfo file and includes

(1) the name of the user

(2) the total number of messages
generated

(3) the percent of messagés
generated that were correctly guessed
{(expressor %)

(4) the total number of messages
uessed

(5) the percent of messages

correctly guessed (sleuth %)

a
message created “correctly” we might
want to look at the number of
correct guesses associated

1"t

$debugging = 1; #1 is true, 0 is
false, mark false if you don't want
to print all the obnoxious helpful
debug Tlines

&process_options();

my $outputFileName =
$opt_outputbase."\.debuggy"; ,

open{DEBUG, ">$outputFileName"”)
[| die("Couldn't open debugging file
$outputFiTeName\n");

&initialize_globals();
#process each of the 2 input

files to put all the relevant raw
data in hashes %allMessages and

%allusers

6. Appendix: WordSleuth Code

&process_created();
&process_guesses();

&E'Xt ractFeatu F'ES'() s

&writeoutputFiles(); #only to be
done after filling the raw data
hashes

if ($debugging)
{ &print_hashes();}
close(DEBUG) ;

sub process_options{
use Getopt::Long;
&Getoptions("createdinput=s",
"guessedinput=s", "outputbase=s",
#createdinput and guessedinput~and
output are requirec
"filter:s",
"printheader:s"); # optional header
printing (default is 'yes', can be
set to 'no') and filter (as in filter
for reliable messages)

expects the raw data from input
files to be encapsulated in the
hashes %allusers and %allMessages

The second output file)
($outputfilebasename.featurelist) has
the following 2-coTumn format

#2
o
$feature_idnum\t$feature_descri
1\twordTokens

2\twordTypes

ption

343| word: forgot
§643| bigram: forgot my

o I I R

30043 | trigram: forgot my shoes

current features extracted (does
not reflect order, order is
determined alphabetically by
description):

(2) word types in message (unique
words in message) '

(3) word tokens in message (total
words in message) »

(4) type to token ratio (use type
and token counts to calculate)

(5) # of punctuation marks 1in
message (can include ellipsis)

(5a) # of guestions marks in
message

Stanton 22

(5b) # of exclamation marks in
message

(5¢) # of elipses (...) in
message

(6) # of separate
sentences/questions in message

(7) average word Tength per
message

(8) mean log frequency of words
used (compared against words used in
all messages)

(9) accuracy of guesses (correct
guesses/total guesses)

(10) precision of guesses (see
calculatioh) o ‘

(11) through (n) count of
vocabulary item used (doesn't include
words only used once)

(bl) through (bn) count of
bi?rams used (doesn't include bigrams
only used once)

(tl) through (tn) count of
trigrams used (doesn’t include
trigrams only used once)

rest for part of speech info

extractFeatures;

Input: None.

Output: None,

Effects: uUpdates globals

%directFeaturesNew and
%directFeaturesold for ever¥ _

unique message id in %allMessages
Expects: %allMessages should be
filled correctly prior to calling
this method. _

sub extractFeatures()

print("...extracting
features\n");

print{DEBUG "Feature
Extraction:\n");

remeber, 2 feature hashes for
old and new features

. # %directFeaturesold and

%directFeaturesNew

print(DERUG "---1st loop----\n");
foreach m¥ $id
(Sor%(keys(%a TMessages)))

#my %messagewords = ();

my $numwords = 0;

my $numLetters = 0; .
my $message = $allMessages{$id}

_{umes_sageu} .

#@messagewords =

split(/AsIN. NZINIAET N, I\

6. Appendix: WordSleuth Code

{\)1:/, $message); #shamu note:
semicolon not used in original
my @messagewords =
&get_word_Tist($message);
my %messagewWordsHash = ();

Stanton 23

{"wordTypes"} = $wordTypes;

_ $directFeaturesold{$id}

{"wordTokens"} = $numwords;
$directFeatures0ld{$id}

4{"typesToTokensRatic"} = $wordTypes/

$numwords; #should be less than or

foreach my $word {@messagewords)equal to 1

if (Sword =~ /\w/) #if it
has any word characters in it

$humWords++;
insert features pertaining to upper
case herel!! ,
. $word =~ tr/[A-z]/[a-2]/;
#shifts»evefgthing to lower case

T

(exists($messagewordsHash{$word})){

$messagewordsHash{$word}++; #
Tncrement

else{

$messagewordsHash{sword} = 1; #
initialize

3 .
_#fupdate %allwords

i
{exists($allwords{$word})){
$allwords{$word}++;
}else{
$allwords{$word} = 1;

#calculate number of
letters in the word .
my @letters = split(//,

$word) ; _ .
(foreach $letter (@letters)
if($letter =~ Aw/){
$numLetters++;
} # end if

} # end foreach $letter
}# end if ($word =~ /\w/)
} # end foreach word

#&update_allunigrams($id);
&update_allBigrams($id);
&update_allTrigrams($id);

#calculate number of word types
in message (unique words)
my $wordTypes = _ ,
scalar(keys (¥messagewordsHash)); #
the number of word types, not ‘the
types themselves
' $directFeaturesold{$id}

punctuation features time
mﬁ $punctCount=0;
while($message
=~}/\-I\?I\!I\.I- ;/@){$punctCount+
+]

. #my @punctCount = N
spTit (/L INZINTINTINGELIN, 13/,

$message); #ok, the funny symbol \a€]

seems to be an artifact of operating

systems and text editors conversions:
usually it seems to stand in for
apostrophes (single quote, not the
back tick) ,

shamu note: the split method
does not seem to work correctly,
particularly in that it does not
count matches at the end of a string

shamu note: I have added
semicolon here, which was not done in
the original version

my $#numPunct = $punctcount;#
+ 1; # $#array 1ist gives the index
of the last element, so yes a pound
symbol that is not a comment mark

$directFeaturesold{$id}
{"punctMarks"} = $punctCount;

question marks?

#my @gmcount = split(/\?/,

$message) ; _
#my $SnumQM = $#gmCount;
my $numgMm =
&get_num_qm(smessage); ‘
#while(3message =~ /\?/9)

{$numaM++; }

#if(Smessage =~ /\78/){ #if the
message ends in a gquestion mark, add
one more

#

#} .

