
Chapter 2

Tokens and Python’s
Lexical Structure

The first step towards wisdom is calling things by their right names.
Chinese Proverb

Chapter Objectives

� Learn the syntax and semantics of Python’s five lexical categories
� Learn how Python joins lines and processes indentation
� Learn how to translate Python code into tokens
� Learn technical terms and EBNF rules concerning to lexical analysis

2.1 Introduction

We begin our study of Python by learning about its lexical structure and the Python’s lexical structure com-
prises five lexical categoriesrules Python uses to translate code into symbols and punctuation. We primarily

use EBNF descriptions to specify the syntax of Python’s five lexical categories,
which are overviewed in Table 2.1. As we continue to explore Python, we will
learn that all its more complex language features are built from these same
lexical categories.

In fact, the first phase of the Python interpreter reads code as a sequence of Python translates characters into
tokens, each corresponding to
one lexical category in Python

characters and translates them into a sequence of tokens, classifying each by
its lexical category; this operation is called “tokenization”. By the end of this
chapter we will know how to analyze a complete Python program lexically, by
identifying and categorizing all its tokens.

Table 2.1: Python’s Lexical Categories

Identifier Names that the programmer defines

Operators Symbols that operate on data and produce results

Delimiters Grouping, punctuation, and assignment/binding symbols

Literals Values classified by types: e.g., numbers, truth values, text

Comments Documentation for programmers reading code

20

CHAPTER 2. TOKENS AND PYTHON’S LEXICAL STRUCTURE 21

Programmers read programs in many contexts: while learning a new pro- When we read programs, we
need to be able to see them as
Python sees them

gramming language, while studying programming style, while understanding
algorithms —but mostly programmers read their own programs while writing,
correcting, improving, and extending them. To understand a program, we must
learn to see it the same way as Python does. As we read more Python programs,
we will become more familiar with their lexical categories, and tokenization will
occur almost subconsciously, as it does when we read a natural language.

The first step towards mastering a technical discipline is learning its vocab- If you want to master a new disci-
pline, it is important to learn and
understand its technical terms

ulary. So, this chapter introduces many new technical terms and their related
EBNF rules. It is meant to be both informative now and useful as a reference
later. Read it now to become familiar with these terms, which appear repeat-
edly in this book; the more we study Python the better we will understand
these terms. And, we can always return here to reread this material.

2.1.1 Python’s Character Set

Before studying Python’s lexical categories, we first examine the characters that We use simple EBNF rules to
group all Python charactersappear in Python programs. It is convenient to group these characters using

the EBNF rules below. There, the white space rule specifies special symbols for
non printable characters: for space; → for tab; and←↩ for newline,which ends
one line, and starts another.

White–space separates tokens. Generally, adding white–space to a program White–space separates tokens
and indents statementschanges its appearance but not its meaning; the only exception —and it is a

critical one— is that Python has indentation rules for white–space at the start
of a line; section 2.7.2 discusses indentation in detail. So programmers mostly
use white-space for stylistic purposes: to make programs easier for people to
read and understand. A skilled comedian knows where to pause when telling a
joke; a skilled programmer knows where to put white–space when writing code.

EBNF Description: Character Set

lower ⇐ a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z
upper ⇐ A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z
digit ⇐ 0|1|2|3|4|5|6|7|8|9
ordinary ⇐ |(|)| [|] | { | } |+|-|*|/|%|!|&| | |~|^|<|=|>|,|.|:|;|$|?|#
graphic ⇐ lower | upper | digit | ordinary
special ⇐ ’ | " | \
white space ⇐ | → | ←↩ (space, tab, or newline)

Python encodes characters using Unicode, which includes over 100,000 different Although Python can use the
Unicode character set, this book
uses only ASCII, a small subset
of Unicode

characters from 100 languages —including natural and artificial languages like
mathematics. The Python examples in this book use only characters in the
American Standard Code for Information Interchange (ASCII, rhymes with
“ask me”) character set, which includes all the characters in the EBNF above.

Section Review Exercises

1. Which of the following mathematical symbols are part of the Python
character set? +, −, ×, ÷, =, 6=, <, or ≤.

Answer: Only +, -, =, and <. In Python, the multiply operator is *,
divide is /, not equal is !=, and less than or equal is <=. See Section 5.2.

CHAPTER 2. TOKENS AND PYTHON’S LEXICAL STRUCTURE 22

2.2 Identifiers

We use identifiers in Python to define the names of objects. We use these names Identifiers are names that we de-
fine to refer to objectsto refer to their objects, much as we use the names in EBNF rules to refer to

their descriptions. In Python we can name objects that represent modules,
values, functions, and classes, which are all language features that are built
from tokens. We define identifiers in Python by two simple EBNF rules.

