CS143A
Principles of Operating Systems
Discussion 04: Project 1

Instructor: Prof. Ardalan Amiri Sani
TA: Ping-Xiang Chen (Shawn)

CS 143A

Acknowledgement

The slides are based on the previous discussions from Dr. Saehanseul Yi.

CS 143A

Agenda

e Project 1
e Testing
e Tips

CS 143A

Agenda

e Project 1

CS 143A

Lab 1: Threads

e Team project: 1-3 people per team

e Grading
o Design DOC 40%
o Implementation 60%
e \What you need to implement in pintos?
o Alarm Clock
o Priority Scheduling
o Advanced Scheduling

CS 143A

Design Doc

e Coding Standards
e Be careful of long lines, capitalization, spelling, variable names,...
e Coding style

Indentation, cramming multiple sentences in a single line, ...
Descriptive and informative comments

Return value checking; error handling (excessive use of ASSERT)

If there’s repeating code, wrap it as a function and call it multiple times

o O O O

CS 143A

https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_9.html#SEC148

Background

e Project 1: Threads
o https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_3.htmI#SEC25
m Source code structure
m Development suggestions

e A.3 Synchronization
o https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_7.htmI#SEC110
m Disabling interrupts vs. locks
m Handling interrupts
m Semaphore/locks

CS 143A

https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_3.html#SEC25
https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_7.html#SEC110

Background

e A.2 Threads

o https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_7.htmI#SEC106
m Thread status
m Thread functions
m Thread switching

e Advanced scheduler (BSD Scheduler)

o https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_8.htmI#SEC14
m Niceness
m Calculating Priority...
m Fixed-point real arithmetic

CS 143A

https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_7.html#SEC106
https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_8.html#SEC14

Implementation

pingxiac@circinus-48 11:15:41 ~/Pintos/project_1/pintos
$ git diff --stat HEAD

src/devices/timer.c | 43 ++++
src/threads/fixed-point.h | 120 +

src/threads/init.c | 31

src/threads/synch.c | 96 +
src/threads/thread.c | 195 +
src/threads/thread.h | 22 -

6 files changed, 476 1nsert10ns(+), 31 deletlons(D)

CS 143A 9

(1) Alarm Clock

e Reimplement
o void timer_sleep (int64_t ticks)
m busy loop -> timed wait using
semaphore
m Put the thread in ready queue when
ready (after x ticks + alpha)
m ready queue must be accessed
atomically
e In short,
o while(1) {A; B; C;}
o vs. lock(l)

/* Sleeps for approximately TICKS timer ticks. Interrupts must
be turned on. */

void

timer_sleep (int64_t ticks)

{
int64_t start = timer_ticks Q;

ASSERT (intr_get_level () == INTR_ON);
while (timer_elapsed (start) < ticks)
thread_yield Q);

CS 143A 10

(2) Priority Scheduling

e \When a higher priority thread arrives, the current thread must yield
immediately
o What is the function that creates a thread?
e \When threads are waiting (lock, semaphore, cond var), higher priority thread
must be awakened first
o What are the functions that make threads awake for each {lock, semaphore, cond var}?

e Athread may lower or raise its priority at runtime (it will be tested)
o Must immediately yield the CPU when necessary

CS 143A

11

(2) Priority Scheduling

e Priority Inversion

o 3 processes with different priorities (L, M,
H)

o Lthread is holding the lock that H wants H
must wait until L release the lock

e Problem:

o while L is running in its critical section,
another thread, M comes in and runs
before L. This is possible because M has
nothing to do with the lock

e What we want:

o Finish L's CS first, then H, then M, then L’s

remaining section

e Solution: Priority Inheritance

high
priority
task

middle
priority
task

low
priority
task

task
arrival blocking
-
________ o CS
D GO 5555
H T
. |
j
|
task
arrival
locky *1001(
request grant release

Akgul, B. S. et al. “Hardware support for priority inheritance.” RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003 (2003):; 246-255.

