
SURVEYING SHAPE SPACES

CHARLESS C. FOWLKES

“There are manifoldnesses in which the determination of position
requires not a finite number, but either an endless series or a con-
tinuous manifoldness of determinations of quantity. Such manifold-
nesses are, for example, the possible determinations of a function
for a given region, the possible shapes of a solid figure, and so on”

—Bernhard Riemann (as translated by W.K. Clifford)

1. Introduction

One doesn’t have to look far to find interesting examples of manifolds. A glance
around the room usually reveals our favorite examples: a plane, a cylinder, with
a little luck, a donut. Riemannian geometry allows a precise classification of the
“shape” of these surfaces as well as far more abstract objects. Backing away from
the hard constraints of isometry, we can ask: what surfaces are “nearly isometric”
in the sense that they are isometric after a small, smooth deformation. If we can
establish a smooth manifold structure on a space of possible shapes, then we are
free to play with all sorts of fun applications such as finding the shortest path
between two shapes (morph the president into a banana) or studying the statistics
of a collection of shapes (find out what the average person on the street actually
looks like).

This paper provides an overview of results on some simple shape spaces and will
hopefully convince the reader that this area is rich with geometrical structures.
Section 2 presents results for the space of arrangements of k points in Rn modulo
translation, rotation and scale. In Section 3 we examine three related descriptions
of the space of continuous curves in the plane.

2. The shapes of finite point sets

D. G. Kendall[7] pioneered the study of shape for labeled point sets. He proposed
to study shape as that which “is left when the effects associated with translation,
scaling and rotation are filtered away”. Kendall’s applications are in the field of
statistics, for example, modeling the locations of artifacts found at an archaeological
site. T.K. Carne [3] proposed the following more general definition. Let G be a Lie
group that acts smoothly on M . The shape space Σk(M,G) is defined to be the set
of orbits of the action of G on the k-fold product M k. Aspects of this sort of shape
space have also been studied elsewhere i.e. mechanics [12]. Our presentation will
focus on the case where M = Rm and G is the set of similarity transformations.
Further reading is best provided by [15] which gives a comfortable introduction
with statistical applications or by [3] which supplies a full dose of generality.

Consider a finite set of points represented by the matrix X = (x1, x2, . . . , xk) ∈
Rm×k where columns give the coordinates of each point in xj ∈ Rm. Translation
and scale are easily dealt with by utilizing a coordinate system whose origin lies at
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the center of mass and whose axes are scaled so that the sum of squared distances
to our points from the origin is 1. Normalizing for scale is equivalent to dividing
by r = ‖X‖ =

√

Tr(XXT ) 1. This space, given coordinates by X is referred to as

the pre-shape space. It is easily seen to be the unit sphere Sm(k−1)−1. Rotation is
“filtered away” by viewing the pre-shape space modulo the rotation group SO(m)
where the action of SO(m) is from the left on the columns of X, rotating the
configuration of points about the origin. This space of orbits is the Euclidean shape
space Σk

m ≡ Σ(Rm,SE(m)) ' Sm(k−1)−1/SO(m). Let π : Sm(k−1)−1 → Σk
m be the

map which takes a pre-shape X to its equivalence class.
For m = 1, 2, SO(m) acts freely on the elements of our pre-shape space so that

Σk
m is a smooth manifold (a point when k < 3). When m ≥ 3, SO(m) acts freely

except at a set of singular points where the rank of X is less than m − 1. For
example, there is some rotation that leaves fixed any set of co-linear points in R3.
Let Dm−2 be the set of pre-shape matrices with rank less that m − 1. Away from
π(Dm−2), the image of these singularities, the quotient map π is a submersion. The
topology of Σk

m is defined so that U is open if π−1(U) is, making Σk
m a continuous

image of the pre-shape space sphere and hence compact. The spaces Σk
m are also

arc-wise connected except for Σ2
1 ' S0. Σ3

1 ' S1 is the only arc-wise connected
Euclidean shape space that isn’t simply connected [7].