EBNF Description: identifier (Python Identifiers)

id start ⇐ lower | upper |
identifier ⇐ id start{id start | digit}

There are also three semantic rules concerning Python identifiers. Identifier Semantics
� Identifiers are case-sensitive: identifiers differing in the case (lower or

upper) of their characters are different identifiers: e.g., mark and Mark are
different identifiers.

� Underscores are meaningful: identifiers differing by only underscores are
different identifiers: e.g., pack age and package are different identifiers.

� An identifier that starts with an underscore has a special meaning in
Python; we will discuss the exact nature of this specialness later.

When we read and write code we should think carefully about how identifiers Identifier Pragmatics
are chosen. Specifically, here are some useful guidelines.

� Choose descriptive identifiers, starting with lower–case letters (upper–case
for classes), whose words are separated by underscores.

� Follow the Goldilocks principle for identifiers: they should neither be too
short (confusing abbreviations), nor too long (unwieldy to type and read),
but should be just the right size to be clear and concise.

� When programmers think about identifiers, some visualize them, while
others hear their pronunciation. Therefore, , avoid using identifiers that
are homophones, homoglyphs, or mirror images.

Homophones are identifiers that are similar in pronunciation e.g., a2d convertor

and a to d convertor. Homoglyphs are identifiers that are similar in ap-
pearance: e.g., all 0s and allOs —0 (zero) vs. upper–case O; same for
the digit 1 and the lower–case letter l. Mirror images are identifiers that
use the same words but reversed: e.g., item count and count item.

2.2.1 Keywords: Predefined Identifiers

Keywords are identifiers that have predefined meanings in Python. Most key- Keywords are special identifiers
with predefined meanings that
cannot change

words start (or appear in) Python statements, although some specify operators
and others literals. We cannot change the meaning of a keyword by using it to
refer to a new object. Table 2.2 presents all 33 of Python’s keywords. The first
three are grouped together because they all start with upper–case letters.

Keywords should be easy to locate in code: they act as guideposts for reading Keywords should stand out in
code: they act as guideposts for
reading and understanding pro-
grams

and understanding Python programs. This book presents Python code using
bold–faced keywords; the editors in most Integrated Development Environments
(IDEs) also highlight keywords: in Eclipse they are colored blue.

CHAPTER 2. TOKENS AND PYTHON’S LEXICAL STRUCTURE 23

Table 2.2: Python’s Keywords

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

assert else import pass

break except in raise

Section Review Exercises
1. Classify each of the following as a legal or illegal identifier. If it is legal,

indicate whether it is a keyword, and if not a keyword whether it is writ-
ten in the standard identifier style; if it is illegal, propose a similar legal
identifier —a homophone or homoglyph.

a. alpha g. main m. 2lips
b. raise% h. sumOfSquares n. global
c. none i. u235 o. % owed

d. non local j. sum of squares p. Length
e. x 1 k. hint q. re turn

f. XVI l. sdraw kcab r. 0 0 7

Answer:
a. Legal g. Legal (special: starts with) m.Illegal: tulips or two lips

b. Illegal: raise percent h. Legal: sum of squares n. Keyword
c. Legal (not keyword None) i. Legal o. Illegal: percent owed

d. Legal (not keyword nonlocal) j. Illegal (3 tokens; use h.) p. Legal: length
e. Legal k. Legal q. Legal (not keyword return)
f. Legal: xvi l. Legal r. Legal (special: starts with)

2.3 Operators

Operators compute a result based on the value(s) of their operands: e.g., + is Operators compute a result
based on the value(s) of their
operand(s); we primarily classify
keywords that are relation and
logical operators as operators

the addition operator. Table 2.3 presents all 24 of Python’s operators, followed
by a quick classification of these operators. Most operators are written as
special symbols comprising one or two ordinary characters; but some relational
and logical operators are instead written as keywords (see the second and third
lines of the table). We will discuss the syntax and semantics of most of these
operators in Section 5.2.

Table 2.3: Python’s Operators

+ - * / // % ** arithmetic operators
== != < > <= >= is in relational operators
and not or logical operators
& | ~ ^ << >> bit–wise operators

We can also write one large operator EBNF rule using these alternatives.

EBNF Description: operator (Python Operators)

operator ⇐ +|-|*|/|//|%-|**|=|!=|<|>| <=|>=|&| | |~|^|<<|>|and|in|is|not|or

CHAPTER 2. TOKENS AND PYTHON’S LEXICAL STRUCTURE 24

2.4 Delimiters

Delimiters are symbols that perform three special roles in Python: grouping, Delimiters are either grouping
symbols, punctuation symbols,
or symbols that assign/bind ob-
jects to names

punctuation, and assignment/binding of objects to names. Table 2.4 presents
all 24 of Python’s delimiters, followed by a quick classification of their roles,
with the delimiter EBNF rule following. Grouping and punctuation delimiters
are all written as one character symbols. The assignment/binding delimiters
include = and any multi–character delimiter that ends with an = sign. We will
discuss the syntax and semantics of most of these delimiters later in this book.