CS 143A

12

https://ieeexplore.ieee.org/document/1253271

(2) Priority Scheduling

e Priority Inheritance

o Temporarily promote L’s priority to H’s so
that no other threads whose priority is
lower than H cannot preempt

o Inthis example, B (Med) cannot preempt A
(Low) because A has been promoted to
priority 3 (High)

o After C (High) acquiring the lock, put A's
priority back to the original value

CS 143A

Figure 3: An example of priority donation. Thread C, with
priority 3, donates its priority to thread A, with real priority
1. Thread A may now run.

A B %
1
L) () g

Figure 4: After priority donation. Thread C, with
priority 3, is now able to run and thread A's priority
dropped back down to 1.

13

Priority — Nested Inheritance

Main
Thread
(L, 31)

Lock

Lock

Main thread (L) acquired Lock A

CS 143A

14

Priority — Nested Inheritance

Main thread (L) acquired Lock A

Main Thread M thread wants Lock A & Lock B
Thread medium M thread waits for Lock A
(L, 32) (M, 32) M thread acquired Lock B

L's priority is promoted to M thread’s

waht cquired
Lock Lock
A B

CS 143A 15

Priority — Nested Inheritance

Main thread (L) acquired Lock A

Main Thread Thread M thread wants Lock A & Lock B
Thread medium high M thread waits for Lock A
(L, 32) (M, 33) (H, 33) M thread acquired Lock B

L thread’s priority is promoted to M thread’s
H thread arrives and wants Lock B
M thread’s priority is promoted

Lock Lock

CS 143A 16

Priority — Nested Inheritance

Main thread (L) acquired Lock A

Main Thread Thread M thread wants Lock A & Lock B
Thread medium high M thread waits for Lock A
(L, 33) (M, 33) (H, 33) M thread acquired Lock B

L thread’s priority is promoted to M thread’s
H thread arrives and wants Lock B

M thread’s priority is promoted

L thread’s priority is promoted again

Lock Lock

CS 143A 17

Priority — Nested Inheritance

Main Thread Thread
Thread medium high
(L, 31) (M, 33) (H, 33)
Lock Lock
A B

Main thread (L) releases Lock A
L thread restores its original priority

CS 143A

18

Priority — Nested Inheritance

Main
Thread
(L, 31)

Lock

Thread
medium
(M, 32)

Lock

Thread
high
(H, 33)

Main thread (L) releases Lock A

L thread restores its original priority
M thread releases Lock B

M thread restores its original priority

CS 143A

19

(3) Advanced Scheduler

e A multilevel feedback queue scheduler (4.4 BSD scheduler)

o reduce the average response time
e Priority based. But no priority donation
o Implement Priority Scheduling first
e To enable mlfgs mode,
o bool thread_mlfgs set it in init.c next to other option handlings
o pintos -v -k -T $(TIMEOUT) --mlfgs
o Giving timeout because of deadlock
o You can use pintos --help for more information

/* If false (default), use round-robin scheduler.
If true, use multi-level feedback queue scheduler.

Controlled by kernel command-1ine option "-o mlfgs".
bool thread_mlfgs;

CS 143A

20

https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_8.html#SEC14

(3) Advanced Scheduler

e Motivational example
o Memory-bound task: threads perform a lot of I/O require a fast response time (MS Word) but
little CPU time
o Compute-bound task: threads require more CPU time to finish their work than the
memory-bound ones. Less I/O requests
e Thread priority is dynamically determined by the scheduler
o Sample policy:
m priority = PRI_MAX - (recent_cpu/ 4)

CS 143A

21

Less computation

(3) Advanced Scheduler

W Z Z Z
W’s Priority 60 59 59 60
Z’s Priority 60 60 59 58

b

!

