Security Data Extraction Through Virtual Machine

Introspection

Sarah Shekher

sshekher(@uci.edu

Donald Bren School of Information and Computer Sciences
University of California, Irvine.

Abstract

With the rise of digital technology, communication and the growing availability
of data on public media such as the Internet, the idea of computer security has become
more prominent. Computer Security, otherwise known as “cybersecurity”, revolves
around protecting against, preventing and detecting unauthorized access on a system and
transactions to and from it I'!, Intrusion Detection Systems (IDS) development has grown
to accommodate the changes to our technology, and lifestyle P!, The IDS gives users
insight on the weaknesses of their systems while testing currently implemented security
measures, The information provided can be used to further strengthen the system, thereby
better protecting data within it ®! "1, However, for this to be done, the 1DS itself should be
resistant to outside attack to ensure accurate feedback. Research within the field of
computer security to improve the design of IDS has brought attention to technology like
Virtual Machines, and hardware emulation of software. Researchers learn from the
1

mechanism behind attacks on systems to aid in their future protection and prevention tel,

This is the ideology behind this research project.

However, as creating an optimal IDS is a large system, and would take a long period
of time, the function which was focused on was one of the many thing an IDS analyzes — the
processes running on a system. Eventually, this data would point to the most important
processes running on a system, which are called on a regular basis. This would optimize
detection of irregularity in the case of an attack. Thus, the main focus of the research was to
observé the behavior of running processes through its interaction with the virtualized system

calls to the operating system.
Introduction

Computer Security is improved by the use of Digital Forensics which is the act of
studying corrupted data which was the result of a malicious attack. Thus, as technology
continues to advance, this field has ever growing importance, [t provides evidence for legal
proceedings, determining vulnerabilities in a system, methods of attack, and all other

exploitations to compromise a working _system.[31

The importance of computer security is best shown through the consequences of
security breaches on the typical internet user. Take the PlayStation Network breach, it not
only cost approximately $171 million dollars in losses for Sony ', but also affected the lives
of the gamers who could no longer use the network. Sensitive information, such as credit-
card numbers, names, addresses, etc were accessible after the attack causing several cases of
identity theft not to mention more than 70 million frozen accounts worldwide to limit damage
21131 ANl this was caused by the use of an insecure platform design. The multi-billion dollar
company Facebook is not safe from malware, In fact, a virus'that was created specifically for

social networking sites known as “koobface” has infected Facebook on more than one

occasion, The mechanisms behind the attack were used to sharpen the defenses of the site,
and influenced the way the corporation handled all types of malware '¥. Thus, it can be seen
that it is not enough to create a general form of security; each system has its own

speeifications and thus, to enforce a secure environment, a tailored approach must be taken.

To define a “secure” system, three concepts are taken into consideration: security
requirements, security policy, and finally, security mechanisms. Security Requirements
define security goals of the system, that i%, what parts of the system are to be protected, and
in what waym. Security Policy defines the states and actions allowed, including in case of
attack. For example, in certain situations, it is better to delete the data infected than to
recover data that could be read illegally. If the security policy is unbroken, the system can be
thought of as “secure. " Security mechanisms are implementations that enforce the security
policy, as to not allow violation and avoid deterring the practicality of the system. This
includes technical mechanisms like security access protocols and encryptions, and
operational mechanisms, for instance, punishment inappropriate behavior regarding data.
Mechanisms must also be tested for quality assurance, as if they do not behave as required, it
affects the systems functionality. It isa well-known fact that most mechanism will not work
unfailingly, which leads to a goal of being mostly correct. Hence, to be secure: requirements
should be defined, policies should be formed actording to requirements and mechanisms

should implement the policies ' P).

