University of California, Irvine
Multi-User Interaction with Tiled Rear Projection Display Walls
THESIS

Submitted in partial satisfaction of the requirements for Donald Bren School of Information and
Computer Science Honors Program

By
Kitty Ho
Thesis Committee:
Professor Aditi Majumder, Chair

Duy Lai

ACKNOWLEDGEMENTS

First and forémost, 1 offer my sincerest gratitude to my advisor, Aditi Majumder, who supported
me for two years in the University of Califomia, Irvine Coinputer Graphics Group. She offered
me a chance to take a computer graphics graduate course, and introduced me to the graduate
students in the computer graphics group. She also allowed me to. work on this exciting project in
the Calit2 Computer Graphics Lab. Without her help and support, I would not have this
opportunity and experience on working on research under Donald Bren Schoel of ICS Honors
Program.

I also would like to thank Professor Gopi Meenakshisundaram, who exposed me to many
opportunities in different projects in the computer graphics group including.cell segmentation
and automobile computer vision system.

I would like to thank all the graduate students, especially Duy Lai, in the Computer Graphics
Research group who hielped me through my research career and gave me so many ideas and
advice,

ABSTRACT OF THE THESIS
Multi-User Interaction with Tiled Rear Projection Display Walls
By
Kitty Ho
Bachelor of Science in Information and Computer Science

University of California, Irvine, 2011

Duy Lai
Ph.D. in Computer Science
University of California, Irvine, 2010

Professor Aditi Majumder, Chair

Previous work has developed the first distributed paradigm for multiple users to interact
simultaneously with large tiled rear projection display walls. The paradigm allows scalability
across different 2D applications, interaction modalities, displays, and users. Earlier work utilizes
a nine projector display to demonstrate four challenging 2D applications on the scalability of the
method: map visualizations, virtual graffiti, virtual bulletin boards, and emergency management
system. Our research group proposes a new challenge to this large tiled rear projection display
wall, in which users are allowed to interact with 3D models on a six projector display. We
present the challenges faced switching from 2D applications to 3D model display, and our
improvements on the communication between hand gesture detection and the application

resporise.

1. Introduction
Large display walls have been widely used in different applications such as visualization,
entertainment, training, and simulation. Multi-projector display walls allow lower
resolution projeciors to present quality images on a large-scale display wall. This has
brought our group's attention to create a scalable distributed paradigm for multi-user
interaction with tiled rear projection display walls. In previous work, our research group
has. developed a distributed network of plug-and play projectors (PPPs). Each PPP
consists of a projector, a camera, and a communication and computation unit, that is
simulated by a computer[1]. It is used for the detection of hénd gestures and
communication among the PPPs in order to create & seamless multi-projector display that

fesponds to a user’s hand gestures.

Presenting 3D Models on a single 2D display has been a significant focus in different
applications for the past decade. Our interactive multi-user display wall is not an
exception. In this paper, we propose a new application that displays 3D models on the
display wall which also allows users to interact with it. This thesis is broken down in to
five sections: Previous Research, Main Contributions, C++ Network Systetn Application,

Results, and Conclusion te have further explanations.

Figure 1: This figure shows some of the applications in action that-was developed in the previous research.
There are four different 2D applications that are shown in this image which will be discuss later in this
thesis.

2. Previous Research

Earlier work has focused on the following contributions:

1. Designing single program multiple data (SPMD), an algorithm that can easily scale to
multiple projectors. In other words, adding and removing PPPs to reconfigure the
display would not cause any changes to the interaction algorithmi[1].

2. Developing four different 2D applications that work independently. Each application
has different reaction to different hand gestures. This allows future work to develop
different 2D applications, and also implies that we can create different 3D
applications independently.

3. Designing a distributive algorithm to allocate the loads of handling multiple user

interaciions on to different PPPs.

2.1. Plug-and-Play Projector (PPPs)
The plug-and-play projector is consists of several components: AnEpson projector
with a resolution of 1024 x 768, a camera covered by infrared an filter that acts as an
“eye™ for detecting hand gestures on the display wall figure 2, an infrared illuminator
to detect the actual hand gestures from the images taken by the camera, and a wireless
communication unit that allows each PPP unit to communicate with the others and

share interaction, reaction information[2].