W is in sleep. its
recent_cpu gets lower,
and the priority goes up

Z’s recent_cpu gets
higher, and the priority
goes down

W processes and go to sleep
(nothing to compute..)
W is not in the ready queue

W Z Z W Z

60 50 59 60 59
57 58 57 56 56

A

A

Because W'’s priority is maintained

high, whenever it is in the ready

queue it will preempt other threads

CS 143A

Word processor (W) File Compression (Z)
* Interactive m * Nointeraction

Compute-intensive

Z

59
55

W

60
54

Multilevel Feedback Queue

e Each value of priority(0~64) has its queue
e Problems of Multilevel queue

O

O

Convoy effect & Starvation because
priorities are fixed

Processes cannot move across the
queues

e Change the priority dynamically

O

If it was scheduled recently, lower the
priority

Or we can use process aging (increase
priority over time if idle)

CS 143A

High priority
Resrme f Ui ““
1
J
preempled
J
preempted
Interactive >—>
i
J
preempted
Batch >r—>
L
) T
Low priovity preempted

Higher priority

Longer quantum

23

Multilevel Feedback Queue

e Some parameters:

(@)
(@)
(@)
(@)

priority: a function of (recent_cpu, niceness)

niceness: how “nice”’(20~-19) to other threads.. more likely to yield if the nice value is higher
recent_cpu: if recently used, it increases. Decays over time
load_avg: a system-wide value. Decays over time

recent_cpu = (2*load_avg)/(2*load_avg + 1) * recent_cpu + nice, recent_cpu++

load_avg = (59/60)*load_avg + (1/60)*ready_threads,

priority = PRI_MAX - (recent_cpu [4) - (nice * 2)

CS 143A

If load_avg is 1, the weight decays to 0.1 approx.
6 sec if load _avg is 2, approx. 8 sec

LOAD AVERAGE

PSSR NS

Peak Load: 6
®2.25 ®260 ®2384 24

https://ics.uci.edu/~ardalan/courses/os/pintos/pintos_8.html#SEC143

Multilevel Feedback Queue

e \When do we update these parameters?
o niceness: user specifically sets for each thread
o recent_cpu: +1 when it’s running, calculate below once in a while
o load_avg: once in a while (every second?)
o priority: calculate for every process when choosing next thread to run

recent_cpu = (2*load_avg)/(2*load_avg + 1) * recent_cpu + nice,

load_avg = (59/60)*load_avg + (1/60)*ready_threads,

priority = PRI_MAX - (recent_cpu [4) - (nice * 2)

CS 143A

recent_cpu++

25

MLFQS - nice-2 (fair-2, ..)

e Niceness: how nice to other threads (-20 ~ 20) high niceness: lower priorities
and yield to other threads low niceness: increase the priority.

Thread B

Thread A :
tick_count++

tick_count++

priority: 63 priority: 63
niceness: 0 hiceness: 5
recent-cpu: 0 recent-cpu: 0

CS 143A

MLFQS - nice-2 (fair-2, ..)

e Niceness: how nice to other threads (-20 ~ 20) high niceness: lower priorities
and yield to other threads low niceness: increase the priority.

(fair)

Thread A
tick_count++

priority: 41
niceness: 0
recent-cpu: 5839.58

tick_count: 1900
tick_count: 1500 CS 143A

Thread B
tick_count++

priority: 32
niceness: 5
recent-cpu: 5651.30

tick_count: 1100
tick_count: 1500

27

Multilevel Feedback Queue Tests

e Fairness: if thread workloads are the same, they are expected to get the

same amount of CPU time

e Niceness: nice threads tend to yield to the other threads

squish-pty bochs -q

Pintos hdalAM

Loading. .. AM

Kernel command line: -q -mlfgs run mlfgs-fair-2
Pintos booting with 4,096 kB RAM...

383 pages available in kernel pool.

383 pages available in user pool.

Calibrating timer... 204,600 loops/s.

Boot complete.

Executing 'mlfgs-fair-2':

(mlfgs-fair-2) begin

(mlfgs-fair-2) Starting 2 threads...
(mlfgs-fair-2) Starting threads took 6 ticks.
(mlfgs-fair-2) Sleeping 40 seconds to let threads run,
please wait...

(mlfgs-fair-2) Thread @ received 1501 ticks.
(mlfgs-fair-2) Thread 1 received 1500 ticks.
(mlfgs-fair-2) end

Execution of 'mlfgs-fair-2' complete.

