CS143A
Principles of Operating Systems
A Brief C Crash Course

Instructor: Prof. Ardalan Amiri Sani
TA: Ping-Xiang Chen (Shawn)

CS 143A

Acknowledgement

The slides are based on the previous discussions from Dr. Claudio A. Parra.

CS 143A

Agenda

Workflow

Types, Operators and Expressions
Control Flow

Functions

Pointers and Arrays

Structures

CS 143A

Agenda

e \Workflow

CS 143A

Get Some Editor

Go and get an editor.

Get familiar with it.

Learn its tricks.

Get comfortable using it in a terminal.

®
&
e

CS 143A

VIM - Vi TMproved

Vim

Visual Studio Code
Editing evolved

walkthroughs

Microsoft Visual Studio Code

Compilation Process

mpilation pr f C program
e Prepossessing Compilation process of C programs

o Remove comments.
o Expands Macros. (#define)
o Expand Included files. (#include)
e Compilation
o Generates text files with assembly
language.

Source Code (.c, .cpp, .h)l

Preprocessing Step 1: Preprocessor (cpp)

Include Header, Expand Macro (.1, .ii)i
Compilation Step 2: Compiler (gcc, g++)
Assembly Code (.s)‘

e . Assemble Step 3: Assembler (as)
o Specific to the target machine.
Machine Code (.o, .obj)
Static Library (.1ib, .a)—» Linking Step 4: Linker (1d)

Executable Machine Code (.exe)‘
[N

NerdyElectronics, 15.1 - Compilation Process of a C Program - Theory - Master C and Embedded C Programming
https://www.youtube.com/watch?v=LOWQg8BNQJ4 CS 143A

https://www.youtube.com/watch?v=LOWQg8BNQJ4

Compilation Process

e Assembly
o Convert the assembly into machine
code.
o Thisis Os and 1s.
o Also known as “Object code”
e Linking
o Merges all the object codes from
multiple modules into a single binary.
o If we are using libraries, those libraries
get linked (referenced or copied).

Compilation process of C programs

Source Code (.c, .cpp, .h)l

Preprocessing Step 1: Preprocessor (cpp)

Include Header, Expand Macro (.1, .ii)i
Compilation Step 2: Compiler (gcc, g++)
Assembly Code (.s)‘

Assemble Step 3: Assembler (as)
Machine Code (.o, .obj)
Static Library (.1ib, .a)—» Linking Step 4: Linker (1d)

Executable Machine Code (.exe)‘
[N

NerdyElectronics, 15.1 - Compilation Process of a C Program - Theory - Master C and Embedded C Programming

https://www.youtube.com/watch?v=LOWQg8BNQJ4

CS 143A

https://www.youtube.com/watch?v=LOWQg8BNQJ4

Agenda

e Types, Operators and Expressions

CS 143A

Basic Types

e char, short, int, long, size t store integers.

e float, double store numbers with fractional parts.
o You don’t need this to work in an OS.

e Xxxxx™are pointers, they store addresses of memory.
e These definitions are machine dependent.

CS 143A

Basic Types

#include <stdio.h>
#include <stdint.h>
#include <float.h>
#include <limits.h>

int main(int argc, char *argv[]) {

printf("|%10s|%7d bits|%22s|%22s|\n", "", CHAR_BIT,"","");
printf("|%10s|%12s|%22s|%22s|\n", "type", "bytes", "min", "max");
printf("|---------- e oo oo [\n");

printf("|%10s|%121d|%22d|%22d|\n", "char", sizeof(char),CHAR_MIN, CHAR_MAX) ;
printf("|%10s|%121d|%22d|%22d|\n", "uchar", sizeof(unsigned char), @, UCHAR_MAX) ;
printf("| | | | [\n");

printf("|%10s|%121d|%22d|%22d[\n", "short", sizeof(short), SHRT_MIN, SHRT_MAX) ;
printf("|%10s|%121d|%22d|%22d|\n", "ushort", sizeof(unsigned short), @, USHRT_MAX) ;
printf("| | | | [\n");

printf("|%10s|%121d|%22d|%22d|\n", "int", sizeof(int), INT_MIN, INT_MAX);
printf("|%10s|%121d|%22d|%22u|\n", "uint", sizeof(unsigned int), @, UINT_MAX) ;
printf("| | | | [\n");

printf("|%10s|%121d|%221d|%221d|\n", "long", sizeof(long), LONG_MIN, LONG_MAX) ;
printf("|%10s|%121d|%22d|%221u|\n", "ulong", sizeof(unsigned long), @, ULONG_MAX) ;
printf("| | | | [\n");

printf("|%10s|%121d|%2211d|%2211d|\n", "1long", sizeof(long long), LLONG_MIN, LLONG_MAX) ;

printf("|%10s|%121d|%22d|%2211u|\n", "ullong", sizeof(unsigned long long), 8, ULLONG_MAX) ;

printf("| | | | [\n");
printf("|%10s|%121d|%22d|%221u|\n", "size_t", sizeof(size_t),0,SIZE_MAX);
printf("|---------- oo fm——mmeee e e iy I\n");

printf("|%10s|%121d|%8s+-%12g|%8s+-%12g|\n", "float",sizeof(float),"",FLT_MIN,"", FLT_MAX);
printf("|%10s|%121d|%8s+-%12g|%8s+-%12g|\n", "double", sizeof(double), "",DBL_MIN, "", DBL_MAX) ;

printf("|---------- AR L e Hommmemmmeemeeeeeeae oo [\n");
printf("|%10s|%121d|%22s|%22s|\n", "void*", sizeof(void*),"- "," H
printf("|%10s|%121d|%22s|%22s|\n", "char*", sizeof(char*),"- ",
printf("|%10s|%121d|%22s|%22s|\n", "short*", sizeof(short*),"- ", "-
printf("[%10s|%121d|%22s|%22s|\n", "int*",sizeof(int*),"- ", "~ ");

printf("|%10s|%121d|%22s|%22s|\n", "long*",sizeof(long*),"- ","- ");

printf("|%10s|%121d|%22s|%22s|\n", "long long*",sizeof(long long*),"- ","- ");
printf("|%10s|%121d|%22s|%22s|\n", "size_t*", K sizeof(size_t*),"- " ")
printf("|%10s|%121d|%22s|%22s|\n", "float*", sizeof(float*),"- ", K
printf("|%10s|%121d|%22s|%22s|\n", "double*", sizeof(double*),"- ", "- ")

printf("+---------- e oo oo +\n");
return@;

|

|

|

| short]|
| ushort|
IR AR

| int|
| uint|
ORI,

| long|
| ulong|
Ja

| llong|
| ullong|
|

|

| float|

|
|
|
|
| long*|
| long long*|
| size_t¥*|
| float*|
| double*|

CS 143A

8 bits|
bytes|

-32768|
0]