Figure 2: Tap: The prototype PPP with a projector that contains communication and computatien unit
in it, a caniera cévered by infrafed illuminater and an infrared illuminater. Battom: The set up of &
netwark of ning PPPs.

2.2, Single Program Multiple Data (SPMD)
A single program multiple data (SPMD) is a single program that nins on different
nodes and performs similar tasks. Each PPP is a node of a homography graph [3), in
which an edge is established between the nodes when the PPPs are adjacent to each
other. If an edge exists between the two nodes, it means that they are going to
communicate with éach other for the interaction information. Each PPP contains a
SPMD algorithm program that detects adjacent PPPs, and performs different actions

depending on the hand gestures detected. Adding or removing PPPs will not affect the

interaction because the detection of the PPPs. at the beginning would inform the PPPs
-about their.adjacent PPPs. Therefore, the PPPs know the destination of the message

they will send to when handling reaction information.

FPRL PRPY [
0 imastls | 20 JasE s | N 2 avaseis
Apiicinon ¢ raage 1 Applicaton <£=uv A Aoplication
PN N PN
PPPA {,L POPS {} [0 {}
0 WuvasEls 2D lavasE LB 20 lvaSE LS
Application message Application e Application
N VAN <
PPRY ooRA PPPY ! !5
D MveSELE 2D v SE L6 2D lava St 16
Application message Applcation mesage Applcation

Figure 3: Lefi: The order of PPP node present in a homography graph. Right: Each PPP runs the same
2D Java SE 1.6. application and send messages to its neighbors.
2.3, Different Hand Postures
Our main goal for the display wall is to have multi-user interaction. Each application can
define its own interpretation for each posture. Our applications use four main gestures:
two fingers, one finger, open hand, and closed hand. In section 2.4, we are going to

discuss what each hand gesture does in each application.

Figure 4: From left to right: Two Finger Posture, One Finger Posture, Open Hand, and Closed Hand.

Figure 5: [mages that the camera sees under infrared cover. From left to right: infrared background with ng
hand gesture detection, epen hand, closed hand.

2.4. Four 2D Applications
This section introduces the four different applications that were developed and how

the different hand gestures create different reactions.

2.4.1. Map Visualization
This application gets actual map data from the Google Map server, which
allows users to view 2D Google Maps in real time on the display walls.
Touching the screen with two fingers is used to change the displayed layer,
and touching it with one finger is used to open and close, as well as change
the size of individual working windows. Twisting an open hand on the display
wall will change the zoom level of the map. Finally, any hand postures

movements (up, down, left, right) can move the map.

Figure 6. Top: Different views of Google Map on the display walls, changed hy using two fingers: Bottom Left:
Drawing a window on the map using one finger, Bottom Right: A zoom in view with two windows are drawn with
different views of Google Map
2.4.2, Visual Graffiti
This application allows users to draw on the display walls using their fingers.
Touching the screen with a finger, a closed hand, or an open hand is used to
draw lines on the screen. The thickness of the lines depends on the thickness
of the user’s fingers and the size of the user’s hand. Touching the screen with
two fingers is used to bring up a color palette, wherein one: finger can then be

used to select a color from the palette,

Figure 7: Left: Drawing on the graffiti application using one finger. Right: Bring up a color
palette with two fingers.

2.4.3. Visual Bulletin Board
This application is used for posting up different bulletins on the display walls.
In our prototype, there are only a set number of notification types that can be:
posted on the board. Touching the screen with an open hand is used to load a
new bulletin, or remove an existing bulletin. Touching an existing bulletin

with ong fingeérwill either highlight or un-highlight the bulletin. Any of the

hand gestures. can be used to move the bulletin.

Figure 8: Left: Bullétin Board Application on the display wall. Middle: Highlighted bulletin using orie finger. Right:
Different size of bulletin after twisting a closed hand on the bulletin.

24.4. Emergency Management System
This application is used for allowing users to identify a route on the map
during emergencies, and record the number of incident occurrences on the
map. In our prototype, our map is set to the University of California, Irvine.
Touching the screen with one finger allows user to create a route, open an
options menu, and change an option in the menu. Touching it with an open
hand is to delete part of the emergency route. Touching it with two fingers is
used to create or deléte an incident mark. Note that the map of the emergency

management for this application does not move.