Table 2.4: Python’s Delimiters

() [] { } grouping
. , : ; @ punctuation
= += -= *= /= //= %= **= arithmetic assignment/binding
&= |= ^= <<= >>= bit–wise assignment/binding

EBNF Description: delimiter (Python Delimiters)

delimiter ⇐ (|)| [|] | { | } |.|,|:|;|@|=|+=|-=|*=|/=|//=|%=|**=|&=| | =|^=|<<=|>>=

2.4.1 Python builds the longest legal token

Python constructs the longest legal token possible from the characters that it When Python tokenizes code, it
attempts to create the longest
tokens possible

reads, but white–space often forces the end of a token. We can explore this rule
using the lexical categories that we have learned. For example, Python tokenizes
import as one identifier/keyword; it tokenizes im port as two identifiers: im

and port: for clarity, the space appears here as the visible character.

Python tokenizes <<= as one delimiter, not (1) as the operator << followed by We can use white–space to force
Python to end a token, or let
Python end the token naturally

the delimiter =; nor (2) as the operator < followed by the operator <=; nor (3) as
the operator < followed by the operator < followed by the delimiter =. But, we
can always use white–space to force Python to create these three tokenizations
by writing (1) << =, (2) < <=, and (3) < < =. Similarly, if we write <<~ Python
recognizes the first token as the operator << but since there are no operators or
delimiters with all three characters, Python knows that this operator token is
complete, and then Python finds that the next token is is the operator ~.

We will write a token by enclosing its characters inside a box, followed by a We write tokens as characters in
a box followed by a superscript
indicating the category of the to-
ken: e.g., sum i for sum which
is an identifier

superscript indicating the lexical category of the token: identifier (/keyword),
operator, delimiter, literal, and comment. For <<= we write the delimiter token
<<= d; for <<~ we write the two operator tokens << o ~ o. Likewise, for < < =

we write the three operator tokens < o < o = o. Finally, for the simple statement
x=y we write the identifier, delimiter, and identifier tokens x i = d y i.

Section Review Exercises
1. How would Python tokenize a. <= and b. =< ?

Answer: a. <= is tokenized as the less–than–or–equal operator: <= o.
b. =< is tokenized as the equal delimiter followed by the less–than operator:
= d < o. There is no equal–to–or-less–than operator in Python.

2. a. Tokenize the function definition def gm(x,y): return math.sqrt(x*y)

b. Of the spaces, which can we omit and still produce the same tokens?

CHAPTER 2. TOKENS AND PYTHON’S LEXICAL STRUCTURE 25

Answer: a. def i/k gm i (d x i , d y i) d : d return i/k math i . d sqrt i (d x i * o y i) d

b. Omitting the second space produces the same tokens; omitting the first
space, leads to defgm i; omitting the last space, leads to returnmath i.

2.5 Literals and their Types

Computers store and manipulate all information (numbers, text, audio, video) Computers store all information
digitally, as bits; the type of
the information determines how
these bits are interpreted

digitally: encoded as binary digits (bits) —sequences of zeroes and ones. The
“type” of a value determines how Python interprets its binary information. The
concept of types is critically import to our study of Python, and we will explore
many different facets of this concept, starting here with literal values.

In this section we learn how to read and write literals: each specifies a value We write values as literals in
Python; each literal belongs to
exactly one of Python’s builtin
types

belonging to one of Python’s seven builtin types: numeric literals (types int,
float, and imaginary), logical literals (type bool), text literals (types str and
bytes), and one special literal of the type NoneType. Table 2.5 previews these
types with examples of their literals.

Table 2.5: A Preview of Types and their Literals

Type Used for Example Literals
int integral/integer values 0 1024 0B111001011

float measurements/real value 9.80665 9.10938188E-31

imaginary part of complex numbers 5j 5.34j

bool logical/boolean True False

str Unicode text/string "" ’?’ ’Mark said, "Boo!"\n’

bytes ASCII text/string b"pattis@ics.uci.edu"

NoneType no–value value None (and no others)

We will learn how to import and use other types, and how to create ans use We can import and create other
types —but none have literalsour own types, but only these seven builtin types have literal values.

2.5.1 Numeric Literals: int, float, and imaginary

Integer values (the int type in Python) represent quantities that are integral, The type int represents quanti-
ties that are integral, countable,
and discrete

countable, and discrete. We can write these literals using bases 2 (binary), 8
(octal), 10 (decimal) and 16 (hexadecimal) according to the following EBNF
rules. In this book we will write every int literal as a decimal literal.

