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Abstract

With the rise of streaming media on the Internet and the YouTube revolution, the demand
for online videos is costing companies a significant amount of bandwidth. To alleviate the.
resources needed for streaming media, video compression removes redundant information and
minimizes the loss in quality experienced by a human audience. In response to the need of better
compression for high definition video across many eénvironments like the Internet; the ITU-T
Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG)
worked together to create a new modem standard called H.264.

H.264 Advanced Video Coding is the current standard in video compression. H.264 is a
powerful yet flexible approach to video encoding across many platforms and applications. H.264
encoders take the digital frames of a video and reduce the file size by applying predictions,
transforms, quantization, and bitstream encoding: Inter and intra-prediction are the two
-prediction modes that allow H.264 to achieve high performance in compression by reducing
redundancies across temporal and spatial domains. The advanced techniques used in H.264 will
provide a strong foundation for future video encoder standards.

The author investigated speeding up motion estimation in a H.264 software
implementation using multicore graphics processor (GPU) and optimizing the GPU code for
different types of memory. The overhead of memory transfers to the GPU proved to be siower

than the original CPU-based version.
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1. Introduction

With the rise of streaming media on the Internet and the YouTube revolution, many users
are watching videos every day. This new demand for videos is costing companies a significant
amount of bandwidth and energy to transfer HD 1080P quality video from servers to viewers. To
compensate for the large demand of streaming media, companies like Google and Netflix are
investing large amounts of resources into server farms, In terms of energy, the amount of
electricity used by data centers in the world in 2005 was 1% of the world’s electricity
consumption, with the U.S. accounting for 37% of this percentage [1]. Video compression i§
used to reduce file sizes with variable loss in clarity and video quality to help reduce the energy
requirements for streaming media. High performance compression algorithms reduce the energy
impact that each individual user makes when they view videos online. However, advanced
compression algorithms can require significantly more computations, especially for large HD
movies. After an introduction to video compression and H.264, this paper presents research done
by the author te port and optimize some of the most time consuming portions of the video
encoding algorithm on an NVIDIA GPU.
1.1 Purpose Of Compression

The goal of compression algorithms is to remove redundant information and minimize
the loss in quality experienced by a human audience. Compression algorithms can be applied to
audio, video, and image files. There are two versions of compression, lossy and lossless. Lossy
compression permanently loses some information during the encoding process at the benefit of
achieving high compression performance compared to lossless [2]. Losing information is not

detrimental since lossy compression can focus on only losing details that the humans cannot



detect. Thus both lossy and lossless compression types can have the same amount of visual
quality but they will differ greatly in file sizes and computational complexity.
2 What is H.264

H.264 Advanced Video Coding is the current standard in video compression [3]. H.264
codecs consist of an H.264 encoder and decoder pair. An encoder takes a video as input and
compresses it using the steps outlined in a specific video encoding algorithm. The decoder then
performs the opposite operations of the encoder to uncompress the video for viewing on an
output device such as a monitor or television [3]. H.264 encoders take the digital frames of a
video and reduce the file size by applying predictions, transforms, quantization, and bitstream
encoding [3].
2.1 The Creation of H.264

In response to the need of better compression for high definition video across many
environments like the Internet , the ITU-T Video Coding Experts Group (VCEG) and the
ISO/IEC Moving Picture Experts Group (MPEG) worked together to create a2 new modern
standard. These two groups together formed the Joint Video Team (JVT) in 2001 in order to
work together to develop H.264. The International Telecommunication Union (ITU) published
the first final draft of the paper, “Recommendation for H.264,” which was approved in May of
2003 [4]. These two groups have previously developed video coding standards. The
Recommendation paper only defines the decoder portion of H.264. More specifically, the JVT
define the syntax of an encoded H.264 bitstream and how the decoder should read this bitstream
[4]. The JVT do not define an encoder and therefore provide flexibility to implementers of a
H.264-compliant device. Although not including an encoder definition may seem detrimental for

establishing consistent H.264 encoder implementations, the JVT gives H 264 implementers



flexibility by providing many profiles and levels that allow H.264 devices to vary in H.264
compliance. [4]. For example, theré is no point in integrating the advanced video compression
features of H.264 ot a basic cell phone device. In a device with limited computational power and
memory space, these advanced features would not make sense. This is one of the many features
that make H.264 the current standard in video encoding today.
3. Overview of the H.264 Video Encoding Process