Timer: 4059 ticks

Thread: 1000 idle ticks, 3062 kernel ticks, @ user tick]
s

Console: 630 characters output

Keyboard: @ keys pressed

Powering off...

squish-pty bochs -q

Pintos hdalAM

Loading oMM

Kernel command line: -q -mlfgs run mlfgs-nice-2
Pintos booting with 4,096 kB RAM...

383 pages available in kernel pool.

383 pages available in user pool.

Calibrating timer... 204,600 loops/s.

Boot complete.

Executing 'mlfgs-nice-2':

(mlfgs-nice-2) begin

(mlfgs-nice-2) Starting 2 threads...
(mlfgs-nice-2) Starting threads took 6 ticks.
(mlfgs-nice-2) Sleeping 4@ seconds to let threads run,
please wait...

(mlfgs-nice-2) Thread @ received 1916 ticks.
(mlfgs-nice-2) Thread 1 received 1085 ticks.
(mlfgs-nice-2) end

Execution of 'mlfgs-nice-2' complete.

Timer: 4059 ticks

Thread: 1000 idle ticks, 3062 kernel ticks, @ user tick
s

Console: 63@ characters output

Keyboard: @ keys pressed

Powering off...

CS 143A 28

Multilevel Feedback Queue Summary

A queue for each priority
Task priorities can change dynamically

(@)

o O O

Parameters and rules can vary depending on implementation

A thread can move across the queues

It can achieve a good balance between I/O bound and compute bound processes
Fights the convoy effect and starvation

CS 143A

29

Fixed-point Real Arithmetic

exponent

Py
12.345 = 12345 x 1073
~—— NS

significand base

e Floating-point arithmetic

(@)

O
(@)
O

Exponent can change (floating point)

Large coverage of numbers

Expensive computation

Typically performed by Floating Point Unit (FPU)

CS 143A

32 bits
A
Fixed point
Integer | Fraction
17 bits T 14 bits
12.345

Fixed-point arithmetic
Fixed size for integer and fraction parts

@)

o O O

Small coverage of numbers
Less computation
CPU’s ALU can handle it fast enough

30

Agenda

e Testing

CS 143A

31

Functionality of priority scheduler (tests/threads/Rubric.priority):
** @/ 3 tests/threads/priority-change
** @/ 3 tests/threads/priority-preempt

' ** @/ 3 tests/threads/priority-fifo

A Iot O teStS. ** @/ 3 tests/threads/priority-sema
** @/ 3 tests/threads/priority-condvar

" @/ 3 tests/threads/priority-donate-one

TOTAL TESTING SCORE: 24.2% 3 tests/threads/priority-donate-multiple

3 tests/threads/priority-donate-multiple2

3 tests/threads/priority-donate-nest

5 tests/threads/priority-donate-chain

3 tests/threads/priority-donate-sema

3

tests/threads/priority-donate-lower
tests/threads/Rubric.alarm 14/ 18 15.6%/ 20.0%
tests/threads/Rubric.priority 0.0%/ 40.0%

tests/threads/Rubric.mlfgs 8.6%/ 40.0% - Section summary.

@/ 12 tests passed
@/ 38 points subtotal

Functionality of advanced scheduler (tests/threads/Rubric.mlfgs):
SUMMARY OF INDIVIDUAL TESTS ** @/ 5 tests/threads/mlfgs-load-1
** @/ 5 tests/threads/mlfqs-load-60
Functionality and robustness of alarm clock (tests/threads/Rubric.alarm): 0/ 3 tests/threads/mlfgs-load-avg
4/ 4 tests/threads/alarm-single
4/ 4 tests/threads/alarm-multiple
4/ 4 tests/threads/alarm—simul?aneous tests/threads/mlfgs-fair-2
** @/ 4 tests/threads/alarm-priority tests/threads/mlfqs-fair-20

tests/threads/mlfgs-recent-1

1/ 1 tests/threads/alarm-zero tests/threads/mlfgs-nice-2
1/ 1 tests/threads/alarm-negative tests/threads/mlfqs-nice-10
- Section summary. ** @/ 5 tests/threads/mlfgs-block
5/ 6 tests passed

- Secti :
14/ 18 points subtotal At lod

2/ 9 tests passed
8/ 37 points subtotal

CS 143A

Where are the tests?

