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Preface

Although this may seem a paradox, all exact
science is dominated by the idea of approximation.

Bertrand Russell (1872–1970)

Most natural optimization problems, including those arising in important
application areas, are NP-hard. Therefore, under the widely believed con-
jecture that P �= NP, their exact solution is prohibitively time consuming.
Charting the landscape of approximability of these problems, via polynomial
time algorithms, therefore becomes a compelling subject of scientific inquiry
in computer science and mathematics. This book presents the theory of ap-
proximation algorithms as it stands today. It is reasonable to expect the
picture to change with time.

The book is divided into three parts. In Part I we cover a combinato-
rial algorithms for a number of important problems, using a wide variety
of algorithm design techniques. The latter may give Part I a non-cohesive
appearance. However, this is to be expected – nature is very rich, and we
cannot expect a few tricks to help solve the diverse collection of NP-hard
problems. Indeed, in this part, we have purposely refrained from tightly cat-
egorizing algorithmic techniques so as not to trivialize matters. Instead, we
have attempted to capture, as accurately as possible, the individual character
of each problem, and point out connections between problems and algorithms
for solving them.

In Part II, we present linear programming based algorithms. These are
categorized under two fundamental techniques: rounding and the primal–
dual schema. But once again, the exact approximation guarantee obtainable
depends on the specific LP-relaxation used, and there is no fixed recipe for
discovering good relaxations, just as there is no fixed recipe for proving a the-
orem in mathematics (readers familiar with complexity theory will recognize
this as the philosophical point behind the P �= NP question).

Part III covers four important topics. The first is the problem of finding
a shortest vector in a lattice which, for several reasons, deserves individual
treatment (see Chapter 27).

The second topic is the approximability of counting, as opposed to
optimization, problems (counting the number of solutions to a given in-
stance). The counting versions of all known NP-complete problems are #P-
complete1. Interestingly enough, other than a handful of exceptions, this is
true of problems in P as well. An impressive theory has been built for ob-
1 However, there is no theorem to this effect yet.
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taining efficient approximate counting algorithms for this latter class of prob-
lems. Most of these algorithms are based on the Markov chain Monte Carlo
(MCMC) method, a topic that deserves a book by itself and is therefore not
treated here. In Chapter 28 we present combinatorial algorithms, not using
the MCMC method, for two fundamental counting problems.

The third topic is centered around recent breakthrough results, estab-
lishing hardness of approximation for many key problems, and giving new
legitimacy to approximation algorithms as a deep theory. An overview of
these results is presented in Chapter 29, assuming the main technical theo-
rem, the PCP Theorem. The latter theorem, unfortunately, does not have a
simple proof at present.

The fourth topic consists of the numerous open problems of this young
field. The list presented should by no means be considered exhaustive, and
is moreover centered around problems and issues currently in vogue. Exact
algorithms have been studied intensively for over four decades, and yet basic
insights are still being obtained. Considering the fact that among natural
computational problems, polynomial time solvability is the exception rather
than the rule, it is only reasonable to expect the theory of approximation
algorithms to grow considerably over the years.

The set cover problem occupies a special place, not only in the theory of
approximation algorithms, but also in this book. It offers a particularly simple
setting for introducing key concepts as well as some of the basic algorithm
design techniques of Part I and Part II. In order to give a complete treatment
for this central problem, in Part III we give a hardness result for it, even
though the proof is quite elaborate. The hardness result essentially matches
the guarantee of the best algorithm known – this being another reason for
presenting this rather difficult proof.

Our philosophy on the design and exposition of algorithms is nicely il-
lustrated by the following analogy with an aspect of Michelangelo’s art. A
major part of his effort involved looking for interesting pieces of stone in the
quarry and staring at them for long hours to determine the form they natu-
rally wanted to take. The chisel work exposed, in a minimalistic manner, this
form. By analogy, we would like to start with a clean, simply stated problem
(perhaps a simplified version of the problem we actually want to solve in
practice). Most of the algorithm design effort actually goes into understand-
ing the algorithmically relevant combinatorial structure of the problem. The
algorithm exploits this structure in a minimalistic manner. The exposition of
algorithms in this book will also follow this analogy, with emphasis on stating
the structure offered by problems, and keeping the algorithms minimalistic.

An attempt has been made to keep individual chapters short and simple,
often presenting only the key result. Generalizations and related results are
relegated to exercises. The exercises also cover other important results which
could not be covered in detail due to logistic constraints. Hints have been
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provided for some of the exercises; however, there is no correlation between
the degree of difficulty of an exercise and whether a hint is provided for it.