-2147483648 |
o]

-9223372036854775808 |
o]

-9223372036854775808 |
o]

+- 1.17549e-38|
+-2.22507e-308|

32767|
65535|

2147483647
4294967295

9223372036854775807 |
18446744073709551615|

9223372036854775807 |
18446744073709551615|

18446744073709551615|

+- 3.40282e+38|
+-1.79769e+308|

10

#define MAXSIZE 10060 //int constant
#define THREE 3L //long constant

. #define PI 3.1415 //double constant
Variables and Constants
int main() {

e Variables and constants are the basic data int lucky_number; //declare and define
i . lucky_number = 42; //initialize (assign) later
objects in a program.

e Constants are read only. Variables are char initial = "C';
rewritable. //we can use the constants
e Both have a data type associated to it. (integer, double use_constants = PI;

. float use_dot_for_floats = 5.0;
decimal, character...)
// invalid, we cannot assign constants.
THREE = 4; // ERROR

// case sensitive, these are different
long DIFFERENT 3984756768
long different 8731408705;

// variable already used
float lucky_number = 42.51; // ERROR

nope = 300; // ERROR, variable never declared!!
char 4nope = 'X'; // ERROR, invalid variable name!!
return 0;

}
CS 143A

Variables and Constants

Declaration:
o Introduction of a new data object name
to the program.
Definition:
o Explanation of what is the size and
shape of the declared data object.
Assignment:
o Act of binding a value to a name.
Initialization:
o First assignment of a value to the name.

#define MAXSIZE 10060 //int constant
#define THREE 3L //long constant

#define PI 3.1415 //double constant
#define HALF ©.5F //float constant

int main() {

}
CS 143A

int lucky_number; //declare and define
lucky_number = 42; //initialize (assign) later

char initial = 'C';

//we can use the constants
double use_constants = PI;
float use_dot_for_floats = 5.0;

// invalid, we cannot assign constants.
THREE = 4; // ERROR

// case sensitive, these are different
long DIFFERENT 3984756768
long different 8731408705;

// variable already used
float lucky_number = 42.51; // ERROR

nope = 300; // ERROR, variable never declared!!

char 4nope = 'X'; // ERROR, invalid variable name!!

return 0;

12

Enumeration

e Useful to assign meaningful names to integral #include <stdio.h>
constants enum course_status { FAIL, PASS, INCOMPLETE, DROP };
’ . . enum score { BAD = 1, AVERAGE, GREAT };
e Thus, the code is cleaner and easier to //AVERAGE is 2, GREAT is 3

maintain/understand.

e Often used in the kernel of an OS.

int main(void) {
enum course_status pass_course = PASS;

e Values start from 0 unless values are specified enum score how_was_it:

explicitly.

e For not explicit specification, the values

continue in progression.

how_was_it = GREAT;

printf("Course Status? %d.\n", pass_course);
printf("How was the course? %d.\n", how_was_it);
return©9;

shawn@shawn-mini-desktop:~/Workspace/CS143AS ./enum
Course Status? 1.
How was the course? 3.

CS 143A 13

Operators and their

Precedence

e Operator associativity is used when two
operators of the same precedence appear in an

expression.

e Associativity can be either from Left to Right or

Right to Left.

#include <stdio.h>

int main(void){
inta=3,b=4,c=5;
a=b=c;

printf("a=%d, b=%d, c=%d\n", a, b, c);

}

shawn@shawn-mini-desktop:~/Workspace/CS143AS$./associativity

a=5, b=5, c=5

C Operator Precedence,

https://en.cppreference.com/w/c/language/operator_precedence

10
11
12
13

14[note 4]

15

Precedence Operator

++ -
()
[]

-

(type){list}|

sizeof
_Alignof
*x /%

=

<< >>

<<=

>>=

[&

A

Ternary conditiona

Description

'Suffix/postfix increment and decrement

Function call
Array subscripting
Structure and union member access

Structure and union member access through pointer

Compound literal(ca9)

Prefix increment and decrementnote 11
Unary plus and minus

Logical NOT and bitwise NOT

Cast

Indirection (dereference)

Address-of

Size-ofinote 2]

Alignment requirement(c11)

Multiplication, division, and remainder
Addition and subtraction

Bitwise left shift and right shift

For relational operators < and = respectively
For relational operators > and = respectively

For relational = and = respectively

Bitwise AND
Bitwise XOR (exclusive or)
Bitwise OR (inclusive or)

'Logical AND

Logical OR
|fnote 3]

Simple assignment
Assignment by sum and difference

Assignment by product, quotient, and remainder

Assignment by bitwise left shift and right shift

Assignment by bitwise AND, XOR, and OR

Comma

[Associativity
Left-to-right

Right-to-left

Left-to-right

'Right-to-left i

Left-to-right

14

https://en.cppreference.com/w/c/language/operator_precedence

Operators and their
Precedence

#include<stdio.h>

intmain(){
inta,b,c,d,e,f,g,h,i,j,k;

=3-4%*2;

++a *7;

at+ *7;

3<21=2;

=11]]|]08&&1;

=g=h=7==1;

=1, 2;

(1,2);

7>870:31!'=3?15:17;

AU B 0O QO T QO

printf("a:%d\nb:%d\nc:%d\nd:%d\n"
"e:%d\nf :%d\ng:%d\nh:%d\n"
"i:%d\nj:%d\nk :%d\n",
a,b,c,d,e,f,g,h,i,j, k);
returno;

CS 143A

Precedence Operator

»

10
11
12
13

14[note 4]

15

++ -
()
[]

-

(type){list}

++ -
A0
!...

