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What affects software productivity and how do we improve it? This report 
examines the current state of the art in software productivity measurement. In turn, 
it describes a framework for understanding software productivity, some 
fundamentals of measurement, surveys empirical studies of software productivity, 
and identifies challenges involved in measuring software productivity. A radical 
alternative to current approaches is suggested: to construct, evaluate, deploy, and 
evolve a knowledge-based `software productivity modeling and simulation system' 
using tools and techniques from the domain of software process engineering.

Overview
What affects software productivity and how do we improve it? This is a concern near and dear to 
those who are responsible for researching and developing large software systems. For example, 
Boehm [10] reports that by 1995, a 20% improvement in software productivity will be worth $45 
billion in the U.S and $90 billion worldwide. As such, this report examines the current state of the 
art in understanding software productivity. In turn, this report describes some fundamentals of 
measurement, presents a survey of studies of software productivity, identifies variables 
apparently affecting software productivity, and identifies alternative directions for research and 
practice in understanding what affects software productivity. 

From the survey, it is apparent that existing software productivity measurement studies are 
fundamentally inadequate and potentially misleading. Depending on how and what indicators of 
software productivity are measured, it is possible to achieve results that show that modest 
changes in software development technologies lead to substantial productivity improvements 
(e.g., 300% in 5 years), while major changes to new technologies can lead to little productivity 
improvement. Different measurement strategies can show an opposite trend. In short, how and 
what you measure determines how much productivity improvement you see, whether or not 
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productivity is actually improved. 

This report advocates a radical alternative to current approaches to measuring and understanding 
what affects software productivity: to construct, evaluate, and deploy knowledge-based software 
productivity modeling and simulation systems. Accordingly, effort should be directed at 
developing a knowledge-based system that models and symbolically simulates how software 
production occurs in a given project setting. Such a modeling facility could be used to simulate 
software production under various product requirements, development processes, project settings, 
and computing resource conditions. It could also be used to incrementally capture information 
about the production dynamics of multiple software projects and thus improve the breadth of its 
coverage over time. As a result, this modelling technology could be used to articulate and update 
a computational knowledge-based `corporate memory' of software production practices. 

The potential payoff of such technology is substantial. This technology provides a vehicle for 
delivering practical feedback that software developers and managers can use prior to and during a 
development project to help identify what might improve their productivity. Such a knowledge-
based technology would enable project managers, developers, or analysts to query a model, 
conduct `what if' analysis, diagnose project development anomalies, and generate explanations 
about how certain project conditions affect productivity. Such capabilities are not possible with 
current productivity measurement technologies. 

Overall, this examination of software productivity primarily focuses on the development of large-
scale software systems (LSS). LSS refers to delivered software systems developed by a team of 
developers, intended to be in sustained operation for a long time, and typically representing 50K-
500K+ source code statements. The choice of LSS is motivated by economic and practical 
considerations. LSS are expensive to develop and maintain so that even modest software 
productivity improvements can lead to substantial savings. For example, it is reasonable to 
assume that 10,000 lines of code may cost a development organization $100,000-250,000. For 
larger systems in the range of 50,000 to 250,000 lines of code, the cost may climb by as much as 
a factor of 4-25. In turn, it is reasonable to assume that software maintenance costs over the total 
life of the system dominate software development costs by a factor of 2-10. Small-scale 
programming productivity measurement often reveals more than an order of magnitude variation 
for different people, different programs, or both [18,19], while large-scale programming efforts 
(with large staffs) can mitigate some of this variance. 

An outline of the remainder of this report follows. Section 2 provides a brief exposition of the 
science of measurement. This section serves to identify some fundamental concerns in evaluating 
software productivity measures. Section 3 provides a select survey of studies that attempt to 
identify and measure what affects software productivity. The results of this survey are then 
summarized in Section 3.14 as a list of software projects attributes that contribute to productivity 
improvement. These three sections set the stage for Section 4 which provides a discussion of the 
measurable variables that appear to affect software productivity. Section 5 follows with a new 
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direction for research into identifying what affects software productivity, and how to improve it. 
We summarize our conclusions and the consequences that follow from this endeavor. 

Notes on the Science of Measurement
Measurement is ultimately a quest for certainty and control: certainty in understanding the nature 
of some phenomenon so as to control, influence, or evaluate that phenomenon. In this paper, the 
phenomenon under study is software production: from system inception through delivery, 
operation and support. Accordingly, we want to understand how software is produced, how to 
measure its production, and ultimately, how to positively influence or control the rate of its 
production. Curtis [18] provides an appropriate background on some fundamental principles 
involved in measuring software production characteristics, including measure validity and 
reliability, as well as instrumentation and modeling issues. 

A desire to measure software production implies an encounter with the process of systematic or 
scientific inquiry. This implies the need to confront fundamental problems such as the role of 
measurement in theory development, hypothesis testing and verification, and performance 
evaluation. It also implies understanding the relationship between measurement and 
instrumentation-the artifacts employed to collect/measure data on the phenomenon under study. 
Instrumentation in turn raises questions for how to simplify or make trade-offs in: 

●     convenience of data collection versus cost of alternative instrumentation, collection, or 
sampling strategies.

●      ease of rendering or displaying the results of data analysis for different audiences (e.g., 
internal management presentations versus journal publication).

●      how to handle (or delete) anomalous data collected with survey instruments.
●      use of collected data to monitor, evaluate, and intervene in the phenomenon under study.
●      developing a narrative, diagrammatic, or operational abstraction of the phenomenon that 

is the source of the data collected.

Other fundamental concerns on the use of measurements include how to account for the influence 
of unmeasured units, the uniformity and consistency of measured units, how to rationalize the 
construction of composite measures, and how to rationalize measurement scales and 
normalizations. All of these concerns must be addressed in developing and sustaining an effort 
for measuring software production. 

As such, what types of measures are appropriate for understanding software productivity? 
Productivity in most studies inside and out of the software world is usually expressed as a ratio of 
output units produced per unit of input effort. This simple relation carries some important 
considerations: for example, that productivity measures are comparable when counting the same 
kind of outputs (e.g., lines of source code) and inputs (person-months of time). Likewise, that a 
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software development effort with productivity 2X is twice as productive as another effort whose 
productivity is X. Therefore, how outputs and inputs are defined are critical concerns if they are 
to be related as a ratio-type measure. As will become apparent through the survey that follows, 
other measure types - nominal, ordinal, and interval - are also appropriate indicators to 
characterize the variables that shape software productivity. 

In the next section, a survey of studies of software productivity measurement shows there is often 
a substantial amount of difference with respect to the degree of rigor and the use of accepted 
analytical methods. 

A Sample of Software Productivity 
Measurement Studies
A number of researchers have sought through empirical investigations to determine whether some 
software development attribute, tool, technique, or some combination of these has a significant 
impact on software production. These studies primarily focus on the development of LSS Twelve 
major software productivity measurement studies are reviewed including those at IBM, TRW, 
NASA, and ITT, as well as at international sites. In addition, a number of other theoretical and 
empirical studies of programmer productivity, cost-benefit analysis, software cost estimation, and 
a software productivity improvement program are reviewed. Together, these studies provide a 
loosely-grounded basis for identifying a number of project characteristics that affect software 
productivity. 

IBM Federal Systems Division

Walston and Felix [56] conducted the classic study in this area. The authors state that a major 
difficulty arises in trying to identify and measure which independent variables can be used to 
estimate software development productivity, cost, and size. For example, they measured software 
productivity in terms of number of lines of code produced per person-hour. However, staff time 
was measured by the duration of the complete development project, rather than just the coding 
phase. Thus, we have no information as to what percent of each measured project's effort was 
dedicated to code production versus other necessary development activities. This omission tends 
to distort the results of their analysis. 

IBM DP Services Organization

Albrecht [2,3] developed the `function point' measure to compare the productivity in 24 projects 
that developed business applications. A function point is a composite measure of a number of 
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program atributes including the number of inputs, outputs, function calls, file accesses, etc. that 
are multiplied be weighting factors then added together. These systems Albretch examined 
ranged in size from 3K to 318K lines of code written in either DMS, PL/1 or COBOL and 
developed over a 5 year period (1974-1978). Albrecht claims that over this period for the 
programs studied, software productivity, as measured with function points, increased 3 to 1. He 
finds that developers using DMS (a database management system language) are more productive 
than those writing in PL/1, who in turn were more productive than those writing COBOL. The 
application systems developed tended over time to be increasingly interactive (vs. batch), 
accessing large data files/databases to produce reports. Also, during the 5 year period, developers 
progressively began to practice structured coding, top-down implementation and HIPO 
documentation. Such development techniques would seem to lead to more function points 
appearing in source code. That is, poorly structured code will tend to have fewer functions points 
than well-structured code conforming to the same specification. Thus, structured code can 
produce a higher function point measure, and therefore appear to be produced more productively. 