$directFeaturesold{$id}
{"questionmMarks"} = $numqMm;

$numoM = $numgM + 1;

excalamatioh marks!!!
_ #my @emcCount = split(/\!/,
$message) ;
#my $numeEM = $#emCount;
#if ($message =~ A!$/){
$numeM = Snumem + 1;

6. Appendix: WordSleuth Code

#}

my $numeM = _
&get_num_em{$message);

#while($message =~ /\!/Q)
{$numEM++; })

$directrFeaturesold{$id}
{"exclamMarks"} = $numeEM;

new: interrobangs!? 7! (seem
to have a high correlation with
disbelief, depending on the ratio of
interro to bang)

my $numIs
&get_num_ib(3message); , ,

#while($message =~ /N\I\7I\?7\!/)
{$numIB++;} #bad code, infinite loop

$directFeaturesNew{$id}
{"interrobangs"} = $numiB;

new: ratio of question marks
to exclamation marks

my $QMtoEM =
&get_i?_xo_em(Smessage);_

directFeaturesNew{$id}
{"QMtoEMRatio"} = $SQMLoEM;

new: elipses:

$directFeaturesNew{$id}
{"elipses"}
&get_num_elipses($message);

run o
$directFeaturesNew{$id}

{"elipsesRun"} =

&get_longest_elipses_run($message);

calculate and add in the
number of main clauses, as delimited
by . 7 and ! and ; (shamu note:
semicolon was not used in the
original version

~ # the split method should work
this time

my @mcCount = ‘
splitO\ I\? 1] |57, Smessage);

my $mcNum = 0; # not just the
size of the split, since we might

have repititious punctation: ie.
don't count i!1!! as four clauses
count how many contain words
foreach my $partofMc (@mcCount)

{ _
if (Spartofmc =~ /\w/) { #o
goody it contains wordy things, let's
count them
SmeNum+-;

}

new: Tength of Tlongest elipses

Stanton 24

}.

$directFeaturesold{$id} _
{"mainClauses"} = $mcNum; #number of
main clauses

$directFeaturesNew{$id}
{"mainClausesAv”} = $numwords/$mcNum;
#average number of words per main
clause #new!

subclauses time! as delimited
by , + () / " and /- / dash-space
and / -/ space-dash

$directFeaturesNew{$id}
{"accuracy"} = o
&calculateAccuracy($id);

$directFeaturesNew{$id}
{"precision"} =
&calculatePrecision($id);

} # end for every message id in
alIMessages foreach my $id
(sort(keys(%alTMessages))) (First)

~__# Hashes: %allwords, %allBigrams,
%allTrigrams should be fully updated
&update_allFeatures(); # and now

@allFeaturesList should reflect the
grams

print(DEBUG "second Toop\n');

now that we've counted all the
unigrams, bigrams, and trigrams,
enter them into the feature list

extractFeatures: bigrams

fqreach-m¥ $id
(sor%(keys(%a 1Messages)))

print(DEBUG "id: $id\n™);
my @messagewords

.%ggt_word~1ist($a.1Messages{$1d}

message™});

unigrams: single words:
for my $unigram
(sort(@messagewords))
if (3allwords{Sunigram} > 1)

only count if it occurs more than
once in the entire input

$directFeaturesold{$id}
{"word:".$unigram} =
$a11Words%§un1gram};

3
bigrams: 2 words
my %bigrams = _
&get_bigram_1list{@messagewords);

6. Appendix: WordSleuth Code

for my $bigram
(sort(keys(%bigrams }))

_ if ($allgigrams{$bigram} >
1){ #only count as a feature if it
occurs more than once in the entire
input .

$directreaturesold{$id}
{"bigram:".$bigram} =
$bigrams{%?igram};

s

trigrams:

my %trigrams = ,
&get_trigram_list(@messagewords);

for my $trigram
(sort{keys(%trigrams)))

if (%allTrigrams{$trigram}

>D{

$directFeaturesold{$id}
{"trigram:".$trigram} =
$tvigrams%§tr19ram};

}

} # end foreach my $id
(sort(keys(%allMessages))) (second)

} # end sub extractFeatures

sub writeQutputFiles #expects no
arguments

&writeMessageInforile();
&writeFeaturelListrile();
&writEMessageFeaturesF11e();_
#8writeuserInfoFile(); #I'm just
going to veto this one, since I have
no use for the file anyway
&writearffrile();
&writeConfusionMatrix(); #for
human guesses , ,
&writerReliablematrix(); # for
human guesses

Inputs: A hash! (Not a hash
reference)

Reliable is defined as having at
Teast 50% accuracy and more than 2
votes

sub getReliable

{
my %hash = @_;
my %answer = ();

for my $key(keys(%hash))

Stanton 25

{

FFC ($hash{$key}{"totalGuesses"}
> 1) && $directreaturesNew{$key}
{“accuracy"} >= .5)

%{$answer{$key}} = %
{$has%{$key}};

}

return %answer;

sub writereliablematrix

my $outputFileName = .
$opt_outputbase."_reliable\.confusion
matrix"; _

open(OUT, ">$outputFileName") ||
die("couldn't open reliable confusion
matrix file $outputFileName\n");

~_print("...writing SoutputFileName
file\n");

my %confusionMatrix = ();

#Fintialize matrix with a row and
a column for each social cue and a
row total for each row

my $totalAcc = 0;
my $total = 0;

foreach my $targetRow
(@socialcues)

~ foreach my $guesscol
(@socialcCues)

$confusionMatrix{$targetRow}
{$gue%§CoT} = 0;

$confusionMatrix{$targetrRow}
{“rowTota1“} = 0; #just as long as
"rowTotal" is never a social cue
which would be wierd 0,0

}
my %a11Messa?esRe1iab1e =
&getReliable(%aliMessages);

count data from allMessages
that are reliable!

foreach my $id (keys
(%a]}MeSsaQESRe1iab1e)§

$totalacc +=
$allMessagesReliable{$id}
{"totalCorrectGuesses"};

6. Appendix: WordSleuth Code

$total +=
$a11MessagesRe11ab1e{$1d}
{"totalGuesses"};

my $tar
$a11MessagesRe11ab1e{$1d}
{"targetcue"};

foreach $guesscue (@socialcCues) #
#add guesses for this message

my $x
$a11Message5Re11ab1e{$1d}{$guessCue},

$confusionMatrix{$target}
{$guesscue} += $x;

$confus1onMatr1x{starget}

{"rowTotal"} += $x;
}
print(ouT join{"\t",

@socialCues)."\n"); #header
divide each cell by row total
foreach my $targetRow
(sort(@socialCues))

{ _ .
‘my @ow = (); my $i = 0
foreach my $guesscCol

(sort(@socialcues))

($confus1onMatr1x{$targetRow}
{"rowTotal"} 1= 0)

{ $confusionMatrix{$targetRow}
{$quessCol} /=
$confusionMatrix{$targetrRow}
{"rowTotal"};}

$row[$1] = "($targetrRow,
$guesscol):’
$confus1onMatr1x{$targetRow}
{59UESSC02},

P4+

3
print(ouT join("\t",
@row)."\n\n");
3
my $meanAcc=0;
}f ($total != 0)
$meanAcc=$totalacc/$total;

print(OUT "mean accuracy:
$meanAcc\n");

Stanton 26

close(OUT);

sub writeconfusionMatrix # expects no
arguments and that allMessages has
been properly filled in
target cue accross the rows

guess cue down the colums
divide cells by row total
rgws should sum to one (columns may
net