This book is suitable for use in advanced undergraduate and graduate level
courses on approximation algorithms. It has more than twice the material
that can be covered in a semester long course, thereby leaving plenty of room
for an instructor to choose topics. An undergraduate course in algorithms
and the theory of NP-completeness should suffice as a prerequisite for most
of the chapters. For completeness, we have provided background information
on several topics: complexity theory in Appendix A, probability theory in
Appendix B, linear programming in Chapter 12, semidefinite programming in
Chapter 26, and lattices in Chapter 27. (A disproportionate amount of space
has been devoted to the notion of self-reducibility in Appendix A because
this notion has been quite sparsely treated in other sources.) This book can
also be used is as supplementary text in basic undergraduate and graduate
algorithms courses. The first few chapters of Part I and Part II are suitable
for this purpose. The ordering of chapters in both these parts is roughly by
increasing difficulty.

In anticipation of this wide audience, we decided not to publish this book
in any of Springer’s series – even its prestigious Yellow Series. (However, we
could not resist spattering a patch of yellow on the cover!) The following
translations are currently planned: French by Claire Kenyon, Japanese by
Takao Asano, and Romanian by Ion Măndoiu. Corrections and comments
from readers are welcome. We have set up a special email address for this
purpose: approx@cc.gatech.edu.

Finally, a word about practical impact. With practitioners looking for
high performance algorithms having error within 2% or 5% of the optimal,
what good are algorithms that come within a factor of 2, or even worse,
O(log n), of the optimal? Further, by this token, what is the usefulness of
improving the approximation guarantee from, say, factor 2 to 3/2?

Let us address both issues and point out some fallacies in these assertions.
The approximation guarantee only reflects the performance of the algorithm
on the most pathological instances. Perhaps it is more appropriate to view
the approximation guarantee as a measure that forces us to explore deeper
into the combinatorial structure of the problem and discover more powerful
tools for exploiting this structure. It has been observed that the difficulty
of constructing tight examples increases considerably as one obtains algo-
rithms with better guarantees. Indeed, for some recent algorithms, obtaining
a tight example has been a paper by itself (e.g., see Section 26.7). Experi-
ments have confirmed that these and other sophisticated algorithms do have
error bounds of the desired magnitude, 2% to 5%, on typical instances, even
though their worst case error bounds are much higher. Additionally, the the-
oretically proven algorithm should be viewed as a core algorithmic idea that
needs to be fine tuned to the types of instances arising in specific applications.
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We hope that this book will serve as a catalyst in helping this theory grow
and have practical impact.
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personal care with which he handled all such matters and his sensitivity to
an author’s unique point of view were especially impressive. Thanks also to
Frank Holzwarth for sharing his expertise with LATEX.

A project of this magnitude would be hard to pull off without whole-
hearted support from family members. Fortunately, in my case, some of them
are also fellow researchers – my wife, Milena Mihail, and my brother, Umesh
Vazirani. Little Michel’s arrival, halfway through this project, brought new
joys and energies, though made the end even more challenging! Above all,
I would like to thank my parents for their unwavering support and inspira-
tion – my father, a distinguished author of several Civil Engineering books,
and my mother, with her deep understanding of Indian Classical Music. This
book is dedicated to them.

Atlanta, Georgia, May 2001 Vijay Vazirani





Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Lower bounding OPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 An approximation algorithm for cardinality vertex cover 3
1.1.2 Can the approximation guarantee be improved? . . . . . . 3

1.2 Well-characterized problems and min–max relations . . . . . . . . . 5
1.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Part I. Combinatorial Algorithms

2 Set Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 The greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Layering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Application to shortest superstring . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Steiner Tree and TSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Metric Steiner tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 MST-based algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Metric TSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 A simple factor 2 algorithm . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Improving the factor to 3/2 . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Multiway Cut and k-Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1 The multiway cut problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 The minimum k-cut problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



XIV Table of Contents

5 k-Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1 Parametric pruning applied to metric k-center . . . . . . . . . . . . . . 47
5.2 The weighted version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Feedback Vertex Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1 Cyclomatic weighted graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Layering applied to feedback vertex set . . . . . . . . . . . . . . . . . . . . 57
6.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Shortest Superstring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.1 A factor 4 algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Improving to factor 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2.1 Achieving half the optimal compression . . . . . . . . . . . . . 66
7.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Knapsack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.1 A pseudo-polynomial time algorithm for knapsack . . . . . . . . . . 69
8.2 An FPTAS for knapsack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.3 Strong NP-hardness and the existence of FPTAS’s . . . . . . . . . 71

8.3.1 Is an FPTAS the most desirable approximation
algorithm?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9 Bin Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.1 An asymptotic PTAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

10 Minimum Makespan Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 79
10.1 Factor 2 algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
10.2 A PTAS for minimum makespan . . . . . . . . . . . . . . . . . . . . . . . . . 80

10.2.1 Bin packing with fixed number of object sizes . . . . . . . . 81
10.2.2 Reducing makespan to restricted bin packing . . . . . . . . 81

10.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

11 Euclidean TSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
11.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
11.2 Proof of correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
11.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
11.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



