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Abstract. Determining the integrality gap of the bidirected cut relax-
ation for the metric Steiner tree problem, and exploiting it algorithmi-
cally, is a long-standing open problem. We use geometry to define an LP
whose dual is equivalent to this relaxation. This opens up the possibility
of using the primal-dual schema in a geometric setting for designing an
algorithm for this problem.
Using this approach, we obtain a 4/3 factor algorithm and integrality
gap bound for the case of quasi-bipartite graphs; the previous best being
3/2 [RV99]. We also obtain a factor

√
2 strongly polynomial algorithm

for this class of graphs.
A key difficulty experienced by researchers in working with the bidirected
cut relaxation was that any reasonable dual growth procedure produces
extremely unwieldy dual solutions. A new algorithmic idea helps finesse
this difficulty – that of reducing the cost of certain edges and constructing
the dual in this altered instance – and this idea can be extracted into
a new technique for running the primal-dual schema in the setting of
approximation algorithms.

1 Introduction

Some of the major open problems left in approximation algorithms are centered
around LP-relaxations which researchers believe have not been fully exploited
algorithmically, i.e., the best known algorithmic result does not match the best
known lower bound on their integrality gaps. One of them is the bidirected cut
relaxation for the metric Steiner tree problem [Edm67] and this is the main focus
of our paper.

The integrality gap of the bidirected cut relaxation is believed to be very close
to 1; the best lower bound known on the gap is 8/7, due to Goemans [Goe96]
and Skutella[KPT]. On the other hand, the known upper bound is the same
as the weaker undirected cut relaxation which is 2 by a straightforward 2-factor
algorithm for it. The only algorithmic results using the bidirected relaxation that
we are aware of are: a 6/5 factor algorithm for the class of graphs containing
at most 3 required vertices [Goe96] and a factor 3/2 algorithm for the class of
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quasi-bipartite graphs, i.e., graphs that do not have edges connecting pairs of
Steiner vertices [RV99].

In this paper, we use geometry to develop a new way of lower bounding the
cost of the optimal Steiner tree. The best such lower bound can be captured via
an LP, which we call the simplex-embedding LP. A short description of this LP is
that it is an l1-embedding of the given metric on a simplex, maximizing a linear
objective function. Interestingly enough, the dual of the simplex-embedding LP
is a relaxation of the metric Steiner tree problem having the same integrality
gap as the bidirected cut relaxation!

A key difficulty faced by researchers in working with the bidirected cut re-
laxation is the lack of structure in the dual solutions arising mainly due to the
asymmetric nature of the primal. We believe our geometric approach would open
up new ways to use the primal-dual schema for the bidirected cut relaxation.
In particular, we exhibit one dual growing procedure (the Embed algorithm in
Section 2.1) which helps us prove the following property about the bidirected
cut relaxation in quasi-bipartite graphs: If the minimum spanning tree is the
optimum Steiner tree, then the LP relaxation is exact (Theorem 5).

A second key feature of our paper is a new algorithmic idea of reduced costs.
We show that modifying the problem instance by reducing costs of certain edges
and then running the primal-dual schema allows us to obtain provably better
results. We use this idea first to get a simple and fast algorithm which proves
an upper bound of

√
2 on the integrality gap for quasi-bipartite graphs, already

improving the previous best of 3/2 [RV99]. Using another way of reducing costs,
we improve the upper bound to 4/3. This algorithm (similar to the algorithm in
[RV99]) doesn’t run in strongly polynomial time, unlike the

√
2 algorithm.

We also give a second geometric LP in which Steiner vertices are not con-
strained to be on the simplex but are allowed to be embedded “above” the
simplex. Again, the dual of this LP is a relaxation of the metric Steiner tree
problem. We show that on any instance, the integrality gap of this latter LP is
at most that of the bidirected relaxation. It turns out that this LP is in fact
exact for Goemans’ 8/7 example. However, there are examples for which the gap
is 8/7 even for this relaxation. Could it be that this relaxation has a strictly
smaller integrality gap than the bidirected cut relaxation?

1.1 Related Work

Historically, the idea of using an extra vertex to get a shorter tree connect-
ing three points on the plane goes back to Torricelli and Fermat in the seven-
teenth century. The Euclidean Steiner tree problem, in its full generality, was
first defined by Gauss in a letter to his student, Schumacher. This problem was
made popular by the book of Courant and Robbins [CRS96], who mistakenly
attributed it to the nineteenth century geometer, Steiner. The rich combinatorial
structure of this problem was explored by many researchers; e.g., see the books
by Hwang, Richards and Winter [HRW92] and Ivanov and Tuzhilin [IT94].