But a number of confounding factors appear in Albrecht's results which undercut the validity of 
his reported productivity improvement claims. For example, his formula for computing function 
point values incorporate weighting multipliers which he reports produced reliable results. 
However, he does not discuss how these weights were determined, or how to determine them 
when other programming languages and software applications are to be measured. He also 
indicates that as department manager, he instructed his program supervisors to collect this 
function point data. To some extent then, his supervisors were encouraged to have their programs 
developed in ways that would lead to more function points produced per unit of effort. However, 
it is unclear whether the function point technique works equally well on non-business application 
systems that do not rely on accessing large files, retrieving selected data, performing some 
computations on the data, and producing various reports. Thus, it is unclear whether the 3 to 1 
productivity improvement that Albrecht claims is due to (a) shifts in the choice of programming 
language to those that produce more favorable measures, (b) alternative program development 
techniques, (c) choice of multiplier weights, (d) management encouragement for collecting data 
that substantiates (and rewards) measured improvement. 

Equitable Life Organizations

Behrens [5] also utilizes Albrecht's function point measures to compare software productivity in 
25 application system projects developed in various life insurance companies from 1980 to 1981. 
His results are consistent with Albrecht's in supporting the contention that project size, 
development (computing) environment, and programming language impact software productivity. 
In particular, he finds that small project teams produce source code with more function points 
than large teams in a comparable amount of time. He also finds that developers working online 
are more productive than those working in a batched computing environment. We can also 
observe that in large projects, software runs tend to become more batch-like as their size grows, 
and the amount of computing resources they require grows. 
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TRW Defense Systems Group

Boehm [9,12] sought to identify avenues for improving software productivity based primarily on 
TRW's Software Cost Estimation Program, SCEP. This program served as an aid in developing 
cost estimates for competitive proposals on large government software projects. The program 
estimates the cost of a software project as a function of program size expressed in delivered 
source instructions and a number of other cost drivers. Experience with SCEP in turn gave rise to 
the development of the COCOMO software cost estimation model presented in [9]. Boehm 
recognized that software cost drivers are effectively the inverse of productivity (or `benefit') 
drivers. He found, for example, that personnel/team capability and product complexity had the 
greatest affect in driving software costs and productivity. Thus, high staff capability and low 
product complexity lead to high productivity/low cost software production. Conversely, low staff 
capability and high product complexity similarly imply low productivity/high cost software 
production. Through his experience with these cost estimation models, Boehm was able to 
develop quantitative support for the relative contribution of different software development 
characteristics that affect software cost and productivity. 

Australia-70 Study

Lawrence [39] conducted a study of 278 commercial applications developed in 23 medium-to-
large organizations in Australia. The organizations and applications studies included those in 
government agencies, manufacturing and mining concerns, and banking and insurance firms. He 
performed a multivariate analysis of productivity variance using a combination of computing 
environment and organizational factors. His use of multivariate analysis of variance is in direct 
contrast to the preceding software productivity studies that employ only univariate analysis. 

Lawrence observed that source lines of code, number of statements, number of procedure 
invocations, number of functional units, and number of transfers of control are all highly 
correlated. Other researchers have substantiated this as well. As such, he chose to employ the 
number of procedural lines of code divided by the total time put into the programming job by the 
programmer from the receipt of program specifications to completion of program testing. That is, 
Lawrence was interested in measuring the productivity of individual programmers who in turn 
were developing small programs (50-10000 lines of code). He found that programmer 
productivity increases with better turnaround, but decreases with online source code testing and 
interface to a database. In contrast to Albretch, Lawrence does not define what interface to a 
database means, nor whether the organizations he studied employed database management 
systems. Thus, it is not possible to determine whether Albretch and Lawrence agree on the 
productivity impact of the use of database management systems. However, Lawrence also found 
that programming experience beyond the first year on the job, structured programming, and 
walkthroughs contribute little to productivity improvement. 
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NASA/SEL

Bailey and Basili [4] found higher productivity over the entire system life cycle to be associated 
with the use of a disciplined programming methodology, particularly in the early stages of system 
development. Their findings indicate that productivity measures, as well as other resource 
utilization estimates must be specific to the organizational setting and local computing 
environment to provide the most accurate measures. Standard, program-oriented productivity or 
cost estimation measures will provide less accurate information than those measures that account 
for characteristics of the organization and its computing environment. Mohanty [44] and Kemerer 
[30] also found similar results in their independent examinations of different software cost 
estimation models. 

IBM

Thadhani [54] and Lambert [37] examined the effects of good computer services on programmer 
and project productivity during application program development. In particular, their studies 
examine the effects of short response times, programmer's skills, and program complexity on 
programmer productivity. Thadhani reports that programmers were twice as productive when 
their system's average response time was 0.25 seconds (or less) than when it averaged 2 seconds 
or more. However, in a review of this and other similar studies, Conte and colleagues [17] report 
that average response time is not as critical as a narrow variance in expected response time. That 
is, programmers should be more productive when their system's response time is fast, consistent, 
and relatively predictable from the computing task at hand. 

Both Thadhani and Lambert assert that unexpected delay in response time to trivial computing 
tasks (e.g., processing simple editor or shell commands, or compiling a small program) is 
psychologically disruptive to the programmer. Such delays they argue cause a longer delay than 
the actual elapsed time. Since LSS development efforts can entail thousands or more of such 
trivial task transactions, that cumulative time will represent a significant cost to the project. 
Essentially, they argue that response time has an impact on LSS development projects, so that 
ample processing resources are critical to enhancing software productivity. Subsequently, this 
could be viewed as evidence in favor of providing individual programmers more processing 
resources such as through the adoption of powerful personal computing workstations as a way to 
improve software productivity. That is, if programmers currently must share a small number of 
heavily loaded computer systems, then providing each programmer with a workstation should 
improve their collective productivity [43]. 

ITT Advanced Technology Center
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Vosburg and associates [55] produced perhaps the most substantial study of large-scale software 
productivity to date. They examined software production data for 44 programming projects in 17 
different ITT subsidiaries in nine different countries. Data on programming productivity, quality, 
and cost were collected from the records of completed projects by means of a questionnaire 
answered by project managers. Software systems ranged in size from 5,000 to 500,000 coded 
statements, with a median size of 22,000 statements. Statement counts include language 
processing directives, macro calls, and file inclusion statements, but not comments or blank lines. 
Their study covered a variety of software systems including telecommunications switches, 
programming tools, operating systems, electronic defense systems, and process control. In total, 
they represent more than 2.3 million coded statements and 1500 person-years of effort. 

The authors focused on classifying productivity drivers according to the ability of a software 
project manager to control them. They identify two types of factors: product-related factors that 
are not usually controllable by a project manager, and production process-related factors that are 
controllable by managers and thus provide opportunity for productivity improvement. 

The product-related factors they identify include: 

●     computing resource constraints: productivity decreases when software being developed 
has timing, memory utilization, and CPU occupancy constraints.

●      program complexity: productivity decreases when software is primarily operating 
systems, real-time command and control, and fault-tolerant applications that require 
extensive error detection, rollback and recover routines.

●      customer participation: productivity increases with customer application experience and 
participation in requirements and specification articulation.

●      size of program product: productivity decreases as the number of lines of code increases.

The production process-related factors they identify include: 

●     concurrent hardware-software development: productivity decreases with concurrent 
development of hardware.

●      development computer size: productivity increases as computer size (processor speed, 
main and secondary storage capacity) increases.

●      requirements and specifications stability: productivity increases with accurate and stable 
system requirements and specifications.

●      use of modern programming practices: productivity increases with extensive use of top-
down design, modular design, design reviews, code inspections, and quality-assurance 
programs.

●      personnel experience: productivity increases with more experienced software 
development personnel.

Overall, they find that product-related and process-related factors account for approximately the 
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same amount of variance (one-third for each set) in productivity enhancement. 

In conclusion, the authors suggest that improving programming productivity requires much more 
than the isolated implementation of new technologies and policies. In their view, `To be 
successful, a productivity improvement program must address the entire spectrum of productivity 
issues. Key features of such a program are management commitment and an integrated approach' 
(pp. 151-152). 

Australia-80 Study

Jeffrey [26] describes a comparative study of software productivity among small teams in 38 
development projects in three Austrialian firms. Each firm used one programming language in its 
projects, but different from that used by the other two firms. Software systems in the projects 
ranged from very small (200 LOC) to large (?`\>100K LOC), while their development team 
size ranged from 1-4 developers for 19 projects, and 3-8 for the other projects. As a result of his 
analysis, Jeffrey asserts (a) there is an optimal staff level which depends on the language used and 
the size of the resulting software system, and (b) adding staff beyond the optimal point decreases 
productivity and increases total development elasped time. However, due to the small sample size 
(three firms), small team size vis-a-vis individual programmer variations [19], and other common 
analytical shortcomings in defining input and output measures, the generality of the assertions is 
limited. 