2.1. The Riemannian geometry of Σk
m. The basic tool for understanding the

geometry of Σk
m is to define a metric on the shape space so that π is a Riemannian

submersion (on the complement of Dm−2). We can proceed locally by letting the
non-singular part of Σk

m inherit the inner product 〈X,Y 〉 = Tr(XY T ) from the
pre-shape space. Alternately, the usual round metric on the pre-shape space de-
scends to a well defined metric on Σk

m called Procrustes distance2. For two shapes
π(X), π(Y ) ∈ Σk

m this distance can be written as

d(π(X), π(Y )) = inf
Z,W

{cos−1(〈Z,W 〉) : π(Z) = π(X), π(W ) = π(Y )}

Because of the symmetry of the pre-shape space, we only need to take the infimum
over one of the fibers

(2.1) d(π(X), π(Y )) = inf
Z
{cos−1(〈Z, Y 〉) : π(Z) = π(X)}

These global and local definitions are in fact identical.

Proposition 2.1. The Riemannian metric on the regular part of Σk
m determines a

global distance which is identical to Procrustes distance. See [3] or [7] for details.

Since π is a Riemannian submersion when restricted to regular points, we can
express geometric invariants of the shape space in terms of those of the pre-shape

1We will exclude from further consideration the completely degenerate case where all points
are at the same location (also exclude the case k = 1) so r > 0. As Kendall puts it, “The totally

degenerate k-ads are omitted because from one point of view they have no shape, and from another
they ‘almost’ have every shape”

2Procrustes was a gruesome character from Greek legend who invited passing strangers into his

home along the road to Athens. He offered them a night’s rest in a magical bed which he claimed

had the property of exactly matching whomsoever lay down upon it. As the unwary traveler soon

found, this miracle was accomplished either by stretching on the rack or chopping off the legs.
Procrustes, whose name means “he who stretches” was eventually lain to rest in his own bed by

Theseus
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space. The tools of choice are O’Neill’s results on Riemannian submersions[13]. For
example

Theorem 2.2 (O’Neill 1966). Suppose that M is submersed into M̃ and X̃, Ỹ are
the horizontal lifts of X and Y ; then the sectional curvatures are related by:

K̃(X̃, Ỹ ) = K(X,Y ) − 3

4
‖[X̃, Ỹ ]v‖2

Proof. The appendix gives a proof of the relation between the Riemannian curva-
tures R and R̃. The expression for sectional curvature follows readily. �

Since the pre-shape space is a sphere with a constant sectional curvature of 1,
this immediately leads to an expression for the sectional curvature of Σk

m. Le and
Kendall [10] use this technique to give explicit expressions for the sectional and
Ricci curvatures in terms of the singular values of the pre-shape matrix.

2.2. Examples.

2.2.1. Σk
2. For k points in R2, we can exploit the algebra of the complex plane to

simplify things. The Procrustes metric can be written in complex coordinates as

d(π(z), π(w)) = inf
θ

(cos−1(Re{
k
∑

j=1

zj(e
−iθw?

j )}))

where w? is the complex conjugate. We can explicitly find the infimum as

d(π(z), π(w)) = cos−1(|
k
∑

j=1

zjw
?
j |) = cos−1(

√

〈z, w〉2)

In fact, since complex multiplication takes care of both rotations and scalings, we
can identify Σk

2 with CPk−2 in the following way. Let z = (x1, x2, . . .) ∈ Ck. If
we remove translation (x1 − x̄, x2 − x̄, . . .) and then identify complex multiples
[z] = {(λ(x1 − x̄), λ(x2 − x̄), . . .) ∀λ} we are left with exactly the set of complex
lines through the origin in Ck−1.

A limiting argument[7] starting from the Procrustes distance gives the line ele-
ment

ds2 =
〈z, z〉〈dz, dz〉 − 〈z, dz〉〈dz, z〉

〈z, z〉2
which is, up to a constant factor, the standard Fubini-Study metric for CPk−2. The
constant factor of course comes from the fact that our submersion endows CPk−2

with a constant sectional curvature of 4.

