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Abstract

We consider Fisher and Arrow-Debreu markets under additively-separable, piecewise-linear,
concave utility functions, and obtain the following results:

• For both market models, if an equilibrium exists, there is one that is rational and can be
written using polynomially many bits.

• There is no simple necessary and sufficient condition for the existence of an equilibrium:
The problem of checking for existence of an equilibrium is NP-complete for both market
models; the same holds for existence of an ε-approximate equilibrium, for ε = O(n−5).

• Under standard (mild) sufficient conditions, the problem of finding an exact equilibrium
is in PPAD for both market models.

• Finally, building on the techniques of [CDDT09] we prove that under these sufficient
conditions, finding an equilibrium for Fisher markets is PPAD-hard.

1 Introduction

The following was the central question within mathematical economics for almost a century: Does
a complex economy, with numerous goods and a large number of agents with diverse desires and
buying powers, admit equilibrium prices? Its study culminated in the celebrated Arrow-Debreu
Theorem [AD54] which provided an affirmative answer under some assumptions on the utility func-
tions (they must satisfy non-satiation and be continuous and quasi-concave) and initial endowments
of the agents (each agent must have a positive amount of each commodity); these are called standard
sufficient conditions. Over the years, milder sufficient conditions were obtained for the existence
of equilibrium, see e.g. [Max97] and the references therein. In some restricted cases, the sufficient
conditions were also found to be necessary, i.e., they characterized the existence of equilibria in the
corresponding markets.

Besides existence, another fundamental question is efficient computability of equilibria. We note
that the proof of the Arrow-Debreu Theorem was based on the Kakutani’s fixed point theorem and
alternative proofs are based on Brouwer’s theorem; they are all therefore highly non-constructive. In
fact, theorems proving the existence of market equilibria and the existence of fixed points are closely
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related and in a sense equivalent: for excess demand functions that satisfy standard conditions,
the existence of an equilibrium can be derived from Brouwer’s theorem, and conversely Brouwer’s
theorem, for general continuous functions, can be derived from the equilibrium theorem [Uz62];
the sufficient conditions on an excess demand function are continuity, homogeneity and Walras’
Law, i.e., that the inner product of the price vector and the excess demand function vector be zero.
Furthermore, by the Sonnenschein-Mantel-Debreu theorem, all functions satisfying these standard
conditions for excess demand functions can be realized by suitable utility functions.

Scarf [Sca73] initiated the development of algorithms for computing market equilibria, intro-
ducing a family of procedures that compute approximate price equilibria by pivoting in a simplicial
subdivision of the price simplex. A number of other methods, including Newton-based, homotopy
methods, etc., have been developed in the following decades. These algorithms perform well in
practice for several markets, but their running time is not polynomially bounded. The study of
efficient computability of equilibria, from the perspective of modern theory of computation, was
initiated by Megiddo and Papadimitriou [MP91]; see also Megiddo [Meg88].

In recent years there has been a surge of interest in understanding computability of market
equilibria, which is in part motivated by possible applications to markets on the Internet. This
study has concentrated on the two fundamental market models of Fisher [BS00] and Arrow-Debreu
[AD54] (the latter is also known as the Walrasian model or the exchange model, and is more
general than the Fisher model) under increasingly general and realistic utility functions. For each
class of utility functions, two main algorithmic questions arise: (1) Can we determine necessary
and sufficient conditions for the existence of an equilibrium? A good characterization should be
efficiently checkable, hence the question can be phrased algorithmically as: What is the complexity
of checking for existence of an equilibrium? (2) If suitable sufficient conditions have been established
for the existence of an equilibrium, what is the complexity of finding an equilibrium for an instance
satisfying these conditions?

In a general setting, e.g., for markets satisfying standard sufficient conditions, and specified
by demand functions given by polynomial-time Turing machines or by explicit algebraic formulae,
the computation of equilibria is (apparently) hard [Pa94, EY10]. To have any hope of efficient
algorithms, we need to restrict the class of demand/utility functions. Several important classes of
functions have been studied over the years.

Not surprisingly, the first results were for linear utility functions [Gal60]. If the input parameters
are rational (as is standard in computer science), then there is always a rational equilibrium for this
case and there are simple, efficiently checkable necessary and sufficient conditions for the existence
of an equilibrium; for the Fisher model, the conditions are straightforward, and for the Arrow-
Debreu model, they were given by Gale [Ga76]. Moreover, for instances satisfying these conditions,
polynomial time algorithms were obtained for finding equilibria [DPSV08, Jai04].

Complexity results were also obtained for some specific non-linear utility functions that are
well-studied in economics, e.g., Cobb-Douglas, CES, and Leontief; the last case is particularly
relevant to this discussion. For this case, the equilibria are in general irrational for both market
models [Ea76, CV04]. For the Fisher model, assuming suitable sufficient conditions, the problem of
approximately computing an equilibrium is polynomial time solvable [CV04, Ye07]. For the Arrow-
Debreu model, checking existence of an equilibrium is NP-hard, and for instances satisfying the
standard Arrow-Debreu sufficient conditions, the computation of approximate equilibria is PPAD-
hard [CSVY06, HT07, DD08]. Note that these are hardness, rather than completeness, results
because these problems for Leontief markets not lie necessarily in NP and PPAD. Also note the
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difference in the complexities of the two market models.
Within economics, concave utilities occupy a special place, since they capture the natural con-

dition of decreasing marginal utilities. Hence, resolving their complexity has taken center stage
over the last few years. Since we are dealing with a discrete computational model, it is natural
to consider piecewise-linear, concave utilities. These can be further divided into two cases, non-
separable and additively separable over goods; clearly, the latter is a subcase of the former. The
non-separable case contains Leontief utilities and so the hardness results mentioned above for the
Arrow-Debreu model carry over to this case. However, if the number of goods is a constant, then
a polynomial time algorithm exists for both market models [DK08].

This leaves the case of additively separable piecewise-linear, concave utility functions. Recently,
Chen, Dai, Du and Teng [CDDT09] made a breakthrough on this question by showing PPAD-
hardness of computing equilibria, even approximate equilibria, for Arrow-Debreu markets with
such utilities1.

Our results for this class of utility functions are summarized below.

• For both market models, if an equilibrium exists, there is one that is rational and can be
written using polynomially many bits.

• There is no efficiently checkable necessary and sufficient condition for the existence of an
equilibrium: The problem of checking for existence of an equilibrium is NP-complete for both
market models; the same holds for existence of an ε-approximate equilibrium, for ε = O(n−5).

• Under standard (mild) sufficient conditions, the problem of finding an exact equilibrium is in
PPAD for both market models. We note that this is the first result showing membership in
PPAD for a market model defined by an important, broad class of utility functions.

• Finally, building on the techniques of [CDDT09] we prove that under these sufficient condi-
tions, finding an equilibrium for Fisher markets is PPAD-hard.

Observe that, unlike the Leontief case, the two market models turn out to have the same complexity
in this case.

Thus the results of the present paper, together with [CDDT09, CT09], establish that the equi-
librium computation problem for a broad, natural class of markets is characterized exactly by the
class PPAD; an analogous role in game theory is played by the class of 2-player Nash equilibrium
games.

A significant contribution of our work to complexity theory is a new way of proving membership
of a problem in PPAD. Previous proofs, for other problems, involved either explicitly giving a path
following algorithm, in the style of algorithm of Lemke-Hawson [LH], or reducing the given problem
to a known problem in PPAD such a 2-player Nash. Our proof first uses a new characterization of
PPAD given in [EY10] – this yields partial information about the sought-after market equilibrium.
This information enables us to construct a certain linear program, which can be solved in polynomial
time to obtain the equilibrium itself; interestingly enough, this LP also yields the result about
rationality of equilibria mentioned above.

We remark that two of these results were obtained independently and concurrently by other
authors: rationality was also proven by Devanur and Kannan for both market models [DK08] and

1Their initial claim, that the problem of finding an approximate equilibrium lies in PPAD, has been recently
rescinded.
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PPAD-hardness for Fisher markets was proven by Chen and Teng [CT09] (as noted in both these
papers).

We also remark that in a recent paper, Ye showed a distinction between Fisher and Arrow-
Debreu markets for a related, though different, model of piecewise-linear concave utility functions;
in particular, he showed that the Fisher case can be solved in polynomial time, whereas the Arrow-
Debreu case is equivalent to solving a linear complementarity problem [Ye07]. In Section 2 we will
explain how his model is different from ours.

How does the “invisible hand of the market,” in Adam Smith’s famous words, find equilibria?
The intractability results of [CDDT09, CT09] and the current paper make this question even more
mysterious.

1.1 Techniques used

Our results involve several novel techniques; below we give an overview primarily for the positive
results (the first and third results in the list in the Abstract).

The combinatorial algorithm for Fisher’s linear case [DPSV08] gave new insights into the combi-
natorial structure underlying equilibrium prices and allocations. Given prices p, [DPSV08] showed
how to construct a suitable network such that a max-flow in it helped determine if p are equilibrium
prices.

We first extend this structure to the case of separable, piecewise-linear, concave utilities; the
main difference being that in this case, in general, at given prices p, a buyer’s optimal bundle
must include certain quantities of certain goods – these are called forced allocations. The money
that is left over after buying forced allocations is to be spent on buying flexible allocations from a
suitable subset of goods with specified upper bounds on quantity, and any allocation exhausting
the left-over money leads to an optimal bundle.

Our network is also a function of prices p and incorporates information about forced allocations
and the choices available for flexible allocations. Again, a max-flow in this network helps determine
if p are equilibrium prices (see Lemma 1). The problem of finding a max-flow in this network can
be written as an LP in a straightforward manner.

The next transformation is the most interesting. We assume that prices p are now variables
and the network is constructed for a guess on forced allocations and choices available for flexible
allocations. It turns out that all edge capacities in this network are linear functions of the price
variables. Moreover, max-flow in this network, which is a function of prices, can still be written
as an LP. We then show if the guess is good, i.e., corresponds to an equilibrium, then the optimal
solution to this new LP gives the corresponding equilibrium prices and allocations. Since the
solution to an LP is rational, the theorem follows.