Commerical U.S. Banks

Cerveny and Joseph [15] report on their study software enhancement productivity in 200 U.S. 
commercial banks. Each bank was required by a change in national tax laws to implement new 
interest reporting requirements. Thus, all banks had to satisfy the same set of tax law 
requirements. Cerveny and Joseph found that banks which employed structured design and 
programming techniques took twice the effort as those banks that used non-structured techniques, 
or that purchased and integrated commercial software packages. Effort in their study represents 
person hours expended for analysis, programming, and project management activities, which is 
data apparently collected on a routine basis by the banks in the study. They do not report any 
measure of source code changes that accompany the measured effort. However, they report that 
banks that employed structured techniques did so for auditing and control purposes, but generally 
lacked CASE tools to support the structured techniques. Thus, it is unclear what the net change in 
software productivity might be if CASE tools that support structured design and programming 
techniques would have been empolyed. 

U.S. vs. Japan Study
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In a provocative yet systematic comparison of industrial software productivity in the U.S. and 
Japan, Cusumano and Kemerer [21] argue that Japanese software development capabilities are 
comparable to those found in the U.S. [20]. Their analyses examined data from 24 U.S. and 16 
Japanese development efforts collected from software project managers who completed 
questionnaires. Their project sample varied in terms of appplication type, programming language 
used, programming language and application type, and hardware platforms, full-time (versus part-
time) staff effort by development phase, percentage of code reuse during development, code 
defect density, and number of tools/methods used per project. However, the researchers note that 
their sample of projects was not random, and that the software project managers may have only 
reported on their best projects. Cusamano and Kemerer employed Fortran-equivalent 
noncomment source lines of code as the output measure [27], and person-years of effort as the 
input measure, as well as both parametric and non-parametric statistical test where appropriate. 
While they report that software productivity appears on the surface to be greater in Japan than in 
the U.S., the differences that were observed were not found to be statistically significant. 

Other studies of Productivity and Cost 
Evaluation

T.C. Jones [27] at IBM was among the first to recognize that measures of programming 
productivity and quality in terms of lines of code, and cost of detecting and removing code 
defects are inherently paradoxical. They are paradoxical in that lines of code per unit of effort 
tend to emphasize longer rather than efficient or high-quality programs. Similarly, high-level 
programming languages tend to be penalized when compared to assembly programs, since 
modern programs may utilize fewer lines of code than assembly routines to realize the same 
computational procedure. Cost of code defect detection and removal tends to indicate that it costs 
less to repair poor quality programs than high quality programs. Thus, Jones' results undercut the 
utility of the findings reported by Walston and Felix [55] which are subject to these paradoxes. 
As an alternative, Jones recommends separating productivity measures into work units and cost 
units, while program quality be measured by defect removal efficiency and defect prevention. 

Chrysler [16] sought to identify some basic determinants of programming productivity by 
examining programming activities in a single organization. He sought to identify (1) what 
characteristics of the time to complete a programming (coding) task can be objectively measured 
before the task is begun, and (2) what programmer skill attributes are related to time to complete 
the task. His definition of programming task assumes that the program's specifications, `the 
instructions to the programmer regarding the performance required by the program', must be 
sufficiently detailed to incorporate the objective variables that can be measured to determine 
these relationships. Although he studied a sample of 36 COBOL programs, he does not describe 
their size, nor account for the number of programmers working on each. His results are similar in 
kind to those of Albrecht, finding that programming productivity can be estimated primarily from 
(1) programmer experience at the current computing facility, (2) number of input files, (3) 
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number of input edits, (4) number of procedures and procedure calls, and (5) number of input 
fields. 

King and Schrems [34] provide the classic survey of problems encountered in applying cost-
benefit analysis to system development and operation. To no surprise, the `benefits' they identify 
represent commonly cited productivity improvements. The authors observe that system 
development costs are usually underestimated and difficult to control, while productivity 
improvements are overestimated and difficult to achieve. They observe that cost-benefit (or cost-
productivity) analysis can be used as: (a) a planning tool for assistance in choosing among 
alternative technologies and allocating scarce resources among competing demands; (b) an 
auditing tool for performing post hoc evaluations of an existing project; and (c) a way to develop 
`quantitative' support in order to politically influence a resource allocation decision. 

Some of the problems they describe include (a) identifying and measuring costs and benefits, (b) 
comparing cost-benefit alternatives, (c) cost accounting dilemmas, (d) problems in determining 
benefits, (e) everyday organizational realities. For example, two cost accounting (or 
measurement) problems that arise are ommission of significant costs, and hidden costs. Omitting 
significant costs occurs when certain costs are not measured, such as the time staff spend in 
design and review meetings, and the effort required to produce system design documents. Hidden 
costs arise in a number of ways, often as costs displaced either to others in the organization, or to 
a later time: for example, when a product marketing unit achieves the early release of a software 
system before the developers have thoroughly tested it that customers find partially defective or 
suspect. If the developers try to accomodate to the marketing unit's demands, then system testing 
plans are undercut or compromised, and system integrity is put in question from the developers 
point of view. The developers might later become demoralized and their productivity decrease if 
they are viewed by others or senior management as delivering lower quality systems, especially 
when compared to other software development groups who do not have the same demands from 
their marketing units. 

King and Schrems also note that conducting quality cost-benefits has direct costs as well. For 
example, Capers Jones [28] reports that in its software development laboratories, IBM spends the 
equivalent of 5% of all development costs on software measurement and analysis activities. More 
typically, he observes, that most companies spend 1.5% to 3% of the cost of developing software 
to measure the kind of information IBM would collect [cf. 2,3,27,55]. Therefore, this article by 
King and Schrems can be recommended as background reading to those interested in conducting 
software cost vs. productivity analysis. 

Mohanty [44] compared the application of 20 software cost estimation models in use by large 
system development organizations. He entered data collected from a large software project, then 
entered this data into each of the 20 cost estimation models. He found that the range of costs 
estimated was nearly uniformly distributed, varying by an order of magnitude! This led him to 
conclude that almost no model can estimate the true cost of software with any degree of accuracy. 
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However, we could also conclude from his analysis that each cost estimation model might in fact 
be accurate within the organizational setting where it was created and used. Although two 
different models may differ in their estimate of software development costs by as much as a 
factor of 10, each model may reflect the cost accounting structure for the organization where they 
were created. This means that different cost estimation models, and by logical extension, 
productivity models, lead to differrent measured values which can show great variation when 
applied to software development projects. Also, the results of Kemerer's [30] study of software 
cost estimation models corroborates the same kind of findings that Mohanty`s study shows. 
However, Kemerer does go so far as to show how function points may be refined to improve their 
reliability as measures of program size and complexity [31,32], as well as tuned to produce the 
better cost estimates [30]. But again, function points depend solely upon program source code 
characteristics, and do not address production process or production setting variations, nor their 
contributing effects. 

Romeu and Gloss-Soler [48] argue that most software productivity measurement studies employ 
inappropriate statistical analysis techniques. They argue that the type of productivity data usually 
reported is ordinal data rather than interval or ratio data. The parametric statistical techniques 
employed by most software productivity analysts are inappropriate for ordinal data, whereas non-
parametric techniques are appropriate. The use of parametric techniques on ordinal data results in 
apparently stronger relationships (e.g., correlations, regression slopes) than would be found with 
non-parametric techniques. The consequence is that studies of productivity measurement 
claiming statistically substantiated relationships based on inappropriate analytical techniques are 
somewhat dubious, and the strength of the cited relationship may not be as strong as claimed. 

Boehm [9] reported that productivity on a software development project is most keenly affected 
by who develops the system and how well they are organized and managed as a team. Following 
this, Scacchi [50] reviewed a number of published reports on the problems of managing large 
software engineering projects. He found, to no surprise, that when projects were poorly managed 
or poorly organized, productivity was substantially lower than otherwise possible. Poor 
management can nullify the potential productivity enhancements attributable to improved 
development technologies. Scacchi identified a number of strategies for managing software 
projects that focus on improving the organization of software development work. These strategies 
identify conditions in the workplace, and the skills and interests of the developers as the basis for 
project-specific productivity drivers. For example, developers who have a strong commitment to 
a project and the people associated with it will be more productive, work harder, and produce 
higher quality software products. This commitment comes from the value the developers expect 
to find in the products they produce. In contrast, if they do not value the products they are 
working on, then their commitment will be low and their productivity and quality of work will be 
lower. So an appropriate strategy is to focus in organizing and managing the project to cultivate 
staff commitment to each other and to the project's objectives [cf. 33]. When developers are 
strongly committed to the project and to a team effort [38], they are more than willing to 
undertake the unplanned for system maintenance and articulation work tasks needed to sustain 
productive work conditions [6,7]. Scacchi concludes that strategies for managing software 

http://cwis.usc.edu/dept/ATRIUM/Papers/Software_Productivity.html (12 of 36) [2/11/02 11:38:38 AM]



UNDERSTANDING SOFTWARE PRODUCTIVITY

development work have been overlooked as a major contributor to software productivity 
improvement, and thus require further study and experimentation. 