Table of Contents XV

Part II. LP-Based Algorithms

12 Introduction to LP-Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
12.1 The LP-duality theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
12.2 Min–max relations and LP-duality . . . . . . . . . . . . . . . . . . . . . . . . 97
12.3 Two fundamental algorithm design techniques . . . . . . . . . . . . . . 100

12.3.1 A comparison of the techniques and the notion of
integrality gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

12.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
12.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

13 Set Cover via Dual Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
13.1 Dual-fitting-based analysis for the greedy set cover algorithm 108

13.1.1 Can the approximation guarantee be improved? . . . . . . 111
13.2 Generalizations of set cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

13.2.1 Dual fitting applied to constrained set multicover . . . . . 112
13.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
13.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

14 Rounding Applied to Set Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
14.1 A simple rounding algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
14.2 Randomized rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
14.3 Half-integrality of vertex cover . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
14.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
14.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

15 Set Cover via the Primal–Dual Schema . . . . . . . . . . . . . . . . . . . 125
15.1 Overview of the schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
15.2 Primal–dual schema applied to set cover . . . . . . . . . . . . . . . . . . . 127
15.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
15.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

16 Maximum Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
16.1 Dealing with large clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
16.2 Derandomizing via the method of conditional expectation . . . 132
16.3 Dealing with small clauses via LP-rounding . . . . . . . . . . . . . . . . 134
16.4 A 3/4 factor algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
16.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
16.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

17 Scheduling on Unrelated Parallel Machines . . . . . . . . . . . . . . . 140
17.1 Parametric pruning in an LP setting . . . . . . . . . . . . . . . . . . . . . . 140
17.2 Properties of extreme point solutions . . . . . . . . . . . . . . . . . . . . . . 141
17.3 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



XVI Table of Contents

17.4 Additional properties of extreme point solutions . . . . . . . . . . . . 143
17.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
17.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

18 Multicut and Integer Multicommodity Flow in Trees . . . . . 146
18.1 The problems and their LP-relaxations . . . . . . . . . . . . . . . . . . . . 146
18.2 Primal–dual schema based algorithm . . . . . . . . . . . . . . . . . . . . . . 149
18.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
18.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

19 Multiway Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
19.1 An interesting LP-relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
19.2 Randomized rounding algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 157
19.3 Half-integrality of node multiway cut . . . . . . . . . . . . . . . . . . . . . 160
19.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
19.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

20 Multicut in General Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
20.1 Sum multicommodity flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
20.2 LP-rounding-based algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

20.2.1 Growing a region: the continuous process . . . . . . . . . . . . 171
20.2.2 The discrete process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
20.2.3 Finding successive regions . . . . . . . . . . . . . . . . . . . . . . . . . 173

20.3 A tight example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
20.4 Some applications of multicut . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
20.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
20.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

21 Sparsest Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
21.1 Demands multicommodity flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
21.2 Linear programming formulation . . . . . . . . . . . . . . . . . . . . . . . . . 181
21.3 Metrics, cut packings, and �1-embeddability . . . . . . . . . . . . . . . . 183

21.3.1 Cut packings for metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 183
21.3.2 �1-embeddability of metrics . . . . . . . . . . . . . . . . . . . . . . . . 185

21.4 Low distortion �1-embeddings for metrics . . . . . . . . . . . . . . . . . . 186
21.4.1 Ensuring that a single edge is not overshrunk . . . . . . . . 187
21.4.2 Ensuring that no edge is overshrunk . . . . . . . . . . . . . . . . 190

21.5 LP-rounding-based algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
21.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

21.6.1 Edge expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
21.6.2 Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
21.6.3 Balanced cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
21.6.4 Minimum cut linear arrangement . . . . . . . . . . . . . . . . . . . 194

21.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
21.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197



Table of Contents XVII

22 Steiner Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
22.1 LP-relaxation and dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
22.2 Primal–dual schema with synchronization . . . . . . . . . . . . . . . . . 199
22.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
22.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
22.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

23 Steiner Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
23.1 The LP-relaxation and half-integrality . . . . . . . . . . . . . . . . . . . . 213
23.2 The technique of iterated rounding . . . . . . . . . . . . . . . . . . . . . . . 217
23.3 Characterizing extreme point solutions . . . . . . . . . . . . . . . . . . . . 219
23.4 A counting argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
23.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
23.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

24 Facility Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
24.1 An intuitive understanding of the dual . . . . . . . . . . . . . . . . . . . . 233
24.2 Relaxing primal complementary slackness conditions . . . . . . . . 234
24.3 Primal–dual schema based algorithm . . . . . . . . . . . . . . . . . . . . . . 235
24.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

24.4.1 Running time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
24.4.2 Tight example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

24.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
24.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

25 k-Median . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
25.1 LP-relaxation and dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
25.2 The high-level idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
25.3 Randomized rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

25.3.1 Derandomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
25.3.2 Running time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
25.3.3 Tight example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
25.3.4 Integrality gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

25.4 A Lagrangian relaxation technique
for approximation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

25.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
25.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