Because of rationality, equilibria for these markets can be computed exactly and this leads to
the possibility that these problems may lie in PPAD, under suitable sufficient conditions. We show
that this is indeed the case for both market models; this is the technically most involved result of
our paper.

There are very few ways for showing membership in PPAD. A promising approach for our case is
to use the characterization of PPAD of [EY10] as the class of exact fixed point computation problems
for piecewise-linear, polynomial time computable Brouwer functions. The Brouwer functions that
have been proposed for market equilibria, such as those of Geneakoplos and McKenzie, are the
obvious candidates. Unfortunately, we do not see how to do this: Although it is possible to show
that these functions are polynomial time computable (this is nontrivial, e.g., for the Geneakoplos
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function), it is not clear how to transfer the piecewise-linearity of the utility functions to the
Brouwer function.

Another approach is to reduce the problem to the computation of an approximate fixed point
for a suitable general (not necessarily piecewise-linear) Brouwer function F that satisfies three con-
ditions: (i) it is polynomially continuous (for example, Lipschitz continuous for a Lipschitz constant
that is O(2poly(n))), (ii) it is polynomial-time computable, and (iii) any weakly approximate fixed
point of the function can be used to efficiently obtain a desired solution, e.g., a price equilibrium
in our case (see [EY10] for a proof). By a weakly approximate fixed point we mean a point x such
that |F (x)−x| is small. However, such a point may be far from all the fixed points, and this makes
task (iii) challenging2.

The task is further complicated by the fact that, for given prices, the demand, i.e., optimal
bundle, of an agent is in general not unique, i.e., it is a correspondence and a not function. Fur-
thermore, this correspondence is very sensitive to the prices – an extremely small change in prices
may lead to drastic changes in the demand.

Instead, we employ a combination of the two approaches. LetM be an instance of a market in
the class defined above. We start with the correspondence F of a Kakutani Theorem-based proof
of existence of equilibrium forM; this is a correspondence on pairs of price and allocation vectors,
(p, x), such that the price components of its fixed points correspond to the set of price equilibria
for M. We next obtain a piecewise-linear Brouwer function G that approximates F . The function
G is easily computable, and hence finding an exact fixed point, (p∗, x∗), for it is in PPAD, by the
characterization of PPAD given in [EY10]. Clearly, (p∗, x∗) may not be a fixed point of F . In
addition, it may not even be close to any fixed point of F .

The heart of the proof lies in showing how to efficiently compute a price equilibrium p′ for M
from the fixed point (p∗, x∗) of G. For this, we show several properties of the fixed point (p∗, x∗)
that allow us to identify which allocations should be forced and which flexible in an equilibrium,
i.e., to pin down the combinatorial essence of the problem. We set up an LP, similar to the one used
for proving rationality for the specification of flexible and forced allocations derived from (p∗, x∗),
but with the constraints relaxed by a variable error amount ε. The objective function of the LP is
to minimize ε. We use the properties of the fixed point (p∗, x∗) to show that it induces a feasible
solution to the LP with a very small value of ε = 2−2m, where m is a parameter of the market
instance M that upper bounds the bit complexity of an optimal solution to the LP, i.e., the size
of the LP and bounds on its coefficients imply that the optimal solution to it must be either 0 or
at least 2−m; hence it must be zero. Therefore, solving the LP gives us an exact price equilibrium
for market M, say p′. Note that the entire computation involves finding a fixed point of G, a
piecewise-linear Brower function, followed by a polynomial time computation. Since this can all be
accomplished in PPAD, we get the desired membership result.

Observe that the function G is a Brouwer function, so it has a fixed point (p∗, x∗) regardless
of whether the given market has an equilibrium or not. Obviously we cannot derive from (p∗, x∗)
a market equilibrium if there is none, so the proof of correctness for the constructed price vector
p′ has to crucially use the fact that the given market instance satisfies the standard sufficient
conditions for the existence of an equilibrium. Moreover, the proof must simultaneously show
(constructively, in polynomial time) their sufficiency. Can we expect this procedure and proof to

2For example, this is the reason that we cannot place in PPAD the approximation of Nash equilibria in 3-player
games. If we could do this, then this would have other important consequences; e.g., it would resolve the longstanding
open problem of determining whether the square root sum problem is in NP [EY10].
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work for all piecewise-linear markets that have an equilibrium, i.e., even ones not satisfying the
sufficient conditions? In view of the NP-completeness of the existence problem, the answer is “No”;
indeed, if this were the case, then NP would be contained in PPAD, which would imply NP=coNP.

We comment briefly on the negative results (the second and fourth results). We exploit the
fact that the high sensitivity of the demands (optimal bundles) to small changes in prices can be
combined with well-chosen “pieces” of the piecewise-linear utility functions to give the problems
a discrete feel: an agent either buys a segment of a good completely or not at all, depending on
how the prices of goods compare with each other. With a careful encoding, this discreteness can
be reflected in the choices of the prices in the potential equilibria.

2 Fisher’s model with piecewise-linear, concave utilities

Fisher’s market model [BS00] is the following. Let G be a set of divisible goods and B be a set of
buyers, |G| = g, |B| = n. Assume that the goods are numbered from 1 to g and the buyers are
numbered from 1 to n. Each buyer i ∈ B comes to the market with a specified amount of money,
say e(i) ∈ Q+ dollars. We will assume w.l.o.g. that the amount of each good available is unit. For
each buyer i and good j we are specified a function f i

j : R+ → R+ which gives the utility that
i derives as a function of the amount of good j that she receives. Her overall utility, ui(x) for a
bundle x = (x1, . . . , xg) of goods is additively separable over the goods, i.e., ui(x) =

∑
j∈G f

i
j(xj).

Let M =
∑

i∈B e(i) denote the total money of all buyers.
In this paper, we will deal with the case that the f i

j ’s are (non-negative) non-decreasing
piecewise-linear, concave functions. Given prices p = (p1, . . . , pg) for all the goods, consider bundles
(baskets) of goods that make each buyer i happiest (there could be many such bundles). We will
say that p are market clearing prices if there are choices of optimal bundles for the buyers, such
that after each buyer is given an optimal bundle, there is no deficiency or surplus of any good, i.e.,
the market clears.3 The problem is to find such market clearing or equilibrium prices.

Remark. Ye uses a somewhat different model of piecewise-linear concave utility functions in
[Ye07]. Specifically, the utility function ui(x) of buyer i for a bundle x = (x1, . . . , xg) of goods is
a function of the form mink u

k
i (x), where each uk

i (x) is a homogeneous, linear function of the form
uk

i (x) =
∑

j∈G u
k
ijxj . A utility function ui(x) in our model can be expressed as the minimum of a

set of linear functions, but (i) an exponential number of functions will be needed in general, and
(ii) the functions are not homogeneous. 2

We will call each piece of f i
j a segment. The set of segments defined in function f i

j will be
denoted seg(f i

j). The slope of a segment specifies the rate at which the buyer derives utility per
unit of good received. Suppose one of these segments, s, has range [a, b] ⊆ R+, and a slope of c.
Then, we will define amount(s) = b − a, slope(s) = c, and good(s) = j. We will assume that for
each segment s specified in the problem instance, slope(s) and amount(s) are rational numbers.

3In general markets, this requirement is imposed only on goods with positive prices, while for goods with zero
price, it is only required that the demand does not exceed the supply, i.e., goods with zero price need not be fully
sold. Since the utility functions here are non-decreasing, all the goods with zero price can be always fully distributed
to the agents without decreasing their utility.
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Let segments(i) denote the set of all segments of buyer i, i.e.,

segments(i) =
g⋃

j=1

seg(f i
j).

We will assume that the given problem instance satisfies the following (mild) condition; as
shown in Section 6, under this assumption, the instance is guaranteed to have an equilibrium.

• For each buyer, there is a good whose entire unit and more gives her positive utility, i.e.,

∀i ∈ B ∃j ∈ G :
∑

s∈seg(f i
j), slope(s)>0

amount(s) > 1.

Under this condition, there is always a price equilibrium; our proof that the computation of an
equilibrium is in PPAD includes also a proof of this fact.

3 Testing if given prices p are equilibrium prices

Given an instance M of Fisher’s market with piecewise-linear, concave utilities and prices p of
goods, we first show how to determine if p constitute equilibrium prices. We will assume that p
satisfies the condition that the sum of prices of all goods equals the total money of the buyers, i.e.,∑

j

pj =
∑

i

e(i).

3.1 Bang per buck and allocations

Given nonzero prices p = (p1, . . . , pg), we characterize optimal baskets for each buyer relative to
p. Define the bang per buck relative to prices p for segment s ∈ seg(f i

j), j 6= 0, to be bpb(s) =
slope(s)/pj . Sort all segments s ∈ segments(i) by decreasing bang per buck, and partition by
equality into classes: Q1, Q2, . . ..

If for segment s, good(s) = j, then the value of segment s, value(s) = amount(s) ·pj . For a class
Ql, define value(Ql) to be the sum of the values of segments in it. At prices p, goods corresponding
to segments in Ql make i equally happy, and those in Ql make i strictly happier than those in Ql+1.

Find ki ≥ 1 such that∑
l<ki

value(Ql) ≤ e(i) <
∑

1≤l≤ki

value(Ql).

At prices p, i’s optimal allocation must contain goods corresponding to all segments inQ1, . . . , Qki−1,
and a bundle of goods worth e(i) − (

∑
1≤l≤ki−1 value(Ql)) corresponding to segments in Qki

. We
will say that for buyer i, at prices p, Q1, . . . , Qki−1 are her forced partitions, Qki

is her flexible
partition, and Qki+1, . . . are her undesirable partitions. Similarly, segments in these three sets will
be called forced, flexible and undesirable segments, respectively.

