
Duality

▶ Lagrange dual problem

▶ weak and strong duality

▶ optimality conditions

▶ perturbation and sensitivity analysis

▶ generalized inequalities



Lagrangian

Consider the optimization problem in standard form

min f0(x)

s. t. fi (x) ≤ 0, i = 1, ⋅ ⋅ ⋅ ,m

hi (x) = 0, i = 1, ⋅ ⋅ ⋅ , p

variable x ∈ Rn, domain D =
∩m

i=0
dom fi ∩

∩p

i=1
dom hi , optimal value

p∗

Lagrangian: L : Rn × Rm × Rp → R , with dom L = D × Rm × Rp

L(x , �, �) = f0(x) +
m∑

i=1

�i fi (x) +

p∑

i=1

�ihi (x)

▶ �i : Lagrange multiplier associated with fi (x) ≤ 0

▶ �i : Lagrange multiplier associated with hi (x) = 0



Lagrangian dual function

Lagrangian dual function: g : Rm × Rp → R ,

g(�, �) = inf
x∈D

L(x , �, �)

= inf
x∈D

f0(x) +

m∑

i=1

�i fi (x) +

p∑

i=1

�ihi (x)

g is concave, can be −∞ for some �, �



Lagrangian dual function: lower bound property

Theorem (lower bounds on optimal value)
For any � ર 0 and any �, we have

g(�, �) ≤ p∗

Proof.
Suppose x̃ is a feasible point. Since � ર 0,

m∑

i=1

�i fi (x̃) +

p∑

i=1

�ihi(x̃) ≤ 0

Therefore L(x̃ , �, �) ≤ f0(x̃). Hence

g(�, �) = inf
x∈D

L(x , �, �) ≤ L(x̃ , �, �) ≤ f0(x̃)

which holds for every feasible x̃ . Thus the lower bound follows.



The dual problem

Lagrange dual problem

max g(�, �)

s. t. � ર 0

▶ find the best lower bound on p∗

▶ a convex optimization problem; optimal value denoted d∗

▶ �, � are dual feasible if � ર 0, (�, �) ∈ dom g (means
g(�, �) > −∞)

▶ (�∗, �∗): dual optimal multipliers

▶ p∗ − d∗ is called the optimal duality gap



Weak and strong duality

Weak duality: d∗ ≤ p∗

▶ always true (for both convex and nonconvex problems)

Strong duality: d∗ = p∗

▶ does not hold in general

▶ (usually) holds for convex problems

▶ conditions that guarantee strong duality in convex problems are
called constraint qualifications



Slater’s constraint qualification

Consider the standard convex optimization problem

min f0(x)

s. t. fi (x) ≤ 0, i = 1, ⋅ ⋅ ⋅ ,m

Ax = b

with variable x ∈ Rn, domain D =
∩m

i=0
dom fi .

Slater’s condition: exists a point that is strictly feasible, i.e.,

∃x ∈ relintD such that fi (x) < 0, i = 1, ⋅ ⋅ ⋅ ,m, Ax = b

(interior relative to affine hull) can be relaxed: affine inequalities do not
need to hold with strict inequalities

Slater’s theorem: The strong duality holds if the Slater’s condition
holds and the problem is convex.



Complementary slackness

Suppose strong duality holds; x∗ is primal optimal; (�∗, �∗) is dual
optimal

f0(x
∗) = g(�∗, �∗) = inf

x∈D
f0(x) +

m∑

i=1

�∗
i fi (x) +

p∑

i=1

�∗i hi(x)

≤ f0(x
∗) +

m∑

i=1

�∗
i fi (x

∗) +

p∑

i=1

�∗i hi(x
∗)

≤ f0(x
∗)

Hence the inequalities must hold with equality

▶ x∗ minimizes L(x , �∗, �∗)

▶ �∗
i fi (x

∗) = 0 for all i = 1, ⋅ ⋅ ⋅ ,m:

�∗
i = 0 =⇒ fi (x

∗) = 0, fi (x
∗) < 0 =⇒ �∗

i = 0

known as complementary slackness



Karush-Kuhn-Tucker (KKT) conditions

If strong duality holds, x is primal optimal, (�, �) is dual optimal, and
fi , hi are differentiable, then the following four conditions (called KKT

conditions) must hold

1. primal constraints: fi (x) ≤ 0, i = 1, ⋅ ⋅ ⋅ ,m, hi (x) = 0, i = 1, ⋅ ⋅ ⋅ , p

2. dual constraints: � ર 0

3. complementary slackness: �∗
i fi (x

∗) = 0

4. gradient of Lagrangian w.r.t. x vanishes:

∇f0(x) +

m∑

i=1

�i∇fi (x) +

p∑

i=1

�i∇hi(x) = 0



KKT conditions for convex problem

If x̃ , �̃, �̃ satisfy KKT for a convex problem, then they are optimal:

▶ from complementary slackness: f0(x̃) = L(x̃ , �̃, �̃)

▶ from the 4-th condition and convexity: g(�̃, �̃) = L(x̃ , �̃, �̃)

So f0(x̃) = g(�̃, �̃)

If the Slater’s condition is satisfied and fi is differentiable, then x is
optimal iff ∃�, � that satisfy KKT



Minimax interpretation

Given Lagrangian

L(x , �, �) = f0(x) + �T f (x) + �Th(x)

The primal problem:

(P) inf
x∈P

sup
�ર0,�

L(x , �, �)

The dual problem:

(D) sup
�ર0,�

inf
x∈P

L(x , �, �)

Weak duality:

sup
�ર0,�

inf
x∈P

L(x , �, �) ≤ inf
x∈P

sup
�ર0,�

L(x , �, �)



Saddle point implies strong duality

Strong duality:

sup
�ર0,�

inf
x∈P

L(x , �, �) = inf
x∈P

sup
�ર0,�

L(x , �, �)

Saddle-point interpretation: (x∗, �∗, �∗) is a saddle point of L if

L(x∗, �, �) ≤ L(x∗, �∗, �∗) ≤ L(x , �∗, �∗)

for all � ર 0, �, x ∈ P .

