Causal Inference via Artificial Neural Networks: From Prediction to Causation
Shujie Ma
UC Riverside
The UCI Department of Statistics is proud to present: Shujie Ma, Professor, Department of Statistics, UCR. The UCI campus community is invited to join us in DBH 6011.
Abstract:
Recent technological advances have created numerous large-scale datasets in observational studies, which provide unprecedented opportunities for evaluating the effectiveness of various treatments. Meanwhile, the complex nature of large-scale observational data poses great challenges to the existing conventional methods for causality analysis. In this talk, I will introduce a new unified approach that we have proposed for efficiently estimating and inferring causal effects using artificial neural networks. We develop a generalized optimization estimation through moment constraints with the nuisance functions approximated by artificial neural networks. This general optimization framework includes the average, quantile and asymmetric least squares treatment effects as special cases. The proposed methods take full advantage of the large sample size of large-scale data and provide effective protection against mis-specification bias while achieving dimensionality reduction. We also show that the resulting treatment effect estimators are supported by reliable statistical properties that are important for conducting causal inference.