2.2.2. Σ3
2. For three points living in the complex plane, we can use a similarity

transform to map two points to −1 and 1. The new position of the third point

z =
2x3 − (x1 + x2)

x2 − x1

encodes the shape of the triangle. To deal with the case that x1 and x2 lie on top
of each other, we include the point at infinity which gives the appropriate limiting
behavior for increasingly “skinny” triangles. This choice of standardization for
triangles is refereed to as Bookstein coordinates after [2].

An easy argument shows that Σ3
2 is isometric to the sphere of radius 1

2 . Stereo-
graphic projection of z maps from the closed complex plane to the sphere. Since the
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Procrustes distance for Σn
2 is the inverse cosine of a positive value, it is restricted

to lie in [0, π
2 ], hence we must project onto S2( 1

2 ). This checks with our argument

above, Σ3
2 ' CP1 ' S2( 1

2 ), as well as our curvature calculation for the Riemannian

submersion. In this case our submersion π : S3(1) → S2( 1
2 ) takes us from a space

of unit Gaussian curvature to one with a constant Gaussian curvature of 4.

2.2.3. Σ3
1. The set of degenerate triangles Σ3

1 is simply the sphere S1. This sphere
is immersed in the Bookstein model of Σ3

2 as the image of the real axis under
stereographic projection. How did we get from a circle of radius 1 to a radius of
1
2? When we go from 1 to 2 dimensions, collinear triangles which were distinct as
reflected copies of each other now become the same shape. Since reflected copies
are antipodal in pre-shape space, identifying them takes Σ3

1 ' S1 to RP1 which is
then isometric to S1( 1

2 ).

2.3. Other groups acting on Σk
m. It is worthwhile to consider what groups act

on Σk
m. We begin by describing an action of GL(k − 1) on Σk

m which commutes
with rotation and scaling. Because centering removes a degree of freedom, it will
be a convenient reminder of this fact to represent our pre-shape as a set of k − 1
points. Let the Helmert sub-matrix H ∈ Rk×(k−1) be defined as

hij =























−1/
√

j(j + 1), 1 ≤ i ≤ j
√

j/(j + 1), i = j + 1

0, i > j + 1

For a given point set X the reduced point set, defined as X̃ = XH ∈ Rk−1×m,
determines the original point set up to translation. To see this we note that the
columns of H are a complete orthonormal set orthogonal to (1, 1, . . . , 1) so that

(X + w1T
k )H = XH. The action of A ∈ GL(k − 1, R) on a reduced point set X̃ is

given by right multiplication.

A · X̃ = X̃A

This clearly commutes with left-multiplication by rotations and translations of our
original point set X.

Since the reduced point set is subsequently normalized for scale, the action of
diagonal matrices in GL(k − 1) descend to trivial actions on Σn

k . O(k − 1) is
a group of isometries with respect to the round metric on the pre-shape sphere.
Our use of H above acts as a particular choice of isometry. The subgroup of
permutations (corresponding to matrices with precisely a single 1 in each row and
column) corresponds to re-labeling the points and is particularly useful in cases
where the labels are incidental to some application. For example, Kendall uses
this symmetry extensively (c.f. [7]) in order to give a compact visual display of
probability densities on Σ3

2.
When m is even, there is an additional symmetry, conjugation, which is repre-

sented as multiplication on the left by diag(1, 1, . . . , 1,−1). For m odd, conjugation
is equivalent (modulo SO(m)) to −I ∈ GL(k − 1).

Are there other linear transformations T : Rn×(k−1) → Rn×(k−1) acting on
reduced point sets which descend to shape space? Swann and Olsen [16] answer in
the negative
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Theorem 2.3 (Swann and Olsen, 2003). For m > 2 the maximal connected group
of linear transformations on reduced point sets which induce an action on shape
space is SO(m) × GL(k − 1). For m = 2 the group is GL(k − 1, C).