EBNF Description: int literal (Integer Literals: bases 2, 8, 10, and 16)

binary digit ⇐ 0 | 1
octal digit ⇐ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
hex digit ⇐ digit | a | A | b | B | c | C | d | D | e | E | f | F
non 0 digit ⇐ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

decimal literal ⇐ 0{0} | non 0 digit{digit}
octal literal ⇐ 0bbinary digit{binary digit} | 0Bbinary digit{binary digit}
octal literal ⇐ 0Ooctal digit{octal digit} | 0ooctal digit{octal digit}
hex literal ⇐ 0Xhex digit{hex digit} | 0xhex digit{hex digit}

int literal ⇐ decimal literal | binary literal | octal literal | hex literal

CHAPTER 2. TOKENS AND PYTHON’S LEXICAL STRUCTURE 26

Python places no restriction on the number of digits in an int literal. There Semantics of Integers
are no negative literals in Python: it interprets -1 as - o 1 l/i (l/i means a
literal/int), which computes the value negative one; a distinction without a
difference. Integers print in base 10 by default in Python.

Floating point values (the float type in Python) represent quantities that Floating point quantities are like
real numbers in mathematics and
the sciences

are measurable, like the “real” numbers used in mathematics and the sciences.
We write these literals according to the following EBNF rules.

EBNF Description: float literal (Floating Point literals)

digits ⇐ digit{digit}
mantissa ⇐ digits.{digit} | .digits
exponent ⇐ e[+|-]digits | E[+|-]digits
float literal ⇐ mantissa[exponent] | digits exponent

Observe from these rules that a float literal is written in base 10; its mantissa Floating point literals are written
in base 10; E3 means ×103can include digits before and/or after the decimal point and its exponent is

option; an exponent starts with the letter e or E and has an optional sign
followed one or more digits. Writing E3 means ×103. Finally, an exponent
following digits without a decimal point is a float literal: so, 1E3 is a float literal
(that we can write equivalently as 1000.) but 1000 is an int literal.

Unlike integers, there are range bounds for floating point numbers. A mantissa Semantics of Floating points
contains about 15 digits and an exponent has a magnitude of about 300.1

Python prints floating point values without using E–notation when it makes
sense, but switches to E–notation to print very large and small values.

Imaginary values represent the imaginary parts of complex numbers, and are Complex numbers have real and
imaginary partswritten according to the following EBNF rule.

EBNF Description: imaginary literal (Imaginary part of Complex numbers)

imag ind ⇐ j | J
imaginary literal ⇐ digits imag ind | float literal imag ind

When we write a complex like 5.4+.2j Python prints it as (5.4+.2j).

Unlike mathematics (where integer is a subset of real which is a subset of Types in Python are disjoint;
a literal belongs to exactly one
type

complex) in Python integer, floating point, and complex literals are disjoint:
every numeric literal matches the syntax of exactly one of these types of literals.

2.5.2 Logical/Boolean Literals: bool

Logical values (the bool2 type in Python) represent truth values, which are True and False are keywords
and literals; we primarily classify
them as a literals.

use to represent true/false, yes/no, on/off, present/absent, etc. There are two
literal values of the bool type, defined according to the following EBNF rule.

EBNF Description: bool literal (Logical/Boolean literals)

bool literal ⇐ True | False (both are Python keywords)

1 The biggest floating point value in Python is 1.7976931348623157e+308 and the smallest
(closest to zero) is 2.2250738585072014e-308. The 64 bits allocated to floating point values
as follows: 53 bits for the mantissa and its sign, and 11 bits for the exponent and its sign.

2This name honors George Boole, a 19th–century English mathematician who revolution-
ized the study of logic by making it more like arithmetic. He invented a method for calculating
with truth values and an algebra for reasoning about these calculations. Boole’s method are
used extensively in hardware and software systems. Boole rhymes with tool.

CHAPTER 2. TOKENS AND PYTHON’S LEXICAL STRUCTURE 27

2.5.3 Text/String Literals: str and bytes

Text/String values (primarily the str type in Python) represent sequences of Text/Strings are sequences of
characters strung together, used
primarily for input/output

characters.3 Input/Output —via the keyboard, console screen, and most files—
processes strings. The str type in Python can store Unicode characters; the
bytes type in Python (byte strings) stores only ASCII characters.4 Beginning
programmers use literals of the str type much more than the bytes type; the
EBNF rules for both types of literals appear below.

EBNF Description: str literal (String and Byte String literals)

text chars ⇐ graphic | white space | " | ’ (all but the \ character)
esc a ⇐ \text chars | \ooctal digit3 | \hhex digit2 (3 octal or 2 hex digits)
esc u ⇐ esc a | \n{unicode name} | \uhex digit4 | \Uhex digit8 (4 or 8 hex digits)
raw opt ⇐ r | R
bytes ind ⇐ b | B

single quoted str ⇐ "{graphic | esc u | | → | ’}" | ’{graphic | esc u | | → | "}’
triple quoted str ⇐ """{text chars | esc u}""" | ’’’{text chars | esc u"}’’’
str literal ⇐ [raw opt]single quoted str | [raw opt]triple quoted str

single quoted bytes ⇐ "{graphic | esc a | | → | ’}" | ’{graphic | esc a | | → | "}’
triple quoted bytes ⇐ """{text chars | esc u}""" | ’’’{text chars | esc u}’’’
bytes literal ⇐ bytes opt[raw opt]single quoted bytes | bytes opt[raw opt]triple quoted bytes

