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Application:

N

@ Sorting has a lot of
applications, including
uses in Internet search
engines.

@ Sorting arises in the
steps needed to build a
data structure, known
as the inverted file or
inverted index, that
allows a search engine
to quickly return a list of
the documents that
contain a given
keyword.
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Merge Sort

Internet Search Engines

Document
Number &
word
location

banana 1:3, 2:45

butterfly 2:15, 3:12

camel 4:40

dog 1:60, 1:70,
2:22, 3:20,
4:11

horse 4:21

pig 2:55

pizza 1:56, 3:33




Application: How Sorting Builds
an Internet Search Engine

;
® To build an inverted file we need
to identify, for each keyword, Kk, B““I;“e'g
the documents containing k. /;(> WL(')':ZI l
#| Bringing all such documents location
together can be done simply by banana 1:3 2:45
sorting the set of keyword- —
document pairs by keywords. butterfly 2:15, 3:12
# This places all the (k, d) pairs | camel 4:40
with the same keyword, k, right dog 1:60, 1:70,
next to one another. 2:22, 3:20,
@ From this sorted list, it is then @ | bocuments 411
simple computation to scan the ' -horse 4:21
list and build a lookup table of \/ Pig 2:55
documents for each keyword that pizza 1:56, 3:33

appears in this sorted list.
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Divide-and-Conquer

N

# Divide-and conquer is a

general algorithm design | Divide in half.
paradigm: [ Split list Il j
= Divide: divide the input data plit List equally

S in two disjoint subsets S,
and S,
= Recur: solve the

subproblems associated
with §, and S,

= Conquer: combine the
solutions for §, and S, into a

2. Recur. 2. Recur.

solution for S N y
# The base case for the =7
recursion are subproblems of 3. Merge.
size 0 or 1
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Merge-Sort

/‘\

@ Merge-sort is a sorting algorithm based on the divide-and-conquer
paradigm

@ Like heap-sort
s It has O(n log n) running time

@ Unlike heap-sort
= It does not use an auxiliary priority queue
= It accesses data in a sequential manner (suitable to sort data on a disk)
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N

# Merge-sort on an input
sequence S with »
elements consists of
three steps:

= Divide: partition § into
two sequences S, and S,

of about n/2 elements
each

= Recur: recursively sort S,
and §,
= Conquer: merge S, and

S, into a unique sorted
sequence

The Merge-Sort Algorithm

Algorithm mergeSort(S)

Input sequence § with n
elements

Output sequence S sorted
according to C

if S.size() > 1
(8, 8,) < partition(S, n/2)
mergeSort(S)
mergeSort(S,)
S < merge(S,, S,)
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Merging Two Sorted Sequences

A
\J
@ The conquer step of .
merge-sort consists ~ Algerithm merge(Sy, Sy, 5): | | |
. Input: Two arrays, S1 and S, of size nq and no, respectively, sorted in non-
Of mel‘g | ng two decreasing order, and an empty array, S, of size at least n1 + ng
Sorted Seq uences 4 Output: S, containing the elements from S and S5 in sorted order
and B into a sorted Ll
+—1
sequence S while i < nand j < n do
containing the union if Sg[] = fglﬂl]]“fjg .
of the elements of 4 eir1
and B else
: Sli+Jj — 1] « Sa[j]
4 Merging two sorted jei+l
while i <n do
sequences, each St i1 S
with n/2 elements i—itl

and implemented by while j=mdo
means of a doubly S ey
linked list, takes O(n)

time

© 2015 Goodrich and Tamassia Merge Sort 7



Merge-Sort Tree

N

L
@ An execution of merge-sort is depicted by a binary tree
= each node represents a recursive call of merge-sort and stores
» unsorted sequence before the execution and its partition
» sorted sequence at the end of the execution
= the root is the initial call

= the leaves are calls on subsequences of size 0 or 1

[72|94—>2479}

[7|2—->27] [9|4_—>49]

7=7) (=2 o) =
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Execution Example

N

@ Partition

7294|3861 ]
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Execution Example (cont.)

N

# Recursive call, partition
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(72943861 ]




Execution Example (cont.)

N

# Recursive call, partition

(72943861 ]

(72]94
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Execution Example (cont.)

# Recursive call, base case

(72943861 ]

/\
(72]94 ] [ ]
|/[\ ] /[\
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Execution Example (cont.)

N

# Recursive call, base case
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(7294|3861 ]




“Execution Example (cont.)

#® Merge

(7294|3861 ]




Execution Example (cont.)

N
\J

#Recursive call, ..., base case, merge

(72943861 ]

(72]94 ] f

/\

(71227 (94 —-49] 38 38

77 [2-2] |9-9 [4=4

_______________________
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“Execution Example (cont.)

#® Merge

(72943861 ]

I

AN

71227 |94 —409] 38 38

77 [2-2] |9-9 [4=4

_______________________
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Execution Example (cont.)

#Recursive call, ..., merge, merge

(72943861 ]
/\
(72|94>2479 3861136 8]
/\ AN
7227 ]

38338 61> 16]
/N A 0 NZAN
R 6 e e @6
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“Execution Example (cont.)

#® Merge

7294|3861 >12346789]

P N REmR R

(72|94>2479 (3861136 8]

L JECEEN

71227 |94 —409] 3838 [61—156]
77| [2-2] |9-9 [4=4 [3-3) 8—8 [6-6 [1-1
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Analysis of Merge-Sort

@ The height & of the merge-sort tree is O(log n)
= at each recursive call we divide in half the sequence,

@ The overall amount or work done at the nodes of depth i is O(n)
= we partition and merge 2/ sequences of size n/2!
= we make 2! recursive calls

@ Thus, the total running time of merge-sort is O(n log n)

N

depth #seqgs size
0 1 n [ ]

1 2 n/2 [ ] [ ]

i 20 pp2i | ] | ] | | ]
[/][\][/][\][][][][]
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Summary of Sorting Algorithms

N

L/

Algorithm Time |Notes

= slow

selection-sort O(n?) |= in-place
= for small data sets (< 1K)

= slow

insertion-sort O(n?) " in-place
= for small data sets (< 1K)

= fast

heap-sort | O(nlogn) | in-place

= for large data sets (1K — 1M)
= fast

merge-sort O(nlogn) | sequential data access
= for huge data sets (> 1M)
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