-

print{"...writing
?t\outputbase .confusionmatrix
e\n
my Sout utF11eName =
$opt_outputbase.”\. confusionmatrix"
0 en(OUT ">$outputFileName') ll
dle(”C0u1dn t open confusion matrix
output file $outputFileName\n");
O3

my %confusionMatrix
my $totalAcc = 0;
my $total = 0;

#intialize matrix with a row and
a column for each social cue and a
row total for each row
_ foreach my $targetRow
(@socialCues)

foreach my $guesscol
(@socialcues)

$confusionMatrix{$targetRow}
{$gue%§C01} = 0;

$confusionMatrix{$targetRow}
{"rOWTota1"} 0; #just as long as
"rowTotal"” is never a social cue
which would be wierd 0,0

count data from allMessages
foreach my $id (keys
(731}Messages))

$totalAce += $a11Messages{$id}
{"totalCorrectGuesses"};

$total += $a11Messages{$1d}
{"totalGuesses"};

my $target = $allMessages{$id}
{"targetcue"¥};

foreach $guessCue (@socialCues)

#add guesses for this message

my $x = $allMessages{$id}

6. Appendix: WordSleuth Code

{$guessCue}; .
$confusionMatrix{$target}
{$guesscue} += $x;
$confusionMatrix{$target}
‘{"FOWEPtaT“} += $x3

}
print(CUT join{"\t",
@Socia1CUes)."{n");-#header

divide each cell by row total
foreach my $targetRow
(sort(@socialCues))
my @row = Q3 my $i = 0;
foreach my $guesscCol
(sort(@socialCues))

if
($confusionMatrix{$targetRow}
{"rowTotal"} != Q)

{ S$confusionMatrix{$targetRow}
{$guesscol}
$confusionMatrix{$targetRow}
{"rowTotal"}; ¥

$row[$1] = "($targetRow,
$guessCol):".
$confusionMatrix{$targetRow}
{sguesscog;;

1 ++;

érint(OUT join("\t",
@row%."\n\n“);

my $meanAcc=0;
if ($total 1= 0)
$meanAcc=$totalAacc/$total;
print{QUT "meéan accuracy:
$meanacc\n");
close(OUT);

tab deliminated
format:

#MessageID\tmessageContent\tSOCia]GOa

lintended\tGenerator\taccuracy\tpreci

sion\tguessedConfidence\tguessedDecep

tion...\tguessedRudeness
where_accuracy = percent guessed
correctly = (times guessed

where precision =

Stanton 27

correctly / times guessed)

max(times guessed
tag x / times guessed) for each tag
596770\t1f ¥ou take care of all
four kids, I'l1l buy you the new
mattress that you
wanted!\tpersuading\tLisaEx\t.S\t...
sub writeMessageIntoFile()

print("...writing A
$opt_outputbase.messageinfo file\n");

my $outputFileName =
$opt_outputbase.”\.messageinfo"”;

open(OUT, ">$outputFileName™) ||
die("Couldn’'t open
$outputFileName\n");

?rintiheader information
unless($opt_printheader egq "no"){

- print{ouT
"MessageID\tMessageContent\tSocialcCue
cenerated\tGenerator\taccuracy\tpreci
sion\t");

print(ouT _
"Guess:confidence\tGuess:deception\tG
uess:disbelief\t");

_ print{ouT
"Guess:embarrassment\tGuess:formality
\tGuess:persuading\t");

print(ouT '
"Guess:politeness\tGuess:rudeness\n")

"}

foreach my $messageID (keys
(%a11Messages))

my $messageContent, $targetCue,
$creator, $accuracy, $precision;

$messageContent =
$al1Messages{$messageID}{ "message"};

$targetCue =
$allMessages{$messagein}
{"targetcue"};

$creator =
$alTMessages{$messageID}{"creator"};

if ($allMessages{ImessageID}
{"totalGuesses”} == 0) # no guesses
for tg1s message

$accuracy = 0;
$precision = 0;
else
{
$accuracy =

$aliMessages{$messageID}
{"totalCorrectGuesses"}/
$alIMessages{$messageID}

6. Appendix: WordSleuth Code Stanton 28

{"tota]Guifses"}, 3

precision =

&ca]cu]atePrec1s1on(SmessageID) q 1fi($a11Messages{§messageID}
"totalGuesses"'} ==

' print(ouT { ;

'$messageID\t$messageContent\tStarget print(DEBUG "warning! $messageID

~Cue\t$creator\tSaccuracy\t$prec1s1on has been guessed 0 times\n");
‘ return 0; #just to prevent
Fr1nt(0UT crashing the script

"\t$a Messages{$messageID} }

{\"confidence\"}\t$al1Messages{$messa # entropy: sum{?(x)*1og2[l/p(x)]
note: perl og is natural by

%\"decept1on\"}\t$a11Messages{$messag default (Jog base e) so divide by

Tog(2) to get log base two

{\"d1sbe11ef\"}\t$a11messages{$messag my $numCat = scalar(@socialcCues);
eID} #number of social categories
\"embarrassment\"}\t$a11Messages{$me my $maxentropy =
ssag Tog($numcat)/1og(2); # = 3 for 8
" orma11ty\ 'I\t$allmessages{$messag categories
elD}
{\"persuading\"}\t$alIMessages{$messa my @px =);
eIb} my 3$entropy = 0;
\”po11teness\ }\t$a11Messages{$messa
geID}{\"rudeness\"}\n’ foreach my $cue (@socialcCues)
} my $px =
close(OUT); $a11Messages{SmessageID}{$cue}/
$allMessages{$messagelD}
{"tota]Guesses"},
sub calculateAccuracy f Bpx != 0) {$entropy +=
($px)*(109(1/$px)/109(2))
my $messagelD = shift; if ($debug 1ng) {pr1nt(DEBUG
1f($a1TMessages{$messageID} "cue:Scue px: $pq\
{"totalGuesses"} == 0) #div by 0 }
error
' my $precision = ($maxEntropy-
return 0; Sentr09y)/$maxEntropy,
} _ if ($debugg1ng)
return ($a11Messaﬁes{$messageln} print{DEBUG entropy of
{"totalCorrectGuesses' } $messageID is $entropy\n'};
$a11Messages{$messageID} print(DEBUG "precision of
{"totalGuesses"}); $messageId is $precision\n");}

return $precision;

sub calculatePrecision #expects a

valid $messageIb and that # format: FeatureID \t Feature Label
%al1Messages has been properly filled # (without the spaces: for clarities
and that the glebal 1ist @socialCues sake only)

is correct # deliminated by \t (tab)
{ sub writeFeatureListFile #expects no
my $messageID = shift; args
if (lexists print("...writing
$allMessages{$messageiD}) #bad $opt_ outputbase featurelist file\n");
{ my $out utF11eName B
print(DEBUG "Error! $messageID $opt_output ase."\. featurelist”
not a valid messageID\n")}; open(OUT >$0utputF11eName") |1
return 0; #just so we don't die("Couldn't open

crash $outputFileName\n");