26 Semidefinite Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
26.1 Strict quadratic programs and vector programs . . . . . . . . . . . . . 256
26.2 Properties of positive semidefinite matrices . . . . . . . . . . . . . . . . 258
26.3 The semidefinite programming problem . . . . . . . . . . . . . . . . . . . 259
26.4 Randomized rounding algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 261
26.5 Improving the guarantee for MAX-2SAT . . . . . . . . . . . . . . . . . . 264
26.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
26.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269



XVIII Table of Contents

Part III. Other Topics

27 Shortest Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
27.1 Bases, determinants, and orthogonality defect . . . . . . . . . . . . . . 274
27.2 The algorithms of Euclid and Gauss . . . . . . . . . . . . . . . . . . . . . . 276
27.3 Lower bounding OPT using Gram–Schmidt orthogonalization 278
27.4 Extension to n dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
27.5 The dual lattice and its algorithmic use . . . . . . . . . . . . . . . . . . . 284
27.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
27.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

28 Counting Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
28.1 Counting DNF solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
28.2 Network reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

28.2.1 Upperbounding the number of near-minimum cuts . . . . 298
28.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

28.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
28.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

29 Hardness of Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
29.1 Reductions, gaps, and hardness factors . . . . . . . . . . . . . . . . . . . . 306
29.2 The PCP theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
29.3 Hardness of MAX-3SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
29.4 Hardness of MAX-3SAT with bounded occurrence

of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
29.5 Hardness of vertex cover and Steiner tree . . . . . . . . . . . . . . . . . . 316
29.6 Hardness of clique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
29.7 Hardness of set cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

29.7.1 The two-prover one-round characterization of NP . . . . 322
29.7.2 The gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
29.7.3 Reducing error probability by parallel repetition . . . . . . 325
29.7.4 The reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

29.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
29.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

30 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
30.1 Problems having constant factor algorithms . . . . . . . . . . . . . . . . 334
30.2 Other optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
30.3 Counting problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338



Table of Contents XIX

Appendix

A An Overview of Complexity Theory
for the Algorithm Designer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
A.1 Certificates and the class NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
A.2 Reductions and NP-completeness . . . . . . . . . . . . . . . . . . . . . . . . 344
A.3 NP-optimization problems and approximation algorithms . . . 345

A.3.1 Approximation factor preserving reductions . . . . . . . . . . 347
A.4 Randomized complexity classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
A.5 Self-reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
A.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

B Basic Facts from Probability Theory . . . . . . . . . . . . . . . . . . . . . . 352
B.1 Expectation and moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
B.2 Deviations from the mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
B.3 Basic distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
B.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Problem Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375





1 Introduction

NP-hard optimization problems exhibit a rich set of possibilities, all the
way from allowing approximability to any required degree, to essentially not
allowing approximability at all. Despite this diversity, underlying the process
of design of approximation algorithms are some common principles. We will
explore these in the current chapter.

An optimization problem is polynomial time solvable only if it has
the algorithmically relevant combinatorial structure that can be used as
“footholds” to efficiently home in on an optimal solution. The process of
designing an exact polynomial time algorithm is a two-pronged attack: un-
raveling this structure in the problem and finding algorithmic techniques that
can exploit this structure.

Although NP-hard optimization problems do not offer footholds for find-
ing optimal solutions efficiently, they may still offer footholds for finding
near-optimal solutions efficiently. So, at a high level, the process of design of
approximation algorithms is not very different from that of design of exact
algorithms. It still involves unraveling the relevant structure and finding al-
gorithmic techniques to exploit it. Typically, the structure turns out to be
more elaborate, and often the algorithmic techniques result from generalizing
and extending some of the powerful algorithmic tools developed in the study
of exact algorithms.

On the other hand, looking at the process of designing approximation
algorithms a little more closely, one can see that it has its own general princi-
ples. We illustrate some of these principles in Section 1.1, using the following
simple setting.

Problem 1.1 (Vertex cover) Given an undirected graph G = (V, E), and
a cost function on vertices c : V → Q+, find a minimum cost vertex cover,
i.e., a set V ′ ⊆ V such that every edge has at least one endpoint incident at
V ′. The special case, in which all vertices are of unit cost, will be called the
cardinality vertex cover problem.

Since the design of an approximation algorithm involves delicately attack-
ing NP-hardness and salvaging from it an efficient approximate solution, it
will be useful for the reader to review some key concepts from complexity
theory. Appendix A and some exercises in Section 1.3 have been provided for
this purpose.



2 1 Introduction

It is important to give precise definitions of an NP-optimization problem
and an approximation algorithm for it (e.g., see Exercises 1.9 and 1.10). Since
these definitions are quite technical, we have moved them to Appendix A.
We provide essentials below to quickly get started.