Figure 9; Top Lefi: Emergency Managemtent System with University of California, Irvine map on it. Top Right:
Creating an incident mark with two fingers. Bottom Lefi: Drawing an emergency route using one finger, Bottom
Right: Changing the option menu using one finger.
2.5, Distributed Gestur¢ Management
The distributed network of PPPs has no centralized server that manages the observed
actions of the user, Therefore, each PPP is responsible for managing the actions that
occur within its domain. In the previous work, when the gesture motion spans across
multiple PPPs, the motion is tracked and information about the action is sent from
one PPP to the next.
Action: When each PPP detects a hand gesture, it is defined as an action that contains.
a PPP identification number, gesture type (which includes the four postures
mentioned in section 2.3), location on the display wall (x and y coordinate on the

global coordinate system), and a timestamp. Each action is queued into a priority

queue according to the timestamp in which the PPP received the action of the hand
gesture.

Event: Each PPP will go through the priority list queue and execute each action
which creates an event for different application. An example of the event can be
changing the zooming level of the map visualization, or creating an incident mark on
the emergency management system. An event also considers the location of the action;
if the location overlaps with another PPP, then the current PPP sends the action to the
respective PPP in order for the other PPP to prepare for the action. Another use of
location is to determine whether or not the hand gesture came from a single user or
multiple users. If the hand gesturé locations are close enough and the speed and
acceleration of the previous gesture matches, then the event will continue with the
previous event. For instance, in the graffiti application, it will continue drawing 3 line;

otherwise it creates a new line at the new location.

2.6. Implementation
The detection of the hand gestures, laser-based interaction, camera image processing
and recognition is performed in Matiab. The home-grown simple Matlab software
detects the hand, computes its location, size and orientation, and determines its type
by matching it to an existing hand posture library[1]. The distributed interaction
framework is implemented using Java SE 1.6. Before the program starts, users should
have already specified the number of PPP that will be used, and each PPP waits for a

connection and establishes their relation with adjacent PPPs. Once the connection is

established, the PPPs start receiving messages from the Matlab software and perform

reactions as explained in section 2.5.

3. Main Contributions
We use the PPPs and hand gesture detection in Matlab that was established in earlier
work and build a new distributed. interaction paradigm with 3D models on a 2D multi-
projector display. For interaction, we propose-a conversion on implementation from using
Java SE 1.6 to C++ in Microsoft Visual Studio 2010. The highlights of our conversion
are as follows.

1. In earlier work, we nsed Java SE 1.6 built-in library to set up the network
connections. We introduce the POCO C++ Network System Library into our
work in order to establish the communications between Matlab hand gesture
detection and the C++ application.

2. Similarly, the communication among the PPP units needed to be reestablished
using the same concepts.

3. Since we are working with 3D models, we need to incorporate the OpenGL
library into-our code. This allows us to apply multi-pass rendeting in order to

match the view frustum from each PPP onte one global coordinate system.

4. C++ Network System Application, conversion from Java SE 1.6
In this section, we describe the development of the C++ application and the usage of the
POCO Library, mentioned in section 3, more in depth. Figure 10 shows the overview of

the network system in the C++ application.

Matiab

Detection
&
O
PopY] M2 Y
Muiiltithreading
PPP Lot
A?gp)\icaﬂm. Muitithreading
i #oe5 PPPCH]
Multithreading Application
PPP T+
Appfication
| #PPE

Figure 10: The overview ofthe C++ Network System Application
4.1. Network & PPP Information Configuration Files

A configuration file is commeonly used to specify parameters that a computer program

needs in order to correctly initialize itself.

We use the configuration files that were used in the previous Java SE 1.6 2D

application. The configuration file contains the following information for each PPP:

PPP Identification number

IP Address for this specific PPP
Remote Port

Local Port

Alpha Mask

Quick Response Image

Quick Response Code Image

Monitor (PPP’s resolution) width and height
9. Texture’s width and height

10. Texture offset

11. Global Coordinate location of the screen
12. 3x3 Transformation Matrix

I N N

Each PPP has iis own configuration file because each PPP has its own network
connection IP address, remote port, local port, transformation matrix, and location.

An example of the configuration is as follows.