There are two kinds of string/byte string literals in Python: single– and triple– Single–quoted string literals
must appear on one line; triple–
quoted string literals can span
multiple lines

quoted; each must start and end with the same kind of quotation mark: a double
quote " or a single quote ’. Single–quoted strings/byte strings start and end
on the same line, and can contain all characters but ←↩ and \. Triple–quoted
strings/byte strings can span multiple lines, and can contain all characters but
\. Note that inside strings/byte strings white–space does not separate tokens,
it becomes part of the string. Finally, empty strings specify a repetition of zero
times, so the quotation marks can be adjacent: e.g., "".

What are escape characters? What is the difference between str and bytes Escape characters and byte
strings are discussed in later
chapters

literals? Why do strings and byte strings allow different escape characters? How
does the optional raw opt, if included, affect these literals? We will discuss all
these topics in later chapters, when we examine string and byte string processing
in detail. In this chapter, we are interested only in how string and byte string
literals are written, so we can recognize them in Python programs.

Finally, there are also special places in Python code where strings can appear, Strings appearing in special parts
of Python programs can be read
and processed by Python utility
programs

and be read and processed by other programs. PyDoc is a Python utility
that reads such strings to produce special web–pages that document the code;
DocTest is a testing utility that reads such strings and uses them as test cases
for checking that the code behaves correctly.

2.5.4 A Literal About Nothing: NoneType

Python has a special type that has just one literal value. The type is NoneType None is a keyword and literal; we
primarily classify it as a literal.and its single literal is None, defined according to the following EBNF rule.

3Strings are characters “strung” together, one after another, preserving their order.
4A byte stores 8 bits of information, allowing 256 different ASCII characters.

CHAPTER 2. TOKENS AND PYTHON’S LEXICAL STRUCTURE 28

EBNF Description: none literal (NoneType literal: meaning “no value”)

none literal ⇐ None (a Python keyword)

Why does Python include the NoneType and its None literal value? As one We use None whenever a Python
language feature requires a
value, but there is no sensible
value to use

example, all functions in Python must return a value; but some functions are
commands (done for effect) not queries (done to compute a value), so they don’t
have any value to return: these functions, because they must return a value,
return None. We will learn a few different uses for None in Python.

Section Review Exercises

1. Classify each of the following as a legal or illegal literal; if it is legal,
indicate it type; if it is a float literal with an exponent, write it as an
equivalent float literal without an exponent. If it is illegal, propose a legal
literal that has a similar value and type.

a. 22 j. E2 s. """"""
b. 00 k. 5E2 t. "True"
c. 007 l. 9.193818e+400 u. "SSN’
d. 1,024 m. 0b01 v. ’caveat emptor’

e. 0o128 n. 0b101E1 w. br"Hello world\n"

f. 5.0 o. 002.99792758E09 x. """
g. 5. p. 007j gm(x,y) -> float

h. 5 q. true Compute the geometric mean

i 000.5 r. yes """

Answer:
a. Legal: int j. Illegal: 1E2 s. Legal: str
b. Legal: int k. Legal: float 500. t. Legal: str
c. Illegal: 7 l. Illegal: float too big u. Illegal: ’SSN’ or "SSN"
d. Illegal: 1024 m. Legal: int v. Legal: str
e. Illegal: 0o127 n. Illegal: 0b110010 w. Legal: bytes
f. Legal o. Legal: float 2997927580. x. Legal: str
g. Legal p. Legal: imaginary
h. Legal: int q. Illegal: True
i. Legal: float r. Illegal True

2. b. Tokenize the code tails = sum(throw_coin(100,.55)) writing the
superscripts i,i/k,o,d,l/x, where x in l/x can be integer, f loat, j imaginary,
boolean, string, bs byte string, or none, indicating the type of the literal.

Answer: a. tails i = d sum i (d throw coin i (d 100 l/i , d .55 l/f) d) d

2.6 Comments

Programmers embed comments in their Python programs as documentation, Programmers document their
code with commentsaccording to the following syntax. Comments start with the special # character

and end with a “new line” ←↩ character, with any characters between; inside
comments white–space does not separate tokens, it is part of the comment.

EBNF Description: comment (Python Comments)

comment ⇐ #{text chars | \} ←↩

Semantically, once Python tokenizes a comment it discards that token, exclud- Comment Semantics
ing it from from further processing. So, a program has the same meaning in

CHAPTER 2. TOKENS AND PYTHON’S LEXICAL STRUCTURE 29

Python with or without its comments.