6. Appendix: WordSleuth Code
?rint(OUT "Feature ID:\tFeature
Label :\n");

#my $id = 1; # IKR: because
matlab starts indexing at 1
- for my.$ke¥
(sor%(keys(%a] Features)))
print(ouT
"$a1}Features{skey}\t$k9y\n");

Stanton 29

0 values %fparsity)

_ " print{ouT _
"$messageID\t$allFeatures{$featureLab
e1}\t$va1%g\n");

}

clase{ouT);

Jower priority

close(0UT);

format: MessageID \t FeatureID \t
value (all numeric) . .

note: featureID starts indexing at
1 .

sub writeMessageFeaturesFile #expects

no args
e\n");

$o
fi?
my $outputFileName
$opt_outputbase.”\.messagefeatures
open(0OUT, ">$%outputFileName™)
die(McouTldn’t open
$outputFileName\n");

print("...writing
t_outputbase.messagefeatures

I

print{ouT
"MessageID\tFeatureID\tvalue\n™);

_ for my $messageIlD
{sort(keys(%al IMessages)))

for'my'$featureLabe1(Sort(keysc%.
{$directFeaturesold{$messageIDn}})})

my $value
$directFeaturesold{$messageIlD}
{$featureLabel}; ,

if ($value) #don't print the
0 values %éparsity)

, print(ouT _
"$messageID\t$allFeatures{$featureLab
e]}\t$va1%§\n");

}

for my $featurelabel (sort(keys(%
{$directFeaturesNew{$messageiD}})))

~ my $value =
$directFeaturesNew{$messageID}
{$featureLabel};
if ($value) #don't print the

sub writeUserInfoFile #expects no
args

print("...writing
$opt_outputbase.userinfo file\n");

my $outputFileName =
$opt_outputbase."\.userinfo";

open(0OUT, ">S$outputfFileName™) ||
die("couldn't aopen
$0utputFi1eName€n");

close(OUT);

format:

@RELATION file

@ATTRIBUTE MessageID NUMERIC

@ATTRIBUTE FeatureID NUMERIC

@ATTRIBUTE Featurevalue NUMERIC
@ATTRIBUTE class {deception,
persuading, confidence, formaiity,
politeness, rudeness, embarrassment,
disbelief}

@DATA

ﬁ #,#,#,string

where data entries are comma
deliminated and rows separated by \n

sub writearffrFile #expects no args

print("...writing
$opt_outputbase,arff file\n");

my $0utgutFi]eName'=
$opt_outputbase.”"\.arff";

open{ouT, '>S$outputrFileName") ||
die("couldn't open
$outputFileName\n");

print(OuT '%comment!’."\n");

print{OUT '@RELATION ‘.
$opt_outputbase."\n");

print(ouT '@ATTRIBUTE MessagelD
NUMERIC®."\n"});

print{OUT ‘@ATTRIBUTE FeatureID
NUMERIC'."“\n")};

print(OUT '@ATTRIBUTE

6. Appendix: WordSleuth Code

Featurevalue NUMERIC'."\n");
print(OUT '@ATTRIBUTE class {');
print(ouT "$socialcues[0]™);
for (my $i=1; $i<=$#socialCues;

$i++)

“print(ouT ", $socialcues[$i1');
H . "\nll);

for my $messageID
(sort(keys(%allMessages))) #MARK

}
print(ouT "I\n")
print{ouT '@DATA

my $targetCue =
$alTMessages{$messageID}
{"targetCue"};
, for my $featureLabel (sort(keys (%
{$directFeaturesold{$messageID}})})

my $value =
$directFeaturesold{$messageID}
{$featureLabel}; _ ,

if ($value) #don't print O
values Cs%érsity)

print{ouT "$messagelD,
$allreatures{$featureLabel}, $value,
$targetcue\n");

}

for my $featureLabel(sort(keys(%
{$directFeaturesNew{$messageID}})))

my $value
$directFeaturesNew{$messagelD}
{$featureLabel};

if ($value) #don't print 0
values (sparsity)

print(euT "$messagelD,
$allreatures{$featureLabel},$value,
$targetCU%§n");

}
¥

close(OUT);

my $outputFileName
$opt_outputbase."_original”."\.arff";

print("...writing $outputFileName
for original features only\n");

_open(ouT, ">$outputFileName") ||
die("couldn't open
$outputFileNare\n");

Stanton 30

print(OUT '%comment! This uses
only the original features'.”\n");

print(OUT '@RELATION ',
$opt_outputbase."\n");

print(OUT '@ATTRIBUTE Messagelb
NUMERIC'."\n");

print(OUT '@ATTRIBUTE FeaturelID
NUMERIC'."\n");

print(OUT "@ATTRIBUTE
Featurevalue NUMERIC'."\n");

print(OUT '@ATTRIBUTE class {');

print(OUT "$socialcCues[0]");

for (my $i=1; $i<=$%$#socialCues;
$i4+)

{ .
_print(ouT ", $socialcues[$i]1™);

print(ouT "I\n");

for my $messagelD
(sort(keys(%al1Messages))) #MARK

my $targetCue =
$aliMessages{$messageld}
{"targetcue"};

for my $featureLabel (sort(keys(%
{$directreaturesold{$messageIn}})))

my $value =
$directFeaturesold{$messageID}
{$featureLabel};

if ($value) #don't print 0
values (sparsity)

) print(OUT "$messageID,
$aliFeatures{$featureLabel},$value,
$targetcue\n”);

)
}
close(OUT);

print_hashes:

Input: None.

Output: None.

Effects: prints to DEBUG file the

end results of the global hashes.