The use of the bidirected cut relaxation for the Steiner tree problem goes back
to Edmonds[Edm67] who showed the relaxation is exact for the the case of span-



ning trees. Wong [Won84] gave a dual ascent algorithm for this relaxation, and
Chopra and Rao[CR94a,CR94b] studied the properties of facets of the polytope
defined by the relaxation. Goemans and Myung[GM93] study various undirected
equivalent relaxations to the bidirected cut relaxation.

The bidirected cut relaxation has interesting structural properties which have
been exploited in diverse settings. Let α denote the integrality gap of this relax-
ation. [JV02] use this LP for giving a factor 2 budget-balanced group-strategy-
proof cost-sharing method for the Steiner tree game; Agarwal and Charikar
[AC04] prove that for the problem of multi-casting in undirected networks, the
coding gain achievable using network coding is precisely equal to α. The latter
result holds when restricted to quasi-bipartite networks as well. Consequently,
for these networks, the previous best bound was 3/2 [RV99], and our result
improves it to 4/3.

The class of quasi-bipartite graphs is a non-trivial class for the bidirected
cut relaxation. In fact, recently Skutella (as reported by Konemann et.al.[KPT])
exhibited a quasi-bipartite graph on 15 vertices for which the integrality gap of
the bidirected cut relaxation is 8/7. This ratio matches the erstwhile best known
example on general graphs of Goemans[Goe96] where the ratio was met as a
limit. Moreover, the best known hardness results for the Steiner tree problem in
this class of graphs is quite close to that known in general graphs (128

127 versus
96
95 )[CC02].

The best approximation algorithms for the Steiner tree problem is due to
Robbins and Zelikovsky [RZ05]. The authors prove a guarantee of 1.55 for gen-
eral graphs and also show that when restricted to the quasi-bipartite case, the
ratio is 1.28. However, it is not clear if these results would imply an upper bound
on the integrality gap of the bidirected cut relaxation. Very recently, Konemann
et.al.[KPT] introduced another LP relaxation for the minimum Steiner tree prob-
lem which is as strong as the bidirected cut relaxation, and showed that the algo-
rithm of Robbins and Zelikovsky can be interpreted as a primal-dual algorithm
on their LP! However, even their interpretation does not prove any upper bound
on the integrality gap of their relaxation as they also compare with the optimum
Steiner tree and not the optimum LP solution. Nevertheless, they show upper
bounds for their relaxation for a larger class of graphs called b-quasi-bipartite
graphs.3

1.2 Preliminaries

Let G = (V, E) be an undirected graph with edge costs c : E → R. R ⊂ V
denotes the set of required vertices. The vertices in S = V \R are called Steiner
vertices. The Steiner tree problem is to find the minimum cost tree connecting
all the required vertices and some subset of Steiner vertices. We abuse notation
and denote both the optimum tree and its solution as OPT . Also, given a set of
vertices X , we denote the minimum spanning tree on X and its cost as MST (X).

3 A graph is b-quasi-bipartite if on deleting all required vertices, the largest size of any
component is at most b



The edge costs can be extended to all pairs of vertices such that they satisfy
triangle inequality (simply define the cost of (uv) to be the cost of the shortest
path from u to v). This version is called the metric Steiner tree problem. The
two versions are equivalent.

Let U := {U ( V : U ∩ R 6= ∅ and U c ∩ R 6= ∅} denote the subsets of V
which contain at least one required vertex but not all. Let δ(U) denote the edges
with exactly one end point in U . The undirected cut relaxation of the Steiner
tree problem is:

min{
∑

e∈E

c(e)xe : x(δ(U)) ≥ 1, ∀U ∈ U ; x ≥ 0}

The MST on R is guaranteed to be within factor 2 of the fractional optimum
of this LP, so this relaxation has an integrality gap of at most 2. The gap can
be arbitrarily close to 2, even for instances of the MST problem.

Now replace each undirected edge (uv) with two directed arcs (uv) and (vu),
each of cost c(uv). Call the set of arcs E. Fix an arbitrary required vertex r as
root. The set of valid sets U are now those which contain the root but not all
the required vertices. If the edges of a Steiner tree are directed to point away
from the root, then at least one edge is in the cut set δ+(U) of arcs going out of
U . This gives the bidirected cut relaxation.

min{
∑

e∈E

c(e)xe : x(δ+(U)) ≥ 1, ∀U ∈ U ; x ≥ 0} (1)

We denote the optimum of the above LP on a graph G as BCR(G). A graph
is called quasi-bipartite if there are no edges between two Steiner vertices. The
Steiner tree problem is NP-Hard even when restricted to the class of quasi-
bipartite graphs [BP89,CC02].