For buyer i, we will denote the amount of money spent on forced segments by

spent(i) =
∑
l<ki

value(Ql).
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Define unspent(i) = e(i)− spent(i). For good j, let forced(j) denote the amount of good j sold to
all buyers under their forced allocations and let unsold(j) = 1− forced(j).

3.2 The network

First ensure that for each buyer, i, unspent(i) ≥ 0 and for each good j, unsold(j) ≥ 0; otherwise,
p do not constitute equilibrium prices.

The network N(p) is defined over vertices {s}∪G∪B∪{t}, where s and t are its source and sink.
For each good j, there is edge (s, j) with capacity unsold(j) · pj and for each buyer i, there is edge
(i, t) with capacity unspent(i). For each buyer i, N(p) will contain an edge (j, i) corresponding
to each segment s in its flexible partition, Qki

, where good(s) = j; the capacity of this edge is
amount(s) · pj .

The following is straightforward.

Lemma 1 Prices p constitute equilibrium prices iff max-flow in N(p) is∑
i∈B

unspent(i).

Proof : We observe that the capacity of cut ({s}, G ∪ B ∪ {t}) is
∑

i unspent(i). Furthermore,
by the assumption

∑
j pj =

∑
i e(i), the cut ({s} ∪G ∪B, {t}) also has the same capacity.

Hence, the market clears at prices p iff max-flow in N(p) is∑
i∈B

unspent(i).

2

4 Rationality of equilibrium prices for Fisher’s model

We next prove that the given marketM must have rational equilibrium prices which can be written
using polynomially many bits.

Let p′ be any equilibrium prices for M. Consider all forced allocations made at equilibrium.
For each buyer i, let Qki

denote i’s flexible partition in this equilibrium and let Li denote the set of
goods of the segments in Qki

. Let Ri = G− Li be the remaining goods. For j ∈ Li, let sij denote
the segment of good j that is in Qki

. For j ∈ Ri, let sij denote the last segment of good j that is
fully allocated to i and let s′ij denote the next (unallocated) segment; if no segment of good j is
allocated to i, then sij = φ.

Next, we will construct an LP which will have a variable, pj , corresponding to each good j, and
any optimal solution to this LP will be equilibrium prices. The equilibrium p′ considered above
must be one of its solutions and since the LP has only rational parameters, it must have a rational
solution as well, thereby completing the proof.

First write spent(i) and unspent(i) for each buyer as linear polynomials using the variables
pj ’s. For each good j, unsold(j) is a constant determined by the forced allocations and hence the
left-over value of this good, unsold(j) · pj is a linear expression. Construct the network, say N ,
described in Section 3.2, except that the capacities of edges will be linear polynomials in the pj ’s.
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We will add edge (t, s) of unbounded capacity to the network. This constitutes the set E if edges
of N . Next, we introduce a variable fe corresponding to each edge e in N , which will represent the
flow on this edge.

We can finally describe the LP itself. Its objective is to maximize

f(t,s) +
∑
i∈B

spent(i),

subject to capacity constraints on each edge e ∈ E − {(t, s)} and a flow conservation equation for
each vertex in {s, t} ∪G ∪B.

In addition, for each buyer i, it has the following constraints to ensure that the forced and
flexible segments of i satisfy desired properties; eventually this ensures that i indeed gets a utility
maximizing bundle of goods. For each j, j′ ∈ Li, we have the equation:

slope(sij) · pj′ = slope(sij′) · pj .

For each j ∈ Li and j′ ∈ Ri, if sij′ 6= φ, we have the two inequalities:

slope(sij) · pj′ ≥ slope(sij′) · pj

slope(sij) · pj′ ≤ slope(s′ij′) · pj .

If sij′ = φ, we have one inequality:

slope(sij) · pj′ ≤ slope(s′ij′) · pj .

We also add the following constraints using the linear expressions derived above:

∀i ∈ B : unspent(i) ≥ 0

∀j ∈ G : unsold(j) ≥ 0∑
j∈G

pj = M,

where M is the total money of all buyers.
Finally, we add non-negativity constraints:

∀e ∈ E : fe ≥ 0

∀j ∈ G : pj ≥ 0.

Theorem 2 Every Fisher market with additively-separable piecewise-linear, concave utilities and
all parameters rational that has an equilibrium admits equilibrium prices which are rational numbers
that can be written using polynomially many bits.

Proof : Clearly, the starting equilibrium prices p′ form an optimal solution, of value M , for
the LP constructed. The theorem follows from Lemma 1 and the fact that this LP must have an
optimal rational solution. 2
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5 Rationality for Arrow-Debreu Markets

An Arrow-Debreu market [AD54] under piecewise-linear, concave utilities differs from a Fisher
market only in that the agents do not come to the market with money but with initial allocations
of goods; each of the goods still totals 1 unit, w.l.o.g. For any prices of the goods, the agents sell all
their initial endowments at these prices and use the money to buy optimal baskets. The problem
again is to find market clearing prices.

The main change needed in the proof of Theorem 2 to prove an analogous statement for these
markets as well, is that at given prices of goods, p, we will let ei denote the total value of i’s initial
endowment. If p is a vector of variables, then ei will be a linear sum in these variables. The sum
M of the prices can be set arbitrarily (if p is an equilibrium in an Arrow-Debreu market, then αp
is also an equilibrium for all α > 0), thus we can set w.l.o.g. M = 1. The rest of the proof is same
as before. Hence we get:

Theorem 3 LetM be an Arrow-Debreu market with additively-separable piecewise-linear, concave
utilities and all parameters rational. IfM has an equilibrium, then it admits an equilibrium in which
prices are rational numbers that can be written using polynomially many bits.

6 Membership in PPAD for Arrow-Debreu and Fisher Markets

Consider the Arrow-Debreu market with a set B of n agents (buyers) 1, . . . , n and a set G of g goods
1, . . . , g. Each agent i has a given initial endowment (supply) vector w(i) = (wi1, . . . , wig) ≥ 0 of
goods. We may assume without loss of generality that the total initial supply of each good j is equal
to 1, i.e.,

∑
iwij = 1. We are also given for each i ∈ B and j ∈ G, a (nonnegative, nondecreasing)

concave piecewise linear function f i
j which is the utility function of agent i for good j. The utility

of agent i ∈ B for an allocation vector x = (x1, . . . , xg) of goods is ui(x) =
∑

j∈G f
i
j(xj).

We assume for computational purposes that all the input numbers are rationals with at most b
bits in numerator and denominator. This includes the initial endowments wij , and the slopes and
lengths (and breakpoints) of all the segments of all the utility functions f i

j .
We want to compute a price equilibrium p, i.e., a vector p = (p1, . . . , pg) of prices for the goods

that belongs to the unit g-simplex S = {p|p ≥ 0,
∑

j pj = 1}, such that there is an allocation
x = (xij) of goods to the agents such that (a) each agent i receives an optimal bundle for his
budget, i.e., the subvector x(i) = (xi1, . . . , xig) maximizes ui(x(i)) =

∑
j∈G f

i
j(xij) subject to∑

j∈G pjxij ≤
∑

j∈G pjwij and x(i) ≥ 0, and (b) the market clears, i.e.
∑

i∈B xij =
∑

i∈B wij = 1
for all j ∈ G.

As is well known, a Fisher market F can be reduced to an Arrow-Debreu market D with the
same set G of goods, the same set B of agents, and the same utility functions. Assume w.l.o.g.
that the total supply of each good in F is 1 and that the sum of the budgets of the agents is also 1.
If an agent i has budget ei in F , then his initial endowment w(i) in D contains the same amount
wij = ei for each good j ∈ G. Then a price vector p is an equilibrium in F if and only if p is an
equilibrium in D. Thus, Fisher markets correspond essentially to the special case of Arrow-Debreu
markets, where every agent’s endowment contains the same amount of each good.

From the Arrow-Debreu theorem, a sufficient condition for the existence of an equilibrium for
an Arrow-Debreu market in our setting is that (C1) all agents i have positive initial endowments
wij for all goods j, and (C2) non-satiation of the agents’ utility functions: for every bundle, there
is another bundle that gives strictly more utility to each agent. In our case of piecewise linear

10



functions, (C2) can be equivalently stated as: for every agent i ∈ B, there is a good j ∈ G such
that limx→∞ f

i
j(x) = ∞, i.e., the last (infinite) segment of f i

j has positive slope; we will say that
agent i is non-satiated with respect to good j, and the function f i

j is non-satiated. Since the initial
total supply of each good is assumed to be 1, it suffices actually to assume that each agent derives
increasing utility from some good up to an amount greater than 1 (i.e. the utility function f i

j could
go flat after some value > 1).

Some weaker sufficient conditions for the existence of an equilibrium have been shown subse-
quently by other authors. In particular, Maxfield [Max97] showed a sufficient condition in terms
of the following economy graph: The graph has a node for each agent i ∈ B and has an arc i → j
if there is a good k ∈ G such that wik > 0 and j is non-satiated with respect to k. The sufficient
condition is: (C’) The economy graph is strongly connected. Clearly, (C’) implies (C2), and the
conjunction of (C1) and (C2) implies (C’). Note that in a Fisher market, each agent has a positive
initial budget ei, and thus, when we express a Fisher market in the Arrow-Debreu framework with
an initial endowment w(i) = (ei, . . . , ei), condition (C1) is automatically satisfied; in this case (C2)
and (C’) are equivalent.

We will show that, under the above sufficient conditions, the problem of computing a (exact)
price equilibrium is in PPAD. As part of the proof, we will show also the sufficiency of the conditions
for the existence of an equilibrium.

Theorem 4 The problem of computing a (exact) price equilibrium for an Arrow-Debreu market
with additively-separable, piecewise-linear concave utility functions, satisfying the condition (C’), is
in PPAD. The same is true for the Fisher market under the condition (C2).