0

touchl.calit?2.uci.edu

37000

1231

whtl.png

grl. jp.g

grecl.jpg

1024 758

1022 749

-694 -450

-29. 000677 -28.853417
1024.000000 0.008000
1045.477908 772.140010
—0.000000 768.000000
1.060700 0.038676 723.020000
0.028188 1.069400 462.270000
0.000031 0.000009 1.024400

-692.877012 -440.95871%4

4.2. POCO C++ Network System Library
POCOQ stands for Portable Components, which is a collection of open source class
libraries. This library allows us to build a network connection and to receive the

message from Matlab via the User Datagram Protocol (I/DP) to the C++ application.

4.2.1. Establishing a connection between Matlab and C-++ application
1. First, we use the POCO library to create a socket address using the IP address
that was given in the configuration file.
2. Next, we create a datagram socket that acts as a receiver that keeps listening

for UDP packets sent from the Matlab software.

The code below achieves on building a connection and setting the C++
application up as a receiver, and having it wait for messages from the Matlab
application.
Poco: :Net: : SocketAddress sa(Poco::Net::IPAddress{), porti};
Poco: :Net: :DatagramSocket dgs{sa);
vhar buffer[1024];
tor (#4)
{
Poco: :Net: : SocketRddress sender;
int n = dgs.receiveFrom{buffer, sizeot{buffer)-1,sender};
buffer[n] = '\0';
4.2.2. Multi-thread Application for PPP
In the previous work, each PPP needs to run its own application in order to
establish connections and communicate with each other. Using the POCO
Multithreading Library reduces the number of applications running
simultaneously in half. There is a Runnable class in the POCO library which
provides an entry point for a thread. We can add N number of PPPs on the

display, but we only have two PPPs running on each computer. Therefore, in

our application, we only create two threads for two PPPs.

The code below is a multi-threading-application that sits on each computer
connected to two projectors. The application has two threads, one thread per
PPP. The program accesses it repeatedly that receives data coming from

Matlab.

dataGramRunnablel runnablel;
dataGramRunnable? runnable?;

Poco: :Thread threadl;
Poca: :Thread thread?2;

threadl.start (runnablel) ;
thread?. start (runnable2) ;

threadl. jein() ;
thread?2.join(};

Figure 11: After the application has launched, two threads for each application become the listener and wait for
Matiab and messages from other PPP’s.

4.2.3. Communication among PPPs

When a PPP receives 4 message from Matlab, it needs to consider whether not
an action needs to pass onto its neighbors. We establish the: communication
among the PPPs using an external POCO Network System Library as
described in section 4.2.1 and a PPP neighbor configuration file; which is
different from the configuration file mention in Section 4.1. The PPP neighbor
configuration file contains the following information:

[. The total number of PPPs

2. Each PPP’s IP address and port number that receives neighbor’s

message

3. The list of neighbors for each PPP

An example of the PPP neighbor configuration is as follows.

touchl.calit2,uci.edu 2222
teuchl.calit?.uci.edu 2223
touchd.calit2.uci.edu 2222
touch?,calit2,uei.edu 2222
touch2.calit2.uei.edu 2223
touchd.calit2.uci.edu 2223

56

U W N oYU e W N M
Lt
o

NN ==
[RECNET R

WNN WD N
Sy B G O S

The program starts by parsing the two configuration files which allows the
program to gather information from the PPPs, including the list of their
neighbors. As mentioned in section 4.2:2, each PPP listens to the incoming
messages from Matlab. The code below shows that it also listens to incoming
packets from other PPPs, and then parses the packet and creates a timestamp
for the packet when it arrives to organize the order of action. Finally, it sends
the packet to its neighbors via specific port locations specified from the PPP

neighbor configuration.

for (list<NeighborData*>::iterator it =
secondPPP->getNeighborbata () ->begint) ;
it != secondPPP->getNeilghborData (j->end{);it++)

NeighborData* nd = *it;

Pocos; :Net: :SocketAddress saZ (Poco::Net::IPAddress (), Q);
Poco: :Net: : SocketAddress sa3 (nd->ipAddress, nd->port);
Poco: :Net::DatagramSocket dgs2{sa2);

dygs2, sendTo (buffer, sizeof{buffer)-1,sa3);

4.3.3D Model Rendering
This section goes over the basics of 3D models rendering and our approach on multi-
pass rendering to achieve 3D models rendering onto the tiled rear projector display

wall.

