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Lab 1: Threads
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● Team project: 1-3 people per team
● Grading

○ Design DOC 40%
○ Implementation 60%

● What you need to implement in pintos?
○ Alarm Clock
○ Priority Scheduling
○ Advanced Scheduling
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Design Doc

● Coding Standards
● Be careful of long lines, capitalization, spelling, variable names,…
● Coding style

○ Indentation, cramming multiple sentences in a single line, …
○ Descriptive and informative comments
○ Return value checking; error handling (excessive use of ASSERT)
○ If there’s repeating code, wrap it as a function and call it multiple times
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https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_9.html#SEC148
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Background

● Project 1: Threads 
○ https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_3.html#SEC25

■ Source code structure
■ Development suggestions

● A.3 Synchronization
○ https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_7.html#SEC110

■ Disabling interrupts vs. locks
■ Handling interrupts
■ Semaphore/locks
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https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_3.html#SEC25
https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_7.html#SEC110
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Background

● A.2 Threads
○ https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_7.html#SEC106

■ Thread status
■ Thread functions
■ Thread switching

● Advanced scheduler (BSD Scheduler)
○ https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_8.html#SEC14

■ Niceness
■ Calculating Priority…
■ Fixed-point real arithmetic
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https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_7.html#SEC106
https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_8.html#SEC14
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Implementation
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(1) Alarm Clock

● Reimplement 
○ void timer_sleep (int64_t ticks)

■ busy loop -> timed wait using 
semaphore

■ Put the thread in ready queue when 
ready (after x ticks + alpha)

■ ready queue must be accessed 
atomically

● In short, 
○ while(1)  {A; B; C;} 
○ vs. lock(l)
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(2) Priority Scheduling

● When a higher priority thread arrives, the current thread must yield 
immediately

○ What is the function that creates a thread?
● When threads are waiting (lock, semaphore, cond var), higher priority thread 

must be awakened first
○ What are the functions that make threads awake for each {lock, semaphore, cond var}?

● A thread may lower or raise its priority at runtime (it will be tested)
○ Must immediately yield the CPU when necessary
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(2) Priority Scheduling

● Priority Inversion
○ 3 processes with different priorities (L, M, 

H)
○ L thread is holding the lock that H wants H 

must wait until L release the lock
● Problem: 

○ while L is running in its critical section, 
another thread, M comes in and runs 
before L. This is possible because M has 
nothing to do with the lock

● What we want: 
○ Finish L’s CS first, then H, then M, then L’s 

remaining section
● Solution: Priority Inheritance
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Akgul, B. S. et al. “Hardware support for priority inheritance.” RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003 (2003): 246-255.

https://ieeexplore.ieee.org/document/1253271
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(2) Priority Scheduling

● Priority Inheritance
○ Temporarily promote L’s priority to H’s so 

that no other threads whose priority is 
lower than H cannot preempt

○ In this example, B (Med) cannot preempt A 
(Low) because A has been promoted to 
priority 3 (High)

○ After C (High) acquiring the lock, put A’s 
priority back to the original value
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Priority – Nested Inheritance
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Main
Thread
(L, 31)

Lock
a

Main thread (L) acquired Lock A

Lock
b
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Priority – Nested Inheritance
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Main
Thread
(L, 32)

Lock
A

Lock
B

Thread
medium
(M, 32)

acquiredwant

Main thread (L) acquired Lock A
M thread wants Lock A & Lock B
M thread waits for Lock A
M thread acquired Lock B
L’s priority is promoted to M thread’s
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Priority – Nested Inheritance
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Main
Thread
(L, 32)

Lock
A

Lock
B

Thread
medium
(M, 33)

Thread
high

(H, 33)

Main thread (L) acquired Lock A
M thread wants Lock A & Lock B
M thread waits for Lock A
M thread acquired Lock B
L thread’s priority is promoted to M thread’s
H thread arrives and wants Lock B
M thread’s priority is promoted
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Priority – Nested Inheritance
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Main
Thread
(L, 33)

Lock
A

Lock
B

Thread
medium
(M, 33)

Thread
high

(H, 33)

Main thread (L) acquired Lock A
M thread wants Lock A & Lock B
M thread waits for Lock A
M thread acquired Lock B
L thread’s priority is promoted to M thread’s
H thread arrives and wants Lock B
M thread’s priority is promoted
L thread’s priority is promoted again
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Priority – Nested Inheritance
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Main
Thread
(L, 31)

Lock
A

Lock
B

Thread
medium
(M, 33)

Thread
high

(H, 33)

Main thread (L) releases Lock A

L thread restores its original priority
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Priority – Nested Inheritance
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Main
Thread
(L, 31)

Lock
A

Lock
B

Thread
medium
(M, 32)

Thread
high

(H, 33)

Main thread (L) releases Lock A

L thread restores its original priority

M thread releases Lock B

M thread restores its original priority
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(3) Advanced Scheduler
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● A multilevel feedback queue scheduler (4.4 BSD scheduler)
○ reduce the average response time