An NP-optimization problem Π is either a minimization or a maximiza-
tion problem. Each valid instance I of Π comes with a nonempty set of
feasible solutions, each of which is assigned a nonnegative rational number
called its objective function value. There exist polynomial time algorithms
for determining validity, feasibility, and the objective function value. A fea-
sible solution that achieves the optimal objective function value is called an
optimal solution. OPTΠ(I) will denote the objective function value of an
optimal solution to instance I. We will shorten this to OPT when there is
no ambiguity. For the problems studied in this book, computing OPTΠ(I) is
NP-hard.

For example, valid instances of the vertex cover problem consist of an
undirected graph G = (V, E) and a cost function on vertices. A feasible
solution is a set S ⊆ V that is a cover for G. Its objective function value is
the sum of costs of all vertices in S. A minimum cost such set is an optimal
solution.

An approximation algorithm, A, for Π produces, in polynomial time, a
feasible solution whose objective function value is “close” to the optimal;
by “close” we mean within a guaranteed factor of the optimal. In the next
section, we will present a factor 2 approximation algorithm for the cardinality
vertex cover problem, i.e., an algorithm that finds a cover of cost ≤ 2 · OPT
in time polynomial in |V |.

1.1 Lower bounding OPT

When designing an approximation algorithm for an NP-hard NP-optimiza-
tion problem, one is immediately faced with the following dilemma. In order
to establish the approximation guarantee, the cost of the solution produced
by the algorithm needs to be compared with the cost of an optimal solution.
However, for such problems, not only is it NP-hard to find an optimal solu-
tion, but it is also NP-hard to compute the cost of an optimal solution (see
Appendix A). In fact, in Section A.5 we show that computing the cost of an
optimal solution (or even solving its decision version) is precisely the difficult
core of such problems. So, how do we establish the approximation guarantee?
Interestingly enough, the answer to this question provides a key step in the
design of approximation algorithms.

Let us demonstrate this in the context of the cardinality vertex cover
problem. We will get around the difficulty mentioned above by coming up
with a “good” polynomial time computable lower bound on the size of the
optimal cover.
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1.1.1 An approximation algorithm for cardinality vertex cover

We provide some definitions first. Given a graph H = (U, F ), a subset of
the edges M ⊆ F is said to be a matching if no two edges of M share an
endpoint. A matching of maximum cardinality in H is called a maximum
matching, and a matching that is maximal under inclusion is called a maximal
matching. A maximal matching can clearly be computed in polynomial time
by simply greedily picking edges and removing endpoints of picked edges.
More sophisticated means lead to polynomial time algorithms for finding a
maximum matching as well.

Let us observe that the size of a maximal matching in G provides a lower
bound. This is so because any vertex cover has to pick at least one endpoint
of each matched edge. This lower bounding scheme immediately suggests the
following simple algorithm:

Algorithm 1.2 (Cardinality vertex cover)

Find a maximal matching in G and output the set of matched vertices.

Theorem 1.3 Algorithm 1.2 is a factor 2 approximation algorithm for the
cardinality vertex cover problem.

Proof: No edge can be left uncovered by the set of vertices picked – other-
wise such an edge could have been added to the matching, contradicting its
maximality. Let M be the matching picked. As argued above, |M | ≤ OPT.
The approximation factor follows from the observation that the cover picked
by the algorithm has cardinality 2 |M |, which is at most 2 · OPT. �

Observe that the approximation algorithm for vertex cover was very much
related to, and followed naturally from, the lower bounding scheme. This is in
fact typical in the design of approximation algorithms. In Part II of this book,
we show how linear programming provides a unified way of obtaining lower
bounds for several fundamental problems. The algorithm itself is designed
around the LP that provides the lower bound.

1.1.2 Can the approximation guarantee be improved?

The following questions arise in the context of improving the approximation
guarantee for cardinality vertex cover:

1. Can the approximation guarantee of Algorithm 1.2 be improved by a
better analysis?



4 1 Introduction

2. Can an approximation algorithm with a better guarantee be designed
using the lower bounding scheme of Algorithm 1.2, i.e., size of a maximal
matching in G?

3. Is there some other lower bounding method that can lead to an improved
approximation guarantee for vertex cover?

Example 1.4 shows that the answer to the first question is “no”, i.e.,
the analysis presented above for Algorithm 1.2 is tight. It gives an infinite
family of instances in which the solution produced by Algorithm 1.2 is twice
the optimal. An infinite family of instances of this kind, showing that the
analysis of an approximation algorithm is tight, will be referred to as a tight
example. The importance of finding tight examples for an approximation
algorithm one has designed cannot be overemphasized. They give critical
insight into the functioning of the algorithm and have often led to ideas for
obtaining algorithms with improved guarantees. (The reader is advised to
run algorithms on the tight examples presented in this book.)