But good documentation is an important part of programming. Comments Comments embody information
that cannot be expressed in codehelp programmers capture aspects of their code that they cannot express di-

rectly in the Python language: e.g., goals, specifications, design decisions,
time/space trade-offs, historical information, advice for using/modifying their
code. Comments are anything that can be typed on the keyboard: English,
mathematics, even low-resolution pictures. Programmers intensely study their
own code (or the code of others) when writing and maintaining programs. Good
commenting make these tasks much easier.

2.7 Tokenizing Python Programs

This section completes our analysis of the lexical structure of Python. We first How do Line–joining and inden-
tation affect the lexical analysis
of Python code

discuss the concepts of physical and logical lines (and line–joining), and then
examine how Python actively tokenizes indentation and its opposite: dedenta-
tion. Finally, we will see how Python uses all the information covered in this
chapter to analyze the lexical structure of a program by fully tokenizing it.

2.7.1 Physical and Logical Lines: Line–Joining with \

The backslash character (\) is also known as the “line–joining” character: it The backslash \ character forces
Python to join physical lines into
longer logical lines

joins physical lines to create longer logical lines. A physical line in Python
always ends in a←↩. But if the line–joining character appears as the last one on
a physical line (i.e., appears right before the ←↩) Python creates a logical line
that includes the current physical line (with its \←↩ replaced by) followed by
the characters on the next line. This process can repeat, if subsequent physical
lines also end in \←↩. So, it is possible to create a very long logical line from
any number of physical lines; that final logical line ends with a ←↩.

In the following code (with the ←↩ character explicitly shown) Python trans- An example and explanation of
line–joininglates the lines on the left...

code1←↩
code2\←↩
code3\←↩
code4←↩
code5←↩

...into the equivalent
lines on the right. Notice
how each \←↩ pair at the
end of a line is replaced
by and then that line is
joined with the next line.

code1←↩
code2 code3 code4←↩
code5←↩

The backslash character can appear in three contexts: in a string/byte string There are two places where \
does not mean the line-joining
character

(starting an escape character), in a comment as itself, or at the end of a line
(as the line–joining character). If it appears anywhere else, Python reports a
lexical error.

How is line–joining used in practice? Style rules specify the maximum length Line–joining is useful, because
style rules limit the length of lines
in programs

of a line of code; the number should be chosen so the programmer’s editor can
show every character in a line of code, without horizontal scrolling. A common
choice is 80 characters. So, we break a longer line into shorter ones, using
line–joining to satisfy this style rule. Most code in this book will not require
line–joining, but it is convenient to present this material here, for reference.

CHAPTER 2. TOKENS AND PYTHON’S LEXICAL STRUCTURE 30

2.7.2 Indentation: The INDENT and DEDENT Tokens

Indentation is the amount of white–space that occurs at the front of each line in Python uses indentation (the
amount of white–space at the
beginning of a line) to determine
statement nesting

a program; if a line is all white-space, Python ignores it. Python is one of just
a few programming languages that uses indentation to specify how statements
nest (accomplished with “blocks” in most other languages). We will examine
the meaning and use of nested statements when we cover statements themselves;
for now we explore only how Python tokenizes indentation in programs.

Python tokenizes indentation using the following algorithm, which produces Python produces special tokens
for indentation and dedentationspecial INDENT and DEDENT tokens, using a list that grows and shrinks while

storing relevant prior indentations. We present this algorithm here for reference.
Don’t memorize it, but understand and be able to follow/apply it.

I. Ensure that the first line has no indentation (0 white-space characters); if Python’s indentation algorithm
it doesn’t, report an error. If it does, initialize the list with the value 0.

II. For each logical line (after line–joining)

A. If the current line’s indentation is > the indentation at the list’s end

1. Add the current line’s indentation to the end of the list.

2. Produce an INDENT token.

B. If the current line’s indentation is < the indentation at the list’s end

1. For each value at the end of the list that is unequal to the current
line’s indentation (if it is not in the list, report a lexical error).

a. Remove the value from the end of the list.

b. Produce a DEDENT token.

C. Tokenize the current line.

III. For every indentation on the list except 0, produce a DEDENT token.

We apply this algorithm below to compute all the tokens (including the inden- A simple example of Python’s in-
dentation algorithmtation tokens) for the following simplified code: each line is numbered, shows

its white–space, and contains just one identifier token; the actual tokens on a
line are irrelevant to the indentation algorithm. The indentation pattern for
these lines is 0, 2, 2, 4, 6, 6, 2, 4, and 2.

1 a

2 b

3 c

4 d

5 e

6 f

7 g

8 h

9 i

a i INDENT b i c i INDENT d i INDENT e i f i DEDENT DEDENT g i

INDENT H i DEDENT i i DEDENT

Table 2.6 is a trace of the indentation algorithm running on the simplified A trace of the indentation algo-
rithmcode above. It explains how the algorithm produces the following tokens.