[2] provides a summary of the H.264 video encoding process. First, a video source is
provided as input to the H.264 encoder. H.264 processes video frames by first dividing them into
units called macroblocks. A macroblock is a 16x16 array of pixels. The encoder does not encode
the pixels of macrobiocks themselves, but instead forms predictions of macroblocks and encodes
residual macroblocks. Next, the samples of the residual macroblocks are transformed using an
integer transform, which approximates the discrete cosine transform [2]. The transform outputs
coefficients, which are then quantized. Quantization is the process of dividing the transformed
coefficients by an integer [2]. Note however that H.264 is a-lossy compression algorithm since
after quantization some of the lower order bits of the residual samples are removed [2]. Lastly,
the coefficients are passed to an entropy encoder that reduces redundancies of repeated
coefficients by applying statistical methods [2]. The entropy encoder outputs a bitstream that is
ready for decoding by an H.264 decoder, which will apply approximately the same process as the
encoder but in reverse.
3.1 How H.264 Macroblock Prediction works

H.264 is a block-based motion-compensated video encoding standard that achieves high
compression results by forming accurate predictions of macroblocks from either previously

coded frames or previously coded samples in the current frame [2]. To determine the best



prediction of the current macroblock, H.264 uses two different methods each with their own
benefits and costs: An accurate prediction will yield a small residual and thus will require fewer
bits to transmit [2].

3.1.1 Inter-prediction in H.264

The first method is called inter-prediction or motion-compensated prediction, and it achieves the
highest compression performance of the two methods by reducing the temporal redundancies
across different video frames [2]. Inter-prediction uses motion estimation and motion
compensation 1o create accurate predictions of macroblocks. Motion estimation is the process of
searching for the best match of the current macroblock in a previously coded frame [2]. After
finding the best match, motion compensation is the process of subtracting the best match from
the current macroblock to form a residual [2]. Rather than directly encode the actual pixels of a
frame in a video, video compression :achieves high compression ratios by only encoding the
differences between the current frame and a previously encoded one. The reasoning behind this
approach is that if you can accurately predict the current frame from a previous frame, then the
amount of energy that remains when you calculate their difference will be quite low which
results in fewer bits being required to predict the current macroblock [2]. H.264 improves on
previous standards by allowing more options for effective motion estimation, which further
reduces the entropy of residuals and lowers the overall bit rate of a video.

As an example of inter-prediction, imagine a video of a solid green ball moving across a
black background. The region that is changing is the location of the ball. Assuming it is moving
slowly, motion estimation can accurately predict the location of the ball in the next frame by
providing a vector that points to the location of this ball from the previous frame [2]. In both

frames, the tennis ball contains the exact same pixel values. The only difference is that the pixels



in the later frame are shifted in the direction of the ball. Motion compensation is accomplished
when the motion vector is provided as part of the prediction. In this example, the residual would
be zero since the tennis ball is the same in both frames. The H.264 encoder would transmit both
the residual block and motion vector to be transformed, quantized, and entropy encoded [2].
3.1.2 Intra-prediction in H.264

Intra-prediction focuses on reducing spatial redundancies within a single frame. Whereas
inter-prediction makes use of motion estimation to search for prediction candidates, intra-
prediction uses spatial extrapolation to form predictions of a macroblock. Intra prediction uses
previously coded neighboring pixels surrounding the current macroblock to extrapolate a
prediction [2]. H.264 allows many different extrapolation modes to help minimize the cost of this
prediction, However, intra-prediction makes less accurate predictions when compared to inter-
prediction and therefore is usually only used to establish the first reference frame in a set of
frames to be encoded [2].