Boehm and associates at TRW [11] described the organization of a software project whose 
objective was to develop an environment to enhance software productivity by a factor of 2 in 5 
years, and 4 in 10 years. The project began in 1981, and the article describes their progress after 
four years in assembling a software development environment that should be able to support 
TRW development projects. Surprisingly, their software environment contains many tools for 
managing project communications and development documentation. This is because much of 
what gets delivered to a customer in a system is documentation, so tools that help develop what 
the customers receives should improve customer satisfaction and thus project productivity. 
However, they do not report any experiences with this environment in a production project. But 
they report that developers that have used the environment believe it improved their development 
productivity 25% to 40% [cf. 24,45]. Nonetheless, they report that this productivity improvement 
was realized at an additional capital investment of $10,000 per programmer. Current 
investigations in this project include the development and incorporation of a number of 
knowledge-based software development and project management aids for additional LSS 
productivity improvements. 

Capers Jones [28] provides the next study in his book on programming productivity. Jones does 
an effective job at describing some of the problems and paradoxes that plague most software 
productivity and quality measures based upon his previous studies [27]. For example, he observes 
that a line of source code is not an economic good, but it is frequently used in software 
productivity measures as if it were-lines of code (or source statements) produced per unit of time 
are not a sound indicator of economic productivity. In response, he identifies more than 40 
software development project variables that can affect software production. This is the major 
contribution of this work. However, the work is not without its faults. For example, Jones 
provides `data' to support his examination of the effects of each variable on comparable 
development projects. But his data, such as lines of source code is odd is that it is often rounded 
to the most significant digit (e.g., 500, 10,000, or 500,000), and collected from unnamed sources. 
Thus, his measurements lack specificity and his data collection techniques lack sufficient detail to 
substantiate his analysis. 

Jones mentions that he relies upon his data for use in a quantitative software productivity, quality, 
and reliability estimation model. However, he does not discuss how his model works, or what 
equations it solves. This is in marked contrast to Boehm's [9] software cost and productivity 
estimation efforts where he both identifies the software project variables of interest, and also 
presents the analytical details of the COCOMO software cost estimation model that uses them. 
Thus, we must regard Jones's reported analysis with some suspicion. Nonetheless, Jones does 
include an appendix that provides a questionnaire he developed for collecting data for the 
cost/quality/reliability model his company markets. This questionnaire includes a variety of 
suggestive questions that people collecting productivity data may find of interest. 
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In setting his sights on identifying software productivity improvements opportunities, Boehm 
[10] also identifies some of the dilemmas encountered in defining what things need to be 
measured to understand software productivity. In departure from the studies surveyed in the 
previous section, Boehm observes that software development inputs include: (a) different life 
cycle development phases each requiring different levels of effort and skill; (b) activities 
including documentation production, facilities management, staff training, quality assurance, etc.; 
(c) support personnel such as contract administrators and project managers; and (d) organizational 
resources such as computing platforms and communications facilities. Similarly, Boehm observes 
that measuring software development outputs solely in terms of attributes of the delivered 
software (e.g., delivered source code statements) poses a number of dilemmas: (a) complex 
source code statements or complex combinations of instructions usually receive the same weight 
as sequences of simple statements; (b) determining whether to count non-executable code, reused 
code, and carriage returns as code statements; and (c) whether to count code before or after pre- 
or post-processing. For example, on this last item, Boehm reports putting a compact Ada program 
through a pretty-printer frequently may triple the number of source code lines. Even after 
reviewing other source code metrics, Boehms concludes that none of these measures is 
fundamentally more imformative than lines of code produced per unit of time. Thus, Boehm's 
observations add weight to our conclusion that source code statement/line counts should be 
treated as an ordinal measure, rather than an interval or ratio measure, of software productivity. 
This conclusion is especially appropriate when comparing such productivity measures across 
different studies. 

In a comparative field study of software teams developing formal specifications, Bendifallah and 
Scacchi [7] found that variation in specification teamwork productivity and quality could best be 
explained in terms of recurring teamwork structures. They found six teamwork structures (ie, 
patterns of interaction) recurring among all the teams in their study. Further, they found that 
teams shifted from one structure to another for either planned or unplanned reasons. But more 
productive teams, as well as higher product quality teams, could be clearly identified in the 
observed patterns of teamwork structures. Lakhanpal's [38] study corroborates this finding 
showing workgroup cohesion and collective capability is a more significant factor in team 
productivity than individual experience. Thus, the structures, cohesiveness, and shifting patterns 
of teamwork are also salient software productivity variables. 

In a study that does not actually examining the extent to which CASE tools may improve 
software productivity, Norman and Nunamaker [45] report on what the software engineers they 
surveyed believed would improve software productivity [cf. 24]. These software engineers 
answered questions about the desirability and expected effectiveness of a variety of contemporary 
CASE mechanisms or methods. Norman and Nunamaker found that software engineers believe 
that CASE tools that enhance their ability to produce various analysis reports, screen displays, 
and structured diagrams will have the greatest expected boost in software development 
productivity. But there is no data available that systematically demonstrates if the expected gains 
are in fact realized, or to what level. 
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Kraut and colleagues [35] report on their study of organizational changes in worker productivity 
and quality of work-life resulting from the introduction of a large automated system. They 
surveyed the opinions of hundreds of system users in 10 different user sites. Through their 
analysis of this data, Kraut and colleagues found that the system increased the productivity of 
certain classes or users, while decreasing it for other user classes. They also found that while 
recurring user tasks were made easier, uncommon user tasks were reported to be more difficult to 
complete. Finally, they found that the distribution of user task knowledge shifted from old to new 
loci within the user sites. So what if anything does this have to do with software development 
productivity? The introduction of new software development tools and techniques might have a 
similar differential effect on productivity, software development task configuration, and the locus 
of development task expertise. This effect might be most apparent in large development 
organizations employing hundreds or thousands of software developers, rather than in small 
development teams. In any event, Kraut and colleagues observe that one needs to understand with 
web of relationships between the organization of work between and among tasks, developers, and 
users, as well as the computing resources and software system designs in order to understand 
what affects productivity and quality of work-life [35]. 

Last, Bhansali and associates [8] report that programmers are two-to-four times more productive 
when using Ada versus Fortran or Pascal-like languages according to their study data. However, 
as Ada contains language constructs not present in these other languages, it is not clear what was 
significant in explaining the difference in apparent productivity. Similarly, they do not indicate 
whether any of the source code involved was measured before or after pre-processing, which can 
affect source line counts, as already observed [10]. 

Information Technology and Productivity

Brynjolfsson [14] provides a comprehensive review of empirical studies that examine the 
relationship of information technology (IT) and productivity. In this study, IT is broadly defined 
to include particular kinds of software systems, such as transaction processing and strategic 
information systems, to general-purpose computing resources and services. Accordingly, he notes 
that some studies examine the dollars spent on IT or different types of software systems, 
compared to the overall profitability or productivity of the organizations that have invested in IT. 
Furthermore, his review examines studies falling into manufacturing and service sectors within 
the US economy, or in multiple economic sectors. However, none of the studies reviewed in the 
preceding sections of this report are included in his review. 

The overall focus of his review is to examine the nature of the so-called `productivity paradox' 
that has emerged in recent public discussions about the economic payoffs resulting from 
organizational investments in IT. In short, the nature of this paradox indicates that there is little or 
no measurable contribution of IT to productivity of organizations within an economic sector or to 
the national economy. His analysis then identifies four issues that account for the apparent 
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productivity paradox. These are: 

●     Mismeasurement of IT inputs and outputs,
●      Lags due to adaptation and learning how to most effectively utilize new IT,
●      Redistribution of profits or payoffs attributal to IT, and
●      Mismanagement of IT within industrial organizations.

In a closer comparative examination of these studies, Brynjolfsson concludes 

`The closer one examines the data behind the studies of IT performance, the more it 
looks like mismeasurement is at the core of the productivity paradox.' [14, p. 74]

Thus, once again it appears that measuring and understanding the productivity impact of new 
software systems or IT remains problematic, and that one significant underlying cause for this is 
found in the methods for measuring productivity data. 

Summary of Software Development Productivity 
Drivers

From a generous though somewhat naive review of the preceding studies, a number of software 
productivity drivers can be identified. The generosity comes from identifying the positive 
experiences or results reported in the preceding studies, and the naivete comes from overlooking 
the fact that many of the reported experiences or results are derived from analytically restricted 
studies, or from dubious or flawed analytical methods. Further, most studies fail to describe how 
they account for variation in productive ability among individual programmers, which has been 
systemtically shown to vary by more than an order of magnitude [19]. That is, for very large 
software systems (500K+ code statements), it seems likely that `average programmer' 
productivity dominates individual variations, while in smaller systems (less than 50K code 
statements) or those developed by only a few programmers, then individual differences may 
dominate. Nearly all of the studies cited above examined small systems to some extent. 
Nonetheless, if we take a positivist view, we find the following attributes of the software 
application product being developed, the process by which it is developed, and the setting in 
which it is develop contribute favorably to improving software productivity. However, we can 
neither reliably predict how much productivity improvement should be expected, nor how to 
measure the individual or collective contribution of the attributes. 