The strong duality holds if ∃(x∗, �∗, �∗) a saddle point of L



Examples



Standard form LP

(P) min cT x

s. t. Ax = b, x ર 0

(D) max − bT�

AT � + c ર 0



Quadratic program

(P) min xTPx

s. t. Ax ⪯ b

(assume P ∈ Sn
++)

(D) max −
1

4
�TAP−1AT�− bT�

s. t. � ર 0



Equality constrained norm minimization

(P) min ∥x∥

s. t. Ax = b

(D) max bT�

∥AT�∥∗ ≤ 1

Note:

▶ ∥y∥∗ = sup{xTy ∣ ∥x∥ ≤ 1} is the dual norm of ∥ ⋅ ∥.

▶ infx(∥x∥ − yT x) = 0 if ∥y∥∗ ≤ 1 and −∞ otherwise.



Two-way partitioning

(P) min xTWx

s. t. x2i = 1, i = 1, ⋅ ⋅ ⋅ , n

▶ nonconvex; feasible set: 2n discrete points

▶ partition {1, ⋅ ⋅ ⋅ , n} into two sets; Wij cost of associating i , j to the
same set; −Wij cost of assigning to different sets

(D) max − 1T�

s. t. W + diag(�) ર 0

▶ lower bound example: � = −�min(W )1 gives p∗ ≥ n�min(W )



Perturbation and sensitivity anaysis

perturbed optimization problem

min f0(x)

s. t. fi (x) ≤ ui , i = 1, ⋅ ⋅ ⋅ ,m

hi (x) = vi , i = 1, ⋅ ⋅ ⋅ , p

its dual

min g(�, �)− uT�− vT�

s. t. � ર 0

▶ x primal variable; u, v are parameters

▶ p∗(u, v) is optimal value as a function of u, v



Global sensitivity anaysis

assume strong duality holds for unperturbed problem (u = 0, v = 0), and
�∗, �∗ are dual optimal for unperturbed problem

By weak duality on the perturbed problem:

p∗(u, v) ≥ g(�∗, �∗)− uT�∗ − vT �∗

≥ p∗(0, 0)− uT�∗ − vT �∗

sensitivity interpretation:

▶ �∗
i large: small ui =⇒ large change in p∗

▶ �∗i large and positive: vi < 0 =⇒ large increase in p∗



Local sensitivity analysis: LP

Consider LP

(P) min cT x

s. t. Ax ≤ y

(D) max − yT�

AT�+ c = 0, � ર 0

The optimal value: p∗ = −yT�∗. Thus

∂p∗

∂yi
∣yi=0= −�∗

i



Local sensitivity analysis

Suppose strong duality holds for unperturbed problem (u = 0, v = 0),
and �∗, �∗ are dual optimal for unperturbed problem. If p∗(u, v) is
differentiable at (0, 0), then

�∗
i = −

∂p∗(0, 0)

∂ui
�∗i = −

∂p∗(0, 0)

∂vi

If p∗(u, v) is not differentiable at (0, 0), then (−�∗,−�∗) ∈ ∂p∗(0, 0).

Proof.
By the weak duality on the perturbed problem:

∂p∗(0, 0)

∂ui
= lim

t↓0

p∗(tei , 0)− p∗(0, 0)

t
≥ −�∗

i

∂p∗(0, 0)

∂ui
= lim

t↑0

p∗(tei , 0)− p∗(0, 0)

t
≤ −�∗

i

Thus equality holds. Similar proof for �∗i



Problems with generalized inequalities

min f0(x)

s. t. fi (x) રKi
0, i = 1, ⋅ ⋅ ⋅ ,m

hi(x) = vi , i = 1, ⋅ ⋅ ⋅ , p

Lagrangian

▶ �i : Lagrange multiplier for fi(x) ≤Ki
0

▶ Lagrangian L:

L(x , �1, ⋅ ⋅ ⋅ , �m, �) = f0(x) +

m∑

i=1

�T
i fi (x) +

p∑

i=1

�ihi (x)

▶ Dual function g :

g(�1, ⋅ ⋅ ⋅ , �m, �) = inf
x∈D

L(x , �1, ⋅ ⋅ ⋅ , �m, �, x)



Problems with generalized inequalities: dual problem

Theorem (lower bound property)

�i રK∗

i
0, i = 1, ⋅ ⋅ ⋅ ,m =⇒ g(�1, ⋅ ⋅ ⋅ , �m, �) ≤ p∗

Lagrange dual problem

max g(�1, ⋅ ⋅ ⋅ , �m, �)

s. t. �i રK∗

i
0, i = 1, ⋅ ⋅ ⋅ ,m

▶ weak duality: p∗ ≥ d∗

▶ p∗ − d∗: optimal duality gap

▶ strong duality: p∗ = d∗ for convex problem with constraint
qualification. Slater’s: primal problem is strictly feasible



Semidefinite program (SDP)

Primal SDP

min cT x

s. t. x1F1 + ⋅ ⋅ ⋅+ xnFn ⪯ G

where Fi ,G ∈ Sk

Dual SDP

max − tr(GZ )

s. t. tr(FiZ ) + ci = 0, i = 1, ⋅ ⋅ ⋅ , n

Z ર 0

where Z ∈ Sk .

Strong duality if primal SDP is strictly feasible, i.e. ∃x with
x1F1 + ⋅ ⋅ ⋅+ xnFn ≺ G
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