?ub print_hashes #expects no args
foreach my $key (sort(keys

%allusers))

foreach my $subkey (sort(keys %
{$a11%§ers{$key}}))

print(DEBUG "allusers{$key}

6. Appendix: WordSleuth Code

{$subkey} : $allusers{$key}
{$sub€gy}\h"):

}

print(DEBUG "allMessages: \n");
foreach my $keyl (sart(keys
%allMessages)) '

foreach m
{$a11%$ssages{gkeyl}}))

print (DEBUG
"al1Messages{$keyl}{$subkeyl} :
$a11M%§sages{$keyl}{$subkey1}\n");

print(DEBUG "allMessages{$keyl}
{guessers} : @{$allMessages{$keyl}

print (DEBUG "allwords:\n");
foreach my $key (sort(keys
%allwords))

print (DEBUG "allwords{$key}:
$a11¥drds{$key}\n“);

print (DEBUG "allBigrams:\n");
foreach my $key (sort(keys
%a11?1grams))

print(DEBUG
"allgigrams{$key}:
$aT1?19rams{$key}\n");

print (DEBUG "allTrigrams:\n");
~__foreach my $key (sort(keys
%a11¥rigrams)§

print(DERUG "allTrigrams{$key}:
$a11;rigrams{$key}\n");

_ print(DEBUG
"directFeaturesold:\n");

foreach my $key (sort(keys
%directrFeaturesold})

.foreach my $subkey (sort(keys %
{$directFeaturesold{$key}}))

- print(DEBUG
"directFeaturesold{$key}{$subkey}:
$directFeaturesold{$key}
{$subkey}\n");

$subkeyl (sort(keys %

Stanton 31

}
}

. print(DEBUG
"directFeaturesNew:\n");

foreach my $key (sort(keys

%directFeaturesNew))

~ foreach my $subkey (sort(keys %
{$directFeaturesNew{$key}}})

print(DEBUG
"directFeaturesNew{$key}{$subkey}:
$directFeaturesNew{$key}
{$sub§§y}\n");

}

print(DEBUG "Features currently
extracted LIST:\n");

foreach my $key
(@alTreaturesiist) # ok, not a hash,
but still

print(DEBUG "allFeaturesList:
$key}n");

print(DEBUG "Features currently
extracted HASH:\n");

foreach my
$key%sort(k&ys(%a11Features)))

" print(DEBUG "allFeatures{$key}
id i?: $allFeatures{$key}\n");

}

suB initialize_globals
Input: None.

Qutput: Nohe.

Effects: Initializes the global

variables, jncluding hashes and
@socialCues

Remarks: Edit @socialcues if
changing socialCues to parse.

sub initialize_globals #takes no
inputs, to be called at the start of
the program

#initialize fields used by the
entire script (less gross to me_ than
passing copies and references all
over the place)

if ($debugging) { print(DEBUG
"initialize_globals\n");}
@socialcues = ("confidence",

6. Appendix: WordSleuth Code

"deception", "disbelief”,
“embarrassment"”, 'formality",
"persuading"”; "politeness”,
"rudeness"?; _ _

%alliusers = (); #associate user
name with 5 things: totalMessages,
totalcCreated, totalGuesses,
guessedcorrect]y, createdCorrectly

" %allMessages

(); # maps message
id's with the raw data extracted from
the input files (such as message,
creator, timesGuessedTotal,
timesGuessedCorrectly, times guessed

each of the social cues, targetCue

feature hashes: associate
message id's with the features that
can be directly extracted from the
input (does not include part of
speech or mutual information

%directreaturesold = (Q; # the
features originally extracted

%directFeaturesNew = (); # the
easiest new features (including
elipses, clause size, subclauses)

@allFeaturesList =
sort{("exclammarks", "mainClauses”,
"punctMarks", "questionMarks",
"typesToTokensRatio", "wordTokens",
"wordTypes", "QMtoEMRatio",
"elipses”, "elipsesRun”,
"interrobangs"”, "mainClausesAv",
"accuracy", "precision”)); # lists
all the feature labels currently
being extracted)

%allFeatures = (); # associate
feature label with feature ID

including unigrams, bigrams,
and trigrams that appear more than
once in the whole input files

$totalwordcount = 0; # the humber
of words encountered

$totaluniquewordCount = 0; # the
number of unique words encountered
(only counts each word once

the grams

%allwords = (O; # maps words to
the number of times they appear

%allTrigrams = ;

%allBigrams = ();

SUB process_created

Input: None.

output: None.

Effects: Process the created

Stanton 32

messages file, filling in data for
%al1Messages
and %allusers.
?ub process_created

~ print("processing created
file...\n"); ,

if ($debugging) { print(DEBUG
----- rocess_created \n");}

line format: message_id message
time creator difficulty session_id
set_social_tag picture_file B
gémes_guessed times_guessed_correctly

ags

A

open(INFILE, "$opt_createdinput™)
|| die("Couldn't open createdinput
file $opt_1p?ut\n“§;

'mz_@inf1 elines = <INFILE>;

shift(@infilelines); #remove
first line which is always header

close(INFILE);

#if ($debugging) { print(DEBUG
“infilelines: BEGIN @infilelines
END\N");}

#my $index=0; .

#foreach $fileline (@infilelines)

print(DEBUG "FILE LINES: \n");

for (my $index = 0; $index <«
scalar(@infilelines); $index++)

{
my $fileline =
$infilelines[$index];
A if ($debugging) { print(DEBUG
"line$index: $tileline\n"); }

my $message_id, $message,
$creator, $difficulty, $session_id,
$target_tag, $picture_file,
$times_guessed,
$times_guessed_correctly;

my @line_entries;

14 # get the info available in the
ine
chomp($fileline);
@line_entries = split{/\t/,
$fileline);

if (scalar(@line_entries) <= 3)
#if the 1ine appears to have 2 or
fewer elements, this is probably due
to a \n in the body of a message

. print(DEBUG "warning! short
Tine gross times\n");

6. Appendix® WordSleuth Code

#solution: merge this Jine

with the next, and skip the next line

by incrementing the index (I know
it's dirty) '
my $next_line
$infilelines[$index+1]:
chomp ($next_line);
print(DEBUG "next line:
$next_line\n");
my @next_line_entries
split(/\t/, $next_line);
N @line_entries =
(@line_entries, @next_line_entries);
$index ++; #increment index
one extra so as to skip the next Tine

$1ine_entries[1]
$1ine_entries[2];
$line_entries[2]
$1ine_entries[3]; o
, $1ine_entries[3]
$Tine_entries[4];
) $line_entries[4]
$1ine_entries[5];
$1line_entries[5]
$1ine_entries[6]:
$1ine_entries[6]
$line_entries[7];
$1ine_entries[7]
$Tine_entries([8];
$1line_entries[8]
$1ine_entries[9]:
$1ine_entries(9]
$1ine_entries[10];
$line_entries[10]
$Tline_entries[11]; _
$1ine_entries[11]
$1ine_entries[12];
#$1ine_entries[12] =
$line_entries[13];
#now I feel all dicky

if ($debugging) {
my $i = 0; #print("\n");
foreach (@line_entries) {
, print(DEBUG
"line_entries$i: $_\n");
$i++;

#and fix the message entry

}

$message_id = $1ine_entries[0]; {

$message $1ine_entrie$E1];
$creator = $1line_entries(3];
#skip time_stamp (irrelevant)
$difficulty = $1ine_entries[4];
#not planning on using, but maybe
#skipping session_id

Stanton 33

(irrelevant)
$target_tag = $71ine_entries[6];
#the social tag set by the message
creator (not necessarily “correct”
depending on the vote system)
$picture_file =
$1ine_entries[7]; #if we decide to
separate out pictures
. $times_guessed =
$Tine_entries[8];
. $times_guessed_correctly =
$1ine_entries[9]; _ ‘
and skipping flags (10 and on)
as irrelevant

count user statistics
&initializeUser($creator);
$allusers{$creator}
{"totalMessages"} += 1;
$allusers{$creator}
{"totalCreated"} += 1;

&initializeMessageFeatures($message_i

$aliMessages{$message_id}
{"message"} = $message; o
_ $allvessages{$message_id}
{"targetCue"} = $target_tag;

$al1Messages{$message_id}
{"creator"} = fcreator;

$allMessages{$message_id}
{"difficulty"} = $difficulty;

#%9index++;
}

SUB process_guesses

Input: None.