2.4. Topology of Σk
m. We have already seen that several of the low-dimensional

shape spaces are homeomorphic to spheres. It is also the case that the simplicial
shape spaces Σm+1

m are homeomorphic to spheres. Note that the submersion bounds
on the curvature aren’t strong enough to invoke the 1

4 -pinching topological sphere

result (see e.g. [1]). In fact, the shape space Σ4
2 ' CP2 provides the usual example

showing that that strict 1
4 -pinching is optimal.

The first proof that the simplicial shape spaces are homeomorphic to spheres is
attributed to unpublished work by A. J. Casson (c.f. [7]). A different proof by Le[9]
begins with an explicit description of the cut locus for Σm

k when 2 ≤ m ≤ k − 1
which we will now summarize.

Consider the distance between shapes π(X) and π(Y )

d(π(X), π(Y )) = inf
T∈SO(m)

d(X,TY ) = cos−1

(

sup
T∈SO(m)

Tr(TY XT )

)

The singular value decomposition of Y XT = UΛV T with Λ = diag{λ1 ≥ . . . λm−1 ≥
|λm|} and U, V ∈ SO(m) gives the distance as

d(π(X), π(Y )) = cos−1

(

sup
T∈SO(m)

Tr(V T TUΛ)

)

= cos−1
(

∑

λi

)

which is achieved when T T = UV T . The point UT V Y is a point on the fiber
above π(Y ) whose distance to X is as small as possible. However, the optimal
rotation, and hence the closest point, can fail to be unique if λm + λm−1 ≤ 0 (i.e.
rank(Y XT ) < m−1 or λm +λm−1 = 0). Le shows that these two cases completely
describe the cut locus for a non-singular point.

Theorem 2.4 (Le, 1991). The cut locus on Σk
m for any non-singular point π(X)

is {π(Y ) : rank(Y XT ) < m − 1} ∪ {π(Y ) : λm = λm−1 < 0}

From this point the exponential map centered at two poles of the pre-shape
sphere composed with π takes the closed balls in the tangent space homeomorphi-
cally to closed balls that cover Σm+1

m . Identifying corresponding points on the two
boundaries we arrive at

Theorem 2.5 (Le, 1991). Σm+1
m (m ≥ 3) is homeomorphic but not isometric to

S
1

2
m(m+1)−1

This result provides further insight into the over-dimensioned spaces {Σk
m : k <

m + 1}. In this case, an appropriate element of SO(m) will render the bottom
m − (k − 1) rows of a pre-shape X equal to 0 hence identifying pre-shapes of such
an Σk

m with Σk
k−1. Of course distinct conjugate shapes in the simplicial shape space

Σk
k−1 that lie in complementary hemispheres are identified in the over-dimensioned

space Σk
m by a rotation through the extra dimensions. Since the simplicial shape

space is homeomorphic to a sphere, the over-dimensioned space is homeomorphic
to a hemisphere and hence contractible.
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3. The shapes of planar curves

We will now switch gears and look at something closer to Riemann’s infinite-
dimensional “manifoldness of possible shapes”. The results here are somewhat
less developed due to the added difficulties of treating infinite-dimensional mani-
folds. We begin with a function space describing plane curves and then move to a
slightly more complicated space implicitly described by pairwise relationships be-
tween curves. Lastly, we point out a third approach for measuring distance between
curves using diffeomorphisms of the plane.

3.1. The tangent space to direction functions. A closed planar curve param-
eterized by arc length can be represented most directly as γ : [0, 2π] → R2. The

direction function θ is set by γ̇(s) = exp(iθ(s)) and curvature defined by κ(s) = θ̇(s).
We will initially consider representing shapes using the direction function θ. Take
θ to be an absolutely continuous, square integrable function defined a.e. To assure
invariance under rotation, we subtract a constant so that θ has mean value π:

φ1 =
1

2π

∫ 2π

0

θ(s)ds = π

This choice of normalization gives θ(s) = s for the unit circle. To assure that θ
describes a closed curve, it must satisfy