An example of intra-prediction is a blank wall in a room with gradually changing
lighting. The lighting will gradually change the color of the wall from dark to light. This forms
gradients that are ideal for spatial extrapolation since the pixels will be highly correlated with
each other [2]. As the light changes; the pixels along the wall will change in a specific order that
can be accurately predicted by spatial prediction.

3.2 Why H.264?

H 264 is the current standard in video encoding because of its ability to reduce file sizes-
from up to 50% compared to the previous standards [2]. The JVT intended H264 tobe a
powerful yet flexible approach to videc encoding across many platforms. H.264 contains a set of

profiles that allow the H.264 implementers to take into account how much compression and



computational power the videos will require. There are many profiles that fall within the full
range of devices [2]. This is why many applications such as video conferencing, streaming HD
broadcasts, Blu Ray, and cell phones can all use H.264 for video compression.

4. Personal Undergraduate Research on H.264,

The purpose of this undergraduate research project is to speed up the H 264 video
encoding process by using a graphics processing unit (GPU) to find the best prediction in motion
estimation for inter-prediction.

4.1 Research Tools and Devices

The H.264 software modified for this project was 464 .h264ref from SPEC CPU2006,
which is based on version 9.3 of the H.264 AVC reference implementation created by the JVT
[5]. Gprof was used to profile the H.264 video encoding of “foreman_qcif yuv” using the main
profile parameter set [5]. The H.264 binary was executed using the command, “./h264refO3 -d
foreman_ref encoder_main.cfg.” The tests were run on an Ubuntu Linux 11.04 machine with a
2.13GHz Intel® Core™2 Duo processor, 1 GB of memory, and a NVIDIA GT 220 graphics
card with 48 CUDA cores. For GPU programming NVIDIA provides the CUDA Toolkit 3.2,
which contains the CUDA compiler and the Visual Profiler for analyzing the performance of
kernel functions that execute on the GPU.

4.2 Related Research on Optimizing H.264

Although H 264 can achieve impressive compression performance, the advanced
algorithms require significant computations for large video files, which can take much longer to
encode than previous video encoding standards. Research on H.264 focuses on reducing
computational requirements and video encoding time by speeding up either intra-prediction or

inter-prediction.



4.2.1 Intra-Prediction Optimizations

‘The authors of [6] discuss how H.264 uses a rate-distortion optimization (RDO)
technique to determine the best encoding mode for a specific macroblock. H.264 uses a
Lagrangian RDQO method for intra-prediction to sequentiafly compare up to 592 RD
computations before choosing the intra-mode that minimizes the bits required to predict the
current macroblock [6]. The authors of [6] present an algorithmic solution using fast mode
selection and early RDO calculation termination to reduce the number of RD computations
necessary for finding the best intra-prediction mode. In addition, for encoding Predictive-frames.
the best prediction mode was chosen after considering both inter and intra-prediction modes [6].
Since both prediction modes are considered, any speed up achieved in the intra-prediction
portion can benefit inter-prediction as well.
4,2.2 Inter-Prediction Optimizations

There is a significant amount of research on motion estimation because it accounts for
most of the encoding time in H.264 [7,8]. The authors of [7] state that when running the H.264
baseline profile at level 3.1 in their experiments, motion estimation accounts for 92% of the
encoding time. To speed up motion estimation, the authors of {7] implement changes to the
algorithm to remove some dependencies in order to pipeline the motion estimation that occurs
between successive macroblocks. In contrast, [8] performs motion estimation on a down-
sampled image and use the motion vectors found in the smaller pictures to estimate the motion
vector predictions on larger version of the images. This improves the cost estimates over
implementations that ignore the prediction component completely [8]. Interestingly the down-
sampling was performed on a GPU using NVIDIA’s CUDA architecture.