The attributes of a software project that facilitate high productivity include: 

Software Development Environment Attributes: 
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●     Fast turnaround development activities and high-bandwidth processing throughput (may 
require more powerful or greater capacity computing resources)

●      Substantial computing infrastructure (abundant computing resources and easy-to-access 
support system specialists)

●      Contemporary software engineering tools and techniques (use of design and code 
development aids such as rapid prototyping tools, application generators, domain-specific 
(reusable) software components, etc., used to produce incrementally development and 
released software products.)

●      System development aids for coordinating LSS projects (configuration management 
systems, software testing tools, documentation management systems, electronic mail, 
networked development systems, etc.)

●      Programming languages with constructs closely matched to application domain concepts 
(e.g., object-oriented languages, spreadsheet languages)

●      Process-centered software development environments that can accomodate multiple 
shifting patterns of small group work structures

Software System Product Attributes: 

●     Develop small-to-medium complexity systems (complexity indicated by size of source 
code delivered, functional coupling, and functional cohesion)

●      Reuse software that supports the information processing tasks required by the application
●      No real-time or distributed systems software to be developed
●      Minimal constraints for validation of data processing accuracy, security, and ease of 

alteration
●      Stable system requirements and specifications
●      Short development schedules to minimize chance for project circumstances to change

Project Staff Attributes: 

●     Small, well-organized project teams. Large teams should be organized into small groups 
of 3-7 experienced developers, comfortable working with each other

●      Experienced software development staff (better if they are already familiar with 
application system domain, or similar system development projects)

●      Software developers and managers who collect and evaluate their own software 
production data and are rewarded or acknowledged for producing high data value software

●      A variety of teamwork structures and the patterns of shifts between them during task 
performance.

The factors that drive software costs up should be apparent from this list of productivity drivers. 
Software cost drivers are the opposite of productivity drivers. For example, software without real-
time performance should be produced more productively or at lower cost than comparable 
software with real-time performance requirements. 
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Also, it should be clear from this list that it is not always possible or desirable to achieve software 
productivity enhancements through all of the project characteristics listed above. For example, if 
the purpose of a project is to convert the operation of a real-time communications system from 
one computer and operating system to another computer-operating system combination, then only 
some of the characteristics may apply favorably, while others are inverted, occurring only as 
inhibitors. In this example, conversion suggests a high potential for substantial reuse of the 
existing source code. However, if the new code added for the conversion affects the system's real-
time performance, or is spread throughout the system, then productivity should decrease and the 
cost increase. Similarly, if the conversion is performed by a well-organized team of developers 
already experienced with the system, then they should complete the conversion more 
productively than if a larger team of newly hired programmers is assigned the same 
responsibility. 

Finally, if instead of viewing software productivity improvement from a generous and naive point 
of view, we seek to understand what affects software productivity in a way that project managers 
and developers find meaningful, then we need an approach fundamentally different than those 
surveyed above. To achieve this, we must first articulate some of the analytical challenges that 
must be taken into account. This challenge is the subject of Section 4. We also need to develop 
analytical instruments or tools that allow us to model and measure software production in ways 
that managers and developers can employ during LSS projects. This effort may lead us away 
from numbers and simple quantitative measures, and toward symbolic and qualitative models that 
incorporate nominal, ordinal, interval and ratio measures of software production. The capacity to 
accomodate these types of measures is well within the capabilities of symbol processing systems, 
but generally beyond strictly numerical productivity models. Ultimately, we should articulate an 
operational knowledge-based model that represents the software production process [22,23,40]. 
Such an operational model could then provide both a framework and compatible computational 
vehicle for measuring software production, as well as accomodate simulations of how projects 
work, and what might happen if certain project attributes were altered. This is the subject of 
Section 5. 

Challenges for Software Productivity 
Measurement
In order to understand the variables that affect software productivity, people interested in 
measuring it must be able to answer the following five questions: (a) Why measure software 
productivity? (b) Who (or what) should measure and collect software productivity data? (c) What 
should be measured? (d) How to measure software productivity? (e) How to improve software 
productivity? The purpose of asking these questions is to appreciate the complexity of the 
answers as well as to see that different answers lead to different software production 
measurement strategies. Unfortunately, as we have begun to see in the preceding section, the 
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answers made in practice can lead to undesirable compromises in the analytical methods 
employed, or in the reliability of the results claimed. 

Why measure software productivity?

To date, a number of reasons for measuring software productivity have been reported. In simplest 
terms, the idea is to identify (and measure) how to reduce software development costs, improve 
software quality, and improve the rate at which software is developed. In practical terms, this 
includes alternatives such as: 

●     increase the volume of work successfully accomplished by current staff effort,
●      accomplish the same volume of work with a smaller staff,
●      develop products of greater complexity or market value with the same staff workload,
●      avoid hiring additional staff to increase workload,
●      rationalize higher levels of capital-to-staff investment,
●      reduce error densities in delivered products, and decreasing the amount of time and effort 

needed to rectify software errors,
●      streamline or downsize software production operations,
●      identify possible product defects earlier in development,
●      identify resource utilization patterns to discover production bottlenecks and underutilized 

resources,
●      identify high-output or responsive personnel to receive rewards, and
●      identify low-output personnel for additional training or reassignment.

Clearly, there are many reasons for measuring software productivity. However, once again it may 
not be desirable to try to accomplish most or all of these objectives through a single productivity 
measurement program. For example, different people involved in a large software project may 
value certain of these alternatives more than others. Similarly, each alternative implies certain 
kinds of data be collected. This diversity may lead to conflicts over why and how to measure 
software productivity which, in turn, may lead to a situation where the measured results are 
inaccurate, misleading, or regarded with suspicion [cf. 25,36]. Thus, a productivity measurement 
program must be carefully design to avoid creating conflicts, mistrust, or other conditions for 
mismeasurement within the software projects to be studied. Involving the software developers 
and project managers in the design of the measurement instrument, data collection, and feedback 
program can help minimize the potential organizational problems as well as gain their support. 

Who should measure software productivity 
data?

The choice of who (or what) should collect and report software production data is determined in 
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part by the reasons for measuring productivity noted above. The choices include: 

●     Programmer self report,
●      Project or team manager,
●      Outside analysts or observers,
●      Automated performance monitors.

Programmer or manager self-reported data are the least costly to collect, although they may be of 
limited accuracy. However, if productivity measures are to be used for personnel evaluation, then 
one should not expect high reliability or validity in self-reported data. Similarly, if productivity 
measures are employed as the basis of allocating resources or rewards, then the data reporters will 
have an incentive to improve their reported production values. This is a form of the Hawthorne 
Effect, whereby people seek to accomodate their (software production) behavior to generate data 
values they think the data evaluators want to see. 

Instead, we want to engender a software production measurement capability that can feed back 
useful information to project managers and developers in a form that enhances their knowledge 
and experience over time. Outside observers can often collect such information, but at a higher 
cost than self report. Similarly, automated production performance monitors may be of use, but 
this is still an emerging area of technology requiring more insight for what should be measured 
and how. For example, Irving and associates [25] report that use of automated performance 
monitoring systems is associated with perceived increase in productivity, more accurate 
assessment of worker performance, and higher levels of organizational control. However, where 
such mechanisms have been employed, workers indicate that managers overemphasize such 
quantitative measures, and underemphasize quality of work in evaluating worker performance. 
Workers also reported increased stress, lower levels of job satisfaction, and a decrease in the 
quality of relationships with peers and managers. Ultimately, one would then expect that these 
negative factors would decrease productivity and increase staff turnover. Thus, the findings 
reported by Irving suggest some caution in the use of automated performance monitors. 
Collecting high-quality production data and providing ongoing constructive feedback to 
personnel in the course of a project is thus a longer-term goal. 

Overall, if data quality or accuracy is not at issue, self-reported production data is sufficient. If 
causal behavior or organizational circumstances do not need to be taken in account, then 
automated performance monitors can be used. Similarly, if the desire is to show measured 
improvement in software productivity, whether or not production improves, self-reported or 
automated data collection procedures will suffice. 

On the other hand, if the intent of the productivity measurement program is to ascertain what 
affects software production, and what alternative work arrangements might further improve 
productivity, then reliable and accurate data must be collected. Such data might best be collected 
by analysts or observers who have no vested interest in particular measured outcomes, nor who 
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will collect data to be used for personnel evaluation. In turn, the collected data should be analyzed 
and results fed back to project developers and managers in a form they can act upon. Again, this 
might be best facilitated through the involvement of representative developers and managers in 
the design of the data collection effort. 

What should be measured?