In the rest of this section we will show Theorem 4. We are given an instance of an Arrow-Debreu
market as above, satisfying the sufficient condition (C’). Let’s trim each utility function f i

j so that
it goes flat after 1.1 unit of good j. Recall that the total supply of each good is 1, thus the trimming
does not change the price equilibria. The purpose of the trimming is to get bounded allocations.
Let S be the unit g-simplex for the prices, S = {p|p ≥ 0,

∑
j pj = 1}, and let D be the box [0, 1.1]ng

of possible demand vectors of the agents. Use xij to denote the amount of good j bought by buyer
i and let xj =

∑
i xij (the total demand for good j in x), and x(i) the subvector of x for buyer i.

We’ll use the shorthand px for the cost of allocation x under prices p, i.e. px =
∑

ij pjxij . Consider
the correspondence mapping F from S ×D to itself which takes a pair (p, x) consisting of a price
vector p and demand vector x and maps it to the set of all pairs (p′, x′) where: p′ is a price vector
that maximizes p′x =

∑
ij p
′
jxij subject to p′ ∈ S, and x′ is a demand vector that consists of optimal

budget-feasible bundles (in D) for the buyers under prices p. Since every buyer derives positive
utility for a good only up to 1.1 unit, the demand for each good from each buyer is restricted to
be ≤ 1.1 so x′ ∈ D. We’ll denote by F1, F2 the sets of p− and x− components of the mapping F .

A point (x, p) is a fixed point of F if (x, p) ∈ F (x, p). All fixed points of F yield price equilibria
(cf. [Sca73], section 5.4 ) and vice-versa. We include a proof below for reference (although we do
not actually need it for proving Theorem 4).

Proposition 5 1. If (p∗, x∗) ∈ F (p∗, x∗) then p∗ is a price equilibrium.
2. If p∗ is a price equilibrium then there exists a x∗ ∈ D such that (p∗, x∗) ∈ F (p∗, x∗).

Proof : 1. Suppose (p∗, x∗) ∈ F (p∗, x∗). For every point (p, x) and every image point (p′, x′) ∈
F (p, x), the bundles x′ bought by each buyer are within budget (according to p), hence

∑
ij pjx

′
ij ≤

11



∑
ij pjwij =

∑
j pj = 1. Thus,

∑
p∗jx
∗
ij ≤ 1. The vector p∗ maximizes

∑
ij pjx

∗
ij over all price vectors

p ∈ S, thus,
∑

ij pjx
∗
ij ≤ 1 for all p ∈ S. In particular considering the vector p that has pj = 1 for

a good j and pk = 0 for k 6= j we conclude that the total demand for good j is x∗j =
∑

i x
∗
ij ≤ 1,

and this holds for all goods j. That is, demand x∗ ≤ supply for all goods.
Suppose x∗r < 1 for some r. Then either p∗r = 0 or

∑
j p
∗
jx
∗
j < 1 (since all x∗j ≤ 1 and

∑
j p
∗
j = 1).

Note: in the latter case we must have that all x∗j < 1 because p∗ maximizes the
∑
p∗jx
∗
j and if one

x∗j was =1 then we could set p∗j = 1. In fact all the x∗j with non-zero p∗j must have the same value.
If

∑
j p
∗
jx
∗
j < 1, this means that some buyers did not spend their whole budget; this contradicts

non-satiation (of the original functions): if such a buyer i gets positive utility from some good j
until 1.1 unit at least, then he would buy more of the good and either spend more money if p∗j > 0,
or reach 1.1 unit of the good if p∗j = 0. We conclude that under non-satiation, we must have∑
p∗jx
∗
j = 1, which implies that if x∗r < 1 then we must have p∗r = 0. (This can happen, for example

if nobody cares about good r.) We can modify x∗ by assigning the remaining amount of any such
good r to any agent, at 0 cost (and no change in utility), so that the market clears.

2. Conversely, suppose that p∗ is a price equilibrium. Then there are optimal bundles for the
buyers, resulting in a demand vector x∗ that clears exactly the market. Because of non-satiation of
the original utility functions, all buyers spend their money under p∗, because otherwise they could
keep getting more utility either by spending more money if the good that gives them more utility
has price > 0 , or by exceeding the 1 unit for the good if it has price =0. Since all buyers spend
their money,

∑
j p
∗
jx
∗
j = 1. Clearly, for every p in S,

∑
j pjx

∗
j ≤ 1, since x∗j ≤ 1 for all j, so p∗

maximizes the sum and (p∗, x∗) ∈ F (p∗, x∗). 2

Recall that all input numbers are rationals with at most b bits in numerator and denominator.
Assume wlog that the slopes of all non flat segments of the utilities are integers > 0. Let t be the
total number of segments in the utility functions. Let m be the number of bits that suffice in the
optimal solution of LPs with at most 3ng variables, t2 + 5ng constraints, and rational coefficients
of bit complexity 2b. Note that m is polynomially bounded in n, g, t, b, and m >> n, g, t, b. Let
δ = 1/210m.

Consider a regular simplicization of the domain S × D with resolution δ. Every cell (little
simplex) in the simplicization has rational vertices which are equal in each coordinate or differ by
δ. Define a function G which picks at each vertex (p, x) of the simplicization an arbitrary element of
F (p, x), and is extended to the domain S×D by linear interpolation. By definition, G is continuous
but its modulus of continuity could be very large: any two vertices in the same simplex are within δ
of each other in each coordinate, but their images may be very far apart; for example, a very small
change in a price may change the relative bang-per-buck order of two segments for two goods in the
utility function of a buyer, and thus cause a drastic change in the optimal bundle. Note that the
vertices of the simplicization have rational coordinates of bit complexity polynomial in the input,
and that for any given vertex (p, x) we can compute in polynomial time an optimal p′ for x and
an optimal x′ for p, i.e., we can compute an element of F (p, x). The function G is a polynomial
piecewise linear function, so computing a (exact) fixed point (p∗, x∗) of it is in PPAD [EY10]. Note
that a fixed point of G is not a fixed point of F , so we still have work to do. Let C be the simplex
that contains (p∗, x∗). (It could be that it lies on a smaller dimensional face of the simplicization.)
(p∗, x∗) can be written as a convex combination of the vertices of C, and G(p∗, x∗) = (p∗, x∗) is
also the same convex combination of the G-values of the vertices.

We show first that the demands of all goods in x∗ are approximately bounded by the supplies.
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Lemma 6 For every vertex (p, x) of C , for every good j, the total demand for good j in x is
xj ≤ 1 + 4ngδ. Hence the same is true for x∗.

Proof : Suppose some xj > 1 + 4ngδ and let G(p, x) = (p′, x′). Since p′ maximizes p′x, it will
give positive values only to goods j that have xj > 1 + 4ngδ. Every other vertex of the simplex
differs at most by δ from (p, x) in each coordinate, hence it has also some goods with total demand
> 1 + (4ng− n)δ, and will be mapped by G to a p-vector that is positive only in such coordinates.
We conclude that all the vertices of the simplex C are mapped by G to price vectors that are positive
in goods for which the total demand in x∗ is > 1 + (4ng− 2n)δ > 1 + 2ngδ. Hence the same is true
for p∗ (which is a convex combination of the G-images of the vertices) and thus p∗x∗ > 1 + 2ngδ.

On the other hand, at each vertex v = (pv, xv), the demand vector of its G-image, x′v is a
budget-feasible allocation for pv, thus pvx

′
v ≤ 1. Since the pv are within δ of each other in each

coordinate, for any two vertices v, w we have pwx
′
v ≤ pvx

′
v + δ

∑
j(x
′
v)j ≤ 1 + 1.1ngδ (since each

coordinate of x′v is ≤ 1.1). Since (p∗, x∗) is a fixed point of G, p∗ is a convex combination of the
pv and x∗ is the same convex combination of the x′v, i.e. we can write p∗x∗ as (

∑
λwpw)(

∑
λvx

′
v)

where the summations range over all vertices of C. Therefore, p∗x∗ ≤ 1 + 1.1ngδ, contradiction.
The claim follows 2

We show next that x∗ is approximately budget-feasible for all agents with respect to prices p∗.

Lemma 7 For each agent i,
∑

j p
∗
jx
∗
ij ≤

∑
j p
∗
jwij + 2.2gδ (i.e. (p∗, x∗) is ”almost” budget-feasible

for each agent). Also,
∑

j p
∗
jx
∗
ij ≥

∑
j p
∗
jwij − 2.2gδ and

∑
i,j p
∗
jx
∗
ij ≥ 1− 2.2gδ.

Proof : For each vertex (p, x) of the simplex C, the demand vector x′ of its image G(p, x) =
(p′, x′) is budget feasible with respect to p. For every good j, |p∗j − pj | ≤ δ, thus

∑
j p
∗
jx
′
ij ≤∑

j pjx
′
ij + 1.1gδ ≤

∑
j pjwij + 1.1gδ ≤

∑
j p
∗
jwij + 2.2gδ. Since x∗ is a convex combination of the

x′ for the vertices of C, the first claim follows.
Suppose that a vertex (p, x) is mapped by G to (p′, x′) with

∑
j pjx

′
ij <

∑
j pjwij . Then x′

must include all segments with positive slope of the utility functions of i and some good j will
be at level 1.1 (because of non-satiation of the original untrimmed functions). Furthermore, since
prices differ at most by δ at the vertices of C, if

∑
j pjx

′
ij <

∑
j pjwij − 1.1gδ at some vertex, then∑

j pjx
′
ij <

∑
j pjwij at all vertices, good j is bought at level 1.1 in the optimal bundle of buyer i at

all vertices, and therefore also at x∗, contradicting Lemma 6. Therefore
∑

j pjx
′
ij ≥

∑
j pjwij−1.1gδ

at each vertex of C. As above it follows then that
∑

j p
∗
jx
′
ij ≥

∑
j pjx

′
ij − 1.1gδ ≥

∑
j pjwij − 2.2gδ

for every vertex, and hence
∑

j p
∗
jx
∗
ij ≥

∑
j p
∗
jwij − 2.2gδ. Therefore,

∑
i,j p
∗
jx
∗
ij ≥ 1− 2.2gδ. 2

Consider the utility function f i
j of agent i for good j, and the l-th segment of the function; let

sijl be its slope and suppose the segment runs from amount cijl to cij,l+1 for the good j. For a
demand vector x, we say that the segment is empty (resp. full) if xij ≤ cijl (resp. ≥ cij,l+1); we
say it is partial if xij is between the two amounts. For each good j, there is a last segment which is
full and a first segment which is empty; either there is a partial segment which is between the two
- we call this the active segment - or the two segments are consecutive and the amount xij is the
common breakpoint. Let us say that a segment is almost full if it is full to a fraction > 1 − 2−2m

of its length and almost empty if it has < 2−2m fraction of its length. Recall that m >> n, g, t, b.
Condition (C’) (or C1) is needed for the following lemma.
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Lemma 8 1. All agents have budget (income) at least 1/2m at p∗ and at all vertices of the simplex
C.
2. Suppose that p∗j < 2−3m for some good j ∈ G. Then all the segments of good j that have positive
slope are full in the demand vector x′ = G2(p, x) for every vertex (p, x) of the simplex C, and are
also full in the demand vector x∗.