Example 1.4 Consider the infinite family of instances given by the complete
bipartite graphs Kn,n.
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When run on Kn,n, Algorithm 1.2 will pick all 2n vertices, whereas picking
one side of the bipartition gives a cover of size n. �

Let us assume that we will establish the approximation factor for an
algorithm by simply comparing the cost of the solution it finds with the lower
bound. Indeed, almost all known approximation algorithms operate in this
manner. Under this assumption, the answer to the second question is also
“no”. This is established in Example 1.5, which gives an infinite family of
instances on which the lower bound, of size of a maximal matching, is in fact
half the size of an optimal vertex cover. In the case of linear-programming-
based approximation algorithms, the analogous question will be answered by
determining a fundamental quantity associated with the linear programming
relaxation – its integrality gap (see Chapter 12).

The third question, of improving the approximation guarantee for ver-
tex cover, is currently a central open problem in the field of approximation
algorithms (see Section 30.1).
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Example 1.5 The lower bound, of size of a maximal matching, is half the
size of an optimal vertex cover for the following infinite family of instances.
Consider the complete graph Kn, where n is odd. The size of any maximal
matching is (n − 1)/2, whereas the size of an optimal cover is n − 1. �

1.2 Well-characterized problems and min–max relations

Consider decision versions of the cardinality vertex cover and maximum
matching problems.

• Is the size of the minimum vertex cover in G at most k?
• Is the size of the maximum matching in G at least l?

Both these decision problems are in NP and therefore have Yes certificates
(see Appendix A for definitions). Do these problems also have No certificates?
We have already observed that the size of a maximum matching is a lower
bound on the size of a minimum vertex cover. If G is bipartite, then in fact
equality holds; this is the classic König-Egerváry theorem.

Theorem 1.6 In any bipartite graph,

max
matching M

|M | = min
vertex cover U

|U |.

Therefore, if the answer to the first decision problem is “no”, there must be
a matching of size k + 1 in G that suffices as a certificate. Similarly, a vertex
cover of size l−1 must exist in G if the answer to the second decision problem
is “no”. Hence, when restricted to bipartite graphs, both vertex cover and
maximum matching problems have No certificates and are in co-NP. In fact,
both problems are also in P under this restriction. It is easy to see that any
problem in P trivially has Yes as well as No certificates (the empty string
suffices). This is equivalent to the statement that P ⊆ NP ∩ co-NP. It is
widely believed that the containment is strict; the conjectured status of these
classes is depicted below.

P

NP co-NP
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Problems that have Yes and No certificates, i.e., are in NP ∩ co-NP, are
said to be well-characterized. The importance of this notion can be gauged
from the fact that the quest for a polynomial time algorithm for matching
started with the observation that it is well-characterized.

Min–max relations of the kind given above provide proof that a problem is
well-characterized. Such relations are some of the most powerful and beautiful
results in combinatorics, and some of the most fundamental polynomial time
algorithms (exact) have been designed around such relations. Most of these
min–max relations are actually special cases of the LP-duality theorem (see
Section 12.2). As pointed out above, LP-duality theory plays a vital role in
the design of approximation algorithms as well.

What if G is not restricted to be bipartite? In this case, a maximum
matching may be strictly smaller than a minimum vertex cover. For instance,
if G is simply an odd length cycle on 2p + 1 vertices, then the size of a max-
imum matching is p, whereas the size of a minimum vertex cover is p + 1.
This may happen even for graphs having a perfect matching, for instance,
the Petersen graph:
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This graph has a perfect matching of cardinality 5; however, the minimum
vertex cover has cardinality 6. One can show that there is no vertex cover of
size 5 by observing that any vertex cover must pick at least p + 1 vertices
from an odd cycle of length 2p + 1, just to cover all the edges of the cycle,
and the Petersen graph has two disjoint cycles of length 5.

Under the widely believed assumption that NP �= co-NP, NP-hard prob-
lems do not have No certificates. Thus, the minimum vertex cover problem in
general graphs, which is NP-hard, does not have a No certificate, assuming
NP �= co-NP. The maximum matching problem in general graphs is in P.
However, the No certificate for this problem is not a vertex cover, but a more
general structure: an odd set cover.

An odd set cover C in a graph G = (V, E) is a collection of disjoint odd
cardinality subsets of V , S1, . . . , Sk, and a collection v1, . . . , vl of vertices such
that each edge of G is either incident at one of the vertices vi or has both
endpoints in one of the sets Si. The weight of this cover C is defined to be
w(C) = l +

∑k
i=1 (|Si| − 1)/2. The following min–max relation holds.
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Theorem 1.7 In any graph, max
matching M

|M | = min
odd set cover C

w(C).

As shown above, in general graphs a maximum matching can be smaller
than a minimum vertex cover. Can it be arbitrarily smaller? The answer is
“no”. A corollary of Theorem 1.3 is that in any graph, the size of a maximum
matching is at least half the size of a minimum vertex cover. More precisely,
Theorem 1.3 gives, as a corollary, the following approximate min–max rela-
tion. Approximation algorithms frequently yield such approximate min–max
relations, which are of independent interest.