(type)

*
&

sizeof
_Alignof
*x /%

=

<< >>

<<=

>>=

Description Associativity
Suffix/postfix increment and decrement Left-to-right
Function call

Array subscripting

Structure and union member access

Structure and union member access through pointer

Compound literal(ca9)

Prefix increment and decrementnote 11 Right-to-left
Unary plus and minus

Logical NOT and bitwise NOT

Cast

Indirection (dereference)

Address-of

Size-ofinote 2]

Alignment requirement(c11)

Multiplication, division, and remainder Left-to-right
Addition and subtraction

Bitwise left shift and right shift

For relational operators < and = respectively

For relational operators > and = respectively

For relational = and = respectively

Bitwise AND

Bitwise XOR (exclusive or)

Bitwise OR (inclusive or)

Logical AND

Logical OR

Ternary conditionall"°te 31 Right-to-left
Simple assignment

Assignment by sum and difference

Assignment by product, quotient, and remainder

Assignment by bitwise left shift and right shift

Assignment by bitwise AND, XOR, and OR

Comma Left-to-right

15

Precedence Operator Description Associativity

. G o Suffix/postfix increment and decrement Left-to-right
Operators and their 0

[1 Array subscripting
3 Structure and union member access

P re Ced e n Ce -> Structure and union member access through pointer

(type){ list} Compound literalice9)

S Prefix increment and decrementnote 11 Right-to-left
#include<stdio.h> Hi Unary plus and minus
. . o X o
int ma1n() { ;t | (L:ogltcal NOT and bitwise NOT
. .. . ype as
int a,b,c,d,e,f, g'h'l'J'k' 2 * Indirection (dereference)
a=3-4%*2: a=-5 & Address-of
b=++a*7; sizeof size-ofinote 21
C=a++ * 7; _Alignof Alignment requirement(c11)
d=3<21=2 : 3 * /% Multiplication, division, and remainder Left-to-right
4 + - Addition and subtraction
e=1 | | 08&1 ! 5 << >> Bitwise left shift and right shift
f= g= h=7==1; = <<= For relational operators < and = respectively
i=1 , 2 ; >>= For relational operators > and = respectively
j - (1 , 2) ; ; := 1= ;c?tr r‘elatli\c:\lnDal = and # respectively
itwise
k=7>8?70:31'=3?215:17; — .
9 ~ Bitwise XOR (exclusive or)
10 | Bitwise OR (inclusive or)
printf("a:%d\nb:%d\nc:%d\nd:%d\n" 11 & Logical AND
"e:%d\nf :%d\ng:%d\nh:%d\n" 12 I Logical OR]
"i:%d\nj:%d\nk :%d\n", 13 ?: Ternary conditionall"°te 31 Right-to-left
A . = Simple assignment
f,g,h,i,j,k
a,b,c,d,e,f, 9,n, 1,7,) ! +=-= Assignment by sum and difference
return@; 1glmote 4l xo /= o Assignment by product, quotient, and remainder
} <<=>>= Assignment by bitwise left shift and right shift
&= "= |= Assignment by bitwise AND, XOR, and OR
15 . Comma Left-to-right

CS 143A

Operators and their
Precedence

#include<stdio.h>
intmain(){
inta,b,c,d,e,f,g,h,i,j,k;

a=3-4%*2;

b=++a*7:

c=a++*7;

d=3<21=2;
e=1]|0&&1;
f=g=h=7==1;

i=1,2;

i=(1,2);
k=7>870:31!=3?215:17;

printf("a:%d\nb:%d\nc:%d\nd:%d\n"
"e:%d\nf :%d\ng:%d\nh:%d\n"
"i:%d\nj:%d\nk :%d\n",
a,b,c,d,e,f,g,h,i,j, k);
returno;

CS 143A

Precedence Operator Description Associativity

++ - - Suffix/postfix increment and decrement Left-to-right
() Function call
[1 Array subscripting

: 3 Structure and union member access
e Structure and union member access through pointer
(type){ list} Compound literalice9)
S Prefix increment and decrementnote 11 Right-to-left
+ - Unary plus and minus
e~ Logical NOT and bitwise NOT
(type) Cast

2 * Indirection (dereference)
& Address-of
sizeof Size-ofinote 21
_Alignof Alignment requirement(c11)

3 * /% Multiplication, division, and remainder Left-to-right

4 + - Addition and subtraction

5 << >> Bitwise left shift and right shift

o <<= For relational operators < and = respectively
>>= For relational operators > and = respectively

7 |==1= For relational = and = respectively

8 l& Bitwise AND

9 ~ Bitwise XOR (exclusive or)

10 | Bitwise OR (inclusive or)

11 && Logical AND

12 | Logical OR

13 ?: Ternary conditionall"°te 31 Right-to-left
= Simple assignment
+= -= Assignment by sum and difference

1glmote 4l xo /= o Assignment by product, quotient, and remainder

<<=>>= Assignment by bitwise left shift and right shift
&= "= |= Assignment by bitwise AND, XOR, and OR

15 ' Comma Left-to-right

17

Precedence Operator Description Associativity

. G o Suffix/postfix increment and decrement Left-to-right
Operators and their 0

[1 Array subscripting
3 Structure and union member access

P re Ced e n Ce -> Structure and union member access through pointer

(type){ list} Compound literalice9)