However, in order to test and strengthen the security of a system, one would have to
have some way of attacking the system in a closed environment 4], This would create an
appropriate method which would not cause any lasting effect on the system at hand. In a

different scenario, it would be beneficial to have an unobscured view of the system under

attack so that one would have a clear ided of how the attacker could weaken the system B,
This view would provide a stronger description of how to previent and protect against similar
attacks. One method to test the security of a system is using an Intrusion Detection System.
The primary function of IDS is to attempt to detect and report whether the host has been
compromised by any type of attack BT, This is done by observing any properties of the host
which can be observed extemally P11, Encompassed in the list of properties are system
calls, internal states, state transitions, and other input/output activity. If irregular activity 1

detected, the IDS investigate the irregularity and reports on it 11161

The aim of this project was to efficiently observe inner occurrences and behaviors of
processes through the interactions with the system by some means which could eventually be
used to observe during an attack. The chosen frame of implementation of these means is to

use a virtual machine, in a process called Virtual Machine Introspection .
Motivation

As mentioned earlier, Intrusion Detection Systems-(IDS) are meant to capture
behavior of a system and report the anomalies to the user] The prime situation would be
that while running the IDS in a test simulated or real corrupt situation, the original software
and hardware system are left unharmed, while still accurately accumulating data on the
infection. Hence, the best scenario would be an accurate large scale view of standard
behavior so that the smallest difference would be visible. An IDS running on a system
without any virtualization ¢an only access the state level of hardware, which includes the
physical memory, pages and registers involved with computation and the events such as

memory accesses and interrupts *!!%), In order to be able to recreate the events which

occurred during a test attack, knowledge of the opérating system is required to interpret the
events which occurred. This is a workable solution; however, it may end in the creation of
restricted system that would be specifie to the system it was made to run on. Thus, the goal of

discovering generic yet strong IDS becomes a prominent endeavor.

Unfortunately, every improvement of Intrusion Detection Systems is met with
increasingly sophisticated tactics to evade and defeat them 13, Preventing such badly
intended behavior is done using two means; Visibility and Isolation are key i1deas for IDS
development. In terms of visibility, the more the IDS can view, the more detailed the
definition of “normal behavior.” Basically, visibility is defined as the degree to which a
system can be monitored in terms of internal state, state transitions [otherwise known as
events), 1/0 activity, and other observable prOp'erti'e's[B] ™ The amended definition improves
chances to see otherwise overlooked signs of attack as the range of analyzable activity has
been increased. What this means to say is that malicious attackers would find it more difficult
to attack as they cannot emulate completely normal behavior. Isolation, the second
requirement, can be defined as the separation of the IDS from its host system (which could
be a virtual machine). The necessity of isolation lies in preventing the IDS itself from attack
by the malware being analyzed. Increased isolation causes higher resistance to an attack.
[solation is necessary to avoid the data acquired from being altered by the attack. Accuracy

of data is important for research which will improve the security of future endeavors. 3114116]

Use of IDS is not without disadvantages. The only data available to the researchers.
and practitioners of this field is the state of the system before the attack and the state of the
system after (61 Those in this field will essentially hypothesize the method of attack, based

on previous known data on attackers, speculation and the data from the attack at hand.

Unfortunately, to truly understand the malicious attack, generally through hacking or some
sort of malware, it would be best to see the process as it happens. They are left to make their
analysis with inadequate information and tools that are prone to compromise, themselves.
The compromise could simply be the method of stopping the attack, which is common in
incident response procedure [quiescent an::ll_\/sis-]'[jl . If the events to take the system offline
affect the data produced, it is no longer of practical use because of imprecision. Regular shut
downs overwrite datd which could be forensically important, and cutting off the power
supply could cause data to be lost from the cache, or damage to the system!*). An IDS erash
would cause the system to fail open, and could either create the oppertunity to compromise
the system (including kernels) or require the IDS to be restarted while the application is

suspendedl4]. If the IDS cannot restart, then the data collected is considered erroneous.

[n a similar fashion, intrusion detection systems would be ineffective if attacked or
evaded by malicious software. If the IDS were meant to reside on the host, it has a clear view
of events in the host software, known as visibility!¥), at the price of vulnerability to-attack.
Attacking the IDS suggests tampering with the inner software, and would render it as useless
to the testing. On the other hand, rather than attacking the IDS, the possibility malware using
a much more passive approach called évasion "l is greater. The malware would disguise
activity so it would go undetected and still run amuck. On ‘the host level, IDS known as Host-
Based Intrusion Detection Systems (HIDS), offers a wide view of the system given that the
integrity of the system is intact. An HIDS is at the risk of attack on the detection system level
because of lack of isolation¥. The other option of leaving the IDS outside the host, on the
network level generally called Network-Based Intrusion Detection Systems(NIDS) provides