Output: None.

Effects: Process the guessed
messages file, filling in data for

%alTMessages

and %allusers.

Remarks: call after
process_created, but be aware that
messages may,

(shou1dn‘t, but may) exist in

guesses that did not exist in

created.
sub precess_guesses

if ($debugging) { print(DEBUG
"\n\n-----process_guesses \n");}
i1 print(‘processing guesses
ile

L] .\n");
open(INFILE, "$opt_guessedinput™)

6. Appendix: WordSleuth Code

l|_die("couldn't open guessed input
file $opt_input\n");
mﬁ-@infi elines = <INFILE>;
shift(@infilelines); #remove
first_line which is always header
close(INFILE);

#if ($debugging) { print(pEBUG
"infilelines: %gnfg1e11nes\n");}A
print(DEBUG "FILE LINES: \n"):

foreach my $fileline
(@infilelines

my @lineEntries;
13 # get the info available in the
ine
chomp($fileline);
@lineentries = split(/\t/,
$fileline);

if ($debygging) { print(DEBUG
"Tine: $fileline\n"); }

expected line format:
0.guessip, l.messageID, 2.time,
3.guesser, 4.session,
5.correctSocialTag,
6.guessedsocialTag,
7.guessedcCorrectly(0 or 1)

guessID, time, session, and
guessedCorrectly are irrelevant

foreach my $cell (@lineentries)

if (sdqu?gingJ
{ prin(DEBUG "ceTT: $celT\n");}

my $messageID, S$guesser,
$targetsocialTag, $guessedsocialTag;

$messageID = $lineEntries[1];
$guesser = $1ineEntries[3];
$targetsocialTag =
$1ineEntries[5];
. S$guessedsocialTag =
$T1negq}rﬂes[6];
i

(&cheCkTaé(SgueSsedSocia1Ta)]!
C&cheiﬁTag($targetSocia1Tag.))

, print(DEBUG "target:
$targetsocialTag and guessed:
$guessedsocialTag\n™);

print(DEBUG “skipping to
next entry\n");

next; # don't include Tines
where the social tag is not under
consideration, but don't crash the
script

Stanton 34
}

&initializeuser($guesser):
#because there are guessers who
aren't creators, and passibly
creators who aren't guessers

$allusers{$guesser}
{"totalGuesses"}+=1;

‘ $allusers{$guesser}
{"totalMessages" J+=1;

&initializeMessageFeatures($messageID
); # just 1in case
$al1Messages{$messagelD}
{$guessedsocialTag}+=1;
$a11messages{$message10}
{"totalGuesses"}+=1;
push(@{$allMessages{$messageID}
{"guessers”}}, $quesser):
if ($targetSocialTag eq
tguessedsocialTag) # guess correctly

$alIMessages{$messageID}
{"totalCorrectGuesses”}+=1;
, $allusers{$quesser}
{"guessedCorrectiy'}+=1;

else # guessed incorrectly

#$allMessages{$messageIn}
{$gue%§ed50cia1Tag} += 1; '

}
}

sus checkTag

Input: string $tag

output: true (1) if the tag passed
is one of the 8 being checked for

false (0) otherwise

Effects: Prints debug statements to
DEBUG file

%ub checkTag #expects tag as a string

my $tag = $_[0]; _ i
foreach my $truetag (@socialcues)

Tif ($tag eq $truetag) {
o print(DEBUG "social tag $tag
ok\n");

return 1; # tag is ok
print (DEBUG "oops tag $tag is not

an expected social cue\n"); .
return 0; # false, tag is invalid

6. Appendix: WordSleuth Code Stanton 35

#if (1(Stag eq "deception” || $tag eq sub initializeMessageFeatures
“persuading” || $tag eq "confidence" #expects message_id
|| $tag eq "formality" || $tag eq _
"politeness” || $tag ec "rudeness" || my $messageId = $_[0]; # fetch
$tag eq "embarrassment” || $tag eq input argument _ _
"disbelief")) #tag is not any of the if ($debugging) { print(beBuG
8, return false "*initializeMessageFeatures:
{ print(DEBUG "oops tag $tag messageID: $messageID\n™):}
is not an expected social cue\n");
return 0;} # if (lexists
else ‘ $allMessages{$messageiD}) {
{ if ($debugging) # %{$alTMessages{$messageID}} =
{ print(DEBUG "social tag $tag 0O
0 Qh" ; #

return 1;}

if (lexists
$al1Messages{$messageID}
{"totalGuesses"}) '

suB initializeMessageFeatures ' $alIMessages{$messageID}
Input: int $message_id {"totalGuesses"} = 0;

Output: None,

Effects: Intializes some of the if (lexists

data required to calculate features, $alTMessages{$messageID}
without {"totalCorrectGuesses”}) {
overwriting it if it already $alTMessages{$messageID}
exists. ' {"totalcorrectGuesses"} = 0;
Remarks:

Current features extracted: #initialize the times guessed
(2) word types in message (unique each of the 8 social categories
words in message) _ if (lexists

(3) word tokens in message (total $allMessages{$messageID}
words 1n message) {"formality"})

(4& type to token ratio (use type $allMessages{$messageID}
and token counts to calculate) {"formality"} = 0;

(5) # of punctuation marks in

message (can include ellipsis) if (lexists

(5a) # of guestions marks in $allmessages{$messageID}
message) {"politeness™}) %

(5b) # of exclamation marks in $allMessages{$messageID}
message {"politeness"} = 0:

(6) # of separate o

sentences/questions in message . if (lexists

(7) average word length per $allmessages{$messageIDn}
message {"deception”})

(8) mean log frequency of words $alIMessages {$messageID}
used (compared against words used {"deception"} = 0;

in all messages))