Corollary 1.8 In any graph,

max
matching M

|M | ≤ min
vertex cover U

|U | ≤ 2 ·
(

max
matching M

|M |
)

.

Although the vertex cover problem does not have No certificate under the
assumption NP �= co-NP, surely there ought to be a way of certifying that
(G, k) is a “no” instance for small enough values of k. Algorithm 1.2 (more
precisely, the lower bounding scheme behind this approximation algorithm)
provides such a method. Let A(G) denote the size of vertex cover output by
Algorithm 1.2. Then, OPT(G) ≤ A(G) ≤ 2 · OPT(G). If k < A(G)/2 then
k < OPT(G), and therefore (G, k) must be a “no” instance. Furthermore,
if k < OPT(G)/2 then k < A(G)/2. Hence, Algorithm 1.2 provides a No
certificate for all instances (G, k) such that k < OPT(G)/2.

A No certificate for instances (I, B) of a minimization problem Π satis-
fying B < OPT(I)/α is called a factor α approximate No certificate. As in
the case of normal Yes and No certificates, we do not require that this certifi-
cate be polynomial time computable. An α factor approximation algorithm
A for Π provides such a certificate. Since A has polynomial running time,
this certificate is polynomial time computable. In Chapter 27 we will show
an intriguing result – that the shortest vector problem has a factor n approx-
imate No certificate; however, a polynomial time algorithm for constructing
such a certificate is not known.

1.3 Exercises

1.1 Give a factor 1/2 algorithm for the following.

Problem 1.9 (Acyclic subgraph) Given a directed graph G = (V, E), pick
a maximum cardinality set of edges from E so that the resulting subgraph is
acyclic.
Hint: Arbitrarily number the vertices and pick the bigger of the two sets,
the forward-going edges and the backward-going edges. What scheme are you
using for upper bounding OPT?
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1.2 Design a factor 2 approximation algorithm for the problem of finding a
minimum cardinality maximal matching in an undirected graph.
Hint: Use the fact that any maximal matching is at least half the maximum
matching.

1.3 (R. Bar-Yehuda) Consider the following factor 2 approximation algo-
rithm for the cardinality vertex cover problem. Find a depth first search tree
in the given graph, G, and output the set, say S, of all the nonleaf vertices
of this tree. Show that S is indeed a vertex cover for G and |S| ≤ 2 · OPT.
Hint: Show that G has a matching of size |S|.

1.4 Perhaps the first strategy one tries when designing an algorithm for an
optimization problem is the greedy strategy. For the vertex cover problem,
this would involve iteratively picking a maximum degree vertex and removing
it, together with edges incident at it, until there are no edges left. Show that
this algorithm achieves an approximation guarantee of O(log n). Give a tight
example for this algorithm.
Hint: The analysis is similar to that in Theorem 2.4.

1.5 A maximal matching can be found via a greedy algorithm: pick an edge,
remove its two endpoints, and iterate until there are no edges left. Does this
make Algorithm 1.2 a greedy algorithm?

1.6 Give a lower bounding scheme for the arbitrary cost version of the vertex
cover problem.
Hint: Not easy if you don’t use LP-duality.

1.7 Let A = {a1, . . . , an} be a finite set, and let “≤” be a relation on
A that is reflexive, antisymmetric, and transitive. Such a relation is called
a partial ordering of A. Two elements ai, aj ∈ A are said to be comparable
if ai ≤ aj or aj ≤ ai. Two elements that are not comparable are said to
be incomparable. A subset S ⊆ A is a chain if its elements are pairwise
comparable. If the elements of S are pairwise incomparable, then it is an
antichain. A chain (antichain) cover is a collection of chains (antichains)
that are pairwise disjoint and cover A. The size of such a cover is the number
of chains (antichains) in it. Prove the following min–max result. The size of
a longest chain equals the size of a smallest antichain cover.
Hint: Let the size of the longest chain be m. For a ∈ A, let φ(a) denote the
size of the longest chain in which a is the smallest element. Now, consider
the partition of A, Ai = {a ∈ A | φ(a) = i}, for 1 ≤ i ≤ m.

1.8 (Dilworth’s theorem, see [195]) Prove that in any finite partial order,
the size of a largest antichain equals the size of a smallest chain cover.
Hint: Derive from the König-Egerváry Theorem. Given a partial order on n-
element set A, consider the bipartite graph G = (U, V, E) with |U | = |V | = n
and (ui, vj) ∈ E iff ai ≤ aj .
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The next ten exercises are based on Appendix A.

1.9 Is the following an NP-optimization problem? Given an undirected
graph G = (V, E), a cost function on vertices c : V → Q+, and a positive
integer k, find a minimum cost vertex cover for G containing at most k
vertices.
Hint: Can valid instances be recognized in polynomial time (such an instance
must have at least one feasible solution)?