S Prefix increment and decrementnote 11 Right-to-left
#include<stdio.h> Hi Unary plus and minus
. . o X o
int ma1n() { ;t | (L:ogltcal NOT and bitwise NOT
. .. . ype as
int a,b,c,d,e,f, g'h'l'J'k' 2 * Indirection (dereference)
a=3-4%*2; a=-3 & Address-of
b=++a*7; sizeof size-ofinote 21
c=a++*7: cC= -21 _Alignof Alignment requirement(c11)
d=3<21=2 : 3 * /% Multiplication, division, and remainder Left-to-right
4 + - Addition and subtraction
e=1 | | 08&1 ! 5 << >> Bitwise left shift and right shift
f= g= h=7==1; = <<= For relational operators < and = respectively
i=1 , 2 ; >>= For relational operators > and = respectively
j - (1 , 2) ; ; := 1= ;c?tr r‘elatli\c:\lnDal = and # respectively
itwise
k=7>8?70:31'=3?215:17; — .
9 ~ Bitwise XOR (exclusive or)
10 | Bitwise OR (inclusive or)
printf("a:%d\nb:%d\nc:%d\nd:%d\n" 11 & Logical AND
"e:%d\nf :%d\ng:%d\nh:%d\n" 12 I Logical OR]
"y :%d\nj :%d\nk :%d\n", 13 ?: Ternary conditionall"°te 31 Right-to-left
P . = Simple assignment
f,g,h,i,j,k
a,b,c,d,e,f, 9,n, 1,7,) ! +=-= Assignment by sum and difference
return@; 1glmote 4l xo /= o Assignment by product, quotient, and remainder
} <<=>>= Assignment by bitwise left shift and right shift
&= "= |= Assignment by bitwise AND, XOR, and OR
15 . Comma Left-to-right

CS 143A

Precedence Operator Description Associativity

. G o Suffix/postfix increment and decrement Left-to-right
Operators and their 0
[] Array subscripting

Structure and union member access

P re Ced e n Ce :> Structure and union member access through pointer

(type){ list} Compound literalice9)

+hioe Prefix increment and decrement!note 11 Right-to-left
#include<stdio.h> + - Unary plus and minus
int main() { e~ Logical NOT and bitwise NOT
. . (type) Cast
inta,b,c,d,e, f,g,h,1i,j,k; 2 * Indirection (dereference)
a=3-4%*2; & Address-of
b=++a*7; sizeof Size-ofinote 2]
C=at+t+* 7; d = 1 _Alignof Alignment requirement(c11)
d=3<21=2- 3 * /% Multiplication, division, and remainder Left-to-right
- 4 + - Addition and subtraction
e=1 | | 0&& 1, 5 << >> Bitwise left shift and right shift
f= g= h=7-= o <<= For relational operators < and = respectively
i=1, 2; >>= For relational operators > and = respectively
j - (1) 74 == I= For relational = and = respectively
’ . .
k=7>820:31=3215: 8 & Bitwise AND
9 - Bitwise XOR (exclusive or)
10 | Bitwise OR (inclusive or)
printf("a:%d\nb:%d\nc:%d\nd:%d\n" 11 & Logical AND
"e:%d\nf :%d\ng:%d\nh:%d\n" 12 I Logical OR]
"i:%d\nj:%d\nk :%d\n", 13 ?: Ternary conditionall"°te 31 Right-to-left
A . = Simple assignment
f,g,h,1i,j,k
a, b G d &, 7,0,n, 1,73,) ! += -= Assignment by sum and difference
returno; 1glmote 4l xo /= o Assignment by product, quotient, and remainder
} <<=>>= Assignment by bitwise left shift and right shift
&= "= |= Assignment by bitwise AND, XOR, and OR
15 . Comma Left-to-right

CS 143A

Precedence Operator Description Associativity

. G o Suffix/postfix increment and decrement Left-to-right
Operators and their 0

[1 Array subscripting
3 Structure and union member access

P re Ced e n Ce -> Structure and union member access through pointer

(type){ list} Compound literalice9)

S Prefix increment and decrementnote 11 Right-to-left
#include<stdio.h> Hi Unary plus and minus
int main() { ; ~ | Logical NOT and bitwise NOT
type Cast
int a,b,c,d,e,f, g'h'i'j'k; 2 * . Indirection (dereference)
a=3-4%*2; & Address-of
b=++a*7; sizeof size-ofinote 21
C=a++ * 7; _Alignof Alignment requirement(c11)
_ _n. 3 * /% Multiplication, division, and remainder Left-to-right
d=3<21=2; 4 s Addition and subtraction
% e= 1 5 << >> Bitwise left shift and right shift
f= g= h=7==1; <<= For relational operators < and = respectively
i=1 , 2 ; 9 >>= For relational operators > and = respectively
j - (1 , 2) ; 7 :== 1= For relational = and = respectively
k=7>820:31=3215:17; S il TR
9 ~ Bitwise XOR (exclusive or)
10 ' | Bitwise OR (inclusive or)
printf("a:%d\nb:%d\nc:%d\nd:%d\n" 11 & Logical AND
"e:%d\nf :%d\ng:%d\nh:%d\n" 12 I Logical OR
"i:%d\nj:%d\nk :%d\n", 13 ?: Ternary conditionall"°te 3] Right-to-left
A . = Simple assignment
a,b,c,d,e,f,g,h,l,J,k), +=-= Assignment by sum and difference
returne; 1glmote 4l xo /= o Assignment by product, quotient, and remainder
} <<=>>= Assignment by bitwise left shift and right shift
&= "= |= Assignment by bitwise AND, XOR, and OR
15 ' . Comma Left-to-right

CS 143A

Operators and their
Precedence

#include<stdio.h>

intmain(){
inta,b,c,d,e,f,g,h,i,j,k;

=3-4%*2;

++a *7;

at+ *7;

3<21=2;

=11]]|]08&&1;

=gq=h=7==1;

=1, 2;

(1,2);

7>870:31!'=3?15:17;

AU 0O QO T o

printf("a:%d\nb:%d\nc:%d\nd:%d\n"

"e:%d\nf :%d\ng:%d\nh:%d\n"

"i:%d\nj:%d\nk :%d\n",

a,b,c,d,e,f,g,h,i,j, k);
returno;