better isolation at the cost of restricted visibility, In other words, NIDS would increase

registance to outside attack, but the inner view of the host processes would beunclear and
frequent instances of missing information area commonality 1l Thus, creators of malware
see evasion as an ideal viable approach. As seen from the above evaluation, the tradeoff for
+visibility to the host system is the security of the IDS. In terms of intrusion detection, the
peak option would be to maximize both the attack resistance and the visibility of the host.
One method to maximize both the attributes, explored by Tal Garfinkle and Mendel
Rosenblum, regards virtualization of the system through an approach called Virtual Machine

Introspection [,
Virtualization

A field of many uses, the concept of virtualization has been in place since the 1960s.
The value of virtualization has been recognized in various fields from programming
languages to computer system design and
has been used for purposes sich as server
consolidation, support for multiple
operating systems, optimizations of
specialized architectures) and, of course,

security. However the true significance lies

in abstraction, where virtualization proves
to be advantageous ¥, Abstraction itself is
important because of the sheer complexity

of computer systems. Hierarchies of well-

defined interfaces separate different levels

of abstraction to hide unnecessary details from applications which implement them - creating

opportunities for growth in new directions. Unfortunately, the disadvantage is the limitation
of such interfaces; each is designed for a specific system and specific Instruction Set
Architecture (ISA) and thus may not be compatible with another interface?.. Virtualization
provides a solution to this constraint by mapping the interface and resources of the
virtualized entity onto the interface and viable resources of the underlying real system,
regardless of differences. Accordingly, this “real system™ could be one or many virtual
systems as well, 71¥1
Virtualization, unlike
abstraction, does not aim to

conceal details. However, it does

implement abstraction as an

intermediary step during

mapping from the virtual to real

systems. The term Virtualization
itself implies the separation of

resource or request from its

physical origins and delivery. In
the case of operating systems,
virtualization is used to create
A Computer Without Virtualization
a level of abstraction forthe processes which need memory resources. Virtualization gives

the impression of unlimited memory, even though the underlying physical memory is limited.

The allocation is done in a lower level with data swapping and disk storage 1], Essentially,

virtualization is used to create a level of abstraction between the applications and the
resource it is virtualizing, Benefits include unaltered user experience and improvement in

management of pooled resources.

Virtualization comes in several types, as it can be implemented in several levels,
such as operation system, CPU, memory etc. However, there are three main generally
accepted divisions: Full Virtualization, Paravirtualization, and Hardware-Assisted
Virtualization®®), Typically, the operating system beneath the level of virtualization is referred
to the host operating system, and each of the new operating systems running through means

of virtualization are called guest operating systems.

I Full Virtualization
A system is considered “fully virtualized” if enough hardware is simulated such that
a guest operating system can run unmodified and isolation 8], The same hardware, including
CPU is utilized in this case.

Through the use of a virtualization

layer, the guest operating system is

completely abstracted or

decoupled from the hardware layer

beneath it ¥, The new guest

operating system is unaware of
being virtualized as there are no

changes to the original

Computer with Full

Virtualization _ software; it is left as it is 218 Fun
User Apps are Directly Executed

OS Instructions are Virtualized virtualization is the only type of
virtualization that requires no assistance from the host system to virtualize sensitive and

privileged instructions. It is all done through the Virtual Machine Monitor/Hypervisor.

‘The hypervisor, which can be thought of platform for virtual operations and
supervises the guest operating systems, is a main sofiware component of virtualization
techniques. If full virtualization is implemented using binary {ranslation, the hypervisor
translates all operating system instructions dynamically, and stores the results for future uses

while all user level instructions

‘¢an run unaltered at their native

RING 3
speeds. As full virtualization is
the most isolated form, itis also

RING 2
the most secure as well as
portable 1, RING 1

II. Paravirtualization RiNG O
Paravirtualization is tiot WVIRTUALIZATION LAYER

to be confused with “Partial
Virtualization”, which was the

stepping stone in the process to

full virtualization. Partial User requests - Direct execution
"Hypercalls" to virtualization layer replace the
Virtualization simply OS imstractions whichk could mot be virtualized.