(9) through (n) count of if (lexists

vocabulary item used (doesn't include $aliMessages{$messageID}
words ' {"confidence"}) { _
only used once) $al1Messages{$messageID}
(b1l) through {bn) count of {"confidence"} = 0;

bigrams used (doesn't include bigrams }

only if (lexists

used once) $aTlIMessages{$messageID}{"rudeness"})
(t1) through (tn) count of

trigrams used (doesn't include $aliMessages{$messageID}
trigrams _ {"rudeness”} =0;

only used once) }

6. Appendix: WordSleuth Code

if (lexists
$alTMessages{$messageID}
{"persuading”}) %
$allMessages {$messageID}
{"pe;suading"}-: 0;

it (lexists
$allvessages{$messageID}
{"disbelief"}) _
$allMessages{ImessageID}
{"disbelief"} = 0;

if (lexists
$al1Messages{$messageID}
{"embarrassment"}) {
. $alIMessages{$messageID}
{"embarrassment"} = 0;

if (lexists

Stanton 36

$allusers{$username}
{"totalMessages"} = 0;

else

{
if ($debugging){ print(DEBUG

"oops $username totalMessages already
1n1t1a11zed“);}

if (lexists $allusers{$username}
{"totalCreated"}) #2

$allusers{Susername}
{"t0§a1Created“ = 0;

alse
if ($debugging)

#
$allMessages{$messageID}{"guessers”}) { print(DEBUG "oops fusername

@{%allMessages{$messageID}
{"gu§ssers"}} = é%;

}

Initializes the 5 relations for a
_iveg user (if they haven't already
een).

It is possible for this subroutine

to be called multiple times on a
given

user.

Thus, calling this subroutine
before modifying the data associated

with a

user name is safe even if a user

has already been initialized, and
saves the

hastle of multiple existance
checks. '

sub initializeuser #expects the
username

my $username = $_[0]; # fetch

input argument

. 1f (3debugging) { print(DEBUG
"t*initializeuser: username:
$username\n");}

totalCreated already initialized");}

if (lexists $allusers{$username}
{"gu%ssedcorrectly"}) #4

$allusers{$username}
{"gu€ssedcorrect1y"} =0;

else

{
if ($debugging){ print(DEBUG

"oops $username guessedCorrectly
already initialized");}

1f (lexists $allusers{Susername}
{"createdcCorrectly”}) #S

$allusers{$username}

~{“cr§atedcorrect1y"} = 0;

else

{
if ($debugging) { print(DEBUG
"oops $username createdCorrectly

already initialized™); }

SUB update_allFeatures
Input: None.
Output: None.
Effects: updates global

it (lexists $allusers{$username}) @aliFeaturesList with the

{ . :
%{$allusers{$username}}l = Q;

- 1f_(lexists $allusers{$username}
{"toEa1Messages"}) #1

uni/bi/trigrams _)

_that appear more than onceé in the
whole input. N

Updates global %allFeatures hash
with the feature ID associated with
each feature label found in

6. Appendix: WordSleuth Code

allFeatursiist

Remarks: Best called after

%allwords, %allBigrams, %allTrigrams

are updated
- for every message. <could check

for repeats, but it would be sTower.
sub update_allFeatures

for my $word (keys(%allwords))
}f ($allwords{$word} > 1)
_print{DEBUG "word:
$word\n");
, push(@allFeaturesiist,
"word:". Sword) ;

}

~ for my $bigram
(keys(%al1Bigrams))

if ($aligigrams{$bigram} >

_ push(@allFeaturesList,
"bi gr%m': " $bigram);

}
for m¥ $trigram
Ckeys(%al lTrigrams))

if ($al1Trigrams{$trigram} > 1)

] push(@allFeaturesList,
"tr1g5§m:".$trigram);

}

#Finally, sort at the end

@alTFeaturesList =
sort(@allFeaturesiList);

my $featureId = 1;
for my $featureLabe)
(@allFeaturesList)

$allFeatures{$featureLabel} =
$featurelD;
$featureID++;

}

Grams: unigrams, Bigrams: and
Trigrams:

where _

unigram: a single words

bigram: sequence of 2 words
trigram: sequence of 3 words
Currently, disregarding

Stanton 87

punctuation and capitalization
For example, "it's" and "its" are
the same (maybe fix).

"I" and Mi" are the same (maybe
Fix).

SUB update_allTrigrams
Input: int $messageID
output: None.
Effect: update ﬁ]oba] %allTrigrams
hash to include the trigrams
extracted from
message associated with
$messagelD.
Remarks: Should only be called once
per message .
sub update_allTrigrams{

my $messageID = @_[0];

print(DERUG "update trigrams for
message id: $messageID\n");

my @messagewords =
remove_nonwords{ get_word_list($allme
ssages{$messageID}{"message"}));

my $index, $trigram;

my %trigrams =
get_trigram_1ist(@messagewords);

foreach $trigram
(sort(keys(%trigrams))) {
print(DEBUG " trigram is
$trigram\n");

-if(existsg$a11Tr1graMS{$TrigPam})){

$allTrigrams{$trigram} +=
$trigrams{$trigram};
}elseq
$allTrigrams{$trigram} =
$trigs§ms{$trigram};

}
. print(DEBUG "done updating
%rwgrams for id: $messageip\n");

SUB get_trigram_list
Input: A list of words
(@messagewords). .
output: Hash %trigrams associating
each trigram present in the message
of $messageIp with the number of
times it appears in the message
Effects: None (besides print to
DEBUG) . _
sub get_trigram_list{

#my $messageID = @_[0];
. print(DEBUG
"get_trigram_list\n");

6. Appendix: WordSleuth Code

my @messageWords = @_; # fetch
input list

#&get_word_11ist($alIMessages{$ #

messageID}{"message"});
my %trigrams = ();
my

separate into groups of 3
words, separated by a +
BEGIN = beginning of message
END = end of message
currently, punctuation is
removed (all words simply treated as.
one long string)
for($index = 1; $index <
$#messagewords; $index++){
#print(DEBUG
"messagewords[$index] is
$messagewords[$index]\n");
it second word, trigram is
BEGIN+$word0+$wordl
if($index == 1){
_ $trigram = "BEGIN\+".
$messagewords[$index-1]."\+".
$messagewords[$index];
}elsed
$trigram =
$messagew0rdsfkindex—2]."\+".
$messagewords[$index-1]."\+".
$mess%geWDrds[$index];

$index;

#@trigrams =

$trigram); _ L

I(exists $trigrams{$trigram})?
Strigramsgstrigram}zl :
$trigrams{$trigram}++ ;

(@trigrams,

do Tast word ($wordindex-
1+wordindex+END)
$trigram =

$me55agewords[$#messagewordsf13i"\+".

$messagewords [$#messagewords].”
+END"; .
print(DEBUG "trigram is
$trigram\n™);
~ #etrigrams =
$tr1?ram); _)
!(exists $trigrams{$trigram})?
$trigrams{$trigram} =1 :
$trigrams{$trigram}i++ :

(@trigrams,

return %trigrams;

suB update_allBigrams

Input: messageID

output: none.