The choices over what to measure are many and complex. However, it is clear that focusing on 
program product attributes such as lines or code, source statements, or function points will not 
lead to significant insights on the contributing or confounding effects of software production 
process or production setting characteristics of software productivity, nor vice versa. The studies 
in earlier sections clearly indicate that different LSS product, process, and production setting 
characteristics individually and collectively affect software productivity. However, based on this 
survey, there are some inconsistencies in determining which characteristics affect what increase 
or decrease in software productivity. As such, an integrated productivity measurement or 
improvement strategy must account for characteristics of the products, processes, and settings to 
delineate the potential interrelationships. This is necessary since we cannot predict beforehand 
which constituent variables will reveal the greatest significance or variance in different projects 
or computing environments. Similarly, we should expect that software product, process, and 
setting characteristics will need to be measured using a combination of nominal, ordinal, interval 
and ratio measures. As such, consider in turn, the following constituents of software products, 
production processes, and production settings. 

Software Products:

Software projects produce a variety of outcomes other that source code. Each product is valuable 
to either the individual developers, project managers, project organization, or the client. 
Therefore, we should not limit production measurement attention to only one product, especially 
if comparable effort is committed to producing other closely related products. The point here is 
that since software projects produce many products along the way, our interest should be 
focussed on ascertaining the distribution of time, skill, teamwork, and value committed to 
developing each product. Accordingly, we can see the following kinds of products resulting from 
a software development project. 

●     Delivered (new versus modified) source statements for successive software life cycle 
development stages, including those automatically transformed or expanded by software 
tools, such as application generators.

●      Software development analyses (knowledge about how a particular system was 
produced): requirements analysis, specifications, architectural and detailed designs, and 
test plans,

●      Application-domain knowledge: knowledge generated and made explicit about the 
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problem domain (e.g., how to electronically switch a large volume of telephone message 
traffic under computer control),

●      Documents and artifacts: internal and external reports, system diagrams, and terminal 
displays produced for development schedule milestones, development analyses, user 
manuals, and system maintenance guides, and

●      Improved software development skills, new occupational or career opportunities for 
project personnel, and new ways of cooperating in order to develop other software 
products.

Software Production Process:

LSS are often produced through a multi-stage process commonly understood in terms of the 
system life cycle: from its inception through delivery, sustained operation, and retirement. But if 
requirements are frequently renegotiated, if senior software engineers quit after the preliminary 
architectural design, or if there are no modern software requirements, specification, or design aids 
employed, then we might expect that the coding phase may show comparatively low productivity, 
and that test and integration show comparatively high cost. However, we should observe that 
none of the studies cited in Section 3 collected and analyzed data that addresses such issues. 

Since each production process activity can produce valuable products, why is it conventional to 
measure the outcome of one of the smallest effort activities in this process of developing large 
software systems, coding. A number of studies such as those reported by Boehm [9] indicate that 
coding usually consumes 10-20% of the total LSS development effort. On the other hand, 
software testing and integration consume the largest share, usually representing 50% of the 
development effort. Early development activities consume 10-15% each. Clearly, delivered 
software source code is a valuable product. However, it seems clear that code production depends 
on the outcomes and products of the activities that precede it. 

In general, software projects do not progress in a simple sequential order from requirements 
analysis through specification, design, coding, testing, integration, and delivery. However, this 
does not mean that such activities are not performed with great care and management attention. 
Quite the contrary. Although the project may be organized and managed to produce requirements, 
specification, design, and other documents according to planned schedule, the actual course of 
development work is difficult to accurately predict. Development task breakdowns and rework 
are common to many projects [6,7,41]. Experience suggests that software specifications get 
revised during later design stages, requirements change midway through design, software testing 
reveals inadequacies in certain specifications, and so forth [50,52]. Each of these events leads to 
redoing previously accomplished development work. As such, the life cycle development process 
is better understood not as a simple linear process, but rather as one with many possible paths that 
can lead either forward or backward in the development cycle depending on the circumstantial 
events that arise, and the project conditions that precede or follow from the occurence of these 
events. 

http://cwis.usc.edu/dept/ATRIUM/Papers/Software_Productivity.html (22 of 36) [2/11/02 11:38:38 AM]



UNDERSTANDING SOFTWARE PRODUCTIVITY

If we want to better estimate, measure, and understand the variables that affect software 
production throughout its life cycle, we need to delineate the activities that constitute the 
production process. We can then seek to isolate which tasks within the activities can dramatically 
impact overall productivity. The activities of the software life cycle process to be examined 
include: 

●     System requirements analysis: frequency and distribution of changes in operational system 
requirements throughout the duration of the project,

●      Software requirements specifications (possibly including rapid prototypes): number and 
interrelationship of computational objects, attributes, relations and operations central to 
the critical components of the system (e.g., those in the kernel),

●      Software architecture design: complexity of software architecture as measured by the 
number, interconnections, and functional cohesion of software modules, together with 
comparable measures of project team organization. Also, as measured by the frequency 
and distribution of changes in the configuration of both the software architecture and the 
team work structure.

●      Detailed software unit design: time spent to design a module given the number of project 
staff participating, and the amount of existing (or reused) system components incorporated 
into the system being developed,

●      Software unit coding (or application generation): time to code designed modules, and 
density of discovered inconsistencies (bugs) found between a module's detailed design and 
its source code,

●      Unit testing, integration, and system testing: ratio of time and effort allocated to (versus 
actually spent on) testing, effort spent to repair detected errors, density of known error 
types, and the amount of automated mechanisms employed to generate and evaluate test 
case results,

Similar variables for consideration can also be articulated for other system development and 
evolution activities including quality assurance and configuration management, preliminary 
customer (beta-site) testing, customer documentation production, delivery turnover, sustained 
operation and system evolution. 

In addition, we must also appreciate that software production can be organized into different 
modes of manufacture and organization of work, including: 

●     Ad hoc problem solving and articulation work [6,7,33,41]
●      Project-oriented job shop, which are typical for software development projects [50]
●      Batched job shops, for producing a family or small volume of related software products
●      Pipeline, where software production is organized in concurrent multi-stage development, 

and staff is specialized in particular development crafts such as `software requirement 
analysts', `software architects', or `coders'.

●      Flexible software manufacturing systems, which represent one view of a `software factory 
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of the future' [53].
●      Transfer-line (or assembly line), where raw or unfinished information resources are 

brought to semi-skilled software craftspeople who perform highly routinized and limited 
fabrication or assembly tasks.

Accordingly, the characteristics that distinguish these potential modes of software production 
from one another are their values along a set of dimensions that include (1) developer skill 
requirements, (2) ease of productivity measurement and instrumentation, (3) capitalization, (4) 
flexibility of procedures to accomodate development anomalies, and (5) ability to adopt and 
assimilate software innovations. 

Software Production Setting:

Does the setting where software is produced make a difference on productivity? Do we expect 
that LSS production at, say, TRW Defense Systems Group is different than at the MCC Software 
Technology Program Center, the Artificial Intelligence Laboratory at MIT, the Data Processing 
Center at Aetna Life and Casualty, or the Refinery Software Center at Exxon? Do we expect that 
LSS production in various development organization departments of the same corporation is 
different? The answer to all is yes. Software production settings differ in a number of ways 
including: 

●     Programming language in use (Assembly, Fortran, Cobol, C, C++, Ada, CommonLisp, 
Smalltalk, etc.)

●      Computing applications (telecommunications switch, command and control, AI research 
application, database management, structural analysis, signal processing, refinery process 
control, etc.)

●      Computers (SUN-4 workstations, DEC-VAX, Amdahl 580, Cray Y-MP, Symbolics 3670, 
PC-clone, etc.) and operating systems (Unix variants, VAX-VMS, IBM-VM, Zetalisp, MS-
DOS, etc.)

●      Differences between host (development) and target (end-user) computing environment 
and setting, as well as between computing server and client systems

●      Software development tools (compilers, editors, application generators, report generators, 
expert systems, etc.) and practices in use (hacking, structured techniques, modular design, 
formal specification, configuration management and QA, MIL-STD-2167A guidelines, 
etc.)

●      Personnel skill base (number of software staff with no college degree, degree in non-
technical field, BS CS/EE, MS CS/EE, Ph.D. CS/EE, etc.) and experience in application 
area.

●      Dependence on outside organizational units (system vendors, Marketing, Business 
Analysis and Planning, laboratory directors, change control committees, clients, etc.)

●      Extent of client participation, their experience with similar application systems, and their 
expectation for sustained system support
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●      Frequency and history of mid-project innovations in production computing environment 
(how often does a new release of the operating system, processor memory upgrade, new 
computing peripherals introduced, etc. occur during prior development projects)

●      Frequency and history of troublesome anomalies and mistakes that arise during prior 
system development projects (e.g., schedule overshoot, budget overrun, unexpected high 
staff turnover, unreliable new release software, etc.)

How to measure software productivity?