incompletely simulates hardware, so that certain applications can be run unmodified ™. On
the other hand, partial virtualization generally cannot support an entire operating system, or
all applications without any alterations. Paravirtualization is-also known as Operating System

Assisted Virtualization 10,

Paravirtualization occurs when the hypervisor and the host operating system
communicate for the sake of performance and efficiency. The host OS kernel is modified for
the purpose of virtualization, and all instructions, as well as memory management, time
keeping and interrupt handling operations that are unable to be virtualized are enforced
through hypercalls to the
virtualization layer hypervisor *l. In

this case, hardware is not simulated

and a specialized Application

Programming Interface that the guest

1. Hardware-Assisted

Virtualization

Hardware-Assisted

Virtualization is not equivalent to

c With Hard Avsisted Virtaalizath Hardware Emulation. Hardware-

Ring 0-Ring 3 are not Root Privileged Levels whereas Assistéd Virtualization sends guest
MIWMMMBNﬂ
xﬁmwlﬂhll‘::hnmh&mm OS calls straight to the hypervisor

withaat wse of paravirtualization er transiation. and any user application requests are

sent directly to the physical hardware of the host OS rather than proceeding through the
virtualization layer "® P!, This reduces changes to the guest OS as well as translation
overhead seen in paravirtunalization. However, it involves a great deal of CPU
cooperation/support and overhead. Because of these factors, Hardware-Assisted

Virtualization cannot be implemented in all architectures.

Hardware emulation, alternatively, does not require the computer to be
virtualization compatible. It simply simulates/imitates the hardware wholly, and thus the
guest OS can remain unmodified. In the case of hardware emulation, it is a piece of hardware
of the host which is simulating a different piece of hardware while in the case of
virtualization, the hypervisor which is a piece of software, imitates a particular part of

hardware, or the entire computer 1 U],
Virtual Machines

To understand virtual machines (VMs), one must understand the term machine in
terms of process and system. In terms of processes, the machine does not include
input/output system calls, instead the machines contains logical memory address space of the
procéss, and the user level instructions and registers that would allow the process to be
executed through its code 3, Thus, & process VM is a virtual platform for individual process
execution, and terminates at the end of the process. The virtualization software for a process
VM is, in turn, called “runtime software.” For systems, the virtual machine run above
underlying software, and supports multiple simultaneous processes by sharing the file system
as well as various other input/output resources !, The Instruction Set Architecture(ISA) ™

4] 5 what interfaces between the underlying system and the virtual machine, and all

processes have real system memory and other resources allocated to them. A system VM can
support an entire operating system with all its processes. The virtualizing software here is
called a virtual machines monitor(VMM) or hypervisor, which was mentioned above R8Il
The VMM allows the guest to use a separate ISA, while the VMM emulates the hardware
ISA. It provides virtualized resources to the guest system so that another operating system

can function properly.

The high level reasoning for using a Virtual Machine for testing and disaster.
récovery is the opportunity provided to run malware within a contained, controlled and
protected test environment. This holds that whatever happens within the test environment
would not affect or leak into the rest of the system uniess the testing processes malfunctioned
1% Gince malware are of different threat levels, we can safely run it in this closed
environment without any permanent damage to the underlying host software and hardware
system), Thus, the case of having to wipe the infected hard drive clean and reinstall a host
operating system is eliminated entirely. Instead, simply create a new instance of a virtual
machine and you have a clean install to replace the damaged software. Since virtual
machines are software based, they can also be emulated on hardware alone ", This means
that you can visually see what happens in the system in real time, as well control what
components to monitor), This will also cut back on memory costs, as the entire virtual

machine would not have to be implemented, just parts significant to the needs of the user.
Virtual Machine Introspection