e pintos/src/tests/threads
o *.c files implement test functions

o O O

$ 1s tests/threads/
alarm-multiple.ck
alarm-negative.c
alarm-negative.ck
alarm.pm
alarm-priority.c

alarm-priority.ck
alarm-simultaneous.c
alarm-simultaneous.ck
alarm-single.ck
alarm-wait.c
alarm-zero.c
alarm-zero.ck

Grading
Make.tests
mlfgs-block.c
mlfgs-block.ck
mlfgs-fair-20.ck
mlfgs-fair-2.ck
mlfgs-fair.c
mlfgs-load-1.c
mlfgs-load-1.ck
mlfgs-load-60.c
mlfgs-load-60.ck
mlfgs-load-avg.c

*.ck files are for checking the results
tests.c contains the pointer to test functions
Make.test contains the test list

mlfgs-load-avg.ck
mlfgs-nice-10.ck
mlfgs-nice-2.ck
mlfgs.pm
mlfgs-recent-1.c
mlfgs-recent-1.ck
priority-change.c
priority-change.ck
priority-condvar.c
priority-condvar.ck
priority-donate-chain.c
priority-donate-chain.ck

CS 143A

priority-donate-lower.c
priority-donate-lower.ck
priority-donate-multiple2.c
priority-donate-multiple2.ck
priority-donate-multiple.c
priority-donate-multiple.ck
priority-donate-nest.c
priority-donate-nest.ck
priority-donate-one.c
priority-donate-one.ck
priority-donate-sema.c
priority-donate-sema.ck

priority-fifo.c
priority-fifo.ck
priority-preempt.c
priority-preempt.ck
priority-sema.c
priority-sema.ck
Rubric.alarm
Rubric.mlfgs
Rubric.priority
tests.c

tests.h

33

Where are the tests?

pintos/src/tests/tests.c
pointer to each test func
If you failed on one of these,

O

Track down the test function
Add msg() or use GDB to
debug

CS 143A

static const struct test tests

{
{"alarm-single", test_alarm_single},
{"alarm-multiple", test_alarm_multiple},
{"alarm-simultaneous", test_alarm_simultaneous},
{"alarm-priority", test_alarm_priority},
{"alarm-zero", test_alarm_zero},
{"alarm-negative", test_alarm_negative},
{"priority-change", test_priority_change},
{"priority-donate-one", test_priority_donate_one},
{"priority-donate-multiple", test_priority_donate_multiple},
{"priority-donate-multiple2", test_priority_donate_multiple2},
{"priority-donate-nest", test_priority_donate_nest},
{"priority-donate-sema", test_priority_donate_sema},
{"priority-donate-lower", test_priority_donate_lower},
{"priority-donate-chain", test_priority_donate_chain},
{"priority-fifo", test_priority_fifo},
{"priority-preempt", test_priority_preempt},
{"priority-sema", test_priority_sema},
{"priority-condvar", test_priority_condvar},
{"mlfgs-load-1", test_mlfgs_load_1},
{"mlfgs-load-60", test_mlfgs_load_60},
{"mlfgs-load-avg", test_mlfgs_load_avg},
{"mlfgs-recent-1", test_mlfgs_recent_1},
{"mlfgs-fair-2", test_mlfgs_fair_2},
{"mlfgs-fair-20", test_mlfgs_fair_20},
{"mlfgs-nice-2", test_mlfgs_nice_2},
{"mlfgs-nice-10", test_mlfgs_nice_10},
{"mlfgs-block", test_mlfgs_block},

34

How to run the tests?

e Testing all tests
o Go to build folder, then type make check
m $ cd ~/Pintos/pintos/src/threads/build
m $ make check

o You can go to file result to see detail testing results.

e To get approximate grades
o Go to build folder, then type make grade
m $ cd ~/Pintos/pintos/src/threads/build
m 3 make grade
o You can go to file grade to see the grading rubric.

