
CS 143A

CS143A
Principles of Operating Systems

Discussion 04: Project 1
Instructor: Prof. Ardalan Amiri Sani

TA: Ping-Xiang Chen (Shawn)

1



CS 143A

Acknowledgement

2

The slides are based on the previous discussions from Dr. Saehanseul Yi.



CS 143A

Agenda

3

● Project 1
● Testing
● Tips



CS 143A

Agenda

4

● Project 1
● Testing
● Tips



CS 143A

Lab 1: Threads

5

● Team project: 1-3 people per team
● Grading

○ Design DOC 40%
○ Implementation 60%

● What you need to implement in pintos?
○ Alarm Clock
○ Priority Scheduling
○ Advanced Scheduling



CS 143A

Design Doc

● Coding Standards
● Be careful of long lines, capitalization, spelling, variable names,…
● Coding style

○ Indentation, cramming multiple sentences in a single line, …
○ Descriptive and informative comments
○ Return value checking; error handling (excessive use of ASSERT)
○ If there’s repeating code, wrap it as a function and call it multiple times

6

https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_9.html#SEC148


CS 143A

Background

● Project 1: Threads 
○ https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_3.html#SEC25

■ Source code structure
■ Development suggestions

● A.3 Synchronization
○ https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_7.html#SEC110

■ Disabling interrupts vs. locks
■ Handling interrupts
■ Semaphore/locks

7

https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_3.html#SEC25
https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_7.html#SEC110


CS 143A

Background

● A.2 Threads
○ https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_7.html#SEC106

■ Thread status
■ Thread functions
■ Thread switching

● Advanced scheduler (BSD Scheduler)
○ https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_8.html#SEC14

■ Niceness
■ Calculating Priority…
■ Fixed-point real arithmetic

8

https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_7.html#SEC106
https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_8.html#SEC14


CS 143A

Implementation

9



CS 143A

(1) Alarm Clock

● Reimplement 
○ void timer_sleep (int64_t ticks)

■ busy loop -> timed wait using 
semaphore

■ Put the thread in ready queue when 
ready (after x ticks + alpha)

■ ready queue must be accessed 
atomically

● In short, 
○ while(1)  {A; B; C;} 
○ vs. lock(l)

10



CS 143A

(2) Priority Scheduling

● When a higher priority thread arrives, the current thread must yield 
immediately

○ What is the function that creates a thread?
● When threads are waiting (lock, semaphore, cond var), higher priority thread 

must be awakened first
○ What are the functions that make threads awake for each {lock, semaphore, cond var}?

● A thread may lower or raise its priority at runtime (it will be tested)
○ Must immediately yield the CPU when necessary

11



CS 143A

(2) Priority Scheduling

● Priority Inversion
○ 3 processes with different priorities (L, M, 

H)
○ L thread is holding the lock that H wants H 

must wait until L release the lock
● Problem: 

○ while L is running in its critical section, 
another thread, M comes in and runs 
before L. This is possible because M has 
nothing to do with the lock

● What we want: 
○ Finish L’s CS first, then H, then M, then L’s 

remaining section
● Solution: Priority Inheritance

12

Akgul, B. S. et al. “Hardware support for priority inheritance.” RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003 (2003): 246-255.

https://ieeexplore.ieee.org/document/1253271


CS 143A

(2) Priority Scheduling

● Priority Inheritance
○ Temporarily promote L’s priority to H’s so 

that no other threads whose priority is 
lower than H cannot preempt

○ In this example, B (Med) cannot preempt A 
(Low) because A has been promoted to 
priority 3 (High)

○ After C (High) acquiring the lock, put A’s 
priority back to the original value

13



CS 143A

Priority – Nested Inheritance

14

Main
Thread
(L, 31)

Lock
a

Main thread (L) acquired Lock A

Lock
b



CS 143A

Priority – Nested Inheritance

15

Main
Thread
(L, 32)

Lock
A

Lock
B

Thread
medium
(M, 32)

acquiredwant

Main thread (L) acquired Lock A
M thread wants Lock A & Lock B
M thread waits for Lock A
M thread acquired Lock B
L’s priority is promoted to M thread’s