Using a virtual machine, knowledge of the structures which interpret the OS level

semantics is available, and thus higher analysis can be achieved. Inspecting and

understanding a virtual machine from outside its activities for the purpose of investigation of

the software running within it is called Virtual Machine Introspection 1 I,

Virtual Machine Introspection(VMI) is seen as a solution to the visibility and
isolation trade-off. VMI IDS can directly observe hardware states and events and can deduce
the software state using extrapolation. The visibility seen from this approach is comparable to
the visibility of the Host-based IDS *!, Furthermore, the data incurred from using a VMI-
IDS has a smaller chance of being compromised, although visibility is maintained. VMIIDS
are also strongly isolated from their hosts, which allows for detection and reporting in the
face of a corrupted host. This sitvation proves to be more robust than *stealth™ which is
nothing more than hiding the IDS 1, Isolation, Inspection and Interposition are all essential

features of Virtual Machine Introspection architecture I,
Process

“4 Virtual Machine. Introspection Based Architecture for Intrusion Detection” paved
the way for VM]-related work, They discussed the situation of current intrusion detection,
problems that IDS have, and how VMIs could benefit the security world. The first step was
to find a virtual machine to use in order to fulfill the goal which was to observe behavior of
processes running in a virtual machine with intention of discovering the normative system
calls which an improved VMI IDS function would be to observe . In their paper, Garfinkle
-and Rosenblum created a prototype of a VMI — which is part of the high-level goal in this
project as well- and they used a modified version of VMWare for that purpose. However,

VMWare is not open source, nor is it free which affected its viability for this project.

Virtual Box® is a virtualization product that performs with full/native virtualization.
It also has the attractive feature of “snapshots” which are instances of the guest operating
system which one could revert to-in the case of any type of failure '®), It has a Graphical User
Interface(GUI) which displays the image of the guest operating system and provides usability
for non-technical users. The GUI also has references to all snapshots for the system. All
operating systems used as guests are unmodified apart from converting the image to a .vdi

file (a type of Virtual Disk Image file) !4,

The idea of snapshots is interesting, but its worth is determined by how it works.
During an attack, if snapshots could be taken and later investigated, the strategy that the
attacker took to attack the system would be much clearer. However, this method of using
shapshots is not feasible in Virtual Box 1], If the snapshot is malformed, then it would not
run. Furthermore, the attacker could prevent the user from taking a snapshot, and the data
would not be captured in real time, When a snapshot is taken, certain aspects such as the
states of the virtual disks which are attached to the virtual machine in question are stored.
Restoring to a Snapshot means reverting bit by bit to a previous version. Unfortunately, when
a snapshot is taken, only the changes made from the last snapshot/instance are made note of.
This is efficient for its purpose, but not useful in terms of getting process data af a given
point of time. On the other hand, the memory at that time period is stored as well.
Regrettably, not only would that be a large amount of data without direction, but it would be
worthless without any way of understanding what process was using what chunk of memory.
Thus, a list of currently running processes would be needed, as well as some sort of map to

connect processes to their resources.

After a fair bit of research, VBoxManage was stumbled upon; it is the command-line
interface of Virtual Box. It gives the user more access to inner processes of Virtual Box as
well as more control over modifications to a virtual machine. While you can execute
available processes through VBoxManage and set their time out periods etc., it doesnot have
a generated list of running processes easily available. One method to retrieve such would be
to use the command for the guest operating system ['®]. For example, if you were running
Windows XP on your Virtual Box, then the command “tasklist” would provide a list of
currently running tasks/processes along with information such as their IDs, services, location
etc. Microsoft also provides process status API, which could be used to discover details about
undetlying processes. Another method would be to tamper with the Source Code of Virtual
Box. This would be messy, and causé complications. Since these methods are not generic, (as
it is either based off the guest OS and that is individual to the user or changing inner
components of the system) Virtual Box was not seen as successfil path to the goal of

observing processes.

The sub-problem became to find a virtualization system which is compatible with
work towards the goal of observing processes. The next step was to learn what others in this
field have been doing, and what methods they have used to implement VMIs. “Anifarm:
Tracking Processes in a Virtual Machine Enviroviment” is a paper which relates closely to
the aim of observation of processes. This paper describes the system Antfarm, which used
two different architectures [Intel x86, a fairly common architecture, and SPARC, an older
RISC based architecture] to track processes in two different virtualization environments —a
VMM and an emmilator). The Virtual Machine Monitor was Xen, an open source monitor

for Intelx86. Xen has also been mentioned in “Secure and Flexible Monitoring of Virtual

Machines” where authors Payne, Carbone and Lee present XenAccess, a monitoring library
built upon the Xen virtualization system. It is because of the analysis presented in these
papers and other academic sources that Xen became the second virtualization technique used

to achieve our goal.