4.3.1. Basic 3D Models Rendering
3D computer graphics composed of three steps: Modeling, Analysis, and
Rendering. Modeling is the computer representation of the 3D world, analysis is
to improve the quality and speed of the 3D object representations, and rendering
is to generate 2D images of the 3D world; in other words, displaying 3D models
onto a 2D plane. Our main purpose is to place 3D object or scene representations
onto a 2D image representation. The following explains the four different steps

which we called rendering pipeline to achieve our goal.

1. Model-view Transformation is to place the object to the world eoordinate with

the desired position, scale, and orientation,

Maodel Transformation

tbjest o slaote

it ool an

Zw

Werld Coordinate

2. View Transformation is to place an object into the view point of the eye. The
position of the eye should align with the origin with normal to the image plane
with negative Z axis.and view up vector with positive Y axis. The view

transformation can be achieved by rotation and translation.

View Transformation

Quradr o1 the Viawpcirt

3. Projection transformation is to show the projection of an object on a farther
plane. In other words, it is transforming the view frustum along with the
objects inside it into a cuboid with unit square faces on the near and far plane:

and projecting the objects on the near plane.

Projection Transformation

View frustum

Zw World Coosdinate

4. Clipping and Vertex Interpolation of Attributes
Clipping is to remove part of the object that is outside of the view frostum.
When clipping an object, it creates new vertex on the boundary for the object
-and each vertex needs to have attributes. Interpolation is a way to find out the

attributes of the new vertex by using the original vertex.

Clipping & Vertex Interpolation of Attributes

New Vertex
Using interpaiation to
f - find the atteibytes
v (eolor, position, and etr)

Cllpp!ngthis part

4.3.2. Multi-Pass Rendering
When rendering on 3D modéls on a 2D display, we called the region of
space that we see as the view frustum. A large tiled projector based
display is made up of multiple projectors. Such a display has a global
view frustum that spans across all the projectors. In addition, each
projector also has its own view frustum, which represents a small region
of the global view frustum. Our goal for multi-pass rendering is to match
each PPP’s view frustum onto the global view frustum for the large

display.

Given a transformation matrix which does a one-to-one pixel match from

each PPP’s local coordinate system to the global coordinate system. Each

PPP renders the small portion of the global view frustum. After the PPP
renders its own portion of the image, it applies the transformation matrix
onto the small image, which takes the image from local coordinate system

to global coordinate system.

MRS SrlAM

K pres { PPP2 Jeees
bl ' [AN) ']y ' NI
1536 = o »
L PPPa | PPPs J| ezs
0 ' Rkt R ' HEARS N ' DAE
3072

Figure 12: The overview of global coordinate system and local coordinate system. The
blue is- the global coordinate system of the large display. The red is the loeal coordinate
system for each PPP. For instance, for PPP2, when local coordinate is 0, it is actually
1024 on the global coordinate system.

The multi-pass algorithm that provides the global coordinate poiats for
each pixel:
Create an empty texture.
For each pixel on the local gacrdinate system
Take the inverse of the given transformation matrix
Multiply with the local coordinate pixel
Normalize the result

Copy the pixel data to the new texture at the
calculated position.

This algorithm is needed because the view frustum of the whole display is
not a perfect rectangular shape to' compensate the distortion of the

projectors.

5. Results
‘We have prototyped a 3D city model collaborative application using this C++ conversion
on our 8 x 4" display wall made of @ 3 x 2 array of six projectors. The city model
contains ten million triangles (about 4GB of data). Users can use a laser pointer to move
from left to right or right to left to pan the city models respectively. Moving the laser
peinter from down to up zooms-in the city model in the Z direction of the display wall

and moving the laser pointer from up to down zooms out from the city models.

Figure 13: 3D City Models with ten million triangles are rendered on the 2D display wall. The right image is'a
zoomed out view of the image on the left.

6. Conclusion

Transitioning from a 2D system to a 3D system presents additional challenges that must
be handles. Simply 2D gestures may take on a whole new meaning in 3D. New system
architecture must be implemented to optimize system resources in order to maintain
performance. System configurations and data layout must be redesigned to support more
resource intensive applications.

To enhance performance, applications were written in C++; an external POCO C++
Library is utilized to to improve a couple things: (1) reduce the amount of applications

running simultaneously for the PPP’s in half, (2) converting Java SE 1.6 network

connection concepts into C++, and (3) allowing PPP’s to communicate with each other
using a different remote port. The multi-pass rendering allows 3D city models to match
the view frustum of the 8' x 4° display and have each PPP display the right portion of the
images including the overlapping part of the PPPs.