CS 143A

Precedence Operator

Description Associativity

++ - - Suffix/postfix increment and decrement Left-to-right
() Function call
a [1 Array subscripting
3 Structure and union member access
e Structure and union member access through pointer
(type){ list} Compound literalice9)
S Prefix increment and decrementnote 11 Right-to-left
+ - Unary plus and minus
e~ Logical NOT and bitwise NOT
(type) Cast
2 * Indirection (dereference)
& Address-of
sizeof Size-ofinote 21
_Alignof Alignment requirement(c11)
3 * /% Multiplication, division, and remainder Left-to-right
4 + - Addition and subtraction
5 << >> Bitwise left shift and right shift
o <<= For relational operators < and = respectively
>>= For relational operators > and = respectively
74 == 1= For relational = and = respectively
8 l& Bitwise AND
9 ~ Bitwise XOR (exclusive or)
10 | Bitwise OR (inclusive or)
11 && Logical AND
12 | Logical OR
13 ?: Ternary conditionall"°te 31 Right-to-left
= Simple assignment
+= -= Assignment by sum and difference
1glmote 4l xo /= o Assignment by product, quotient, and remainder
<<=>>= Assignment by bitwise left shift and right shift
& = |= Assignment by bitwise AND, XOR, and OR
15 ' . Comma Left-to-right

21

Precedence Operator [Description VAssociativity

. ++ -- 'Suffix/postfix increment and decrement VLeft-to-right
Operators and their 0
a [1 Array subscripting
3 Structure and union member access
P re Ced e n Ce o The comma operator (represented by the -> Structure and union member access through pointer
token ,) is a binary operator that evaluates | (type){ List} Compound literalcas)
its first operand and discards the result. ki Prefix increment and decrement!"te 1! Right-to-left
#include<stdio.h> e The use of the comma token as an *- iy bl
int main(){ operator is distinct from its use in function ; ;y o t‘;i':a' NOT and bitwise NOT
inta,b,c,d,e,f,g,h,i,j,K; calls and definitions, variable declarations, 2 i iection (deretarenica)
a=3-4%*2; enum declarations, and similar constructs, & Address-of
b=++a*7; where it acts as a separator. sizeof Size-ofinote 2]
C=a++ * 7 _Alignof Alignment requirement(c11)
d= 3 <2 1= 2 3 * /% Multiplication, division, and remainder Left-to-right
. 4 + - Addition and subtraction
e= | | 08& 15 1= 1 5 << >> Bitwise left shift and right shift
f= g= h=7==1 h o <<= For relational operators < and = respectively
i=1 2 >>= For relational operators > and = respectively
J (1 , 2) : 7 :== 1= 'Fc.>r r‘elational = and # respectively
k=7>820:31=3215: 8 |& B!tw!seAND .
9 - Bitwise XOR (exclusive or)
10 ' | Bitwise OR (inclusive or)
printf("a:%d\nb:%d\nc:%d\nd:%d\n" T && Logical AND
"e:%d\nf :%d\ng:%d\nh:%d\n" 12 I |Logical OR - |
“i:%d\nj :%d\nk:%d\n", 13 % Ternary conditional"*® %1 Right-to-left
P = Simple assignment
a,b,c,d,e,f,g,h,l,J,k); +=-= Assianentgbysumanddifference
return @ ; 14[m0te 4l o o oo Assignment by product, quotient, and remainder
} <<=>>= Assignment by bitwise left shift and right shift
&= "= |= Assignment by bitwise AND, XOR, and OR
15 ' . 'Comma ' Left-to-right

CS 143A

Precedence Operator Description Associativity

. G o Suffix/postfix increment and decrement Left-to-right
Operators and their 0

[1 Array subscripting
3 Structure and union member access

P re Ced e n Ce -> Structure and union member access through pointer

(type){ list} Compound literalice9)

S Prefix increment and decrementnote 11 Right-to-left
#include<stdio.h> Hi Unary plus and minus
. . o X o
int ma1n() { ;t | (L:ogltcal NOT and bitwise NOT
. .. . ype as
int a,b,c,d,e,f, g'h'l'J'k' 2 * Indirection (dereference)
a=3-4%*2; & Address-of
b=++a*7; sizeof Size-ofinote 2J
C=a++ * 7; _Alignof Alignment requirement(c11)
3 * /% Multiplication, division, and remainder Left-to-right
d=3<21=2; / A o8 2
4 + - Addition and subtraction
e=1 | | 08&1 ! 5 << >> Bitwise left shift and right shift
f= g= h=7==1; = <<= For relational operators < and = respectively
i=1 , 2 ;] =2 >>= For relational operators > and = respectively
i = (1 2) - 7 === For relational = and = respectively
8 & Bitwise AND
k=7>8?70:31'=3?215:17; — .
9 ~ Bitwise XOR (exclusive or)
10 | Bitwise OR (inclusive or)
printf("a:%d\nb:%d\nc:%d\nd:%d\n" 11 & Logical AND
"e:%d\nf :%d\ng:%d\nh:%d\n" 12 I Logical OR]
"i:%d\nj:%d\nk :%d\n", 13 ?: Ternary conditionall"°te 31 Right-to-left
P . = Simple assignment
f,g,h,i,j,k
a,b,c,d,e,f, 9,n, 1,7,) ! +=-= Assignment by sum and difference
return@; 1glmote 4l xo /= o Assignment by product, quotient, and remainder
} <<=>>= Assignment by bitwise left shift and right shift
&= "= |= Assignment by bitwise AND, XOR, and OR
15 . Comma Left-to-right

CS 143A

Operators and their
Precedence

#include<stdio.h>

intmain(){
inta,b,c,d,e,f,g,h,i,j,k;

=3-4%*2;

++a *7;

at+ *7;

3<21=2;

=11]]|]08&&1;

=g=h=7==1;

=1, 2; k

(1,2);

7>8?70:31'=3215:17;

17

N B DO Q0O T O

printf("a:%d\nb:%d\nc:%d\nd:%d\n"
"e:%d\nf :%d\ng:%d\nh:%d\n"
"i:%d\nj:%d\nk :%d\n",
a,b,c,d,e,f,g,h,i,j, k);
returno;