Xen is a virtual machine monitor/hypervisor which is capable of executing multiple
virtual machines with unique guest operating systems on a single host operating system. It
aims to simulate close to native performance on each of these guest operating systems when
in use 'V, Generally, it is used for servers. But it can be implemented on desktop systems.
Xen can also be called as “baremetal” which means it becomes the first program to run after
the BIOS of the host, it will then start as in “Domain-0” 11 P), Domain-0, or “Dom0” is a
special privileged guest system which runs on the host OS and has access to resources like
physical hardware, and it is mainly utilized to run the Xen toolstack for management and
manage the hypervisor. The Dom0 also provides virtual disks and networks for the guest

operating systems which are run as “unprivileged guests” (DomU) ™11,

Xen offers two forms of virtualization: full virtualization, and paravirtualization ",
Xen traditionally uses paravirtualization, and has good performance as it does not have to
implement performance as well as allowing virtualization on non-virtualizable architectures
(like Tntel x86) F). Using the split domain architecture (dom0 and domU) and three forms of
memory —physical, machine, and virtual- Xen can perform almost as well as a native system
] The drawback of using Xen is that it requires that the guest operating systems be
modified and the host itself be modified with a special Dom0 enabled kernel in order to
function alongside the paravirtualized version 10, by terms of full virtualization, which was

done through CPU hardware emulation in this case, no modifications were required to the

guest operating systems, which meant distributions of Windows were capable of running on
top of Xen M Consequently, because of the hardware emulation, the fully virtualized
version of Xen is significantly slower. But in any case, Xen entails that the Dom0 be in some

form of Linux, a change in eperating systems occurred [

Tt makes perfect sense that Xen works on top of Linux distributions, as they were
both created as open source software — made through a collaboration of developers from all
around the world with all the source code available onlinie. Linux can easily be modified for
the user’s discrete purposes, However, there are some distributions of Linux such as RedHat
which have been commercialized, and are no longer cost-free. Xen provides installation
guides, tutorials and resources for their Hypervisor, one of which was for Ubuntu. Ubuntu is
known for its user friendly interface and stable functionality. Apart from this, Xen has been
implemented on Ubuntu previously. At that period, Ubuntu was on the release 10.04 and Xen
version 4.0.1 was to be used with it. It should be mentioned that until version 8.04, Xen was
included in the instalfation of Ubuntu and was supported by developers. Presently, Ubuntu
does not officially support Xen wﬁich affects the simplicity of the installation. In order to
install Xen, the kernel had to be altered, and recompiied. Ideally, the rpm file of Xen would
be used. RPMs are made for Linux systems, and are precompiled executables much like
Window’s “.exe” files. Sadly, the RPM for Xen was unavailable, and so, Xen had to be

‘compiled from source.

Installation for Xen turned out to be much more complicated than previously
conceived. Xen was incompatible with the 64-bit version of Ubuntu 10.04, so a complete and
clean install of the 32-bit operating system had to be done. After the new installation of

Ubuntu, Xen built, but tended to crash midway through start up. Alternatively, although Xen

advertises that it can work with x86 architecture systems, the fact that the machine used did
not.support virtualization caused issues. Further research with the aforementioned papers
showed that not only was Xen modified for their purposes, but both Antfarm and XenAccess
used now outdated versions of Xen(vs2.0.6). Xen Architecture had been revised and the
former xenlinux kernel was no longer used, instead, the first use of “pvops” had been
implemented '), Especially true in open soufce systems, the first use of an idea is generally
riddled with issues which are solved as found. Many of the issues that were faced were
known and unsolved. There was a temporary solution: another popular Linux distribution
known as Fedora had solved several issues found in Ubuntu. So, the obvious solution was to
switch to Fedora. Unfortunately, while many Fedora users had resolved issues, they had done
so in a roundabout method. Selutions were difficult to recreate particularly if the user trying
to recreate was not as experienced with the inner workings of Linux systems. Fedora too had
stopped supporting Xen officially in a previous release. Since many of the modifications took
place in source files of the operating system excluding the kernel, implementing Xen was no
longer arealistic route. Additionally, many other Linux-based operating systems had stopped
supporting Xen in previous release, mainly because of the inconsistencies and bugs within

the system. As Xen was not as stable as formerly anticipated, a new route was taken.