In the future we would like to extend our work to create more 3D applications. We
believe that we can use hand gestures to move the city models on the display: Wall.aﬁd
instead of panning left and right, we would like to have rotation of the city models.

Furthermore, we would like to allow users to create. 3D models on the display wall.

Biblography

[1] Pablo Roman, Maxim Lazarov, Aditi Majumder, 4 Saclable Distributed Paradigm for Multi-
User Interaction with Tiled Rear Projection Display Walls, IEEE Transactions on Visualization
and Computer Graphics, 2010.

[2] Maxim Lazarov, Hamed Pirsiavash, Behzad Sajadi, Uddipan Mukherjee, Aditi Majumder.
Data Handling Displays, IEEE/ACM International Workshop on Projector-Camera Systems
(Procams)

[3] H. Chen, R. Sukthankar, G. Wallace, and K. Li. Scaluble alignment of large-format multi-
projector displays using camera homography trees. Proe. of IEEE Vis, pages 339-346, 2002.

[4] E. Bhasker; R. Juang, and A. Majumder. Registration techniques for using imperfect and
partially calibrated devices in planar multi-projector displays. IEEE TVCG, pages 13681375,
2007.

[5] T.Grossman, R. Balakrishnan, G. Kurtenbach, G. W. Fitzmaurice, A. Khan, and W. Buxton,
Interaction techniques for 3d modeling on large displays. ACM Symposium on Interactive 3D
Graphics, pages 17— 23,2001,

[6] G. Humphreys, [. Buck, M. Eldridge, and P. Hanrahan. Distributed rendering for scalable
displays. Proceedings of IEEE Supercomputing, pages 129-140, 2000.

[7] A. Khan, G. Fitzmaurice, D. Almeida, N. Burtnyk, and G. Kurtenbach. A remote control
interface for large displays. ACM symposium on User interface software and technology, pages
127-136, 2004.

[8] 8. Malik, A. Ranjan, and R. Balakrishnan. Interacting with large displays from a distance
with vision-trackedmulti-finger gestural input. ACM symposium on User interface software and
technology, pages 43-52, 2005,

[9] D. Stadle, Tor-Magne, S. Hagen, J. M. Bjormdalen, and O. J. Anshus. Gesture-based, touch-
free multi-user gaming on wall-sized, highresolution tiled displays. 4th International Symposium
on Pervasive Gaming Applications, PerGames, pages 75-83, 2007.

University of California, Irvine
Automobile Computer Vision System
THESIS

Submitted in partial satisfaction of the requirements for Donald Bren School of Information and
Computer Science Honors Program

By
Kitty Ho
Thesis Committee:
Professor Gopi Meenakshisundaram, Chair

Jonathan Chu

ABSTRACT OF THE THESIS
Automobile Computer Vision
By
Kitty Ho.
Bachelor of Science in Information and Computer Science
Universtty of California, Irvine, 2011
Jonathan Chu
Bachelor of Science in Computer Science
University of California, Irvine, 2011

Professor Gopi Meenakshisundaram, Chair

At least ene car accident occurs everyday, and is a major issue that we need to address.
According to the car accident statistics released by the United States Department of
Transportation, there are about 43,000 deaths because of car accidents every year. This is.
a significant number that greatly needs to be reduced. The most people, the majority of
car accidents occur when the driver is not focused, but there also is a group of drivers
who have trouble differentiating the color of traffic lights even if they foeus, Drivers with
protanipia, deutcranopia, protanomaly, and deuteranomaly may have trouble
differentiating the colors of green and red, a big problem because these two colors are
universally used for traffic lights. Our main goal is to reduce these types of car accidents
as possible. For our project, we plan to build an embedded system that will improve
driver safety, serve as a defense mechanism against car accidents and also be extrapolated

to improve autonomous car development.

1. Introduction
The solution to help people differentiate the colors of the traffic lights is to build an
automobile vision system which is a portable, easy to use car/camera system that will be
able to read the color of traffic lights in real time, and relay that information to the driver
with an audio message played back in the car, similar to 2 GPS. This device will take
video of an intersection in real time with a camera connected to an embedded device
‘which we called eBox. The software will then process the video stream to determine the
color of the traffic light. Finally, the device provides an audio message to inform drivers
of the color of the traffic light. The main purpose of this device is to assist drivers who
are color blind, have color deficiency, and even normal drivers, to pay attention to the

color of traffic lights by providing audio messages.