CS 143A

Precedence Operator Description Associativity

++ - - Suffix/postfix increment and decrement Left-to-right
() Function call
a [1 Array subscripting
3 Structure and union member access
e Structure and union member access through pointer
(type){ list} Compound literalice9)
S Prefix increment and decrementnote 11 Right-to-left
+ - Unary plus and minus
e~ Logical NOT and bitwise NOT
(type) Cast
2 * Indirection (dereference)
& Address-of
sizeof Size-ofinote 21
_Alignof Alignment requirement(c11)
3 * /% Multiplication, division, and remainder Left-to-right
4 + - Addition and subtraction
5 << >> Bitwise left shift and right shift
o <<= For relational operators < and = respectively
>>= For relational operators > and = respectively
7 |==1= For relational = and = respectively
8 l& Bitwise AND
9 ~ Bitwise XOR (exclusive or)
10 | Bitwise OR (inclusive or)
11 && Logical AND
12 | Logical OR
13 7: Ternary conditional "0t =) Right-to-eft |
= Simple assignment
+= -= Assignment by sum and difference
1glmote 4l xo /= o Assignment by product, quotient, and remainder
<<=>>= Assignment by bitwise left shift and right shift
&= "= |= Assignment by bitwise AND, XOR, and OR
15 ' . Comma Left-to-right

24

Agenda

e Control Flow

CS 143A

25

Statements

e A statement is a command given to the computer that instructs the computer
to take a specific action, such as display to the screen, collect input, assigning
a value to a variable, etc.

e A computer program is made up of a series of statements. Statements are
delimited by a semicolon at the end.

a=3-4x*2;

CS 143A

26

Blocks

e A compound statement or Block is the way C groups multiple statements into
a single statement. It consists of multiple statements and declarations within
braces.

{
statement;
statement;
statement;
}

CS 143A

Selection Statements

if (expression) statement
e statement is executed only iff expression is non-zero.
if (expression) 1st-statement else 2nd-statement
e Similarly, but now 2nd-statement is executed iff expression is zero.
switch (expression) statement
e expression is integer or character. The statement is usually compound and it contains case-labeled
statements and optionally a default-labeled statement.

. .* - *
if(i*n+j<n*n){ switch(my_char){

(1<) case 'a’:

bar(i*n+j); foo(var) ;
if(var >0){ elsg break;
var -=1; 1+=1; case 'b’:

f =foo(var); ; bar(var);
} break;
elsei =9- default:

j:9: printf("not known\n");

CS 143A

lteration Statements

while (expression) statement
e statement is executed repeatedly only iff expression is non-zero.

do statement while (expression)
e Similarly, but now statement is executed at least once.

for (exp1 ; exp2 ; expd) statement
exp1 is executed once, before the “for” iteration. statement is executed repeatedly as long as exp2

[J
is non-zero. exp3 is executed right after every execution of the statement.

while(var < MAX){ do{ for(inti=0; i < length; ++i){
var +=1; ¢ =read_char(); if(is_prime(i)){
foo(var); store_char(c); store(i);
} while(c !'="x") }

}

CS 143A

Jump Statements

break;
e Used within iteration statements and switch statements to pass control flow to the statement
following the while, do-while, for, or switch.
continue;
e Used within iteration statements to transfer control flow to the place just before the end of the
statement. In for loops, right before exp3
return expression;
e Used to return control to the caller of the current function. If it is accompanied by an expression, its
value become available to the caller.

inti=9;
for(int pair =getN(); i <1len; pairs =getN()){

while(1){ . .
: if(pair%2 !=0)
1f(r<0) continue;
break; else{
elsre__ 1- process(pair);
T i+=1;

}
}

CS 143A 30

Agenda

e Functions

CS 143A

31

When to create functions

e Break problems into small parts. Reuse
your code. Easy readability. Parameters
and return values are always copied.

intmain(int argc, char **argv) {
//check validity of the arguments
for(all a in arguments){
if(wrong argument)
print error and exit;
}
//get user input
print "what operation to execute";
op = user input;
if (op is wrong operation)
print error and exit;
//execute the requested operation
if(operation is X){
allocate memory;
some computation;
}
else if(operationisY){
allocate memory;
another computation;
}

return@;

} CS 143A

ret_type name(args declaration){
declarations and statements

void check_args(int argc, char **argv) {
for(allainargv){
if(wrong argument)
print error and exit;
}
}
int input_operation(void) {
print "what operation to execute";
op = user input;
if(op is wrong operation)
print error and exit;
returnop;
}
void run_operation(int oper) {
if (operationis X){
allocate memory;
some computation;
}
else if(operationis Y){
allocate memory;
another computation;
}
}
int main(int argc, char **argv) {
check_args(argc, argv);
ask what operation to execute;
op = input_operation();
run_operation(op);
return@;

32

External and Internal
Variables

A program written in C consists of a set of
external objects, which are either variables or
functions.

These objects can be across several source
files (“.c” files).

A variable is external or internal if it is defined
outside or inside of any function. All functions
are external.

An external variable is accessible from any
function in the file after their declaration.
There must be only one DEFINITION of each
external object.

Internal variables are destroyed on function
return. External variables are permanent.

#include <stdio.h>
int extvar;

void fn1(void){
int invar =42;
extvar =3;

}

void fn2(void){
int invar =57;
extvar =5;

}

intmain(void){

int invar;

extvar=2;

invar =57;

printf("ext:%d int:%d\n",extvar,invar);
fn1();

printf("ext:%d int:%d\n",extvar,invar);
fn2();

printf("ext:%d int:%d\n",extvar,invar);

shawn@shawn-mini-desktop:~/Workspace/CS143AS$. /external

ext:2 int:57
ext:3 int:57
ext:5 int:57

CS 143A

33

Declare, Define, Initialize

e Declare: telling the program a variable or
function exists, and what is its shape.

e Define: setting aside memory for the variable.

e Initialize: put the first value on the variable.

e If you use a variable in several files, you must
declare it for all files. But you must define it
only in one place.

shawn@shawn-mini-desktop:~/Workspace/CS143AS ./declare
ext:2 int:57

ext:2 int:57

ext:5 int:57

arr[3]:33.000000

CS 143A

#include <stdio.h>
void fn1(void){ // declare + define
int invar =42;
//extvar = 3; //error, not declared yet

}

// declare, telling the program the
// variables and functions exist.
void fn2(void);

extern int extvar;
externdoublearr[];

// define variables,

int extvar;

double arr[4];

int main(void){
int invar; // declaration + definition
arr[3] =33;
extvar =2; // initialization
invar =57; // initialization
printf("ext:%d int:%d\n",extvar,invar);
fn1();
printf("ext:%d int:%d\n",extvar,invar);
fn2();
printf("ext:%d int:%d\n",extvar,invar);
printf("arr[3]:%f\n",arr[3]);