Organization: In Section 2 we show the geometric theorem giving the lower
bound, and other results relevant to it. In Sections 3 and 4 we give our

√
2 and

4
3 factor approximation algorithms respectively.

2 A Geometric Lower Bound and its Consequences

We first present a special case of the geometric theorem, for the sake of ease
of presentation. Let ∆k be the unit simplex in Rk, that is, ∆k := {x ∈ Rk :∑

i∈[k] x(i) = 1}, where x(i) is the ith coordinate of x. The corners of ∆k are

the unit vectors in Rk. Let T be any Steiner tree in ∆k connecting the corners,
that is, T is a tree whose vertices are the corners and any number of points in ∆k.
Define the distance between two points to be half the l1-distance, also called the
variational distance; for any two points x, y ∈ ∆k, d(x, y) := 1

2

∑k
i=1 |x(i)−y(i)|.

(The half is so that two corners are at a distance of 1). Let d(T ) :=
∑

e∈T d(e).
Then



Theorem 1. d(T ) ≥ k − 1.

Note that if T was a spanning tree, then the relation holds with equality since
any two corners are at a distance of 1. The theorem says that Steiner points don’t
improve upon the MST, w.r.t d(). This is somewhat counter-intuitive, since in
most geometric spaces, the Steiner points do improve upon the MST. What is
special here is the l1-distance, and the location of the points on the simplex.

Proof. Let R = {e1, e2, . . . , ek} be the unit vectors in Rk. The proof follows by
a careful4 counting argument. First of all, we get rid of the absolute values that
occur in the l1 distance. For every edge (x, y) in T , and i ∈ [k], if x is on the
T -path from y to ei, then we lower bound |x(i) − y(i)| by x(i) − y(i) (and vice
versa). This way the sum

∑
e∈T d(e) is lower bounded by a linear combination

of the x(i)’s, in which the coefficient of x(i) is 1
2 (degT (x) − 2). This is because

x(i) occurs with a positive sign for each edge incident at x except one, the first
edge on the T -path from x to ei. The exception is ei(i) which always occurs with
a positive sign, and hence has a coefficient of 1

2degT (ei). Therefore,

∑

e∈T

d(e) ≥ 1

2

∑

x∈T,i∈[k]

(degT (x) − 2)x(i) +
1

2

∑

i∈[k]

2ei(i)

=
1

2

∑

x∈T

(degT (x) − 2) +
∑

i∈[k]

1

= k − 1.

where the equality in the second line holds because
∑

i∈[k] x(i) = 1 and the last

equality follows from the fact that in a tree
∑

x∈T deg(x) = 2|T | − 2. �

The general theorem allows two concessions on the location of the points: first,

the points need not be on the unit simplex, all point are in the λ-simplex ∆
(λ)
k ,

defined as {x ∈ Rk :
∑

i∈[k] x(i) = λ}, for some parameter λ > 0. The second is
that the required points need not be at the corners of the simplex. In particular,
we consider any embedding z that maps every vertex u ∈ V = R ∪ S to a point

zu ∈ ∆
(λ)
k , where k = |R|. Identify the required vertices with the dimensions,

and define γ(z) :=
∑

i∈[k] zi(i)− λ. Note that when the required vertices are at

the corners of a unit simplex, γ(z) = k − 1. As before, let T be any Steiner tree

connecting all points in R, d(u, v) = 1
2

∑k
i=1 |zu(i)−zv(i)| and d(T ) =

∑
e∈T d(e).

The above proof can be easily be modified to give:

Theorem 2. d(T ) ≥ γ(z).

This theorem can be used to get a lower bound on the minimum Steiner tree
as follows: Given a graph, a valid embedding of the vertices onto any λ-simplex
is such that for all edges e, c(e) ≥ d(e). Now given any valid embedding z, for
any tree T , c(T ) ≥ d(T ) ≥ γ(z). In particular, we have

4 An easy counting argument shows that d(T ) ≥ 1

2
(k − 1).



Theorem 3. If z is a valid embedding then

OPT ≥ γ(z).

Since the above holds for any embedding, the best lower bound is given by
max {γ(z) : z is valid}. Quite interestingly, this maximum value for any graph is
equal to BCR(G).