4.3 Brief Introduction to NVIDIA’s CUDA Architecture



Traditionally programming on GPU’s required learning a graphics programming
language such as OpenGL. The languages were made for performing graphics, and were not
well-suited for non-graphics purposes [9]. To make it easier to program GPUs, NVIDIA
launched in 2006 a new software and hardware architecture for their graphics cards called
Compute Unified Device Architecture (CUDA) [10].

CUDA has enabled a large increase in the popularity of General Purpoese Computation on
GPUs (GPGPU). CUDA provides & set of abstractions that allow programmers to avoid
representing scientific applications as graphic applications [9]. There is a low leaming curve for
CUDA because the programming language is an extended version of C [9]. CUDA gives
programmers access to the resources on the GPU such as shared and global memory, as well as
easy to use macros for tasks such as CPU to GPU memory transfers and starting functions on the
GPU, which are called kernels [9,10].

4.4 Research Methodology

To find the most called functions in the H 264 program, the parameter set called main

profile was analyzed using gprof. The two most called functions were both related to motion

estimation.
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Figure 1. Flat Profile Log of “gprof h264refO3 gmon0O3.out —p”
Each function contained a parallel loop that was identified as a possible candidate for speed up

on the GPU. The author opted to work on the smaller of the two loops inside the function,




FastFullPelBlockMotionSearch, since the function was called over two million times and
appeared to have lower data transfer requirements.
4.4.1 Data Dependency Considerations

One problem with coprocessing between a GPU and a CPU is data dependencies. The
GPU and CPU do not share memory spaces [10]. For a function to execute on a GPU, all of the
necessary data must be transferred from the CPU to the DRAM of the GPU. Although a GPU is
specialized for highly parallel computations, the data transfer overhead can cause a GPU solution
to become much slower than a CPU solution [10]. Therefore it is important to consider how
much data transfer is required for each kernel call. The author determined that out of four arrays
of data referenced in the loop, only one array changes prior to each kernel call. The other three
arrays remain constant throughout the encoding and therefore only need to be transferred to the
GPU memory once, The array that changes is an array of residual costs in the form of sums of
absolute differences (SAD). Before each kernel call, the array must be transferred from the CPU
to the GPU.

In addition to the SAD array, five integers need to be sent to the GPU prior to each kernel
call. The author had two options for transferring the five integers since the memory required for
five integers is not large. The first option was to pack the five integers into an array and transfer
the array in the same manner as the SAD array. The second option was to pass the integers as
parameters to the kernel function. Any parameters passed as arguments to the kernel function are
stored in shared memory in each thread block on the GPU. Although shared memory is much
faster than global memory because it is on-chip, the overhead of copying the arguments to each
thread block and the possibility of bank conflicts can reduce the performance of shared memory

[10]. There will be two versions of each kernel function to compare the two options in térms of
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same results, the next step was to optimize the code on the GPU to perform faster than the CPU
version.
4.4.3 Timing Methods

The author received timing results using the techniques in [11]. The paraltel loop on the
CPU was timed using the “clock gettime” function with parameter “CLOCK_REALTIME.” The
CPU timer had a resolution of ten milliseconds whereas the timer on the GPU has a resolution of
half a microsecond. The kernel function was timed using both the GPU and CPU timers. The
CUDA Visual Profiler also provides timing of the kemnel, but the results differ from the methods
in [11]: It is possible that the CUDA profiler is. more accurate than [11] and therefore provides a
better picture in terms of kernel performance.
4.4.4 Kernel Functions with Difféerent Memory Types

The author created three different GPU impiementations of the parallel loop. The
difference between the kernels is where the three constant arrays reside in memory. The first
version of the GPU kernel only used global memory, which is the largest and slowest memory on
the GPU [11]. The second kernel used texture memory that has the same latency as global
memory but is cached and optimized for 2D spatial locality [10). The last kernel funciion uses
constant memory that has less latency then global memory and is cached. Reading from the
constant cache can be as fast as reading from a register if groups of threads read from the same
memory location. If threads read from different addresses than memory access is serialized [11].
Shared memory was only used for passing arguments to the kernel. Shared memory is used for
threads to cooperate at the block level {10]. For my kernels, each thread calculates one value

independently from other threads so there is no thread cooperation.
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Figure 3. Kernel using global memory only and passing integers as arguments.
4.5 Experiment Results