φ2 =

∫ 2π

0

cos(θ(s))ds = 0

φ3 =

∫ 2π

0

sin(θ(s))ds = 0

These constraints are easily seen to pick out a sub-manifold of L2 using the map
φ = (φ1, φ2, φ3) : L2 → R3. To see that that dφ is surjective write

dφ1f =
1

2π

∫ 2π

0

fds = 〈f,
1

2π
〉

dφ2f = −
∫ 2π

0

sin(θ)fds = −〈f, sin(θ)〉

dφ3f =

∫ 2π

0

cos(θ)fds = 〈f, cos(θ)〉

We call the pre-image PC = φ−1(π, 0, 0) the pre-shape space because multiple
elements of PC have the same shape but are parameterized from a different starting
point s = 0. We give the action of g ∈ SO(2) as (gθ)(s) = θ((s − g)mod 2π) and
take as our shape space SC = PC/SO(2). A vector f ∈ L2 is tangent to PC at
θ only if it is orthogonal to the normal space spanned by {1, sin(θ), cos(θ)} so the
tangent space is given by

Tθ(PC) = {f ∈ L2|f ⊥ span{1, sin(θ), cos(θ)}}
Define a metric on SC by taking the minimum distance in PC between the orbits

of two points under the re-parameterizations. Since SO(2) acts on PC by isometries,
we can fix one point and look for nearest point in the orbit of the other. Such a
geodesic from point p1 must be orthogonal to the SO(2) orbit of p2. In fact, it is

orthogonal to every SO(2) orbit it meets. Since Tθ(S
1(θ)) is spanned by 1 − θ̇ the
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tangents to the geodesic must be orthogonal to 1 − θ̇. The authors of [8] suggest
algorithms for finding geodesics in this space by first estimating an initial tangent
vector using a Fourier approximation and then alternately taking a small step in
the tangent direction and projecting the resulting function from L2 into SC .

3.2. Correspondence. One difficulty that plagues our understanding of contin-
uous shapes is that of correspondence. In the case of point sets, each point was
given a label and two shapes were compared by using the labels to map them into
the pre-shape sphere in a canonical way (permutations of the labels yield alternate
isometries). For non-rigid shapes like plane curves, the notion of corresponding
“parts” is far less precise. For example, the figure at right shows two curves with
arrows marking points which intuitively “correspond”.
If we were asked to match the two curves, surely it
would make sense that the pair of protrusions should
be roughly lined up via a rigid motion and then the rest
of the figure smoothly deformed as necessary.

In an attempt to gain some mathematical precision,
we follow [17] and define

Definition 3.1. A correspondence between any two sets
U and V is a subset Φ of U×V such that for every u ∈ U
(resp. v ∈ V ) there exists some v ∈ V (resp. u ∈ U)
such that (u, v) ∈ Φ.

Of course, what we would really like is that Φ be a graph of some function (either
from U onto V or V onto U) in every open neighborhood. In the case of two closed
plane curves, this assures the desired topological picture that Φ be a connected,
smooth, compact manifold embedded in the torus.

Definition 3.2. A correspondence between topological spaces U and V is graph-
like if there is a family {(Uα, Vα,Φα) : α ∈ A} such that {Uα : α ∈ A} is an open
cover of X, {Vα : α ∈ A} is an open cover of Y , Φ = ∪αΦα, and for each α ∈ A,
either Φα is the graph of an onto function from Uα to Vα or from Vα to Uα

Definition 3.3. A bimorphism between simple regular closed curves C and D is a
graph-like, differentiable correspondence in which the image of every point in C or
D is connected.