This solution is best implemented as an embedded solution due to the fact that the device
needs to be portable so that the drivers can put it in their cars while driving. A software
application for a mobile device can be developed for smart phones with the same idea but
this will niot be the best solution because not all drivers have smart phones. In addition,
the quality of a smart phone’s camera might not be good enough for video streaming in
real time; Furthermore, video streaming and segmentation processes in real time uses a
lot of memory which can slow down different applications that are running on the phone
at the same time. Therefore, a separate embedded system that focuses on this ability is a
better solution to the problem. We develop image processing software on a personal

computer in Windows 7 Professional Platform to detect the color of circles through a web

camera in real time, and modify the Windows Embedded Compact 7 on a device called

eBox. We will go into more details in the following sections.

. Hardware Architecture

This section describes the hardware of the system, which includes the camera, a mini-

computer (eBox), speakers,-and display screen,

2.1. eBox-3310A-MSJK
The eBox is a compact computing device designed for applications where physical
space is limited. It includes a VESA mount, 512MB DDR2 RAM to provide
sufficient system memory support, Micro-SD slot, Compact Flash Slot, three high
bandwidth USB 2.0 slots, two RS-232 ports, Mini PCI Socket, Audio, Wireless LAN,
XGI Z9s video, and an Ultra-Low Power 1.0 GHz Vortex86DX System-On-Chip
with integrated /O peripherals. It supports Window Embedded CE 5.0, 6.0, and
Compact 7.

Fromt Connectors Oothne for eBox3310AMSIK

VAR o ,

CPSt MaoSD USB Mo Lmeat FWR ACTLED
Rear Conneciors Dutline for eBox-3310A-MSJK
DCPows fik PSZHBMS YGA RMSLW

4

Powes Swilh Sena Ports [Opbonal) Wareiess ANT iOptonal:

Figure 1: eBox Architecture

We believe that eBox is the best fit for our project due to the size (115 x 115 x 35mm)
of the eBox is small encugh to become a portable device in the car. It also supports
Windows Embedded Operating System, which provides an easier way to develop

image processing software in Windows Platform using C/C++,

2.2, Logitech Webcam Pro 9000
We use this specific webcam as our real time camera because it supperts high-
definition video up to 1600 x 1200, and take videos up to thirty frames per second.
The system requires a Windows operating system and a dual-core CPU with one

Gigabyte of random-access memory which fits the eBox specifications.

Figure 2: Left:: Logitech Webcam Pro 9000 Right: Lilliput 7 VGA LCD 619,

2.3, Lilliput 7 VGA LCD - 619
This is a 7-inch TFT LCD touch screen with resolution of 800 x 480 that is used to
display the output the Windows Embedded Compact 7 operating system and the

image processing software. This LCD display also contains speakers for audio cutput

greater than or equal to one hundred megawatt to provide audio messages that are

generated from the image processing software.

3. Windows Embedded Compact 7 Operating System
This operating system is a real-time operating system with ability to handle 32,000
concurrent processes and 2 Gigabyte memory footprint for each process. It provides
variety of packages such as latest networking, multimedia, communication technologies,
and etc. It also supports windows applications such as Internet Explorer, Windows Media
CODECs, and so on. The highlights of generating a Windows Embedded Compact 7

Operating System Image are as follows.

(LT -
1] Ouctlecamn — .
'_1 (- Sy 0. 452 o 250 Dwn) |
| Vet e S Fommts [T)
| Solastyscreas

At e detindt Wirdons CE spladh.

= we Ouplom, teuow

1 wsogTog
=71 D nat put « SO0 ING an the Sk
3 Face 2 BOOT. I Be on e dek;
Phoysicid video Modes [xameofts =i
Diigley pat - e -
! BrOwth e -
: N Unie “TEPG” a6 clevion gy it
T Usie cisstuen dueice e prafan. 4

[! Load mecki o e dipiad uw: e e
|

|| (Cem) =

Figure 3: Left: Windows Embedded Compact 7 Right: DiskPrep Bootldader Generator

1. We use the required software such as Microsoft Visual Studio 2008, Windows
Embedded Compact 7 CTP, My Window CE 7 SDK, AutoLaunch v100 x86 Compact
7, and CoreCon v100 Compact 7. Microsoft Visual Studio 2008 is the main

component for the platform builder, the other software are there for plug-ins and

additional features for the OS Design to have more feature and fits the requirements
of the eBox.