CHAPTER 2. TOKENS AND PYTHON’S LEXICAL STRUCTURE 31

Table 2.6: Tokenizing with the Indentation Algorithm

Line List CLI Algorithm Step(s) Followed (CLI is Current Line Indentation)
1 None 0 I. The first line has no indentation (0 spaces); initialize the List with 0

1 0 0 IIC. produce a i token

2 0 2 IIA1. add 2 to List; IIA2. produce the INDENT token; IIC. produce b i token

3 0, 2 2 IIC. produce c i token

4 0, 2 4 IIA1. add 4 to List; IIA2. produce the INDENT token; IIC. produce d i token

5 0, 2, 4 6 IIA1. add 2 to List; IIA2. produce the INDENT token; IIC. produce e i token

6 0, 2, 4, 6 6 IIC. produce f i token

7 0, 2, 4, 6 2 IIB1. remove 6 from List; IIB2. produce the DEDENT token; IIB1. remove

4 from List; IIB2. produce the DEDENT token; IIC. produce g i token; stop

because indentation is 2

8 0, 2 4 IIA1. add 4 to List; IIA2. produce the INDENT token; IIC. produce h i token

9 0, 2, 4 2 IIB1. remove 4 from List; IIB2. produce the DEDENT token

End 0, 2 III. remove 2 from List; produce the DEDENT token; stop when indentation is 0

2.7.3 Complete Tokenization of a Python Program

We have now learned all the rules that Python uses to tokenize programs, Python’s complete tokenization
algorithm, including indentationwhich we will summarize in the following algorithm. Again, we present this

algorithm here for reference. Don’t memorize it, but understand and be able
to follow/apply it.

I. Scan the code from left–to–right and top–to–bottom using line-joining and
using white–space to separate tokens (where appropriate).

A. At the start of a line, tokenize the indentation; beyond the first token,
skip any white–space (continuing to a new line after a ←↩)

B. If the first character is a lower/upper letter or underscore, tokenize
the appropriate identifier, keyword, or literal: bool, str, bytes, or
NoneType; recall str and bytes literals can start with combinations
of rs and bs.

C. If the first character is an ordinary character, tokenize an operator,
delimiter, or comment...

1. ...except if the character is period immediately followed by a digit,
in which case tokenize a float literal.

D. If the first character is a digit, tokenize the appropriate numeric literal.

E. If the first character is either kind of quote, tokenize a str literal.

Below is a complex example of a Python function and the tokens Python pro- A complex example of Python’s
indentation algorithmduces for it, including the standard superscripts: identifier (with /k for key-

word), operator, delimiter, literal (with /x identifying type x), and comment
label these tokens. The lines these tokens appear on have no significance.

CHAPTER 2. TOKENS AND PYTHON’S LEXICAL STRUCTURE 32

def collatz(n):
 """

 Computes the number of iterations needed to reduce n to 1

 """

 count = 0

 while True:
 i f n == 1:
 break
 count += 1

 i f n%2 == 0: #check n
 n = n//2 #n was even

 else :
 n = 3*n+1 # was odd

 return count

def i/k collatz i (d n i) d : d INDENT

"""←↩ Computes the number of iterations needed to reduce n to 1←↩ """ l//s count i = d

0 l/i while i/k True l/b : d INDENT if i/k n i == o 1 l/i : d INDENT break i/k DEDENT

count i += d 1 l/i if i/k n i % o 2 l/i == o 0 l/i : d #check n c INDENT n i = d n i // o

2 l/i #n was even: c DEDENT else i/k : d INDENT n i = d 3 l/i * o n i + o 1 l/i #n was odd c

DEDENT DEDENT return i/k count i DEDENT

Carefully examine the triple-quoted string; note the spaces () and newlines Examine the contents of the
triple–quoted string literal(←↩) that are allowed inside it, all according to the triple quoted str EBNF rule.

Section Review Exercises

1. Identify the errors Python reports when it analyzes the lexical structure
of the left and right code below.

1 def f(x):
2 return \#use line -joining
3 x

1 def sum(x):
2 s = 0

3 for i in range(x):

4 s += i

5 return s

Answer: Left: Python reports a lexical error on line 2 because when
a line–joining character is present, it must appear last on the line, right
before←↩. If Python joined these lines as described, the identifier x would
become part of the comment at the end of line 2! Right: Python reports
a lexical error on line 5 because the indentation pattern (0, 2, 2, 6, 4)
is illegal. When Python processes line 5, the list contains 0, 2, 6; the
4–space indentation on line 5 does not match anything in this list. So,
rule IIB1 in the algorithm causes Python to report of an error.

2.8 Seeing Programs

Adriaan de Groot, a Dutch psychologist, did research on chess expertise in the What do chess experts see
when viewing a mid–game chess
board?