A bimorphism Φ is itself a regular curve with some parameterization p : (0, 1] →
Φ and is covered by two domains ΦC = {p(t) : (πC ◦ p(t))′ 6= 0} and ΦD =
{p(t) : (πD ◦ p(t))′ 6= 0} on which the respective projections πC and πD are diffeo-
morphisms. We define an arc length for bimorphisms as the weighted sum of the
Euclidean length of projections

ds =

√

∥

∥

∥

∥

(πC ◦ p)′

lC

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(πD ◦ p)′

lD

∥

∥

∥

∥

2

dt

where lC , lD are the lengths of C and D. Now let γ(t) : (0, lΦ] → Φ be the arc
length parameterization of Φ. To measure the difference in local shape between cor-
responded points πC(γ(t)) and πD(γ(t)) we compare the derivative of the direction
function at the points

G(t) = θC(πC(γ(t)))′ − θD(πD(γ(t)))′
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For some choice of non-negative, symmetric function F we may define the distance
between curves as

d(C,D) = min
Φ

∫ lΦ

0

F (G(t; Φ))dt

Note that weighting by lengths in the definition of ds makes this distance invariant
under scaling of C or D while the minimization over Φ gives invariance under
rotation.

By integrating G, [17] show that this distance connects up in a nice way with
the Gauss map. In particular, the singularities of the Gauss map break suitable
curves into a collection of segments. This operation could provide an interesting
way to operationalize the intuition of “parts” described above.

3.3. Groups of Diffeomorphisms. A third way of looking at curves it to consider
diffeomorphisms of the entire plane which carry along the curve of interest. This
approach has the advantage of extending to other sorts of objects beyond closed
curves and was originally pursued by Grenander for solving the problem of matching
images to templates (see e.g. [6]). We will begin with a general procedure for
passing between a deformation cost on our space of shapes and a distance on a
diffeomorphism group.

Given a group G which acts transitively on some space of shapes S, let the
deformation cost Γ : G × S → [0,∞) satisfy Γ(e, C) = 0, Γ(a,C) = Γ(a−1, a · C)
and Γ(ab, C) ≤ Γ(b, C) + Γ(a, bC) for a, b ∈ G,C ∈ S. Then the function d

d(C1, C2) = inf{Γ(a,C1), C2 = a · C1}
is symmetric, satisfies the triangle inequality and d(C,C) = 0. When G acts
transitively on S we can identify S with the quotient of G by the isotropy group
of some reference element C0. This gives us the following proposition[19]

Proposition 3.4. Let dG be a symmetric distance on the group G so that dG

satisfies the triangle inequality and dG(g, g) = 0. Assume there exists γ0 : G →
R such that γ0(h) = 1 whenever h · C0 = C0 and for all f, g, h ∈ G we have
dG(hf, hg) = γ0(h)dG(f, g). Then for any two objects C1 = f · C0, C2 = g · C0 the
deformation cost

Γ0(h,C1) =
1

γ0(f)
dG(e, h−1)

induces the distance

d0(C1, C2) =
1

γ0(f)
inf
h
{dG(e, h), h · C2 = C1}

on S. A different choice, C ′

0, of reference object yields a cost function which differs
by a multiplicative factor.

Using this technique, Younes[19] gives the following construction for (possibly
open) plane curves. The idea is to start with an intuitive variational cost and
compute an expression for dG(e, a) when a is near the identity e. Younes then
works backward by defining a group action on a subset of Hilbert space rendering
it homomorphic to G and showing that the usual L2 norm agrees with the desired
dG.

Consider an infinitesimal deformation of a plane curve C = {(x(t), y(t)) : t ∈
[0, l]} parameterized by arc-length. Such a deformation is described by a vector field
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V which gives the infinitesimal displacement C 7→ V ·C ≡ (x(t)+u(t), y(t)+ v(t)).
We define the energy (squared cost) of this deformation as

δE(V ) =

∫ l

0

‖V̇ (t)‖2dt

Note that the energy for a translation of the plane is 0. Let lV be the length of
our curve after the deformation. It is convenient to separate the action of V on C
into an arc-length term g̃V : [0, l] → [0, lV ] which gives the arc length of V · C for

each point on C and a direction term θ̃V : [0, l] → [0, 2π). To order 1, we have the
tangential component