Measuring software productivity presupposes an ability to construct a measurement program 
comparable to those employed in experimental designs for behavioral studies [18]. This is 
necessary to insure that the measures employed are reliable, valid, accurate, and repeatable. This 
in turn implies that choices must be made with respect to the following concerns: 

Productivity measurement research design and sampling strategy

Simply put, there are at least three kinds of choices for research design: qualitative case studies, 
quantitative surveys, and triangulation studies. Qualitative case studies can provide in-depth 
descriptive knowledge about how software production work occurs, what sort of problems arise 
and when. Such studies are usually one-shot affairs that are low-cost to initiate, employ open-
ended anthropological data collection strategies, usually require outside analysts, and produce 
rich, but not necessarily generalizable findings. Multiple, comparative case studies are much less 
common and require a greater sustained field research effort. van den Bosch and associates [13] 
describe comparative qualitative case study designs for studying software production, while [6,7] 
provide detailed examples. 

Quantitative survey studies employ some form of instrumentation such as a questionnaire to 
gather data in a manner well-suited for statistical analysis. The survey sample must be carefully 
defined to insure reliable and valid statistical results. In constrast to qualitative studies, survey 
studies require data analysis skills that are more widely available and supported through 
automated statistical packages. Consider the following scenario of the sequence of activities 
entailed in the preparation and conduct of a quantitative study: 

1.  Develop productivity data collection instrument (form or questionnaire)
2.   Pilot test and revise initial instrument to be sure that desired data can be collected from 

subjects with modest effort
3.   Implement data collection activity and schedule with plans to follow-up on first- and 

second-round non-respondents (never expect that everyone will gladly cooperate with 
your data collection program)

4.   Validate and `clean' collected data (to remove or clarify ambiguous responses)
5.   Code data into analytical variables, scale, and normalize
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6.   Apply selected variables to univariate analysis to determine first-order descriptive 
statistics, second-order variables, and factors for analysis of variance

7.   Select apparently significant first- and second-order variables from univariate analysis for 
multivariate analysis, partial correlations, and regression analysis

8.   Formulate an analytical model of apparent quantitative relationship between factors
9.   Formulate descriptive model of analyzed statistical phenomenon to substantiate findings 

and recommendations.

The chief drawback of surveys is that they usually do not capture the description of process 
phenomena, and so they provide low-resolution indicators of causal relationships among measure 
variables. Therefore, surveys are best suited for `snap-shot' studies, although multiple or 
longitudinal survey studies are also possible but more costly and less common. 

Triangulation studies attempt to draw from the relative strengths of both qualitative and 
quantative studies to maximize analytical depth, generalizability and robustness. In short, 
triangulation studies seek to use qualitative field studies to gain initial sensitivity to critical issues, 
use surveys based on the field studies to identify the frequency and distribution of variables that 
constitute these issues from a larger population, then derive from these a small select sample of 
projects/work groups for further in-depth examination and verification. Such research designs are 
quite scarce in software production measurement because of the cost and diversity of skills they 
require. This may just be a way of saying that high-quality results require a substantial research 
investment. van den Bosch and associates [13] propose one such study design whose baseline 
cost is estimated in the range of 1-3 person years of effort. 

Unit of analysis

The concern here is deciding what are the critical things to study. As we indicated in 
Section 4.3, there is a multitude of factors that can potentially affect software productivity. 
However, it should be clear that all these factors are not simultaneously affective. Instead, their 
influence may be circumstantial or spread out over time and organizational space. Software 
products, production processes, and production setting characteristics all can be influential but 
not necessarily  the same time or with the same computing resources. This leads us to recognize 
that the subject for our analysis of software productivity should be the life history of a software 
project in terms of its evolving products, processes, and production settings. An awareness of this 
also impinges on the choice for research design and sampling strategy.

  

Level and terms of analysis

Together with the unit of analysis, the level and terms characterize the basis for determining the 
scope and generalizability of a software productivity analysis. The level of analysis indicates 
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whether the resulting analysis covers micro-level behavior, macro-level behavior, or some span in 
between. Given the unit of analysis, should software productivity be examined at the level of 
individual programmers, small work groups, software life cycle activities, development 
organization, company, or industry? The level(s) chosen determines the granularity of data 
needed, as well as how it can be aggregated to increase the scope and generalizability of the 
analysis. Experience suggests that analysis of data collected across three or more consecutive 
levels provide very strong results (cf. [13,40,41,51]), as opposed to those cited in Section 3 which 
typically employ only one level. But the greater the desired scope and generalizability, the more 
carefully systematic the data collection and analysis must be. 

The terms of analysis draw attention to the language and ontology of a productivity analysis and 
the analyst. Assuming the unit and levels for analysis, choices of which analytical vocabulary or 
rationale to use foreshadows the outcomes and consequences implied by the analysis. Most 
analysis of software productivity are framed in terms expressing economic `costs', `benefits', and 
`organizational impacts.' However, other rationales are commonly employed which broaden the 
vocabulary and scope of an analysis. For example, Kling and Scacchi [35] observe at least five 
different kinds of rationale are common: respectively, those whose terms emphasize (a) features 
of the underlying technology, (b) attributes of the organization setting, (c) improving relations 
between software people and management, (d) determining who can affect control over, or 
benefit from, a productivity measurement effort (addressing organizational politics), and (e) the 
ongoing social interactions and negotiations that characterize software production work. The 
point of such diverse rationales and their implied terms of analysis is to recognize that no simple 
account can be rendered which completely describes what affects software productivity in a 
particular setting. Instead, what might be the best choice is to interpret an analysis in terms of 
each rationale to better identify which rationale is most informing in a particular situation. But 
whatever the choice, the analysis will be constrained by the terms built into the data collection 
instruments. 

How to improve software productivity?

In addressing this question, Boehm [10] identifies a number of strategies for improving software 
productivity: get the best from people, make development steps more efficient, eliminate 
development steps, eliminate rework, build simpler products, and reuse components. These 
strategies draw attention to the development activities or processes that add value to an emerging 
software system. Cusumano [20] independently reports on how these same strategies are 
regularly practiced in various Japanese software factories to achieve software productivity 
improvements. However, Boehm does not indicate how these productivity improvement 
opportunities are or should be measured to ascertain their effectiveness, nor can he or anyone else 
state how much improvement each strategy or a combined strategy might realize. 

Clearly, much more needs to be explained in order to begin to adequately answer this question. 
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Summary

Large-scale studies of software productivity (i.e., across multiple software projects in many 
different settings) necessitate collecting of a plethora of data. The number and diversity of 
variables identified above indicate that software productivity cannot be understood simply as a 
ratio of the amount of source code statements produced for some unit of time. Instead, 
understanding software productivity requires a more systematic analysis of a variety of types of 
production measures, as well as their interrelationships. This suggests that we need a more robust 
theoretical framework, analytical methods, and support tools to address the dilemmas now 
apparent in understanding and measuring software productivity. 

Alternative Directions for Software 
Productivity Measurement and 
Improvement
We need a fundamental shift in understanding what affects software productivity. In particular, 
new effort should be directed at the development of a knowledge-based software productivity 
analysis system capable of modeling and simulating the production dynamics of a software 
project in a specific setting. In order to develop such a system, it is appropriate to also develop 
project-specific theories of software production, cultivate software productivity drivers, and 
develop techniques for utilizing qualitative (symbolic) project data. 

Develop Setting-Specific Theories of Software 
Production

Standard measures, such as lines of code produced, represent data that are relatively easy to 
collect. However, they are also the least useful in informing our understanding for what affects, or 
how to improve software productivity. We lack an articulated theory of software production. This 
report identifies a number of elements that could be the constituents of such a theory. In principal, 
these include the software products, the processes which give rise to these products, and the 
computational and organizational characteristics that facilitate or inhibit the processes. Clearly, 
developing such theory is a basic research problem, and a problem that must be informed by 
systematic empirical examination of current software development projects and practices. Such 
theory could be used to construct new models, hypotheses, or measures that account for the 
production of large software systems in different settings [cf. 4,18]. Similarly, such models and 
measures could be tuned to better account for the mutual influence of product, process, and 
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setting characteristics specific to a project. This in turn could lead to simple, practical, and 
effective measures of software production that give project managers and developers a source of 
information they can use to improve the quality characteristics of their products, processes, and 
settings. 

Identify and Cultivate Software Productivity 
Drivers

In the apparent rush to measure software productivity, we may have lost sight of a fundamental 
concern: why are software developers as productive as they are in the presence of many technical 
and organizational constraints? The potential for productivity improvement is not an inherent 
property of any new software development technology [35]. Instead, the people who develop 
software must effectively mobilize and transform whatever resources they have available to 
construct software products. Software developers must realize and articulate the potential for 
productivity improvement. New software development technologies can facilitate this 
articulation. But other technological impediments and organizational constraints can nullify or 
inhibit this potential. Thus, a basic concern must be to identify and cultivate software productivity 
drivers, whether such drivers are manifest as new computing resources, or alternative 
organizational or work arrangements. 