Theorem 4. Given any graph G,

max {γ(z) : z valid embedding of G} = BCR(G).

It is not too hard to see that the maximum in the above theorem can be obtained
via a polynomial sized linear program, which we call the simplex-embedding LP.
In fact, the dual to this program turns out to be a relaxation for the Steiner tree
problem and the proof of the above theorem follows by showing its equivalence
with the bidirected cut relaxation. In [GM93], Goemans and Myung provide two
vertex weighted relaxations which are equivalent to the bidirected cut relaxation.
Although our relaxation is different, our proof of equivalence follows on similar
lines.

Proof. The simplex-embedding LP is as follows:

maximize γ(z) =
∑

i∈[k]

zi(i)− λ (2)

subject to
∑

i∈k

zv(i) = λ, ∀v ∈ V

zv(i)− zu(i) ≤ di(uv), ∀i ∈ [k], (uv) ∈ E

zu(i)− zv(i) ≤ di(uv), ∀i ∈ [k], (uv) ∈ E

1

2

∑

i∈[k]

di(uv) ≤ c(uv), ∀(uv) ∈ E

zv(i), di(uv) ≥ 0, ∀v ∈ V, i ∈ [k], (uv) ∈ E

Taking duals, we get the following LP (after a scaling step)

minimize
∑

e∈E

c(e)xe (3)

subject to xuv ≥ fi(uv) + fi(vu), ∀i ∈ [k], (uv) ∈ E
∑

v:(uv) ∈E

(fi(uv)− fi(vu)) ≥ α(v), ∀i ∈ [k], v ∈ V − i

∑

v:(iv) ∈E

(fi(iv)− fi(vi)) ≥ α(i) + 2, ∀i ∈ [k]

∑

v

α(v) = −2

fi(uv), fi(vu), xuv ≥ 0, ∀(uv) ∈ E, i ∈ [k]



To interpret LP3, one can think of xe as capacity of edge e. There are k
flows - fi for every required vertex i each satisfying the capacity constraint and
moreover, the supplies (excess flows) for fi at every vertex v is α(v) (it could be
negative) except at the vertex i, where it is α(i)+2. The last equality constraint
implies the total supplies sum up to zero.

Theorem 4 follows by showing there exists a feasible solution to LP 1 of value
Γ if and only if there exists a feasible solution to LP 3 of value Γ . We only give
a sketch for brevity and defer the details to a full version[CDV07].

LP 1 → LP 3: Let {y(uv)}(uv)∈E be a feasible solution of LP 1 of cost Γ with
root r. The corresponding solution to LP 3 is as follows: xuv := y(uv)+y(vu) and
α(v) is the supply at vertex v which is the difference of the outgoing y(vu)’s and
the incoming y(uv)’s, except at r where α(r) is the supply −2. What remains is
to describe the flows. The flow corresponding to r just mimics the y(uv)’s. It is
easy to see every constraint is till now satisfied. To get the flows corresponding
to another required vertex j, we use the fact that the minimum r − j cut in
the digraph with arc set E and capacities y(uv)’s is at least 1 since the solution
is feasible for LP 1. This implies there is a standard flow grj from r to j in
this di-graph. The flow fj is found by subtracting 2grj from fr. Note that this
changes the supplies of no vertex other than r and j, and for these, it changes
as it should change. Thus the solution is feasible for LP3 and is of value Γ .

LP 3 → LP 1: Let ({x}, {fi}, {α}) (respectively over edges, arcs and vertices)
be a solution to LP 3. WLOG by adding circulations if necessary, we can assume
for all edges (uv), and i we have xuv = fi((uv)) + fi((vu)). For LP 1, let r be
the chosen root. Then the solution is: y(uv) := fr((uv)). To see feasibility for
LP 1, we must show across any cut S separating r and a required vertex j, we
have

∑
(uv)∈δ+(S) fr((uv)) ≥ 1. To see this, consider the flow grj : the difference

between fr and fj . To be precise:

grj((uv)) = max[0, fr((uv))− fj((uv))] + max[0, fj((vu))− fr((vu))]

It is not hard to see for any arc (uv), grj(uv) ≤ 2fr((uv)). The proof sketch
ends by noting grj is a standard flow from r to j of value 2, implying across any
cut S as above, 2 units (and hence at least 1 unit of fr) of grj would go across.
�

Interestingly, the above theorems hold even when the Steiner vertices are
embedded “above” the simplex. That is, if we have for all Steiner vertices v,∑

i∈[k] zv(k) ≥ λ rather than equality. Maximizing over these embeddings give
us a better lower bound on OPT and in fact, as we see in Figure 1, sometimes
it is strictly better. Thus, we obtain an LP relaxation which could be tighter
than the bidirected cut relaxation. Although the remainder of the paper does
not concern this relaxation, it is an intriguing question if the integrality gap of
this revised LP is strictly smaller than that of the bidirected cut relaxation.
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Fig. 1. Integrality gap of the bidirected cut relaxation for the graph is known to be 16/15 (due

to Goemans). The middle figure shows an embedding on the simplex attaining a value of 15. The

figure to the right shows how we can get a higher value if we allow Steiner vertices to move above

the simplex. Note that the Steiner vertex at the center is not on the 16-simplex.

Remark: We should remark that the idea of embedding vertices of a graph onto
a simplex is not new. Calinescu et.al.[CKR98] use a similar LP to obtain approx-
imation algorithms for the multi-way cut problem. However, a key difference is
that theirs is a primal relaxation while ours is dual. It is not clear if a certain
duality between the two LP’s can be established.

2.1 An Embedding Algorithm

In this section, we describe a dual growing procedure Embed which given a
quasi-bipartite graph G and a cost function c does the following.

Case 1: If MST (R) is the optimal Steiner tree, then it returns a feasible em-
bedding z such that γ(z) = MST (R). Note, in this case, MST (R) = OPT =
BCR, since MST (R) ≥ OPT ≥ BCR ≥ γ(z).

Case 2: Or, returns a Steiner vertex v whose addition strictly helps the MST
on R, that is, MST (R ∪ v) < MST (R). We say that Embed crystallizes v.

The following theorem is immediate.

Theorem 5. Given a quasi-bipartite instance G, if the addition of no Steiner
vertex reduces the cost of MST (R), then MST (R) = BCR. In particular the
integrality gap for the instance is 1.

Note that the theorem implies the following important property about the
bidirected cut relaxation for quasi-bipartite graphs: If the minimum spanning
tree is optimal, then the relaxation is exact. Only the above property of Embed

is used beyond this section. The rest of the section describes Embed.

Notation: Given an embedding z : V → ∆
(λ)
k and the distance d(·, ·) induced by

it, call an edge (u, v) tight if d(u, v) = c(uv). Call (u, v) under-tight or over-tight
if the distance is strictly smaller or larger, respectively.



The following is a continuous description of the algorithm, which can be easily
discretized. The algorithm has a notion of time. It starts at time t = 0 and
time increases at unit rate. At any time t, all required vertices are on the t-
simplex, all Steiner vertices are below the t-simplex, and no edge is over-tight.
The algorithm maintains a set of tight terminal-terminal edges T , which form a
forest at any time t. Let K denote a connected component of required vertices
formed with the edges of T . At time t = 0, the algorithm starts with T = ∅ and
the components are singleton required vertices. All vertices start at the origin
at t = 0.

Required vertices: For each component K and required vertex i ∈ K, the
algorithm increases the jth coordinate of i at rate 1/|K|, for each j ∈ K.
Clearly, this will keep required vertex i on the t-simplex. When an edge (ij)
goes tight, the algorithm merges the components containing i and j and
adds (ij) to T . It is instructive to note that when restricted to only required
vertices, this actually mimics Kruskal’s MST algorithm.

Steiner vertices: A Steiner vertex v remains at the origin until it links to a
required vertex. It links to required vertex i at time t = c(iv), if it is not
already linked to another required vertex in the same component as i. The
edge (iv) is called a link. We say that v is linked to a component K if it is
linked to any required vertex in K. For each component K that v is linked
to, the coordinates of v corresponding to K increase at rate 1/|K|.

The algorithm terminates if the number of components becomes 1 (Case 1) or a
Steiner vertex v hits the simplex (Case 2). The example in Figure 2 illustrates
the algorithm on a graph with three required vertices.

We now show the above procedure satisfies the conditions. In Case 1, the
algorithm returns the embedding obtained after running the following projection
step. If Case 1 happens at time t = λ, then the algorithm projects each Steiner
vertex onto the λ-simplex. For every Steiner vertex v and coordinate j, zv(j)←
zv(j)

λ
||zv||1

. The coordinates of the required vertices are kept the same. It is easy

to show that z is feasible, that is, no edge is over-tight. We need to show that
tree T has cost γ(z). In fact we prove something stronger. Given any connected
component K, denote the restriction of T to K as T [K].