CS 143A

35

What if | want to test each test cases individually?

e Individual test (without grading)
o Make sure you run make before these individual tests
m 3 pintos -v -k -T 60 --bochs -- -q run alarm-multiple
m $ pintos -v -k -T 60 --bochs -- -mlfgs -q run mifgs-fair-2
e Individual test (with grading)
o Agiven test t writes its output to t.output, then a script scores the output as "pass" or "fail" and
writes the verdict to t.result.
o To run and grade a single test, make the .result file explicitly from the build directory, e.g.
m 3 make tests/threads/alarm-multiple.result (we are now in build directory)
o If make says that the test result is up-to-date, but you want to re-run it anyway
m $ rm -f tests/threads/alarm-multiple.output
m $ make tests/threads/alarm-multiple.result

CS 143A

36

https://ics.uci.edu/~ardalan/courses/os/pintos/pintos_1.html#SEC8

Recommended test order

alarm-single
alarm-multiple
alarm-simultane
—>

d

ous
larm-zero

alarm-negative

priority-donate-nest
priority-donate-chain

alarm-priority = priority-preempt ~| priority-change | _~ priority-sema
priority-fifo

Choose which thread to run next

priority-donate-multiple
priority-donate-multiple2

Choose new priority when
releasing the lock

priority-donate-condvar

mlfqgs-load-60
mlfgs-load-avg

mlfqgs-load-1

—>

mlfqgs-recent-1

/

only need load_avg to

pass

recent_cpu & niceness

CS 143A

Do necessary work when setting

a new priority

When waking up from

semaphore waiting

When two high priority
threads are competing

for a lock..

. priority-donate-one [+ priority-donate-lower

When a high priority

thread tries to acquire

a lock..

mlfqgs-nice-2
mlfqgs-nice-10

mlfqgs-fair-2
mlfqs-fair-20

mlfgs-block

37

Agenda

e Tips

CS 143A

38

threads/thread.c: schedule()

» Core function for scheduling (irkeitbiate i iy oory el
e Pick nextthread to run v o o O S oy e
o SWitCh_threadS(): ConteXt SWitCh It's not safe to call printf() until thread_schedule_tail()
o Save current registers e i EIRCSRE T
o restore next thread’s registers schedule (void)
o thread_SChedUIG_ta”() { struct thread *cur = running_thread Q;

C o) struct thread *next
o initialize thread_tick struct thread *prev

o mark thread status as running ASSERT (intr_get_level () = INTR_OFF);

ASSERT (cur->status != THREAD_RUNNING);
ASSERT (is_thread (next));

next_thread_to_run Q;
NULL;

if (cur != next)
prev = switch_threads (cur, next);
thread_schedule_tail (prev);

CS 143A 39

Paths to schedule(): timer interrupt

e Pintos is currently set to have 100 ticks per second (100 timer interrupt)
e devices/timer _init(): register timer_interrupt()
e threads/intr-stubs.S
e threads/interrupt.c: intr_handler()
o devices/timer.c: timer_interrupt() /* Number of timer interrupts per second. */
m threads/thread.c: thread_tick() #define TIMER_FREQ 100
| palc prlorltly here is recommended (mlfgs) ol wimer inis Custlys
] if thl‘ead_tICkS > TIME_SLICE then void timer_calibrate (VO'Ld);

e intr_yield on_return()
o Waking sleeping thread here is recommended (timed wait)
o ifyield_on_return
m thread_yield(): put current thread in the ready list
m schedule()

CS 143A

40

Paths to schedule()

e Other functions calling schedule()
o thread_yield()
o thread_block()
o thread_exit()

e \What about thread_unblock() ?

o Within this function, a thread is added to the ready _list

o If that newly added thread has a higher priority than the current one, we need to preempt the
current thread immediately

o Call thread_yield()

CS 143A

41

Tips for Alarm — priority alarm

e Make a list for sleeping threads
e \Wake up threads in timer_interrupt() by comparing ticks
o timer_interrupt() is invoked very frequently, so no heavy computation

e Use list insert_ordered() to get an ordered list in terms of wakeup time
o Stop searching if current tick < wakeup tick

e |If thread yield() has to be called, beware of the interrupt on/off state

o thread yield() disables interrupt so possible deadlock
o Inthat case, use intr_yield _on_return() instead

