Duality

Lagrange dual problem
weak and strong duality

>

>

» optimality conditions

» perturbation and sensitivity analysis
>

generalized inequalities



Lagrangian

Consider the optimization problem in standard form

min  fo(x)
s.t. f(x)<0, i=1--.,m
hi(X):07 l:]-aap

variable x € R, domain D = (" dom f; N (;_, dom h;, optimal value

px

Lagrangian: L: R" x R™ x RP — R, with dom L =D x R™ x RP

L(x, A\, v) = fo(x Z)\f ZV,

i=1

» \;: Lagrange multiplier associated with f;(x) <

» v;: Lagrange multiplier associated with h;(x) =



Lagrangian dual function

Lagrangian dual function: g : R™ x RP — R,

g\ v) = inf L(x, A, v)

|nf fo(x +Z>\ fi(x +il/,'h,'(x)
i=1

g is concave, can be —oo for some A\, v



Lagrangian dual function: lower bound property

Theorem (lower bounds on optimal value)
For any \ = 0 and any v, we have

g\ v) <p*
Proof.
Suppose X is a feasible point. Since A > 0,
m P
Z)\ifi(;{) + Z vihi(%) <0
i=1 i=1

Therefore L(X, A\, v) < fo(X). Hence

g(\v) = infD L(x, A\ v) < L(%, A v) < (%)

xXe

which holds for every feasible X. Thus the lower bound follows.



The dual problem

Lagrange dual problem

max  g(A,v)
s.t. A>=0

v

find the best lower bound on p*

v

a convex optimization problem; optimal value denoted d*
A, v are dual feasible if A = 0, (A, v) € dom g (means
g(A\,v) > —00)

(A*,v*): dual optimal multipliers

v

v

v

p* — d* is called the optimal duality gap



Weak and strong duality

Weak duality: d* < p*

> always true (for both convex and nonconvex problems)

Strong duality: d* = p*
» does not hold in general
> (usually) holds for convex problems

» conditions that guarantee strong duality in convex problems are
called constraint qualifications



Slater’s constraint qualification

Consider the standard convex optimization problem

min  fo(x)
s.t. fi(x)<0, i=1---,m
Ax=b

with variable x € R", domain D = (I, dom f;.
Slater’s condition: exists a point that is strictly feasible, i.e.,
Ix € relint D such that fi(x) <0, i=1,---,m, Ax=0>b

(interior relative to affine hull) can be relaxed: affine inequalities do not
need to hold with strict inequalities

Slater’s theorem: The strong duality holds if the Slater’s condition
holds and the problem is convex.



Complementary slackness

Suppose strong duality holds; x* is primal optimal; (\*,v*) is dual
optimal

m P
f(x") = g(\".v") = inf @(x)+;A7ﬁ(x)+;y7hf(x)

IN

m p
H(F) + DA + D vihi(x")
i=1 i=1
< fo(x")

Hence the inequalities must hold with equality
> x* minimizes L(x, \*,v*)
> \Nifi(x*)=0foralli=1,---,m:

AN =0 = f(x*)=0, £(x)<0 = A =0

known as complementary slackness



Karush-Kuhn-Tucker (KKT) conditions

If strong duality holds, x is primal optimal, (X, v) is dual optimal, and
f;, h; are differentiable, then the following four conditions (called KKT
conditions) must hold

1. primal constraints: fi(x) <0,i=1,---,m, hi(x)=0,i=1,---,p

2. dual constraints: A = 0

3. complementary slackness: \!f;(x*) =0

4. gradient of Lagrangian w.r.t. x vanishes:

Viy(x +Z>\ Vi +Zy,w



KKT conditions for convex problem

If %, \, 0 satisfy KKT for a convex problem, then they are optimal:
» from complementary slackness: (%) = L(X, \, )
» from the 4-th condition and convexity: g(S\, P) = L(k, X, v)
S0 (%) = g(X,7)

If the Slater's condition is satisfied and f; is differentiable, then x is
optimal iff 9\, v that satisfy KKT



Minimax interpretation

Given Lagrangian
L(x, A\ v) = fo(x) + )\Tf(x) + VTh(X)
The primal problem:

P inf sup L(x,\,v
() inf swp L(xAw)

The dual problem:

(D) sup inf L(x,\v)

A=0,v xeP
Weak duality:

su inf L(x,\,v) < inf sup L(x,A
Sup inf, (x, A, v) < inf S (x, A\, v)



Saddle point implies strong duality

Strong duality:

sup inf L(x,\,v)=inf sup L(x,\ v)
A=0,u XEP X€P x\r-0,v

Saddle-point interpretation: (x*, \*,v*) is a saddle point of L if
L(x", A\, v) < L(x™, A", v") < L(x, A", V")
forall A= 0,v,x € P.