In more recent times, Virtualization stopped being supported by most
commercial devices including laptops with processors by both Intel and AMD. Although
there are claimed solutions to this hardware deficiency, they are generally convoluted and
deal with inner workings of the system, causing “universally compatible” not to be an
alternative. However, emulation is close enough to virtualization, that it can be used in

similar fashions. In this light, Xen was exchanged with QEMU, a processor emulator which

can be seen ag a virtual execution environment generator T8 1 ike Xen, it is also open
source and has two options for virtual behavior. The first is machine emulation. This is.
defined as running Operating systems and programs meant for one machine ISA on another
machine. It uses dynamic translation to achieve this efficiently (0N18 Dynamic Translation
is the process of translating a line of code only when it is needed for executionI'*), The
second method of using QEMU is as a virtualizer (7], QEMU reaches a level or near native
performance by executing the guest code directly on the host CPU '™, It is interesting to note
that in both of the previously operating systems of virtualization, VirtualBox and Xen,
QEMU is actually used to support the virtualization process. QEMU can also virtualize
without either of those applications by using KVM keérnel module in Linux to virtualize

guests of architectures like x86, PowerPC etc 07,

Figure 1:
QEMU
cPU
Simulation

Translanon Baffer

of TCL
operations in execution
made

Q

QEMU translates the guest or target machine code into the host machine code for

execution [V *®], It is performed in a two-step procedure. First, target machine code is

dynamically translated into intermediate code called micro-operations. The translation is
done by the TCG(Tiny Code Generator) 1! which was originally developed as a C compiler
for generic backend use. Since mirco-operations are all in C, they are compiled beforehand
and executed by the host machine {(most cases, x86) 171, While work is being done to make a
generic translator which would create common micro-operations, QEMU currently has
predefined the mirco-opérations for each emulated processor. In a virtual environment, the
host machine codes corresponding to the micro-operations are stored in a translation buffer.
Translation continues until a branching.operation is found, at which point the host code is

executed and cached in case of reuse [,

A guide provided by Professor Heng Yin to manipulate QEMU [1% was modified
for the purpose of tracing(observing the behavior of) processes running. The guide pointed in
the direction of the file for translating 1386 target instructions. In this simulation, the guest,
that is, the target was NetBSD(another unix-based OS) and the host was Fedora 14. The first
step was to compile and run QEMU, and then execute full system emulation. An important
source file which handles dynamic translation in machine emulation is “translate.c”. In each
supported processor, a different translate.c found. Hence, in this case, translate.c within the
target-i386 folder is the one to modify. Within translate.c, there is a function which is used to
disassemble the instruction for translation and then puts the code into the translated code:
cache. This functien is called repeatedly while executing a process, which would have been
broken down and translated line by line. The function is known as “disas_insn” which takes
in a parameter of the start of the program counter. It would not be advisable to just insert a
function into the translate.c file, as disas_insn is only called at translation time. So, you

predefine a trace fimction in a separate area(here “op_helper.c” and .h) and then have it be

called within disas_insn "%, The guide provided had premade images, and precompiled
versions of QEMU, which were used initially to test if this method would be successful.
After a successful attempt, the next phase involved using direct resources rather than
precompiled possibly manipulated versions. Downloads from the QEMU site we used and
compiled before execution. The tracer function in op_helper initially only printed an arbitrary
statement every time the disassemble instruction function was called. Future stages would
have included printing the program counter value, then making a tracer function which would
retrieve the process ID and print it. The present research ended at researching different

operation ¢odes which an instruction was translated to.
Conclusion

Out of the three virtualization applications used, QEMU was found to be the best in terms of
system compatible use, and usability. It is the most generic of the three as it does not require
any modifications to the host operating system apart from installation, and can still be used
for the goal of tracing and observing behavior of processes. A tracer function was
implemented by another student who was added to this project. The present research provides
evidence that QEMU could be used to fulfill the goal of observing and tracing the behavior
of processes in a virtual environment, and future implementations of Virtual Machine.