CS 143A

Priority – Nested Inheritance

16

Main
Thread
(L, 32)

Lock
A

Lock
B

Thread
medium
(M, 33)

Thread
high

(H, 33)

Main thread (L) acquired Lock A
M thread wants Lock A & Lock B
M thread waits for Lock A
M thread acquired Lock B
L thread’s priority is promoted to M thread’s
H thread arrives and wants Lock B
M thread’s priority is promoted



CS 143A

Priority – Nested Inheritance

17

Main
Thread
(L, 33)

Lock
A

Lock
B

Thread
medium
(M, 33)

Thread
high

(H, 33)

Main thread (L) acquired Lock A
M thread wants Lock A & Lock B
M thread waits for Lock A
M thread acquired Lock B
L thread’s priority is promoted to M thread’s
H thread arrives and wants Lock B
M thread’s priority is promoted
L thread’s priority is promoted again



CS 143A

Priority – Nested Inheritance

18

Main
Thread
(L, 31)

Lock
A

Lock
B

Thread
medium
(M, 33)

Thread
high

(H, 33)

Main thread (L) releases Lock A

L thread restores its original priority



CS 143A

Priority – Nested Inheritance

19

Main
Thread
(L, 31)

Lock
A

Lock
B

Thread
medium
(M, 32)

Thread
high

(H, 33)

Main thread (L) releases Lock A

L thread restores its original priority

M thread releases Lock B

M thread restores its original priority



CS 143A

(3) Advanced Scheduler

20

● A multilevel feedback queue scheduler (4.4 BSD scheduler)
○ reduce the average response time

● Priority based. But no priority donation
○ Implement Priority Scheduling first

● To enable mlfqs mode, 
○ bool thread_mlfqs set it in init.c next to other option handlings
○ pintos -v -k -T $(TIMEOUT) --mlfqs
○ Giving timeout because of deadlock
○ You can use pintos  --help for more information

https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_8.html#SEC14


CS 143A

(3) Advanced Scheduler

● Motivational example
○ Memory-bound task: threads perform a lot of I/O require a fast response time (MS Word) but 

little CPU time
○ Compute-bound task: threads require more CPU time to finish their work than the 

memory-bound ones. Less I/O requests
● Thread priority is dynamically determined by the scheduler

○ Sample policy:
■ priority = PRI_MAX - (recent_cpu / 4)

21



CS 143A

(3) Advanced Scheduler

22

Word processor (W)
• Interactive
• Less computation

File Compression (Z)
• No interaction
• Compute-intensive

Z ZW W Z WZ Z WZ Z

W’s Priority

Z’s Priority

60

60

59

60

59

59

60

58

60

57

59

58

59

57

60

56

59

56

59

55

60

54

W processes and go to sleep 
(nothing to compute..)
W is not in the ready queue

W is in sleep. its 
recent_cpu gets lower, 
and the priority goes up

Z’s recent_cpu gets 
higher, and the priority 
goes down Because W’s priority is maintained 

high, whenever it is in the ready 
queue it will preempt other threads



CS 143A

Multilevel Feedback Queue

23

● Each value of priority(0~64) has its queue
● Problems of Multilevel queue

○ Convoy effect & Starvation because 
priorities are fixed

○ Processes cannot move across the 
queues

● Change the priority dynamically
○ If it was scheduled recently, lower the 

priority
○ Or we can use process aging (increase 

priority over time if idle)



CS 143A

Multilevel Feedback Queue

● Some parameters:
○ niceness: how “nice”(20~-19) to other threads.. more likely to yield if the nice value is higher
○ recent_cpu: if recently used, it increases. Decays over time
○ load_avg: a system-wide value. Decays over time
○ priority: a function of (recent_cpu, niceness)

24

recent_cpu++

If load_avg is 1, the weight decays to 0.1 approx. 
6 sec if load_avg is 2, approx. 8 sec

https://ics.uci.edu/~ardalan/courses/os/pintos/pintos_8.html#SEC143


CS 143A

Multilevel Feedback Queue

● When do we update these parameters?
○ niceness:  user specifically sets for each thread
○ recent_cpu: +1 when it’s running, calculate below once in a while
○ load_avg: once in a while (every second?)
○ priority: calculate for every process when choosing next thread to run

25

recent_cpu++



CS 143A

MLFQS – nice-2 (fair-2, ..)