Proof : 1. If we assume condition (C1), then this is obvious: for any p ∈ S, at least one price
pk ≥ 1/g, and since wik ≥ 2−b, it follows that pkwik ≥ 1/(2bg) ≥ 1/2m.

For the weaker condition (C’), consider the economy graph Γ, and let z be an agent whose
initial endowment has a positive amount of a good with price p∗j ≥ 1/g in p∗; then the budget of z
in p∗ is at least 1/(2bg), and the budget of z at every vertex of C differs at most by gδ. Since Γ is
strongly connected, all nodes can reach node z. We will show for each node y, by induction on the
distance d from node y to z, that the budget of y in p∗ is at least 2−(3d+1)b · (2g)−(d+1), and again
the budget at all vertices of C differs at most by gδ. This implies that the budget of all agents at
p∗ and at all vertices of C is ≥ 1/2m.

The basis, d = 0, is clear. For the induction step, consider a shortest path from y to z and let i
be the successor of y. By induction hypothesis, the budget of i in p∗ is at least 2−(3d−2)b ·(2g)−d. Let
j ∈ G be a good such that wyj > 0 and i is non satiable with respect to j. If p∗j ≥ 2−3db · (2g)−(d+1)

then the budget of y at p∗ is at least p∗jwyj ≥ p∗j2−b ≥ 2−(3d+1)b · (2g)−(d+1).
We argue that the opposite case, p∗j < 2−3db · (2g)−(d+1), leads to a contradiction. Consider

any vertex (p, x) of C. The price of j at the vertex is pj < 2−3db · (2g)−(d+1) + δ, and the budget
of i is at least 2−(3d−2)b · (2g)−d − gδ. If in the utility function of agent i, a segment l for j
has higher ratio pj/sijl than that of a segment l′ of another good j′, then pj′ ≤ si,j′,l′pj/sijl ≤
pj22b < 2−(3d−2)b · (2g)−(d+1) + δ22b. Buying all these segments up to 1.1 unit costs less than
1.1
2 · 2

−(3d−2)b · (2g)−d + 1.1gδ22b, which is less than 2−(3d−2)b · (2g)−d − gδ and thus less than the
budget of agent i. Hence i will buy 1.1 unit of good j in the optimal allocation x′ = G2(p, x). This
holds for every vertex of C, hence it holds also for x∗ which is the convex combination of the x′,
contradicting Lemma 6.

2. The argument is similar to the last part of the argument for the first claim. Let (p, x) be a
vertex of C. Consider a buyer i and all the goods with price < 2−2m. Buying all of them up to 1.1
unit costs < 1.1g2−2m < 1/2m. The price pj of the good j at the vertex is less than 2−3m + δ. If
the price of a segment l for j has higher ratio pj/sijl than that of a segment l′ of another good j′,
then pj′ ≤ si,j′,l′pj/sijl ≤ pj22b < 2−2m. Since there is enough budget to buy all segments of such
goods j′, it follows that x′ buys all segments of good j. This holds for all vertices (p, x) of C, hence
it holds also for x∗. 2

We show now that the allocation x∗ is approximately consistent with the bang-per-buck order
of all the segments in the utility functions of every buyer with respect to the prices p∗. Recall that
t is the total number of segments of the utility functions.

Lemma 9 The following holds for the demand vector x∗ for each buyer i and each pair of goods
j1, j2. If l1 is a full or partial segment of j1 and l2 is an empty or partial segment of j2, both with
positive slopes, then the slopes of the segments and the vector p∗ satisfy p∗j1/si,j1,l1 ≤ p∗j2/si,j2,l2+2tδ,
unless both l1, l2 are partial and l1 is almost empty and l2 is almost full.

Proof : If at each vertex of the simplex C the ratio for l1 is less than or equal the ratio of l2,
then clearly the same is true at p∗. So, suppose that at some vertices the ratio for l2 is strictly
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smaller. Consider the ordering of segments of buyer i by ratio of price over slope (buck-per-bang )
at each vertex and at the fixed point (p∗, x∗) of G. If two segments have different ordering at two
vertices then their ratios must be within 2δ of each other (because the price coordinates are within
δ and slopes are integer). So, if the claim is false, then the ratio for l2 is strictly smaller than l1 at
all vertices of C.

Construct a directed graph H1 with the segments (with positive slope) of buyer i as the nodes
and an arc from segment y to segment y′ if the ratio of y is smaller than y′ at all the vertices of
C. Let H2 be the undirected complement of H1, i.e. there is an edge (y, y′) if at some vertex of
C, y ≤ y′ and at some other vertex y′ ≤ y. Partition H2 into connected components. There is a
total order of the components that holds for all the vertices of C. If two segments are in the same
component, they are connected by a path of length at most t; the ratios of two adjacent segments
differ by at most 2δ at every vertex of C, so the ratios of two segments in the same component
differ at most by 2tδ.

So assume that l1 and l2 are in different components; the component of l2 precedes that of l1.
At every vertex (p, x) of C where l1 is full or partial with respect to x′ = G2(p, x), all segments
in the preceding components (including the component of segment l2) must be full. Suppose that
there is vertex v = (pv, xv) of C with image (p′v, x

′
v) = G(v) such that l1 is full or partial but more

than almost empty wrt x′v. Since l2 is not full at x∗, there is a vertex w = (pw, xw) of the simplex
C such that l2 is not full at x′w = G2(w) (hence l1 is empty at x′w) . Let R be the segments in
components strictly preceding that of l1. Then the total cost under pw of all segments in R is more
than the budget at w, whereas the total cost under pv of R plus the portion 2−2m of segment l1 is
at most the budget at v. The difference in the cost of R between pv and pw is at most 1.1gδ, and
the difference in the budgets is at most gδ, so the cost under pv of the portion 2−2m of segment l1
must be < 2.1gδ. The length of every segment is at least 2−b, which implies that the price of good
j1 in pv is < 2.1gδ2b22m < 2−4m. It follows that at all vertices of C the price of good j1 is < 2−3m,
hence by Lemma 8, the optimal bundle will buy all the segments with positive slope, including l1,
contradiction. It follows that l1 is empty or almost empty at x′v for all vertices v of C, hence also
at x∗. By a similar argument, l2 is full or almost full at all vertices of C, and hence also at x∗. 2

2

Assume we have a fixed point (p∗, x∗) of the function G. Compute for each buyer the full,
partial, and empty segments wrt x∗. We will set up a Linear Program, whose solution will give
us a (exact) price equilibrium. The variables of the LP are the same as for proving rationality,
i.e. prices pj , flows fij for buyer i, good j , corresponding to the costs of the allocations on the
active segments , and in addition variable ε for the error (tolerance). The LP is: minimize ε
subject to a set of constraints. For every pair of segments (i, j1, l1), (i, j2, l2) of the same buyer i,
if their slopes and the vector p∗ satisfy p∗j1/si,j1,l1 ≤ p∗j2/si,j2,l2 + 2tδ, then we include a constraint
pj1/si,j1,l1 ≤ pj2/si,j2,l2 + ε. For every buyer i and good j, let aij be the sum of the lengths of
all full segments of good j wrt x∗. We have constraints

∑
j aijpj ≤

∑
j wijpj + ε, for all buyers i.

We set up the network as in the rationality proof, except that we add ε to all the capacities. If a
segment is partial but almost empty, then we include the corresponding edge in the network with
capacity ε. We have flow conservation constraints and capacity constraints. In addition we have
constraints that say that the total flow out of s (or into t) is at least 1−

∑
i,j pjaij − ε (i.e. Walras

law is almost satisfied), And finally
∑
pj = 1, and all variables are ≥ 0.

The vector with p = p∗, and flow f = cost of active segments according to x∗ and p∗, and ε =
2−2m satisfies all the constraints. The segment comparison constraints are satisfied by construction,
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the flow conservation constraints by definition, the capacity constraints for edges incident to s and
t (for the goods and the buyers) by Lemmas 6 and 7, for the other edges by definition, and the
approximate saturation constraint by Lemma 7. The LP has less than 3nk variables, t2 + 5ng
constraints, and rational coefficients of bit complexity 2b. Thus, there is an optimal solution with
bit complexity m, hence the optimal value is either 0 or at least 2−m. Therefore, it is 0.

Consider an optimal solution (π, φ, 0). We claim that π is a price equilibrium. Let χ be the
allocation induced by φ and π. That is, χij = aij + φij/πj , if πj > 0, and χij = aij if πj = 0.
(Note that if πj = 0, then φij = 0 for all i by the construction of the network.) Since ε = 0 in the
optimal solution, all capacities are exact, the total flow from s must be equal to 1−

∑
i,j πjaij , the

edges incident to s have flow πj(1 −
∑

j aij) and are saturated. Therefore,
∑

i,j πjχij = 1 (Walras
law). Clearly no good is oversold and no buyer overspends because of the capacities of the network.
(Some goods may be undersold, but then they have price πj = 0, so we can allocate the leftovers
arbitrarily at no cost).