}

// define functions
void fn2(void){
int invar =57;
extvar =5; // this is fine

}

34

main.c

#include <stdio.h>

: : #include "header_header.h" source2.c
Header Files and Static int main (void)
. var=4:- int var;
ObJeCtS var += fn1(15); static int num_calls = 9;
//num_calls = @; // error!! . o
_ _ _ printf("var: %d\n",var); int fn1(int 1){
e Variables and functions are declared in the printf("fn2: %d\n",fn2()): num_calls +=1;
header } returni+3;
' : : }
e They are defined in source2.c
e main.c must #include the header. int fn2(void){
. « ” num_calls +=1;
e The header file acts as a “contract” between header_header.h returna % var
main and source2, defining how the variables }
and functions can be used (for main) and how externintvar;

externint fn1(inti);

they will be defined (for source2) extern int fn2(void):

e If you want to make an object only visible for

that source file, use the word static.)))
$ gcc -0 main main.c source2.c -include header_header.h

shawn@shawn-mini-desktop:~/Workspace/CS143A/header$./main
var: 22
fn2: 44

CS 143A

main.c

#include <stdio.h>

#include "header_header.h" source2.c
int main(void){
. var = 4: int var;
Makefl Ie var += fn1(15); static int num_calls = 0;
//num_calls = @; // error!! . . .
_ _ _ _ printf("var: %d\n",var); int fn1(int 1){
e Make is a build automation tool that builds printf("fn2: %d\n",fn2()); num_cal.ls +=1;
executable programs and libraries from source } } returni+3;
code by reading files called makefiles which
specify how to derive the target program. int fn2(void){
: : . num_calls +=1;
e Formore |nfo.rmat|on., please refer to the: header_header.h return2 % var:
o Makefile Tutorial }
extern int var;
externint fn1(inti);
extern int fn2(void); Makefile

files := main.c source2.c
headers := header_header.h
binary := main

all:

gcc -o $(binary) $(files) -include $(headers)
clean:

rm -f $(binary)

CS 143A 36

https://makefiletutorial.com/#top

Agenda

e Pointers and Arrays

CS 143A

37

Pointers: Addresses of include <stdio. h>
ObJeCtS int main(void){

int var =99;
int *pv; //this is a pointer to int
e Memory is a very long array of bytes, each with
an address. A pointer is a group of bytes

(normally 8) containing the address of some // print the address itself
printf("pv : %p\n", pv);

pv = &var; //store the address of var

other byte.
e Given an object in memory, the operator // obtain the object var using
reference (&) retrieves its address. /1 a DO}nter to 1t
e Given an address, the operator dereference (*) } printf(var: %d\n", *pv);
retrieves the object at that address.
e When * is used in a definition, it means “this is
a pointer to that type”. shawn@shawn-mini-desktop:~/Workspace/CS143AS ./pointer
e Apointer is a variable that contains an address pv : Ox7ffcl953efcc

to an object. var: 99 =

e The object a pointer “points to”, may be another
pointer.

CS 143A 38

#include <stdio.h>
#include <stdlib.h>
char *bad_idea(void){
charc="w";
return &c;
}

void good_idea(char *c){

Pointers in Functions

}
. . . char *also_good_idea(void){
e When you pass a pointer variable to a function, char *c = malloc(sizeof (char));
just like with any other variable, you are *°t= 2
. . returnc;
copying it. }
e Butif you dereference it inside of the function, o
- int main(void){
you access the original value that the caller char *pw, x, *pz;
x="x";
has. pw = bad_idea();
e Never return pointers to automatic variables. good_idea(&x);
As the function ends, that memory is reclaimed Pz - ate0-good-tdeal):
’ y . printf("pw: %p\n", pw);
e Instead, you can receive a pointer to something printf %c\n", *pw); // DANGER

("w
printf("x : %c\n", x);
("z

from the caller, or allocate memory from the printf("z : %c\n", *pz);
heap. }
e In the later case, note that at some point that

allocated memory from the heap must be freed shawn@shawn-mini-desktob:~]Horksi:ace]C5143A$ gcc o poinEer_bad pointer_bad.c
pointer_bad.c: In function ‘bad_idea’:

with free(pz). pointer_bad.c:5:16: warning: function returns address of local variable [-Wreturn-local-addr]
5 return &c;
| i

|
shawn@shawn-mini-desktop:~/Workspace/CS143AS ./pointer_bad
pw: (nil)
Segmentation fault (core dumped)

CS 143A 39

Pointers in Functions

When you pass a pointer variable to a function,
just like with any other variable, you are
copying it.

But if you dereference it inside of the function,
you access the original value that the caller
has.

Never return pointers to automatic variables.

As the function ends, that memory is reclaimed.

Instead, you can receive a pointer to something
from the caller, or allocate memory from the
heap.

In the later case, note that at some point that

allocated memory from the heap must be freed shawn@shawn-mini-desktop:~/Workspace/CS143AS

with free(pz).

X
YA

« ¥
-

CS 143A

#include <stdio.h>

#include <stdlib.h>

void good_idea(char *c){
*c = *c + 1; //next character
return;

}

char *also_good_idea(void){
char *c = malloc(sizeof(char));
*c = 'Z','
return c;

}

int main(void){
char x, *pz;
X = "x";
good_idea(&x);
pz = also_good_idea();
printf("x : %c\n", x);
printf("z : %c\n", *pz);
free(pz);

. /pointer_good

40

Pointers, Arrays, and Address
Arithmetic

Arrays and Pointers have a very strong
relationship. Any operation that can be
achieved with arrays, can be done with
pointers.

L5: pa points to the first element of the array.
L7: *(pa+1) points to the next element in the
array.

L8: *(pa+n) points to the nth element in the
array.

L10: By definition, the value of an array name
alone is the address of the first element of the
array.

Therefore, L5 may be written as in L10.