T = ˙̃gV − 1 = u̇(t)ẋ(t) + v̇(t)ẏ(t)

and the normal component

N = θ̃V ◦ gV − θ = −ẏ(t)u̇(t) + ẋ(t)v̇(t)

so we can write

δE(V ) =

∫ l

0

( ˙̃gV − 1)2dt +

∫ l

0

(θ̃V ◦ g̃V − θ̃)2dt

which is simplified by substituting gV (t) = (1/l)g̃V (lt), θV (t) = θ̃V (lt) and λ = lV /l
and writing

δE(λ, gV , N ; l, θ) = l

∫ 1

0

(λġV − 1)2 + N2dt

where (λ, gV , N) transforms a curve specified by (l, θ) to a new curve (l/λ, θ ◦g−1
V +

N ◦ g−1
V ).

To tighten our notation, let Ω be the unit circle in C1. Let our class of curves
be described (modulo translations) by

S = {(l, η) : l > 0, η : [0, 1] → Ω}
Our group

G = {(λ, g, r) : λ > 0, g : [0, 1] → [0, 1], r : [0, 1] → Ω}
where g is a diffeomorphism, acts on S by

(λ, g, r) · (l, η) = (l/λ, rη ◦ g)

and group multiplication is set by

(λ1, g1, r1)(λ2, g2, r2) = (λ2λ1, g2 ◦ g1, r1(r2 ◦ g1))

with inverse (1/λ, g−1, r? ◦ g−1). We will let our squared deformation cost be the
the first order terms of δE, so that for a curve (l, η):

Γ((λ, g, r)−1, (l, η))2 = l(λ − 1)2 +

∫ 1

0

(ġ(t) − 1)2 + |r(t) − 1|2dt

If we take our reference curve to be the horizontal segment C0 = (1,1), then by
Proposition 3.4 when C = (l, η) = (λ, g, r) · C0 we have that λ = 1/l and r = η so

γ0((λ, g, r)) = 1/
√

l and for a group element (λ, g, r) which is infinitesimally close
the the identity, the group distance is given by

dG(e, (λ, g, r))2 = (λ − 1)2 +

∫ 1

0

(ġ(t) − 1)2 + |r(t) − 1|2dt
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To extend this distance to all of G, Younes constructs a group homomorphism
from G̃ = {X ∈ L2([0, 1], C) : |X| > 0 a.e.} to G with the product on G̃ given
by

(X · Y )(s) = X(s)Y (X(s)/‖X‖2
2)

The standard L2 norm on G̃ agrees with the infinitesimal dG derived above and
results in the following concrete distance between plane curves C1 = (l1, e

iθ1) and
C2 = (l2, e

iθ2)

d(C1, C2)
2 = l1 + l2 − 2

√

l1l2 sup
g

∫ 1

0

√

ġ(t)

∣

∣

∣

∣

cos
θ2 ◦ g − θ1

2

∣

∣

∣

∣

dt

The supremum is over all increasing diffeomorphisms of [0, 1] (in analogy to our
earlier minimization over bimorphisms). As noted[19], G does not act on the subset
of closed plane curves SC ⊂ S (except for trivial g ∈ G). Unlike the geodesic paths
described in Section 3.1, there is nothing to stop the evolving curve from “breaking”
along the geodesic deformation from closed curve C1 to closed curve C2.

For further reading on deformation based metrics, the reader is referred to [18]
where the authors consider deforming both the range and domain of some smooth
function. [5] study the well posedness of a variational problem which trades off the
amount of deformation with a direct (straight-line) matching distance.