● Priority based. But no priority donation
○ Implement Priority Scheduling first

● To enable mlfqs mode, 
○ bool thread_mlfqs set it in init.c next to other option handlings
○ pintos -v -k -T $(TIMEOUT) --mlfqs
○ Giving timeout because of deadlock
○ You can use pintos  --help for more information

https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_8.html#SEC14
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(3) Advanced Scheduler

● Motivational example
○ Memory-bound task: threads perform a lot of I/O require a fast response time (MS Word) but 

little CPU time
○ Compute-bound task: threads require more CPU time to finish their work than the 

memory-bound ones. Less I/O requests
● Thread priority is dynamically determined by the scheduler

○ Sample policy:
■ priority = PRI_MAX - (recent_cpu / 4)
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(3) Advanced Scheduler
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Word processor (W)
• Interactive
• Less computation

File Compression (Z)
• No interaction
• Compute-intensive

Z ZW W Z WZ Z WZ Z

W’s Priority

Z’s Priority

60

60

59

60

59

59

60

58

60

57

59

58

59

57

60

56

59

56

59

55

60

54

W processes and go to sleep 
(nothing to compute..)
W is not in the ready queue

W is in sleep. its 
recent_cpu gets lower, 
and the priority goes up

Z’s recent_cpu gets 
higher, and the priority 
goes down Because W’s priority is maintained 

high, whenever it is in the ready 
queue it will preempt other threads
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Multilevel Feedback Queue
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● Each value of priority(0~64) has its queue
● Problems of Multilevel queue

○ Convoy effect & Starvation because 
priorities are fixed

○ Processes cannot move across the 
queues

● Change the priority dynamically
○ If it was scheduled recently, lower the 

priority
○ Or we can use process aging (increase 

priority over time if idle)
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Multilevel Feedback Queue

● Some parameters:
○ niceness: how “nice”(20~-19) to other threads.. more likely to yield if the nice value is higher
○ recent_cpu: if recently used, it increases. Decays over time
○ load_avg: a system-wide value. Decays over time
○ priority: a function of (recent_cpu, niceness)
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recent_cpu++

If load_avg is 1, the weight decays to 0.1 approx. 
6 sec if load_avg is 2, approx. 8 sec

https://ics.uci.edu/~ardalan/courses/os/pintos/pintos_8.html#SEC143
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Multilevel Feedback Queue

● When do we update these parameters?
○ niceness:  user specifically sets for each thread
○ recent_cpu: +1 when it’s running, calculate below once in a while
○ load_avg: once in a while (every second?)
○ priority: calculate for every process when choosing next thread to run

25

recent_cpu++
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MLFQS – nice-2 (fair-2, ..)

● Niceness: how nice to other threads (-20 ~ 20) high niceness: lower priorities 
and yield to other threads low niceness: increase the priority.

26

Thread A
tick_count++

Thread B
tick_count++

priority: 63
niceness: 0
recent-cpu: 0

priority: 63
niceness: 5
recent-cpu: 0
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MLFQS – nice-2 (fair-2, ..)

● Niceness: how nice to other threads (-20 ~ 20) high niceness: lower priorities 
and yield to other threads low niceness: increase the priority.

27

Thread A
tick_count++

Thread B
tick_count++

priority: 41
niceness: 0
recent-cpu: 5839.58

priority: 32
niceness: 5
recent-cpu: 5651.30

tick_count: 1900 tick_count: 1100

tick_count: 1500 tick_count: 1500(fair)
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Multilevel Feedback Queue Tests

● Fairness: if thread workloads are the same, they are expected to get the 
same amount of CPU time

● Niceness: nice threads tend to yield to the other threads

28
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Multilevel Feedback Queue Summary

● A queue for each priority
● Task priorities can change dynamically

○ Parameters and rules can vary depending on implementation
○ A thread can move across the queues
○ It can achieve a good balance between I/O bound and compute bound processes 
○ Fights the convoy effect and starvation

29
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Fixed-point Real Arithmetic
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Integer Fraction

17 bits 14 bits

S

32 bits

12.345

Fixed point

.

● Floating-point arithmetic
○ Exponent can change (floating point)
○ Large coverage of numbers
○ Expensive computation
○ Typically performed by Floating Point Unit (FPU)

● Fixed-point arithmetic
○ Fixed size for integer and fraction parts
○ Small coverage of numbers 
○ Less computation 
○ CPU’s ALU can handle it fast enough
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A lot of tests!
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Where are the tests?

● pintos/src/tests/threads
○ *.c files implement test functions
○ *.ck files are for checking the results
○ tests.c contains the pointer to test functions
○ Make.test contains the test list

33
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Where are the tests?

● pintos/src/tests/tests.c
○ pointer to each test func

■ If you failed on one of these,
● Track down the test function
● Add msg() or use GDB to 

debug

34
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How to run the tests?

● Testing all tests
○ Go to build folder, then type make check

■ $ cd ~/Pintos/pintos/src/threads/build
■ $ make check

○ You can go to file result to see detail testing results.
● To get approximate grades

○ Go to build folder, then type make grade
■ $ cd ~/Pintos/pintos/src/threads/build
■ $ make grade

○ You can go to file grade to see the grading rubric.