1 #include <stdio.h>
2 int main(void){

3

[e RN e NS N

9
10
11
12
13
14
15
16
17
18
19
20

21}

intarr[]={101, 102, 103, 104, 105};
int *pa, *pa2;

pa=&arr[0];

printf("*pa : %d\n", *pa);
printf("*(pa+1) : %d\n", *(pa+1));
printf("%d == %d\n", *(pa+4), arr[4]);
printf("%p == %p\n", arr, pa);

pa2 =arr;
printf("%p == %p\n", arr, pa2);
printf("%d == %d\n", pa[3], *(arr+3));

pa+=1;
//arr +=1; // error

char *name = "Claudio”; // plus '\@’
printf("name[2] : %c\n", name[2]);
printf("Name : %s\n", name);

shawn@shawn-mini-desktop:~/Workspace/CS143AS

¥pa
*(pa+l)

101
: 102

105 == 105

0x7ffd94073330 ==
0x7ffd94073330 ==

0x7ffd94073330
0x7ffd94073330

104 == 104

name[2]
Name :

CS 143A

+ a
Claudio

./array

41

1 #include <stdio.h>
2 int main(void){
3 idintarr[]={101, 102, 103, 104, 105};

Pointers, Arrays, and Address S pastariiol
. . 6 printf("*pa : %d\n", *pa);
Arlth metIC 7 printf("*(pa+1) : %d\n", *(pa+1));
8 printf("%d == %d\n", *(pa+4), arr[4]);
9 printf("%p == %p\n", arr, pa);
. . . . 10 pa2=arr;
e L13: Additionally, we can use indices with the 11 printf("%p == %p\n", arr, pa2);
. . 12
pointer, or *(+n) with the array name. 13 printf("%d == %d\n", pa[3], *(arr+3)):
e L15-16: There is one key difference: pointers b S
are variables, they can be assigned. An array 16 //arr += 1; // error
. 17
name is not. 18 char *name = "Claudio”; // plus '\@’
e L18: Strings are just arrays of characters with o el e mame 2
the null character “\0” at the end. Then, name 21}
has 8 elements.
e L20: printf prints the whole array until it finds \0. :hawn@igiwn-MInl-desktop:~/WOrkspace/C5143A$./array
. . -
e When an array name is passed to a function, *I()pa+1) . 102
internally, it is a pointer variable. 105 == 105

0x7ffd94073330 == Ox7ffd94073330
0x7ffd94073330 == Ox7ffd94073330
104 == 104

name[2] : a

Name : Claudio

CS 143A 42

Pointers, Arrays, and Address
Arithmetic

e Pointer Comparison: ==, =
o Two pointer values are equal if they
point to the same location, or if they are
both null.
e Assignment: = Same type of pointers.
e Offset: +, - Pointer and Integer
e Distance: - You can subtract two pointers to
obtain the distance between them if they are
part of the same array.
e null: ==NULL, =NULL Always.
e All other operations are illegal.

1 #include <stdio.h>
2 int main(void){

3

[e RN e NS N

9
10
11
12
13
14
15
16
17
18
19
20

21}

intarr[]={101, 102, 103, 104, 105};
int *pa, *pa2;

pa=&arr[0];

printf("*pa : %d\n", *pa);
printf("*(pa+1) : %d\n", *(pa+1));
printf("%d == %d\n", *(pa+4), arr[4]);
printf("%p == %p\n", arr, pa);

pa2 =arr;

printf("%p == %p\n", arr, pa2);

printf("%d == %d\n", pa[3], *(arr+3));

pa+=1;
//arr +=1; // error

char *name = "Claudio”; // plus '\@’
printf("name[2] : %c\n", name[2]);
printf("Name : %s\n", name);

shawn@shawn-mini-desktop:~/Workspace/CS143AS
*pa : 101

*(pa+1)

: 102

105 == 105
0x7ffd94073330 == 0x7ffd94073330
0x7ffd94073330 == 0x7ffd94073330
104 == 104

name[2]

. a

Name : Claudio

CS 143A

./array

43

https://www.gnu.org/software/c-intro-and-ref/manual/html_node/Pointer-Comparison.html

Pointers to Functions

L2: The second parameter is “a pointer to a
function that receives one character”
L4: Call to the function.

L14: fun is the name of the function, and acts

as a pointer.

1 #include <stdio.h>

2 void fn2(char my_char, int (*pfun)(char c)){
3 int next;

4 next = (*pfun)(my_char);

5 printf("Done: %d\n", next);
6 }

7

8 int fun(char c){

9 printf("Char: %c\n", c);
180 return (int) c+1;

11}

12

13 int main(void){

14 fn2('K', fun);

15}

shawn@shawn-mini-desktop:~/Workspace/CS143AS ./func_pointers

Char: K
Done: 76

CS 143A

44

Agenda

e Structures

CS 143A

45

Syntax

e L2: Struct declaration.

e L7,8,28: Elements of struct’s addresses
accessed with ->

e L6: You can pass a pointer to struct to
functions.

e L10: You can return a struct, the whole struct
being copied.

e L 20: You can assign all members of a struct at
definition time.

e | 26: You can obtain pointers to structs.

shawn@shawn-mini-desktop:~/Workspace/CS143AS ./structure
pl.x, pl.y: 23, 74

X,y: -1, -2

pl.x, pl.y: -10, -20

ppl->x, ppl->y: -10, -20

CS 143A

1 #include <stdio.h>

2 struct Point{

3 intx;

4 inty;

5}

6 void init(struct Point *p){
7 p->x=-1;

8 p->y=-2;

9}

10 struct Point init2(void){
11 struct Pointp;

12 p.x=-10;
13 p.y=-20;
14 returnp;
15}

16 void print_struct(struct Point p){

17 printf("x,y: %d, %d\n", p.x, p.y);

18}

19 int main(){

20 struct Point p1= {23, 74}, *pp1;

21 printf("p1.x, pl.y: %d, %d\n", p1.x, p1.y);
22 init(&p1);

23 print_struct(p1);

24 p1=1init2();

25 printf("p1.x, pl.y: %d, %d\n", p1.x, p1.y);
26 ppl=_&p1l;

27 printf("pp1->x, ppl->y: %d, %d\n",\

28 ppl->x, ppl->y);

29 }

46

Thank you. Any Questions?

CS 143A