Section 3.14 identifies a number of productivity drivers that (weakly) follow from a number of 
software productivity measurement studies. These drivers primarily represent technological 
resource alternatives. Related research [50,52] also identifies a set of project management 
strategies that seek to improve software production through alternative social and organizational 
work arrangements. These strategies are identified through research investigations into the 
practice of software development in complex settings [e.g., 6,7,35,41,52]. These studies are 
begining to show that the development project's organizational history, idiosyncratic workplace 
incentives, investments in prior technologies and work arrangements, local job markets, 
occupational and career contingencies, and organizational politics can dramatically affect 
software productivity potential, either positively or negatively [6,29,35,50]. Further, in some 
cases it appears that such organizational and social conditions dominate the productivity 
contribution attributable to in-place software development technologies. In other words, in certain 
circumstances, changing the organization conditions or work arrangements might have far greater 
an effect in improving software productivity potential than by merely trying to `fix things' by 
installing new technology. Software productivity improvement will not come from better 
software development technologies alone. Organizational and project management strategies to 
improve software productivity potential must be identified, made explicit, and supported. 

Develop Symbolic and Qualitative Measures of 
Software Productivity
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We should develop a rich understanding of how software production occurs in a small number of 
representative software projects. From this, we can articulate an initial qualitative process model 
of software production that incorporates subjective and impressionistic data from local software 
development experts. Then use this model and data to determine what further quantitative data to 
collect, as a basis for refining and evolving the process model. Overall, the idea here is to first 
determine what we should measure before beginning to collect data. Data that is out there and 
easy to collect, such as lines of code, does not necessarily tell us anything about how those lines 
of code were produced, what tools were used, what problems were encountered, who wrote what 
code, etc. Instead, we should seek to be in touch with the people who develop software since it is 
reasonable to assume that they can identify their beliefs for what works well in their situation, 
what enhances their productivity, and what improves the quality of their products. Quantitative 
data can then be used to substantiate or refute the frequency and distribution of the findings 
described in qualitative terms. Subsequently, this should lead to the development of a family of 
process models that accounts for a growing range and scope of software production. 

Develop Knowledge-Based Systems that Model 
Software Production

We should seek an integrated approach to capture and make explicit an empirically-grounded 
understanding of software production in a computational model. This model should embody a 
computational framework for capturing, describing, and applying knowledge of how software 
development projects are carried out and managed [22,40,41,42]. New software process 
modelling technology in the form of knowledge-based systems is emerging [e.g., 22,23,40]. This 
technology appears to be well-suited to support the acquisition, representation, and 
operationalization of the qualitative knowledge that exists within a software development project. 
Readers interested in a specific realization of this approach should consult [40,41,42]. However, 
any software process engineering environment or knowledge engineering system capable of 
modeling, simulating, and enacting software products, production processes, production settings 
and their interrelationships could be employed. 

Knowledge acquisition:

We can acquire knowledge about software projects by conducting in-depth, observational field 
studies [e.g, 7]. Ideally, such studies should be organized to facilitate comparative analysis. The 
data to be collected should account for the concerns described in Section 4. This in turn requires 
the articulation of a scheme for data collection, coding, and analysis. The focus should be directed 
at gathering and organizing information about the life history of a software development project 
in terms of its products, processes, and setting attributes described earlier. The goal is to be able 
to develop a descriptive model of software production such that any analytical conclusion can be 
traced back to the original data from which it emerged. Subsequently, this descriptive model must 
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capture the knowledge we seek in a form that can then be represented and processed within a 
knowledge-based system. 

Knowledge representation:

The area of knowledge representation has long been an active area of research in the field of 
Artificial Intelligence. Thus discussions of topics or approaches can get easily bogged down in 
debates over implementation technology, philosophy, and the like. Suffice to say that a 
knowledge organization scheme is essential, and that such a scheme must again accomodate the 
kinds software production data outlined in Section 5. A suggestive starting point that others are 
working from is the Schema Representation Language described by [49], and utilized by [47], or 
the Software Process Specification Language (SPSL) used in [40,41,42]. For example, in their 
representation of system development projects, Scacchi and colleagues [22,23,40,41,42,51] 
developed a scheme for organizing and representing knowledge about organizational settings, 
resource arrangements, development plans, actions, states, schedules, histories, and expectations. 
In turn, they elaborate the relationships between these concepts using data derived from detailed 
narrative descriptions of system development projects [e.g., 6,33] to illustrate their approach. 
Ultimately, the goal of such a scheme for representing knowledge about software development 
projects is to facilitate computational analysis, simulation, querying, and explanation [40,41]. 

Knowledge operationalization:

A knowledge base about software production projects provides an initial basis for developing an 
operational model of software production. Such a knowledge-based system requires (1) a 
knowledge base for storing facts, hueristics, and reasoning strategies according to the previous 
scheme, (2) a question-answering subsystem for retrieving facts stored or deduced from known 
relationships among facts, and (3) a simulator for exploring alternative trajectories for software 
development projects. Suggestive elaborations of such systems are available [22,23,40,47,49] and 
recommended. For example, assuming an interesting knowledge base has already been stored, the 
question-answering subsystem could be used to answer queries of the following kinds: (1) who 
was the developer responsible for a particular action or situation, (2) what were the project 
development circumstances during a particular time (schedule) interval, (3) when was a particular 
circumstance true or when was the action done, (4) where was a specified action performed, (5) 
how was some software design task accomplished, and (6) why was a certain document produced. 
More specific questions such as these can be answered by retrieval from the knowledge base, 
either by direct retrieval, property inheritance, or by inference rules [22,40,49]. 

Simulate and measure the effects of 
productivity enhancements
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The design of a knowledge-based system that simulates software production requires an 
underlying computational model of development states, actions, plans, schedules, expectations 
(e.g., requirements), and histories in order to answer `what if' questions [40]. Ultimately, the 
operation of the simulator depends upon the availability of a relevant knowledge base of facts, 
hueristics, and reasoning strategies found in development projects. 

Consider the following scenario of the simulator use: We have developed or acquired a 
knowledge-based software production simulation system of the kind outlined above. The 
simulator's user is a manager of a new project in a particular setting and wants to determine an 
acceptable schedule for the project (and thus certain attributes affecting productivity). Knowledge 
about the setting and the project have not yet been incorporated into the knowledge base. The 
user interacts with the simulator to elicit the relevant attributes of the setting, project, and 
schedule then enter them into the knowledge base. The user starts the simulation through an 
interactive question-answering dialog. The simulator would proceed to compare the particular 
facts related to the user's queries against prior project knowledge already accumulated in the 
knowledge base and tries to execute the proposed production schedule. This would give rise to 
changes in the simulated project states, actions, (sub-)schedules, expectations, and histories 
consistent with those inferred from the hueristics and reasoning strategies. The simulation 
finishes when the full schedule is executed, or halt when it reaches a state where it is inhibited. 
Such a state reflects a point in the project where some bottleneck emerges - for example, a key 
computing resource is overutilized, or some other precondition for a critical production step 
cannot be met [6,7,41,42]. Analysis of the conditions prevailing in the simulated project at this 
point helps the user draw useful conclusions about critical interactions between various 
organizational units, development groups, and computing resource arrangements that facilitate 
productive work. The simulation may be redone with different setting or project attributes in 
order to further explore other hueristics for improving productivity in the project. 

Ultimately, the simulation embodies a deep model of software production that in turn can be 
further substantiated with quantified data as to the frequency and distribution of actions, states, 
etc. arising in different software development projects. 

An Approach

The approach to developing a knowledge-based software productivity modeling and simultion 
system described above is a radical departure from conventional approaches to understanding and 
measuring software productivity. Accordingly, the following sequence of activities could be 
performed as a strategy for evaluating the utility of such an approach: 

●     Initiate comparative case studies or surveys of current in-house software production 
practices. These studies serve to provide an initial baseline data of software project 
products, production processes, and production setting characteristics.
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●      Clean and analyze collected data using available skills and tools. This is to provide a 
statement of baseline knowledge about apparent relationships between measured software 
production variables. This and the preceding step correspond to `knowledge acquisition' 
activity described above.

●      Codify subsets of available software project data in a knowledge specification language, 
such as SPSL [40,41,42]. This step corresponds to an initial realization of the `knowledge 
representation' and `knowledge operationalization' activities described above.

●      Demonstrate results in the computational language and processor suggested earlier [40].
●      Embed the software productivity modeling and simulation system within an advanced 

CASE environment in order to demostrate its integration, access, and software production 
guidance on LSS development efforts [22,23,40,41,42,53].

Conclusions
What affects software productivity and how do we improve it? This report examines the state of 
the art in measuring and understanding software productivity. In turn, it descries a framework for 
understanding software productivity, identifies some fundamentals of measurement, and surveys 
selected studies of software productivity. This survey helps identify some of the recurring 
variables that affect software productivity. As a results of the analysis of the shortcomings found 
in many of the surveyed studies, we then identify an alternative knowledge-based approach for 
research and practice in understanding what affects software productivity. This approach builds 
upon recent advances in modeling, simulating, and enacting software engineering processes 
situated within complex organizational settings. Also, this approach enables the construction of 
an organizational knowledge base on what affects software productivity and how. Thus, we are 
optimistic about the potential for developing knowledge-based systems for modeling, simulating, 
and reasoning about software development projects as a new way to gain insight into what affects 
software productivity. 
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