35
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What if I want to test each test cases individually?

● Individual test (without grading)
○ Make sure you run make before these individual tests

■ $ pintos -v -k -T 60 --bochs  -- -q  run alarm-multiple
■ $ pintos -v -k -T 60 --bochs  -- -mlfqs -q  run mlfqs-fair-2

● Individual test (with grading)
○ A given test t writes its output to t.output, then a script scores the output as "pass" or "fail" and 

writes the verdict to t.result.
○ To run and grade a single test, make the .result file explicitly from the build directory, e.g.

■ $ make tests/threads/alarm-multiple.result (we are now in build directory)
○ If make says that the test result is up-to-date, but you want to re-run it anyway

■ $ rm -f tests/threads/alarm-multiple.output
■ $ make tests/threads/alarm-multiple.result

36

https://ics.uci.edu/~ardalan/courses/os/pintos/pintos_1.html#SEC8
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Recommended test order
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alarm-single
alarm-multiple

alarm-simultane
ous

alarm-zero
alarm-negative

alarm-priority priority-preempt priority-change
priority-fifo

priority-sema

priority-donate-lowerpriority-donate-onepriority-donate-multiple
priority-donate-multiple2

priority-donate-nest
priority-donate-chain

priority-donate-condvar

mlfqs-load-1 mlfqs-recent-1

mlfqs-load-60
mlfqs-load-avg

mlfqs-fair-2
mlfqs-fair-20

mlfqs-block

mlfqs-nice-2
mlfqs-nice-10

Choose which thread to run next
Do necessary work when setting 
a new priority

When waking up from 
semaphore waiting

When a high priority 
thread tries to acquire 
a lock..

When two high priority 
threads are competing 
for a lock..

Choose new priority when 
releasing the lock

only need load_avg to 
pass

recent_cpu & niceness
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threads/thread.c: schedule()

● Core function for scheduling
● Pick next thread to run
● switch_threads(): context switch

○ Save current registers
○ restore next thread’s registers

● thread_schedule_tail()
○ initialize thread_tick
○ mark thread status as running

39
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Paths to schedule(): timer interrupt

● Pintos is currently set to have 100 ticks per second (100 timer interrupt)
● devices/timer_init(): register timer_interrupt()
● threads/intr-stubs.S
● threads/interrupt.c: intr_handler()

○ devices/timer.c: timer_interrupt()
■ threads/thread.c: thread_tick()
■ calc priority here is recommended (mlfqs)
■ if thread_ticks > TIME_SLICE then 

● intr_yield_on_return()
○ Waking sleeping thread here is recommended (timed wait)
○ if yield_on_return

■ thread_yield(): put current thread in the ready list
■ schedule()

40
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Paths to schedule()

● Other functions calling schedule()
○ thread_yield()
○ thread_block()
○ thread_exit()

● What about thread_unblock() ?
○ Within this function, a thread is added to the ready_list
○ If that newly added thread has a higher priority than the current one, we need to preempt the 

current thread immediately
○ Call thread_yield()

41
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Tips for Alarm – priority alarm

● Make a list for sleeping threads
● Wake up threads in timer_interrupt() by comparing ticks

○ timer_interrupt() is invoked very frequently, so no heavy computation
● Use list_insert_ordered() to get an ordered list in terms of wakeup time

○ Stop searching if current tick < wakeup tick
● If thread_yield() has to be called, beware of the interrupt on/off state

○ thread_yield() disables interrupt so possible deadlock
○ In that case, use intr_yield_on_return() instead

42
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Tips for Priority Donation

● Make a list of donors in struct thread
○ There could be multiple threads that want the same lock
○ The thread may hold multiple locks

● lock_acquire(), lock_release()
● Search for the max. priority donor and perform the donation for the current 

thread
● After donation, call the priority donation function for donee (recursion) for 

handling priority chain
● Re-calculate the priority donation chain whenever the priority changes

○ thread_set_priority()
○ mlfqs

● When priority changes, make sure to yield to highest priority thread

43



CS 143A

Tips for MLFQS

● Update recent_cpu for all threads in thread_ticks()
● Update the current thread’s priority in thread_ticks()

○ Refresh the priority donation chain if the current thread is involved
● Update the priority and donation chains

○ thread_ticks()
○ thread_set_priority()
○ thread_set_nice()

44
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Pintos List Functions

● pintos/src/lib/kernel/list.h
● Doubly linked list

○ (+) No initial size (vs. array)
○ (+) Frequent insertion & deletion
○ (-) No random access (no index)

45

head list_elem list_elem tail
NULL

NULL
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Pintos List Functions

● Example: semaphore
○ S – integer variable (non-negative)
○ init: S = some value
○ sema_down(wait): if (S == 0) {add_to_list; 

block;} else {S--;}
○ sema_up(signal): if (!wait_list_empty) 

{unblock} S++;

46
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Pintos List Functions
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Pintos List Functions
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Pintos List Functions
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Thank you. Any Questions?
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