It remains to show that χ is optimal for every buyer. Each buyer buys in χ completely all the
segments that are full in x∗ and partially some of the partial segments that are not almost empty
in x∗; the almost empty segments of x∗ are completely empty in χ (because ε = 0 in the optimal
solution). Consider two segments, l1 for good j1 and l2 for good j2. Suppose that l1 is full or
partial and l2 is partial or empty in χ. Then l1 is full or partial but not almost empty in x∗, and l2
is partial or empty in x∗. From Lemma 9, the LP contains an inequality pj1/si,j1,l1 ≤ pj2/si,j2,l2 +ε,
which the optimal solution satisfies with ε = 0; hence πj1/si,j1,l1 ≤ πj2/si,j2,l2. In particular, this
means that if both segments l1, l2 are partial in χ then the inequality holds in both directions, i.e.
their ratios are equal, and they are at least as small as all the empty segments, and at least as large
as all the full segments. We conclude that χ is an optimal allocation for the price vector π. This
concludes the proof of Theorem 4.

7 PPAD-hardness for Fisher Markets

We will show in this section the following.

Theorem 10 Computing a price equilibrium of a Fisher market with additively-separable piecewise-
linear concave utilities that satisfies condition (C2) is PPAD-hard, and hence PPAD-complete. The
computation of a ε-approximate equilibrium for ε = O(n−13) is also PPAD-complete.

Our reduction builds on the construction of [CDDT09] which proves the hardness for Arrow-
Debreu markets. Given a bimatrix game Γ, consisting of two payoff matrices A,B for the two
players, they construct an instance D of an Arrow-Debreu market such that an approximate price
equilibrium of D can be used to derive an approximate Nash equilibrium for the game. The notion
of approximate equilibria used there is as follows: A price vector p is a ε-approximate market
equilibrium if there is an allocation x for the agents such that each agent gets an optimal bundle
with respect to p, and the market clears approximately in the sense that |

∑
i xij−

∑
iwij | ≤ ε

∑
iwij

for every good j. For the game Γ, a mixed strategy profile (pair of probability vectors) x, y is a
ε-well supported approximate Nash equilibrium if for every pair i, j of strategies of player 1 (i.e.
rows Ai, Aj of the payoff matrix A), Aiy

T + ε < Ajy
T implies that xi = 0; and similarly for every

pair i, j of strategies of player 2 (columns Bi, Bj of B), xBi + ε < xBj implies yj = 0.
We outline briefly the structure of the reduction of [CDDT09]. Assume wlog that both players

of the given game Γ have n strategies, and the entries of the payoff matrices are between −1 and

16



1. The constructed Arrow-Debreu market instance D has a set G of g = 2n + 2 goods; the first
n goods correspond to the strategies of player 1 and the second set of n goods correspond to the
strategies of player 2 (the final two goods are auxiliary). The set of agents is the union of two sets:
a set B0 of g(g − 1) “price-regulating” agents {(i, j)|1 ≤ i 6= j ≤ g = 2n + 2} and a set B1 of 2n2

more agents. The agents in B0 have the vast majority of the endowment: each agent (i, j) has a
supply of 1/n units of good i (only); his utility functions are linear, with slope 2 for good i, slope 1
for good j, and slope 0 for all other goods. The other agents have much smaller endowments: for
every agent in B1 the total endowment is O(1/n4) . The endowments and utility functions of the
agents in B1 incorporate the payoff matrices of the game Γ. It is not necessary for our purposes to
describe them in any detail; our reduction will use them as a black box.

The role of the set B0 of ‘price-regulating’ agents in the instance D is that they essentially
dominate the market and impose a key property for any approximate price equilibrium: In any
approximate market equilibrium p of D, the prices of all the goods are positive and within a factor
of at most 2 of each other; that is, if the prices are scaled so that the smallest price is 1, then all
prices are in [1, 2]. It is shown furthermore in [CDDT09] that if p is a n−13-approximate market
equilibrium of the instance D with all prices in the interval [1, 2], and we form mixed strategy
profiles x, y for the two players of the game Γ by subtracting 1 from the prices of the first 2n goods
and normalizing them so that the strategy probabilities of each player sum to 1, then (x, y) is a
n−6-well supported approximate Nash equilibrium of the game Γ; constructing such an equilibrium
is a PPAD-complete problem [CDT09].

We describe now the reduction which shows the PPAD-hardness of the Fisher market equilib-
rium problem (exact or approximate). It consists of a simpler gadget for the price regulation, and
essentially a reduction from Arrow-Debreu to Fisher once price regulation is ensured.

The Fisher instance F has the same set G of g = 2n + 2 goods. The set of agents consists of
a single agent 0 for the price regulation and the same remaining set B1 of 2n2 agents as in the
Arrow-Debreu instance D. The budget e0 of agent 0 is 2n+1

n = 2 + 1
n , and his utility function for

every good j has slope 2 until e0 units and slope 1 from then on. Every agent k in B1 is given
budget ek in instance F equal to the maximum amount of any good in his endowment in instance
D; thus all agents in B1 have budget at most O(1/n4).

The utility function of an agent k ∈ B1 in the Fisher market F is defined as follows. Let
w(k) be the endowment vector of agent k in the Arrow-Debreu instance D (thus, the maximum
entry in w(k) is ek as defined above), let uk

j be the utility function in D for each good j ∈ G,
and let sk be the maximum slope of any segment in these functions over all j ∈ G. The utility
function fk

j for good j in the Fisher instance F has slope 3sk until ek − wkj , and from that point
on, the additional utility is a copy of the function uk

j . That is, fk
j (x) = 3skx if x ≤ ek − wkj , and

fk
j (x) = 3sk · (ek − wkj) + uk

j (x− (ek − wkj)) if x > ek − wkj .
Let M be the sum of all the budgets; note that the total budget of the set B1 of agents is

≤ 2n2 ·O(n−4) = O(n−2), while the budget of agent 0 is 2 +n−1; thus M = 2 +n−1 +O(n−2). The
total supply of each good is set equal to M . This concludes the definition of the Fisher instance F .

Since there are M units of each good and a total budget of M , the sum of the prices of an
equilibrium must satisfy

∑
j pj = 1. We say that p is an ε-approximate equilibrium for the Fisher

market if it satisfies
∑

j pj = 1, and (as in the Arrow-Debreu case) there is an allocation x that
consists of optimal bundles for all the agents with respect to p (subject to their budgets) such that
|
∑

i∈B xij −M | ≤ εM for all goods j ∈ G.
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Lemma 11 In any 0.9-approximate price equilibrium for the above Fisher market instance F , the
prices of all the goods are positive and are within a factor 2 of each other.

Proof : Let p be a 0.9-approximate price equilibrium and suppose wlog that good 1 has the
maximum price, good 2 has the minimum price and p1 > 2p2. Consider the utility functions of
agent 0 for goods 1 and 2. The first segment of good 1 has worse bang-per-back than the second
(infinite) segment of good 2. Therefore, agent 1 will not buy any good 1. The total budget of the
other agents is O(n−2), and p1 > 1/g = 1/(2n+ 2), thus the other agents can buy at most O(n−1)
amount of good 1. Thus, almost the whole supply of good 1 is left over. 2

Let p be a n−13-approximate equilibrium for the Fisher market F . By the lemma, all prices
are within a factor 2 of each other, and

∑
j pj = 1. Let x be an allocation that witnesses the fact

that p is a n−13-approximate equilibrium: every agent i selects an optimal bundle x(i) of goods for
his budget, and the excess demand (or left-over supply) of each good has absolute value at most
n−13M = O(n−13). We will show that the allocation x of the Fisher instance F can be mapped to
an allocation y for the Arrow-Debreu instance D that satisfies the conditions witnessing that p is
also a n−13-approximate equilibrium for the instance D.

Let pm be the minimum price of any good. All prices are between pm and 2pm, and 1/2g <
pm ≤ 1/g. Partition the set G of goods into three sets: Gm is the set of goods with price equal to
pm, Gx is the set of goods with price equal to 2pm, and Gi is the remaining set of goods that have
an ‘intermediate’ price, i.e., in the open interval (pm, 2pm). Consider the operation of each agent
in selecting their optimal bundle in the allocation x.

Consider first the operation of an agent k ∈ B1. The agent will certainly select first all the first
segments that have slope 3sk, since the prices are within factor 2 of each other. Thus, agent k will
first buy ek−wkj of each good j. After buying these goods, the amount e′k left over from his budget
ek is e′k = ek−

∑
j(ek−wkj)pj =

∑
j wkjpj . At this point, the agent k will select an optimal bundle

from the second and higher segments of the goods subject to the budget e′k. Define the allocation
y(k) for the agent k in the Arrow-Debreu market D by letting ykj = xkj − (ek − wkj). It follows
from our discussion and the definition of the utility functions that y(k) is an optimal bundle for
agent k in D with respect to the prices p.

Consider the operation of agent 0 . He has enough money to buy exactly the first segments of
all the goods. If there is no price equal to 2pm (i.e. if Gx = ∅), then this is exactly what agent
0 will buy. In general, agent 0 will certainly first buy all the first segments of all the goods in
Gm ∪ Gi. After this point there is a choice because the first segments of goods in Gx have the
same bang-per-buck as the second segments of goods in Gm; thus, the allocation x will contain in
general some portion of the first segments of goods in Gx and some portion of the second segments
of goods in Gm.