2. We configure the operating system by adding more components and drivers to it such
as keyboard and mouse, FTP Server, ATAPI Storage driver, Z9s-XGI Display driver,
VGA 1024x768 display driver, Ethernet driver, and USB ports driver.

3. Webuild and generate Compact 7 operating system runtime image by using
Microsoft Visual Studio 2008 IDE with the Operating system design project being

active and the result for the image file can be mounted onto the eBox device.

4. Image Processing Software
This section describes the functionality of software that is developed inside the processor.
The program takes the video as an input, it segments the traffic light using a segmentation
algorithm which will be discuss later in this thesis, and then perform color classification

to determine whether a traffic light is green, yellow, or red.

Figure 4: Our Image Processing Software Prototype with the color thresholding on the left and the video
taken from the webcam in real time on the right. The red circle shows that the red circle from the webcam
has been detected.

The three steps that we used for the software development are as follows:
1. Apply color thresholding using Open Source Computer Vision Library
(OpenCV) te image to extract regions of interest. This allows us to provide a
range of color for green, yellow, of red. In other words, we can block out any

colors not of interest to allow the software to be more focused.

Figure 5: Color thresholding example which block out everything except red.

2. Apply Gaussian Blur to image to reduce noisy artifacts. Since we do not really
need the details for every single pixel of the image, applying Gaussian blur

would prepare the software to identify the shapes of the objects.

Figure 6: Gaussian Blur on a image

3. Apply Hough Circle Transform to detect circles. This algorithm will be

discussed in more detatis in the next session.

4.1.Hough Circle Transform
In our software, we are only proposing to detector the colors of the circle stop lights
and not the arrows, which usually direct drivers to turn left or right. Hough Circle
Transform is used to determine the parameters of a circle when a number of points

that fall on the perimeter are known.

We use points on the perimeter of a circle to draw a circle. After drawing circles on
the perimeter, we will find that there is one point which all the circlés from the

perimeter would intersect and we know that is the center of the circle we are trying to

detect.
A A
r d >
£3ch poinl in Zeomane Spack (left] generaieh 2 CHCR b pRAMEN Sp3Ce [nght) The Qirties n
PAIrEtEr SPICE MLArSACt 2% 1h (0. b7 that if Ihi tanler i Gedmeltric Spact
Figure 7: Hough Circles Transformation
5. Results

We finished implementing the image processing software to detect the color of the stop

lights through a webcam in real time on a personal computer that runs in Windows 7

6.

Professional using the methods described in section 5. We also finished design the

Windows Embedded Compact 7 Operating System on the eBox.

Figure 8:-Our prototype Automobile Computer Vision System
Future Work
This project has not been completed yet, and the future work is as follows:
1. Writing a driver for the Logitech webcam for Windows Embedded System platform
2. Audio message needs to be recorded and embedded into the software after color
recognition is complete.

3. Implement the recognition of arrows at turning signals.

Conclusion

Automobile Computer Vision System will be a great success in the future. It is the first
in-car device that helps people with color blindness or color deficiency. By utilizing a
simple architecture, the device can be bought by each family. This research can be
invested as new product and increase the partnership with automobile industry and

appreciation from the customers.

Bibliography
[1] Shapiro, Linda and Stockman, George. “Computer Vision”, Prentice-Hall Inc. 2001

[2] Duda, R. O. and P. E. Hart, "Use of the Hough Transformation to Detect Lines and Curves in

Pictures," Comm. ACM, Vol. 15, pp. 11-15 (January, 1972)

[3] “Thresholding with an OpenCV Function”, OpenCV Documentation,

hitp://myopencv.wordpress.com/2008/04/09/thresholding-with-an-opencv-fumction/, April, 2008

[4] “Microsoft Windows Embedded Compact 7 Documentation”, Microsoft,
http:/ftwww.microsoft.com/windowsembedded/en-us/develop/windows-embedded-compact-7-for-

developers-overview.aspx

[5] “eBox-3310A-MSJK”, Intelligent Control on Processor,

http:/twww.embeddedpc.net/eBox3310AMSIK/