Effect: Update global variable

Stanton 38

%allBigrams with the bigrams
extracted

from the message of messageID.

Remarks: Should only be called once
per message.

sub update_all1Bigrams{

my $messageID = @_[0];

print(DEBUG "messagelD:
$messageID\n");

my @messagewords = _

et_word_Tist($alIMessages{$messageID
{"message"}); '
Sﬁ]1t on pattern (one or more
of any white space)

#my $index, $bigram;

my @bigrams = (?;

?r1nt(DEBUG
"al1Messages{$messageIn}
{\"message\"}:
$allMessages{$messageID}
{\"message\"}\n");

for $word (@messagewords) {
print(DEBUG " word: $word\n");

@messagewords =
&remove_nonwords (@messagewords)
#should be redundant

%bigrams =
&get_bigram_Tist(@messagewords);

foreach my $bigram
(sort(keys(%bigrams))){ .

_ print{ DEBUG "bigram is
$bigram\n"); " A
A if(exists($allBigrams{$bigram})

$allBigrams{$bigram} 4=
$bigrams{$bigram};
}else{ ‘
$al1Bigrams{$bigram} =
$bigra?s{$bigram};

}
}

Input: a 1ist of words
(@messagewords).
output: Hash of bigrams to the
number of times apppéared in the
input.
Effects: None.
sub get_bigram_list{

my @messagewords = @_;

my %bigrams = ();

my $index;

separate into groups of 2 words,

6. Appendix: WordSleuth Code

separate by a +

BEGIN = beginning of message

END = end of message

currently, no punctuation is used
(all words simply treated as one long
string)

for($index = 0; $index <=
$#messagewords; $index++){
#print (DEBUG
"messagewords[$index] is

$messagewords[$index]\n™);
1f first word, bigram is BEGIN+
$word0

if($index == 0){
$bigram = "BEGIN\+".
$messa?ewords[$index];
te _
$

sef
$higram = $messa
17."\+".$messagewords[$index];
I(exists $higrams{$bigram})?
$bigrams{$bigram}=1 :
$higrams{$bigram}++ ;

here.

do last word ($wordindex+END)
$bigram = _
$messagewords [$#messagewords] . "\
+END"'; _
[(exists $Sbigrams{$bigram})?
$bigrams{$bigram}=1 :
$bigrams{$bigram}++;

Stanton 39

sub remove_nonwords{
my @messagewords = @_;

my @messagewordsFiltered = ();

get rid of
Ffor($index = 0; $index <=
$#messagewords; $index++) {
if(3Imessagewords[$index] =~ /A\w/)
@messagewordsFiltered =
(@messagewordsFiltered,
$messagewords[$index]);

}

return @messagewordsFiltered;

WOrds[$index—'§

Calculation functions:

(often short) functions that
calculate various features from a

given message. Cleans up the code
considerably to put them down

Eases testing.

SUB get_num_qgm .

Input: string $message (as is, no
preprocessing required;

output: int number of question
marks contained in $message

Effects: None.

Remarks: The previous methodology

was bugged.

return %bigrams;

Input: string $message
output: A list of words as
separated by one or more
white spaces
sub get_word_list{
my $message = @_{[0];
, print(DEBUG "before:
fmessage\n"); .
$message =~ s/[A\w\s]+//g;#
remove ALL punctuation {not
alphanumeric or not whitespace), not
just Tirst occurence (g)
print(DEBUG "after: $message\n");-
return split(’\s+"', $message);

takes a Tist of words as input,
removes non word things, returns the
new]ist

pass by copy and does not modify
original input

‘iub get_num_gm

my $message = @_[0]; # fetch

input
mx $num = 0;
while($message =~ /\?2/@){$num++;}
return $num;

SUB get_num_em

Input: string $message (as is, nho

preprocessing required; .
output: int number of exclamation
marks contained in $message

Effects: None. _
Remarks: The previous methodology
was bugged.

sub get_num_em

my $message = @_.[0]; # fetch

input _
mﬁ_snum = 0;
while($message =~ /\!/g@){$num++;}
return $num;

6. Appendix: WordSleuth Code

SUB get_num_ib ‘
Input: string $message (as is, no
preprocessing required ,
output: int number of interrocbangs
contained in $message
effects: None,
Remarks: The previous methodology
was bugged. Interrobangs are
considered to be the substring
'?21" and '!?' (order is jrrelevant).
oOverlaps are counted. For
example, '?1?' would count as 2
interrobangs
and '?1?!' would be 3.
?ub get_num_ib
my $message = @_[0]; # fetch
input
my $num = 0; o o
#while(3message =~ /\I\Z[\?\!/)
A$num++; 3
$num =)= $message =~ /(\?\!)/g;
isn't that beautiful perly code!

$hum +=()= $message =~ /(\!\?)/g;
ok, what that does is (starting _

from the right), match $message with
*2!1" and assign the result to an
empty list, and assign that to a
scalar context, so it ends up
counting the number of times '?!’
substring appears in $message,
inc1uding overlap! Then I add the
result of matching "!?' for
completeness sake,

return $num

SUB get_qm_to_em .
Input: string $message (as is, no
preprocessing required) .
output: rational number expressing
the ratio of guestion
marks to exclamation marks.
Cqm/em)
Effects: None.
Remarks: Uses &get_num_qm and
&get_num_em. If num_em is 0,
returns 0.
sub get_gm_to_em
my $message = @_[0]; # fetch
input _
my $em = &get_num_em($me§sgge);
if ($em == 0){ # woops divide by

return 0;

0

else

Stanton 40

{
_ return (&get_num_gm{($message)/
$em) ;

}

sus get_num_elipses _
Input: string $message (as is, no
preprocessing required)
output: int number of elipses in
the message.
effects: None.
Remarks: An elipses is considered
to be 2 or more consecutive
periods (je. '.'). overlap is
not counted, so
'..'d9s 1, '...' is also 1, and
'uv o.-'-iS' 2.-
sub get_num_elipses
my $message = @_[01; # fetch
input _
mz_snum = 0; o
while($message =~ /\.\.+/@){$num+
+;} #match one and at least one '.'
retufFn $num;

sSuB get_longest_elipses_run

Input: string $message (as is, no
preprocessing required)

output: int Jength of the longest
run of elipses in the message

effects: None,

Remarks: An elipseés is considered
to be 2 or more consecutive

periods (ie. '.").

sub get_longest_elipses_run

@_[0]; # fetch
$message =~ /\.\.

_ my $message
input
my @elipses

+/95 . .

@elipses = sort(@elipses); #
since the elements are just .. of
various length, has the nice side
effect of doing exactly what I want:
sort by length .

only, the Tongest one is at the
end of the Tist.

my $longest =
$elipses[$#elipses];

mg_$num = 0;)

while($longest =~ /A\./g){$num++;}
#and count the dots

return $num;