Recall that x satisfies |xj − M | ≤ n−13M for all goods j, where xj =
∑

i∈B xij , and M =
2 + n−1 + O(n−2). Consider a good j and an agent k ∈ B1: the agent will buy in the first phase
ek − wkj of good j, and in the second phase he may buy some more. The money available for
the second phase is e′k = O(n−5), since all prices are Θ(n−1) and his total endowment is O(n−4).
Therefore, the maximum amount of good j that he can buy in the second phase is O(n−4). Since
also wkj = O(n−4), it follows that |ek − xkj | = O(n−4). Summing over all agents in B1, we have
|
∑

k∈B1
ek −

∑
k∈B1

xkj | = O(n−2). On the other hand we know that |M −
∑

k∈B xkj | = O(n−13),
and M = e0 +

∑
k∈B1

ek, where e0 = 2 + n−1. Therefore |e0 − x0j | = O(n−2). Thus, for the goods
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j ∈ Gm ∪Gx, agent 0 has flexibility to get more or less than the e0 units of the first segment in the
optimal bundle x(0), but the difference is at most O(n−2).

We map now the bundle x(0) of agent 0 in the Fisher instance F to bundles y(i, j) for the agents
(i, j) ∈ B0 in the Arrow-Debreu instance D.4 For all agents (i, j) ∈ B0, except for the pairs (i, j)
with i ∈ Gx, j ∈ Gm, we let agent (i, j) in market D buy back his endowment, i.e. y(i, j) consists
of 1/n unit for commodity i. Clearly, this is an optimal bundle since all prices are within factor 2
of each other. For goods i ∈ Gi, we know that x0i = e0 = 2n+1

n , and there are 2n+ 1 agents (i, j),
thus x0i is equal to the sum of the allocations of good i in y to the agents in B0. For goods i ∈ Gm

we have allocated in y so far e0 units of good i, and for goods i ∈ Gx we have allocated e0 − |Gm|
n .

For goods i ∈ Gm, let zi = x0i − e0, and for goods i ∈ Gx, let zi = e0 − x0i. We know that
zi = O(n−2) for all i. Since agent 0 spends his budget e0 exactly and goods in Gx are twice as
expensive as those in Gm, we have 2

∑
i∈Gx

zi =
∑

i∈Gm
zi. Set up a transportation problem on a

complete bipartite graph with sets of nodes Gx and Gm on the two sides of the bipartition, supply
2zi at each node i ∈ Gx and demand zi at each node i ∈ Gm. The total supply matches the total
demand and we have a complete bipartite graph, so there is a feasible solution {hij |i ∈ Gx, j ∈ Gm}
such that 2zi =

∑
j∈Gm

hij for all i ∈ Gx, and zj =
∑

i∈Gx
hij for all j ∈ Gm. For each agent (i, j)

with i ∈ Gx, j ∈ Gm, let the bundle y(i, j) consist of 1
n −

hij

2 units of good i and hij units of good
j. Note that 1

n −
hij

2 > 0 because hij ≤ zj = O(n−2). Since pi = 2pj , the cost of this bundle is
pi( 1

n −
hij

2 ) + pjhij = pi
1
n , which is the income of the agent in D after selling his endowment. Also,

the bundle y(i, j) is clearly an optimal bundle for the agent (i, j).
For each good i ∈ Gx, the total allocation in y from agents (i, j) ∈ B0 with j ∈ G − Gm is

e0 − |Gm|
n , the allocation from agents (i, j) with j ∈ Gm is |Gm|

n −
∑

j∈Gm

hij

2 = |Gm|
n − zi, and the

allocation from all other agents in B0 is 0. Thus, the total allocation to good i ∈ Gx from all agents
in B0 is e0 − zi = x0i.

Similarly, for each good j ∈ Gm, the total allocation in y from agents (j, k) is e0, the total
allocation from agents (i, j) with i ∈ Gx is

∑
i∈Gx

hij = zj , and it is 0 for the other agents
(i, j) ∈ B0. Thus, the total allocation to good j ∈ Gm from all agents in B0 is e0 + zj = x0j .

We conclude that for every good j ∈ G, the excess demand
∑

i xij −M of the allocation x
(over all the agents) in the Fisher market F is equal to the excess demand

∑
i yij −

∑
iwij of the

allocation y in the Arrow-Debreu market D. The total supply of each good in both markets is
2 +n−1 +O(n−2). Since the excess demand of x is at most n−13 of the total supply in F , the same
it true for the allocation y in the market D. Therefore, p is a n−13-approximate equilibrium in D,
and thus we can obtain from it a n−6-well supported approximate Nash equilibrium of the game
Γ. Theorem 10 follows.

8 NP-completeness of Existence of Equilibrium

In this section we will show the following:

Theorem 12 The problem of determining whether a given Fisher or Arrow-Debreu market with
additively-separable piecewise linear concave utilities has an equilibrium is NP-complete. The same
holds for the existence of a ε-approximate equilibrium with ε = O(n−5).

4One could have used similarly a single agent for price regulation in the Arrow-Debreu reduction also, which
would make this mapping immediate, but since we don’t want to redo the AD proof and are using the construction
of [CDDT09] as a black box, we have to construct a suitable mapping.
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Membership in NP follows from the analysis of Sections 4 and 5 and Theorems 2 and 3. We
show the NP-hardness in the following. We reduce from the Exact Cover by 3-Sets (X3C) problem
[GJ79]. In this problem, we are given a family C of n sets C1, . . . , Cn, where each set Ci is a
3-element subset of a set X = {x1, . . . , xn}. The question is whether there exists a subfamily C′
of C which covers X exactly, i.e. every element xj ∈ X belongs to exactly one set in C′; such a
subfamily is called an exact cover.

Given an instance of the X3C problem, we will construct an instance D of an Arrow-Debreu
market and a corresponding instance F of a Fisher market such that the X3C instance has a
solution iff D and F have an equilibrium. Let C = {C1, . . . , Cn} be the given collection of 3-sets,
which are subsets of the set X = {x1, . . . , xn}. We may assume without loss of generality that n
is a multiple of 3 (otherwise the X3C instance has no solution), that n > 35, and that the union
of the sets Ci is X. We construct a Fisher market F as follows. We have 2n + 1 goods: n goods
C1, . . . , Cn corresponding to the sets, another n goods x1, . . . , xn corresponding to the elements,
and an additional good 0.

There are 2n+ 2 agents: an agent 0 that serves a price regulating role (as in Section 7) and an
additional set B1 of agents that encode the X3C instance, consisting of n agents Ci corresponding
to the sets, n agents xj corresponding to the elements, and a final “extra” agent. The price-
regulating agent 0 has budget e0 = n3. In an Arrow-Debreu market, the corresponding agent has
an endowment consisting of e0 units of each good. The utility function (in either market) of agent
0 for every good has slope 2 until e0 units, and slope 1 from then on until infinity (i.e., it is the
same as in the proof of Theorem 10).

For the other 2n + 1 agents in B1, it may be helpful to think of them first as Arrow-Debreu
agents, which are then transformed to Fisher agents as in the PPAD-hardness proof. We will
describe each of them, first as an agent in an Arrow-Debreu market D, and then in the Fisher
market F .

• Agent Ci. In the AD market, his endowment consists of 1 unit of good Ci. His utility function
has a segment of slope 1 and length 1/2 for good 0, a segment of slope 1/3 and length 1/6
for each good xj that belongs to set Ci, and a segment of slope 1/9 and length 1/4 for good
Ci. Apart from these segments, the functions are flat (have slope 0).

The corresponding agent in the Fisher market has budget 1. His utility function in the Fisher
market starts with a segment of slope 3 and length 1 for all goods except for good Ci; after
that, it is a copy of the utility function in the AD market. Thus, for example the utility
function for good 0 consists of the initial segment that has slope 3 and length 1, followed by
a segment of slope 1 and length 1/2; after that the function goes flat (has slope 0).

• Agent xj . In the AD market, his endowment consists of 1/6 unit of good xj . The utility
function has just one segment of slope 1 and length 1/12 for good 0.

In the Fisher market, the budget of agent xj is 1/6. The utility functions start with a segment
of slope 3 and length 1/6 for all goods except xj ; the function for good 0 has then an additional
segment of slope 1 and length 1/12.

• Extra agent. His endowment in the AD market consists of n/2 units of good 0. The utility
function has a segment of slope 1 and length 3n/4 for each good Ci.

In the Fisher market, the budget of the extra agent is n/2. The utility functions starts with
a segment of slope 3 and length n/2 for all goods except good 0; the functions for the goods
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Ci have then an additional segment of slope 1 and length 3n/4.

The above description concludes the specification of the Arrow-Debreu market D. For the
Fisher market F , let M = n3 + n + n

6 + n
2 = n3 + 5n

3 be the sum of the budgets of all the agents.
There is a supply of M units of each good. Thus, in an equilibrium, the sum of the prices must be
equal to 1.

Lemma 13 Suppose that the X3C instance has a solution. Then the corresponding Arrow-Debreu
and Fisher markets have an equilibrium.

Proof : Let C′ be an exact cover. Let pm = 3
7n+6 . Assign the following prices to the goods.

Good 0 is assigned price p(0) = 2pm, each good xj is assigned price p(xj) = pm, each good Ci ∈ C′
is assigned price p(Ci) = 2pm, and each good Ci /∈ C′ is assigned price p(Ci) = pm. The sum of the
prices is (2 + n+ 2 · n

3 + 2n
3 )pm = 1.

We verify that these prices form an equilibrium in the Arrow-Debreu market D. For a set
Ci /∈ C′, the corresponding agent Ci receives income pm after selling his endowment, which is
enough to buy only the segment of slope 1 and length 1/2 of good 0. For a set Ci ∈ C′, the
corresponding agent Ci receives income 2pm after selling his endowment, which is enough to buy all
the segments in his utility function that have positive slope: they cost pm +3 · 16pm +2 · 14pm = 2pm.
An agent xj receives income pm/6, with which he can buy the segment of length 1/12 of good 0.
The extra agent receives income n · pm; this is just enough to buy the segments of length 3/4 of all
the goods Ci which cost 3

4(n
3 · 2pm + 2n

3 · pm) = n · pm. Thus, from the agents in the set B1, there is
an excess demand of n/12 units of good 0 and a surplus of 1/4 unit of each good Ci /∈ C′; the rest
of the goods, i.e., the goods xj ∈ X and Ci ∈ C′ balance out.