CS 143A

42

Tips for Priority Donation

e Make a list of donors in struct thread
o There could be multiple threads that want the same lock
o The thread may hold multiple locks

e |ock acquire(), lock release()
Search for the max. priority donor and perform the donation for the current
thread

e After donation, call the priority donation function for donee (recursion) for
handling priority chain

e Re-calculate the priority donation chain whenever the priority changes

o thread_set_priority()
o milfgs

e When priority changes, make sure to yield to highest priority thread

CS 143A 43

Tips for MLFQS

e Update recent_cpu for all threads in thread_ticks()
e Update the current thread’s priority in thread_ticks()

o Refresh the priority donation chain if the current thread is involved
e Update the priority and donation chains

o thread_ticks()

o thread_set_priority()
o thread_set nice()

CS 143A

44

Pintos List Functions

e pintos/src/lib/kernel/list.h /% List element. */

e Doubly linked list StE“Ct List_elem
o (+) No initial size (vs. array) struct list_elem *prev; Previous list element. */

. . . 1 * . L %
o (+) Frequent insertion & deletion struct list_elem *next; Next list element. */

b
o (-) No random access (no index)
7% sk, %7
struct list

{

struct list_elem head; List head. */
struct list_elem tail; EFist. tanl:: %/

¥

A4
A4
\J

head list_elem list_elem tail — NULL

NULL

CS 143A

Pintos List Functions

/* Initializes semaphore SEMA to VALUE. A semaphore is a

e Example: semaphore nonnegative integer along with two atomic operators for
o S —integer variable (non-negative) manipulating it:
© |nﬂ:S=zsonu3v§hk? _ down or "P": wait for the value to become positive, then
o sema_down(wait): if (S ==0) {add_to_list; decrement it.
block;} else {S--;}
o sema_up(signal): if (wait_list_empty) up or "V": increment the value (and wake up one waiting

thread, if any). */
void
sema_init (struct semaphore *sema, unsigned value)

{

{unblock} S++;

ASSERT (sema != NULL);

sema->value = value;
list_init (&sema->waiters);

}

CS 143A 46

Pintos List Functions

/* Down or "P" operation on a semaphore. Waits for SEMA's value
to become positive and then atomically decrements it.

This function may sleep, so it must not be called within an
interrupt handler. This function may be called with
interrupts disabled, but if it sleeps then the next scheduled
thread will probably turn interrupts back on. */
void
sema_down (struct semaphore *sema) /% A countlng semaphor'e. w7

{ _ struct semaphore
enum intr_level old_level; {

ASSERT (sema != NULL); unsigned value; /* Current value. */
ASSERT (lintr_context (3); struct list waiters; /* List of waiting threads. */

old_level = intr_disable Q;
while (sema->value == 0)
{
list_push_back (&sema->waiters, &thread_current ()->elem);
thread_block Q;
}
sema->value--;
intr_set_level (old_level);

CS 143A 47

Pintos List Functions

struct thread
{
/* Owned by thread.c. */
tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name (for debugging purposes). */
uint8_t *stack; /* Saved stack pointer. */
int priority; /* Priority. */
struct list_elem allelem; /* List element for all threads list. */

/* Shared between thread.c and synch.c. */

struct list_elem elem; /* List element. */

#ifdef USERPROG

/* Owned by userprog/process.c. */

uint32_t *pagedir; /* Page directory. */
#endif

/* Owned by thread.c. */
unsigned magic; Detects stack overflow. */

¥

CS 143A

Pintos List Functions

/* Up or "V" operation on a semaphore. Increments SEMA's value
and wakes up one thread of those waiting for SEMA, if any.

This function may be called from an interrupt handler. */
void
sema_up (struct semaphore *sema)

{
enum intr_level old_level;

ASSERT (sema != NULL);

old_level = intr_disable (Q);

thread_unblock (list_entry (list_pop_front (&sema->waiters),
struct thread, elem));

sema->value++;
intr_set_level (old_level);

}

CS 143A

49

Thank you. Any Questions?

CS 143A