Appendix: Riemannian Submersions

Theorem 3.5 (O’Neill, 1966). If M is submersed into M̃ , then the curvatures are
related by:

〈R̃(X̃, Ỹ )Z̃, W̃ 〉 = 〈R(X,Y ), Z,W 〉−1

4
〈[X̃, Z̃]v, [Ỹ , W̃ ]v〉−1

4
〈[Ỹ , Z̃]v, [X̃, W̃ ]v〉−1

2
〈[X̃, Ỹ ]v, [Z̃, W̃ ]v〉

Proof. We proceed in 4 steps

P0: Let V be vertical, then using the expression 2〈∇XY,Z〉 = X〈Y,Z〉 +
Y 〈Z,X〉 − Z〈X,Y 〉 + 〈[X,Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y,Z], X〉 we have that

2〈∇̃X̃V, Ỹ 〉 = Y 〈Z̃, X̃〉 − 〈[X̃, Z̃], V 〉
= −(−Y 〈Z̃, X̃〉 + 〈[X̃, Z̃], V 〉)
= −2〈∇̃X̃ Ỹ , V 〉

P1: Let V be vertical, then [X̃, V ] is also vertical. Using again the expression
for 〈∇XY,Z〉 and the orthogonality of horizontal and vertical vector fields,
we have that 2〈∇XY, V 〉 = −Z〈X,Y 〉 + 〈[X,Y ], Z〉 = 〈[X,Y ], Z〉 since
〈X,Y 〉 is constant in the vertical direction. For an arbitrary vector field,
this gives the decomposition

〈∇̃X̃ Ỹ , H̃ + V 〉 = 〈∇̃X̃ Ỹ , H̃〉 + 〈∇̃X̃ Ỹ , V 〉

= ˜〈∇XY,H〉 +
1

2
〈[X̃, Ỹ ], V 〉
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P2: Using P1 twice and properties of ∇
〈∇̃X̃∇̃Ỹ Z̃, W̃ 〉 = X̃〈∇̃Ỹ Z̃, W̃ 〉 − 〈∇̃Ỹ Z̃, ∇̃X̃W̃ 〉

= X̃〈∇̃Ỹ Z̃, W̃ 〉 − 〈∇̃Y Z +
1

2
[Ỹ , Z̃]v, ∇̃XW +

1

2
[X̃, W̃ ]v〉

= X̃〈∇̃Ỹ Z̃, W̃ 〉 − 〈∇̃Y Z, ∇̃XW 〉 − 1

4
〈[Ỹ , Z̃]v, [X̃, W̃ ]v〉

= 〈∇X∇Y Z,W 〉 − 1

4
〈[Ỹ , Z̃]v, [X̃, W̃ ]v〉

P3: Using P0, 〈∇̃V X̃, Ỹ 〉 = 〈[V, X̃], Ỹ 〉+〈∇̃X̃V, Ỹ 〉 = −〈∇̃X̃ Ỹ , V 〉. Now split

[X̃, Ỹ ] into vertical and horizontal parts and to get

〈∇̃[X̃,Ỹ ]Z̃, W̃ 〉 = 〈∇̃[X̃,Ỹ ]hZ̃, W̃ 〉 + 〈∇̃[X̃,Ỹ ]v Z̃, W̃ 〉
= 〈∇̃[X̃,Ỹ ]hZ̃, W̃ 〉 − 〈[X̃, Ỹ ]v, ∇̃Z̃W̃ 〉

= 〈∇̃[X̃,Ỹ ]hZ̃, W̃ 〉 − 〈[X̃, Ỹ ]v, ∇̃ZW +
1

2
[Z̃, W̃ ]〉

= 〈∇̃[X̃,Ỹ ]hZ̃, W̃ 〉 − 1

2
〈[X̃, Ỹ ]v, [Z̃, W̃ ]v〉

Combining P2 and P3 we can write down the curvature

〈R̃(X̃, Ỹ )Z̃, W̃ 〉
= 〈∇̃Ỹ ∇̃X̃ Z̃, W̃ 〉 − 〈∇̃X̃∇̃Ỹ Z̃, W̃ 〉 + 〈∇̃[X̃,Ỹ ]Z̃, W̃ 〉

= 〈R(X,Y ), Z,W 〉 − 1

4
〈[X̃, Z̃]v, [Ỹ , W̃ ]v〉 − 1

4
〈[Ỹ , Z̃]v, [X̃, W̃ ]v〉

−1

2
〈[X̃, Ỹ ]v, [Z̃, W̃ ]v〉

�
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