Introspection Intrusion Detection Systems.

References

Bishop. Matthew, "What is Computer Security?" Securily & Privacy, IEEE (2003): Web: 20 Nov 2010.
<iegexplore.icee.orp/iel 5/8(H3/26429/01 176998.pdf>.

Smith, James E., and Ravi Nair, "The Architecture of Virtual M‘a‘;:hi‘nes.;' IEEE Computer Soiety. (2005): 32-38.
Print.

Nance, Kara, Brian Hay, and Matt Bishop. “Investigating the Implications of Virtual Machine Intrespection for
Digital Porensics.” JEEE Computer Soctety. (2009): 1024-1029. Print,

Garfinkle, Tal, -and Mendel Rosenblum. "A Virtual Machine Introspection Based Architecture for Intrusion
Detection.” dssociation for Computing Machinery. (2003): Print,

Jones; Stephen T., Andrea C. Arpaci-Dusseau, and Remzt H. Arpaci-Dusseau. "Antfarm: Tracking Proceses it a
Virtual Machine Environment." Asseciation for Computing Muchinery. {2006): Print.

Payne, Bryan D., Martim D. P. de A. Carborie, and Wenke Lee. "Secure and Flexibie Monitoring of Virtual
Machines." [EEE Compier Society. {2007); 385 - 397 . Print.

Nakamoto, Yukikazu, Tatsunori Osaki, and Issei Abe. "Proposing Universal Exeeution Trace Framework for
Embedded Software using QEMU." IEEE Computer Society. (2009): Print.

VMware. "Understanding Full Virtualization, Paravittualization, and Hardware Assist." ¥Mware - White Paper
(2007): n. pag. Web.

Yir, Heng. "Virualization." Syracuse University. New York, Syracuse. 17/02/2011. Lecturs.<
http:/fles.syr.edu/facuity/tang/Teaching/CSE7Y 1 -Spring] 1/PPT/CSE791 Cloud-0224-Virtualization. pdf>

Yin, Heng. "Hacking With QEMU and KVM." Syracuse University, 2010. Web:
<wviw, ecs.syr.edw/aeulty/yin/Teaching/ TC2010/Projd . pdf>,

. "Xen Overview." Xen. Xen, 14/03/2011. Web. 3 Jan 201 1. <htip//wiki.xensource.comvxenwiki/XenOverview>.

Martinez ., Edecfo. "PlayStation Netwark breach has cost Sony §171 million.” CBS News 24 May 2011, Web.
httpi/fwww.cbsnews.com/8391-504083_162-2006562 1-504083 html

. Seybold, Patrick. "Update on PlayStation Netwark arid Qriocity.” PlayStaion. Sony, 26 Apr. 2011, Weh,

<http://blog.us.playstation.com/201 1/04/26/updidte-on-playstation-network-and-griecity/>.

Warman, Matthew. "Fircsheep: Firefox extension exposes Facebook and Twitter passwords.” Newspaper., The
Telegraph, 25 Oct 2010. Web, 20 Nov 2010. <htip://www.telegraph.co.uk/technology/news/8085354/Firesheep-
Firefox-cxtension-exposes-Facebook-and-Twitter-passwords. htmi>,

Richmiond, Riva. "Attacker That Sharpened Facebook’s Defenses.” Newspaper. The New York Times, 14
November. Web. 18 Nov Z016.
<http://www.niytimes.com/2010/11/15/technology/1 Sworm, html?pagewanted=1& _r=l&ref=computer_security>.

"VirtualBox User Manual.” Oracle. VirtualBox, 14/03/2011. Web. .3 Jan 2011,
<http:/fwww.virtualbox.org/manual/tUserManual html>,

. "Abeut QEMU" QEMU. QEMU, 14/03/2011. Web. 3 Jan 2011. <http://wiki:gemu.ori/Main Page>.

Beilard, Fabrice. "QEML). a ¥ast and Portabie Dynamic Translator." [EEE Computer Society. (2005): Print.