The strong duality holds if 3(x*, \*, v*) a saddle point of L



Examples



Standard form LP

(P) min  ¢’x

s.t. Ax=b, x>0

(D) max —b'v
ATv4+c=0



Quadratic program

(assume P € S7.)

(D) max

s. t.

min  x' Px
s.t. Ax=<b

1
- ZATAlflAT/\ —bTA
A=0



Equality constrained norm minimization

(D) max b'v
IAT V]l <1
Note:

> |lyll« =sup{xTy | [|x|| < 1} is the dual norm of || - |.
» inf(||x]| —yTx) = 0if ||y|[« <1and —cc otherwise.



Two-way partitioning

» nonconvex; feasible set: 2" discrete points

» partition {1,---, n} into two sets; Wj; cost of associating i, j to the
same set; — W cost of assigning to different sets

(D) max —1Tv
s.t. W +diag(v) = 0

> lower bound example: v = —Amin(W)1 gives p* > nAmin(W)



Perturbation and sensitivity anaysis

perturbed optimization problem

its dual

min g\ v)—u'A—vTy
s.t. A>=0

» x primal variable; u, v are parameters

» p*(u,v) is optimal value as a function of u, v



Global sensitivity anaysis

assume strong duality holds for unperturbed problem (v = 0,v = 0), and
A*,v* are dual optimal for unperturbed problem

By weak duality on the perturbed problem:
p*(u, V) > g()‘*vlj*) - UT>‘* - VTV*
>p*(0,0) —u" A\ —vTv*
sensitivity interpretation:

» A7 large: small uy; = large change in p*

» v} large and positive: v; <0 = large increase in p*



Local sensitivity analysis: LP

Consider LP

(P) min ¢’x

s.t. Ax<y

(D) max —y’A
ATA+c=0, XA>=0

The optimal value: p* = —y"A*. Thus

ap*
— |, o= —\¥
ayi |y,—0 I



Local sensitivity analysis

Suppose strong duality holds for unperturbed problem (u = 0,v = 0),
and \*,v* are dual optimal for unperturbed problem. If p*(u, v) is
differentiable at (0,0), then

. 0p*(0,00 .  0p*(0,0)
)\i o 8u,~ Vi = 8v,-

If p*(u, v) is not differentiable at (0,0), then (—A*, —v*) € 9p*(0,0).

Proof.
By the weak duality on the perturbed problem:

ap (0,0) — P (te,-,O)fp (070) > _\*
6“[ tl0 t o !

op (050) — lim p (te,-,O) —P (070) < _)\;k
Ou; 10 t

Thus equality holds. Similar proof for v/}



Problems with generalized inequalities

Lagrangian
» \;: Lagrange multiplier for fi(x) <k, 0
» Lagrangian L:

P
L(Xa)\la"' a)‘ _fb +Z)\T +Zyihi(x)
i=1

» Dual function g:

g(>‘17"' 5>‘m;l/) IXHETFD L(Xa>\17"' 5)‘m5V7X)



Problems with generalized inequalities: dual problem

Theorem (lower bound property)
)\i iK,.* O; | = 17 ,ym — g(/\la 5Amay) Sp*

Lagrange dual problem

max g(A1, -, Am, V)
s. t. )\,‘iK’,*O, i=1---,m

» weak duality: p* > d*
» p* — d*: optimal duality gap

» strong duality: p* = d* for convex problem with constraint
qualification. Slater’s: primal problem is strictly feasible



Semidefinite program (SDP)

Primal SDP
min ¢’ x

s.te. xiA+-+x,Fh G

where F;, G € Sk

Dual SDP
max — tr(GZ)
s.t. tr(FZ)+¢ =0, i=1,---,n
Z>0
where Z € Sk.

Strong duality if primal SDP is strictly feasible, i.e. Ix with
xiFi+- - +x,Fp, < G
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