● Niceness: how nice to other threads (-20 ~ 20) high niceness: lower priorities 
and yield to other threads low niceness: increase the priority.

26

Thread A
tick_count++

Thread B
tick_count++

priority: 63
niceness: 0
recent-cpu: 0

priority: 63
niceness: 5
recent-cpu: 0



CS 143A

MLFQS – nice-2 (fair-2, ..)

● Niceness: how nice to other threads (-20 ~ 20) high niceness: lower priorities 
and yield to other threads low niceness: increase the priority.

27

Thread A
tick_count++

Thread B
tick_count++

priority: 41
niceness: 0
recent-cpu: 5839.58

priority: 32
niceness: 5
recent-cpu: 5651.30

tick_count: 1900 tick_count: 1100

tick_count: 1500 tick_count: 1500(fair)



CS 143A

Multilevel Feedback Queue Tests

● Fairness: if thread workloads are the same, they are expected to get the 
same amount of CPU time

● Niceness: nice threads tend to yield to the other threads

28



CS 143A

Multilevel Feedback Queue Summary

● A queue for each priority
● Task priorities can change dynamically

○ Parameters and rules can vary depending on implementation
○ A thread can move across the queues
○ It can achieve a good balance between I/O bound and compute bound processes 
○ Fights the convoy effect and starvation

29



CS 143A

Fixed-point Real Arithmetic

30

Integer Fraction

17 bits 14 bits

S

32 bits

12.345

Fixed point

.

● Floating-point arithmetic
○ Exponent can change (floating point)
○ Large coverage of numbers
○ Expensive computation
○ Typically performed by Floating Point Unit (FPU)

● Fixed-point arithmetic
○ Fixed size for integer and fraction parts
○ Small coverage of numbers 
○ Less computation 
○ CPU’s ALU can handle it fast enough



CS 143A

Agenda

31

● Project 1
● Testing
● Tips



CS 143A

A lot of tests!

32



CS 143A

Where are the tests?

● pintos/src/tests/threads
○ *.c files implement test functions
○ *.ck files are for checking the results
○ tests.c contains the pointer to test functions
○ Make.test contains the test list

33



CS 143A

Where are the tests?

● pintos/src/tests/tests.c
○ pointer to each test func

■ If you failed on one of these,
● Track down the test function
● Add msg() or use GDB to 

debug

34



CS 143A

How to run the tests?

● Testing all tests
○ Go to build folder, then type make check

■ $ cd ~/Pintos/pintos/src/threads/build
■ $ make check

○ You can go to file result to see detail testing results.
● To get approximate grades

○ Go to build folder, then type make grade
■ $ cd ~/Pintos/pintos/src/threads/build
■ $ make grade

○ You can go to file grade to see the grading rubric.

35



CS 143A

What if I want to test each test cases individually?

● Individual test (without grading)
○ Make sure you run make before these individual tests

■ $ pintos -v -k -T 60 --bochs  -- -q  run alarm-multiple
■ $ pintos -v -k -T 60 --bochs  -- -mlfqs -q  run mlfqs-fair-2

● Individual test (with grading)
○ A given test t writes its output to t.output, then a script scores the output as "pass" or "fail" and 

writes the verdict to t.result.
○ To run and grade a single test, make the .result file explicitly from the build directory, e.g.