1940s, by performing the following experiment: he sat down chess experts in
front of an empty chessboard, all the pieces from a chess set, and a curtain.
Behind the curtain was a chessboard with its pieces arranged about 35 moves
into a game. The curtain was briefly raised and then lowered. The experts were

CHAPTER 2. TOKENS AND PYTHON’S LEXICAL STRUCTURE 33

then asked to reconstruct the game board. In most cases, the experts were able
to completely reconstruct the game board they saw. He then performed the
same experiment with chess novices; they did much worse. These results could
be interpreted as, “Chess experts have much better memories than novices.”

American psychologists Herb Simon and Bill Chase repeated DeGroot’s ex- What do chess experts see when
viewing a chess board with pieces
placed randomly on it?

periment and extended it in the 1960s. In a second experiment, the board
behind the curtain had the same number of chess pieces, but they were ran-
domly placed on the board; they did not represent an ongoing game. In this
experiment, when asked to reconstruct the chess board, the experts did only
marginally better than the novices. Their conclusion: “Experts saw the board
differently than novices: they performed much better in the first experiment
because they were recognizing the structure of the game, not just seeing pieces
on a board.”

This chapter is trying to teach us how to see programs as a programmer (and See programs as tokens instead
of as seeing them charactersPython) sees them: not just as a sequence of characters, but recognizing the

tokens using Python’s lexical structures; in later chapters we will learn to see
programs at even a higher level, in terms of their syntactic structures.

Chapter Summary

This chapter examined the lexical structure of Python programs. It started with
a discussion of Python’s character set, and then examined Python’s five lexical
categories in detail, describing each using EBNF rules. Some categories used
very simple EBNF descriptions, while others described more complex struc-
tures for their tokens. We learned how to box characters to denote tokens,
labeling each token with a superscript describing the token’s lexical category.
In the process, we learned how Python uses the “longest legal token” rule when
tokenizing characters. The biggest lexical category we examined was literals,
where we began our study of the concept of types in programming languages.
We then learned how Python joins physical lines into logical lines, and how
Python tokenizes indentation: white–space at the beginning of a line. Then,
we distilled all this knowledge into two algorithms that describe how Python
tokenizes a program, including line-joining and the tokenization of indentation.
A last example showed how Python translates a sequence of characters into
a sequence of tokens (including INDENT and DEDENT tokens). Finally, we
discussed how knowing how to tokenize programs allowed us to see them more
as a programmer (or Python) sees them.

Chapter Exercises

1. White–space frequently separates tokens in Python. When can white–
space be included as part of a token? Discuss , →, and ←↩ separately.

2. Tokenize each of the following, including the appropriate superscript(s).
a. six b. vi c. 6 d. 6. e. 6E0 f. "six" g. b"six" h. b "six"

3. a. List five keywords that are also operators. b. List three that are also
literals. c. How do we categorize these tokens?

4. Tokenize each of the following (caution: how many tokens are in each?)

CHAPTER 2. TOKENS AND PYTHON’S LEXICAL STRUCTURE 34

a. #Here print("\n\n") prints two blank lines

b. """
I put the comment #KLUDGE on a line

to mark the code for further review

"""

5. Answer and justify: a. How many 1–character identifiers are there in
Python? b. 2–character identifiers? c. n–character identifiers? (write a
formula) d. 5–character identifiers? (use the formula)

6. a. Is is possible to have two consecutive INDENT tokens? b. Is is possible
to have two consecutive DEDENT tokens? If so, cite examples from this
book.

7. Tokenize the code below. What is its indentation pattern? Is it legal?

1 def happy(times ,lines):
2 for l in range(lines):

3 print("I’m Happy",end=’’)
4 for t in range(times -1):

5 print(’, Happy ’,end=’’)
6 print(’ to know you.’)
7 print(’And I hope you are happy to know me too.’)

8. This chapter discussed two lexical errors that Python reports. When do
they occur?

9. Select an appropriate type to represent each of the following pieces of
information: a. the number of characters in a file; b. elapsed time of day
since midnight (accurate to 1 second); c. whether or not the left mouse
button is currently pushed; d. the temperature of a blast furnace; e. an
indication of whether one quantity is less than, equal to, or greater than
another; d. the position of a rotary switch (with 5 positions); h. the name
of a company.

	Contents
	Tokens and Python's Lexical Structure
	Introduction
	Python's Character Set

	Identifiers
	Keywords: Predefined Identifiers

	Operators
	Delimiters
	Python builds the longest legal token

	Literals and their Types
	Numeric Literals: int, float, and imaginary
	Logical/Boolean Literals: bool
	Text/String Literals: str and bytes
	A Literal About Nothing: NoneType

	Comments
	Tokenizing Python Programs
	Physical and Logical Lines: Line–Joining with `
	Indentation: The INDENTheightwidthwidthheight and DEDENTheightwidthwidthheight Tokens
	Complete Tokenization of a Python Program

	Seeing Programs