Consider agent 0 now. His income is e0. There is a tie in the bang-per-buck ratio between the
first segment of good 0 (and the goods Ci ∈ C′) and the second segments of the goods Ci /∈ C′
(and the goods xj). One optimal allocation for agent 0 is to buy back e0 units of all the goods
xj ∈ X and Ci ∈ C′, buy e0 + 1

4 of each good Ci /∈ C′, and e0 − n
12 units of good 0. The cost of this

allocation is e0 + 1
4 ·

2n
3 pm − n

12 · 2pm = e0. Thus, the market clears and every agent receives an
optimal allocation. Hence the prices form an equilibrium.

The proof for the Fisher market F is similar. Since all goods have prices within a factor of 2
of each other, the starting segments with slope 3 in the utility functions of each agent in B1 have
the best bang-per-buck ratio, and thus each agent will first buy these segments (there is enough
money). After an agent buys these segments, the remaining amount of money from his budget is
equal to the income of the corresponding agent in the Arrow-Debreu market D. Also the remaining
supplies of the goods are the same as the supplies in the AD market. The proof from this point on
is the same as in the Arrow-Debreu case. 2

We show in the remainder the converse; in fact even an approximate equilibrium yields a solution
to the X3C instance.

Lemma 14 If the Fisher market F , or the Arrow-Debreu market D, has an equilibrium, or even
a ε-equilibrium with ε = n−5, then the X3C instance has a solution.

Proof : The arguments for the two markets are similar. Suppose that there is a ε-equilibrium
with ε = n−5. Let p(j) be the price of each good j, where

∑
p(j) = 1, and let pm be the minimum
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price. By Lemma 11, all the prices are within a factor of 2 each other, i.e. they are all between
pm and 2pm. Let Gm be the set of goods with price pm, let Gx be the set of goods with price
2pm, and let Gi be the remaining set of goods. As in the proof of Theorem 10, the price-regulating
agent will buy exactly the first segment (i.e. e0 units) of each good in Gi, will buy at least the first
segments and possibly parts of the second segments of the goods in Gm, and will buy at most the
first segments of the goods in Gx. Since the prices are within a factor of 2 of each other, the agents
of B1 in the Fisher market will buy first the whole starting segments with slope 3 of all the goods.
After this point, the Fisher and the Arrow-Debreu markets coincide, and the proof is basically the
same. For concreteness, we give the arguments in the following for the Arrow-Debreu case. Fix
an optimal allocation α to the agents according to prices p, such that the absolute value of the
excess demand for each good is bounded by an ε factor of the supply. We assumed without loss of
generality that n > 35. The total excess supply or demand of each good in the allocation α must
be at most εM < 1

30n .

Claim 15 Good 0 has price 2pm.

Proof : Every agent Ci has income (remaining budget) at least pm, thus he will buy first the
whole segment of length 1/2 of good 0. Also each agent xj has income at least pm/6, enough to buy
the segment of length 1/12 of good 0. Therefore the agents in B1 buy n

2 + n
12 of good 0, whereas

they supply only n
2 units (in the endowment of the extra agent). If p(0) < 2pm, then agent 0 buys

at least e0 units of good 0, i.e. at least his own supply, thus there will be a total excess demand of
n
12 of good 0, contradiction. Therefore, good 0 must have price 2pm. 2

Claim 16 The price of every good xj is p(xj) < 2pm.

Proof : Suppose that p(xj) = 2pm. Then agent xj has income pm/3, but can only spend pm/6
on the single segment in his utility function. The expenditure of every agent is bounded by his
income, hence at least pm/6 of the total agents’ income is not spent. There are 2n+ 1 goods, each
with price between pm and 2pm, therefore at least one of the goods must have total excess supply
of at least 1/12(2n+ 1) units in the allocation α, which is more than εM , contradiction. Therefore,
p(xj) < 2pm for all xj ∈ X. 2

Let S ⊆ C be the subcollection of sets Ci such that p(Ci) ≥ pm + 1
6

∑
xj∈Ci

p(xj). Note that
because of the slopes of the segments of the utility functions of agent Ci, and since the prices are
within a factor of 2 of each other, the segment for good 0 has higher bang-per-back ratio than all
the segments corresponding to the elements of Ci, which in turn have higher ratio than the segment
of good Ci. Thus, if Ci ∈ S then every optimal bundle for agent Ci includes all the full segments
in his utility function corresponding to the elements xj ∈ Ci; if Ci /∈ S then every optimal bundle
of agent Ci does not include all the segments of the elements xj ∈ Ci, and hence does not include
either any portion of the segment of good Ci.

Claim 17 If Ci /∈ S then p(Ci) = pm.

Proof : Since Ci /∈ S, agent Ci does not buy any good Ci. Thus, the total demand for Ci among
the agents in B1 is at most 3/4 (from the extra agent) whereas the supply is 1 unit. If p(Ci) > pm,
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then agent 0 will buy at most e0 units of Ci (i.e. his supply), and thus there will be an excess
supply of 1/4 units. Therefore, p(Ci) = pm. 2

Claim 18 The sets in S are disjoint.

Proof : If two sets of S contain a common element xj , then the corresponding agents buy their
full segment of good xj . Since p(xj) < 2pm by Claim 16, agent 0 buys at least his supply of good
xj . The only other supply is 1/6 units from agent xj . Thus, there is a total excess demand of at
least 1/6 for good xj . It follows that the sets in S are disjoint. 2

We are ready now to finish the proof of Lemma 14. If the sets in S cover all the elements then
we have a solution to the X3C instance. Suppose this is not the case. Then |S| = n

3 − r for some
r ≥ 1 (because the sets in S are disjoint), and thus the complement S̄ = C −S has 2n

3 + r sets. For
every Ci ∈ S̄, the corresponding good has price pm (by Claim 17), hence the corresponding agent
Ci has income pm and can only buy the segment of good 0. Among the agents in B1, only the extra
agent buys (at most) 3/4 units of good Ci, thus there is a surplus of at least 1/4. Therefore, agent
0 must buy at least 1

4 −
1

30n units of Ci, beyond his supply of e0 units. The total extra cost for all
the sets in S̄ is at least (2n

3 + r)(1
4 −

1
30n)pm.

This extra cost can only come out of goods with price 2pm, for which agent 0 can buy less than
his supply of e0 units. The only such goods are good 0 and the n

3 − r goods Ci ∈ S. Consider
the excess demand for these goods among the agents in B1. For good 0, the excess demand is at
most n/12, and for a good Ci the excess demand is non positive (there is a supply of 1 unit and
at most two demands of lengths 1/4 and 3/4). Since the total excess demand over all the agents
for each good is at most 1/30n over the supply, agent 0 must buy at least e0 − n

12 −
1

30n of good 0,
and at least e0− 1

30n of each good Ci ∈ S. Thus, the maximum amount of money that agent 0 can
save from not buying back his whole supply of e0 units of good 0 and the goods in S is at most
( n
12 + n

3 ·
1

30n)2pm (since r ≥ 1). Therefore, we must have ( n
12 + n

3 ·
1

30n)2pm ≥ (2n
3 + r)(1

4 −
1

30n)pm.
In other words, 0 ≥ r

4 −
2
45 −

r
30n , which is false for r ≥ 1. We conclude that we must have r = 0,

i.e., S is an exact cover. 2

Theorem 12 follows from Lemmas 13 and 14.

9 Discussion

An immediate question that arises regarding the computation of equilibria for the case of separa-
ble, piecewise-linear, concave utilities in Fisher’s model is why not use the generalization of the
Eisenberg-Gale convex program to these utilities (see [DPSV08] for details on the EG program,
which captures the equilibrium for linear utilities). One can check, after applying KKT conditions,
that the generalization does not capture the equilibrium for this case. Interestingly enough, the
generalization does capture the equilibrium for a variant – a price discrimination market in which
besides goods and buyers, there is a middleman who sells bundles of goods to buyers but charges
them according to the utility they accrue [GV10]. The buyers have separable, piecewise-linear,
concave utilities in this model.

Nash equilibria and market equilibria play a central role in game theory and economics. In
the case of games, 2-player games have rational Nash equilibria and the complexity of computing
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them is characterized exactly by the class PPAD, as shown by two fundamental results, the classical
Lemke-Howson algorithm [LH] for membership and the reductions of [DGP09, CDT09] for hardness.

In the case of markets, the class of separable, piecewise-linear, concave utility functions are
an important, broad class which, as we showed, have rational equilibria, if any. As we saw, there
is no efficiently checkable necessary and sufficient condition for the existence of equilibria for this
case, unlike the linear case. However, under standard (mild) sufficient conditions, the results of the
present paper together with [CDDT09, CT09] show that the equilibrium computation problem for
this case, for both market models, is characterized exactly by the class PPAD.

3-player games have irrational Nash equilibria in general and the complexity of computing or
approximating them is characterized by the class FIXP. Leontief and non-separable piecewise-linear
concave utilities also have irrational equilibria in general (under standard sufficient conditions). Are
they FIXP-complete?

The definition of the class PPAD was designed to capture problems that allow for path following
algorithms, in the style of the algorithms of Lemke-Howson [LH] and Scarf [Sca67]. Our result,
showing membership in PPAD for both market models under separable, piecewise-linear, concave
utility functions, establishes the existence of such path following algorithms for finding equilibria
for these market models; however, it does so indirectly, by appealing to the characterization of
PPAD given in [EY10]. It will be interesting to obtain natural, direct algorithms for this task
(hence leading to a more direct proof of membership in PPAD), which may be useful for computing
equilibria in practice.
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