■ $ make tests/threads/alarm-multiple.result (we are now in build directory)
○ If make says that the test result is up-to-date, but you want to re-run it anyway

■ $ rm -f tests/threads/alarm-multiple.output
■ $ make tests/threads/alarm-multiple.result

36

https://ics.uci.edu/~ardalan/courses/os/pintos/pintos_1.html#SEC8


CS 143A

Recommended test order

37

alarm-single
alarm-multiple

alarm-simultane
ous

alarm-zero
alarm-negative

alarm-priority priority-preempt priority-change
priority-fifo

priority-sema

priority-donate-lowerpriority-donate-onepriority-donate-multiple
priority-donate-multiple2

priority-donate-nest
priority-donate-chain

priority-donate-condvar

mlfqs-load-1 mlfqs-recent-1

mlfqs-load-60
mlfqs-load-avg

mlfqs-fair-2
mlfqs-fair-20

mlfqs-block

mlfqs-nice-2
mlfqs-nice-10

Choose which thread to run next
Do necessary work when setting 
a new priority

When waking up from 
semaphore waiting

When a high priority 
thread tries to acquire 
a lock..

When two high priority 
threads are competing 
for a lock..

Choose new priority when 
releasing the lock

only need load_avg to 
pass

recent_cpu & niceness



CS 143A

Agenda

38

● Project 1
● Testing
● Tips



CS 143A

threads/thread.c: schedule()

● Core function for scheduling
● Pick next thread to run
● switch_threads(): context switch

○ Save current registers
○ restore next thread’s registers

● thread_schedule_tail()
○ initialize thread_tick
○ mark thread status as running

39



CS 143A

Paths to schedule(): timer interrupt

● Pintos is currently set to have 100 ticks per second (100 timer interrupt)
● devices/timer_init(): register timer_interrupt()
● threads/intr-stubs.S
● threads/interrupt.c: intr_handler()

○ devices/timer.c: timer_interrupt()
■ threads/thread.c: thread_tick()
■ calc priority here is recommended (mlfqs)
■ if thread_ticks > TIME_SLICE then 

● intr_yield_on_return()
○ Waking sleeping thread here is recommended (timed wait)
○ if yield_on_return

■ thread_yield(): put current thread in the ready list
■ schedule()

40



CS 143A

Paths to schedule()

● Other functions calling schedule()
○ thread_yield()
○ thread_block()
○ thread_exit()

● What about thread_unblock() ?
○ Within this function, a thread is added to the ready_list
○ If that newly added thread has a higher priority than the current one, we need to preempt the 

current thread immediately
○ Call thread_yield()

41



CS 143A

Tips for Alarm – priority alarm

● Make a list for sleeping threads
● Wake up threads in timer_interrupt() by comparing ticks

○ timer_interrupt() is invoked very frequently, so no heavy computation
● Use list_insert_ordered() to get an ordered list in terms of wakeup time

○ Stop searching if current tick < wakeup tick
● If thread_yield() has to be called, beware of the interrupt on/off state

○ thread_yield() disables interrupt so possible deadlock
○ In that case, use intr_yield_on_return() instead

42



CS 143A

Tips for Priority Donation

● Make a list of donors in struct thread
○ There could be multiple threads that want the same lock
○ The thread may hold multiple locks

● lock_acquire(), lock_release()
● Search for the max. priority donor and perform the donation for the current 

thread
● After donation, call the priority donation function for donee (recursion) for 

handling priority chain
● Re-calculate the priority donation chain whenever the priority changes

○ thread_set_priority()
○ mlfqs

● When priority changes, make sure to yield to highest priority thread

43



CS 143A

Tips for MLFQS

● Update recent_cpu for all threads in thread_ticks()
● Update the current thread’s priority in thread_ticks()

○ Refresh the priority donation chain if the current thread is involved
● Update the priority and donation chains

○ thread_ticks()
○ thread_set_priority()
○ thread_set_nice()

44



CS 143A

Pintos List Functions

● pintos/src/lib/kernel/list.h
● Doubly linked list

○ (+) No initial size (vs. array)
○ (+) Frequent insertion & deletion
○ (-) No random access (no index)

45

head list_elem list_elem tail
NULL

NULL



CS 143A

Pintos List Functions

● Example: semaphore
○ S – integer variable (non-negative)
○ init: S = some value
○ sema_down(wait): if (S == 0) {add_to_list; 

block;} else {S--;}
○ sema_up(signal): if (!wait_list_empty) 

{unblock} S++;

46



CS 143A

Pintos List Functions

47



CS 143A

Pintos List Functions

48



CS 143A

Pintos List Functions

49



CS 143A

Thank you. Any Questions?

50