Overall the times showed that the GPU version of the parallel loop were about three
times slower than the CPU version. Tt is possible that the graphics card used in these experiment
did not have enough cores and processing power to match the CPU. Also the amount of floating
point computation in the loop was not enough to justify the costs in memory transfers. CPU
times appear to be larger because they account for additional overhead on the CPU side related to
the GPU kernel ¢all. Table 1 shows that the fastest kernel was the constant memory version that
passes the integer arguments as an array. Texture was second and global memory was last. The

cache in the constant and texture memory definitely helped to speed up the function compared to

pure giobal memory.
Kernel Version Time (us) using | Time (us) using | CPU version
GPU timer CPU timer time (us)
Global Memory 18.800 29241 6.441
Global Memory?2 22.302 29.249 5.701
Texture Memory 17.339 27.816 6.430
Texture Memory2 | 22.038 29476 5.752
Constant Memory | 16.566 27.867 6.416
Constant Memory2 | 22.082 29.476 5.730

Table 1. Timing results for kernels using timer functions inside the source code.
Results denoted with a “2” indicate that the integer arguments were passed as arguments
to the kernel, not as an array. Times are averaged over 4000 function calls.
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For additional analysis of the kemel functions, GPU profiling was performed by using a
program calted the CUDA Visual Profiler. The CUDA. profiler provides data on all kernels, as
well as counters that describe specific aspects about the program execution results such as the
number of global memory load requests and kernel runtime in GPU and CPU terms. Interestingly
the CUDA profiler showed that in terms of GPU time, Texture Memory2 was actually the fastest

kernel, followed by Constant Memory2 and Global Memory?2.
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Figure 4. GPU time comparing the texture memory kernel with global memory kernel.
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Figure 5. GPU time comparing the texture memory kernel with constant memory kernel.
In Figures 4 and 5, the second row shows texture memory in green, and either constant or
global memory shown in brown. The bar length represents GPU time in microseconds, The

CUDA Visual Profiler shows in the figure below that the overall global memory throughput of
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the constant memory is 39.07% less than the texture memory kernel. Global memory efficiency
is important for GPU performance and this shows one reason why the texture memory is

performing better than the constant memory.
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Figure 6. Ov;rallglobal memory throughput of the texture and constant memory kernels.

One difference between the times reported by the methods in [11] and the CUDA profiler
is the overhead of kernel calls. [11] shows more overhead for the kemel execution time when
compared with the CUDA profiler. For example, in row eight of Figure 7 the time in
microseconds recorded for the kernel fiinction is 3.872. Although this time appears to be faster
than any time shown in Table 1, the time required to transfer the array of SADs prior to each
kernel call (i.e. row seven of Figure 7) is equal to the fastest time of the CPU version of the
parallel loop. Thus any speedup from the kernel function is negated due to the memory transfer
of the SAD array. Note that the first call to the kemel function is longer than subsequent kernel

calls due to initialization that takes place in the GPU.
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Fig_ure 7. Profile output summary for Texture kernel with integer argument passing;
5. Conclusion

When technologies like Blu Ray become absolete, the next standard in video encoding
will improve upon the techniques established by the JVT. Although hard drives cotitinue to grow
cheaper and larger, energy usage is becoming an increasingly expensive problem that technology
like video compression can help to solve. The author found that although the fastest GPU kernel
was. 1.48 times faster than the CPU version, the overhead of transferring one array of SADs was
equal to the execution time of the CPU version of the paraliel loop. A future implementation
would aim to eliminate this memory transfer in order for the GPU to have a chance at becoming
faster than the CPU version of the parallel loop in motion estimation.
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