1.10 Let A be an algorithm for a minimization NP-optimization problem Π
such that the expected cost of the solution produced by A is ≤ αOPT, for a
constant α > 1. What is the best approximation guarantee you can establish
for Π using algorithm A?
Hint: A guarantee of 2α − 1 follows easily. For guarantees arbitrarily close
to α, run the algorithm polynomially many times and pick the best solution.
Apply Chernoff’s bound.

1.11 Show that if SAT has been proven NP-hard, and SAT has been reduced,
via a polynomial time reduction, to the decision version of vertex cover, then
the latter is also NP-hard.
Hint: Show that the composition of two polynomial time reductions is also
a polynomial time reduction.

1.12 Show that if the vertex cover problem is in co-NP, then NP = co-NP.

1.13 (Pratt [222]) Let L be the language consisting of all prime numbers.
Show that L ∈ NP.
Hint: Consider the multiplicative group modn, Z∗

n = {a ∈ Z+ | 1 ≤ a <
n and (a, n) = 1}. Clearly, |Z∗

n| ≤ n − 1. Use the fact that |Z∗
n| = n − 1 iff

n is prime, and that Z∗
n is cyclic if n is prime. The Yes certificate consists

of a primitive root of Z∗
n, the prime factorization of n − 1, and, recursively,

similar information about each prime factor of n − 1.

1.14 Give proofs of self-reducibility for the optimization problems discussed
later in this book, in particular, maximum matching, MAX-SAT (Problem
16.1), clique (Problem 29.15), shortest superstring (Problem 2.9), and Mini-
mum makespan scheduling (Problem 10.1).
Hint: For clique, consider two possibilities, that v is or isn’t in the optimal
clique. Correspondingly, either restrict G to v and its neighbors, or remove
v from G. For shortest superstring, remove two strings and replace them
by a legal overlap (may even be a simple concatenation). If the length of
the optimal superstring remains unchanged, work with this smaller instance.
Generalize the scheduling problem a bit – assume that you are also given
the number of time units already scheduled on each machine as part of the
instance.
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1.15 Give a suitable definition of self-reducibility for problems in NP, i.e.,
decision problems and not optimization problems, which enables you to ob-
tain a polynomial time algorithm for finding a feasible solution given an
oracle for the decision version, and moreover, yields a self-reducibility tree
for instances.
Hint: Impose an arbitrary order among the atoms of a solution, e.g., for
SAT, this was achieved by arbitrarily ordering the n variables.

1.16 Let Π1 and Π2 be two minimization problems such that there is an
approximation factor preserving reduction from Π1 to Π2. Show that if there
is an α factor approximation algorithm for Π2 then there is also an α factor
approximation algorithm for Π1.
Hint: First prove that if the reduction transforms instance I1 of Π1 to
instance I2 of Π2 then OPTΠ1(I1) = OPTΠ2(I2).

1.17 Show that

L ∈ ZPP iff L ∈ (RP ∩ co-RP).

1.18 Show that if NP ⊆ co-RP then NP ⊆ ZPP.
Hint: If SAT instance φ is satisfiable, a satisfying truth assignment for φ
can be found, with high probability, using self-reducibility and the co-RP
machine for SAT. If φ is not satisfiable, a “no” answer from the co-RP
machine for SAT confirms this; the machine will output such an answer with
high probability.

1.4 Notes

The notion of well-characterized problems was given by Edmonds [69] and
was precisely formulated by Cook [51]. In the same paper, Cook initiated the
theory of NP-completeness. Independently, this discovery was also made by
Levin [186]. It gained its true importance with the work of Karp [164], show-
ing NP-completeness of a diverse collection of fundamental computational
problems.

Interestingly enough, approximation algorithms were designed even before
the discovery of the theory of NP-completeness, by Vizing [255] for the min-
imum edge coloring problem, by Graham [113] for the minimum makespan
problem (Problem 10.1), and by Erdös [73] for the MAX-CUT problem (Prob-
lem 2.14). However, the real significance of designing such algorithms emerged
only after belief in the P �= NP conjecture grew. The notion of an approx-
imation algorithm was formally introduced by Garey, Graham, and Ullman
[91] and Johnson [150]. The first use of linear programming in approximation
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algorithms was due to Lovász [192], for analyzing the greedy set cover algo-
rithm (see Chapter 13). An early work exploring the use of randomization in
the design of algorithms was due to Rabin [224] – this notion is useful in the
design of approximation algorithms as well. Theorem 1.7 is due to Edmonds
[69] and Algorithm 1.2 is due to Gavril [93].

For basic books on algorithms, see Cormen, Leiserson, Rivest, and Stein
[54], Papadimitriou and Steiglitz [217], and Tarjan [246]. For a good treatment
of min–max relations, see Lovász and Plummer [195]. For books on approx-
imation algorithms, see Hochbaum [126] and Ausiello, Crescenzi, Gambosi,
Kann, Marchetti, and Protasi [17]. Books on linear programming, complexity
theory, and randomized algorithms are listed in Sections 12.5, A.6, and B.4,
respectively.