Lemma 1. At any instant of time t, for any connected component K,
c(T [K]) =

∑
i∈K zi(i)− t.

Proof. At time t = 0, the lemma holds vacuously. Since the quantity
∑

i∈K zi(i)
increases at the same rate as time, we need to prove the lemma only in the time
instants when two components merge. Suppose K, K ′ merge at time instant t due
to edge (ij) which comes in the tree, with i ∈ K, j ∈ K ′. Note d(i, j) = c(ij) = t.
So for the new connected component K ∪K ′,

∑
i∈K∪K′ zi(i)− t =

∑
i∈K zi(i)−

t +
∑

i∈K′ zi(i)− t + t = c(T [K]) + c(T [K ′]) + c(ij) = c(T [K ∪K ′]). �

In Case 2, when v hits the simplex, the algorithm returns v as the Steiner
vertex helping the minimum spanning tree. In fact, we show that if v is linked
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Fig. 2. Snapshots of the running of Embed on the graph above at times t = 2, 3, 4, 5. At time t = 2,

the Steiner vertex v links to the required vertices x and y, and increases its x and y coordinates at

rate 1. At time t = 3, x, y merge. The edge (x, y) goes into Remove(v). At time t = 4, v links to z,

and moves in the zth coordinate as well. At t = 5, it hits the 5-simplex, terminating the algorithm.

The tree shown with dotted lines pays exactly for the dual and is cheaper than the MST.

to K1, · · · , Kr when it hits the simplex, then v helps the MST of the required
vertices in P =

⋃
l Kl. This suffices since

⋃
l T [Kl] can be extended to an MST

of R.
With each Steiner vertex v, we associate a subset of edges Remove(v) of T .

Suppose v is linked to K and K ′ and these merge at time t, due to edge (ij),
i ∈ K and j ∈ K ′. At this point, (ij) is added to the set Remove(v). Thus, a
Steiner vertex may have more than one link into the same component, but for
each extra link, there is an edge in Remove(v). Let Tv be the tree formed by
adding all the links incident at v to

⋃
l T [Kl] and deleting Remove(v). The proof

of the following lemma is very similar to that of Lemma 1.

Lemma 2. At any instant of time, c(Tv) =
∑

i∈P zi(i)−
∑

i∈P zv(i).

Hence when v hits the simplex,
∑

i∈P zv(i) = t, and so c(Tv) =
∑

i∈P zi(i)− t <
MST (P ).
Remark: Note that the above algorithm and analysis do not use the fact the
cost satisfies triangle inequality. We would need this for our algorithms to work.

3 The
√

2 Factor Approximation Algorithm

Notation 1 MST (U ; c) denotes the minimum cost spanning tree on vertices U
given the costs c. Based on the context, it also denotes the cost of this tree.



We start by giving a high level idea of our algorithm. The algorithm will return
a cost c2 and a subset of Steiner vertices X ⊆ S such that

1. The optimal Steiner tree w.r.t. c2 is the MST. Equivalently, Embed when run
on G, c2 terminates with a feasible embedding z with γ(z) = MST (R; c2).

2. MST (X ∪R; c) ≤
√

2 ·MST (R; c2)

The costs c2 will be only smaller than c; therefore, z is also feasible for c.
Hence, the two conditions imply that we get a factor

√
2 approximation.

Initially, X = ∅ and we obtain c2 by reducing the costs of the required-
required edges by a factor of

√
2 and leaving the costs of required-Steiner edges

unchanged. We denote the reduced cost at this point as c1 which we use later.
Clearly Condition 2 is satisfied now, and will remain an invariant of the algo-
rithm.

Suppose that condition 1 is not satisfied, that is, when Embed is run on
G, c2, a Steiner vertex v ∈ S is crystallized. At this point, the algorithm adds v
to X , and will modify c2 by reducing the costs of certain required-required edges
further, as detailed below. This has the effect that if Embed is run with these
new costs, v does not crystallize, while still maintaining the invariant. Hence in
each iteration, a new Steiner vertex is added to X , implying termination in at
most |S| rounds.

We now give the intuition behind modifying the costs so that the invariant
is maintained. The first step of scaling all the required-required edges acts as a
“global filter” which filters out Steiner vertices that only help a little. If a Steiner
vertex v does crystallize, then adding it to X reduces the cost of MST (R∪X ; c)
so much that decreasing the cost of required-required edges “local” to it to
1
2 of the original costs still maintains the invariant. This requires an involved
argument (Theorem 6) that amortizes the improvements due to all the vertices
previously added to X . This has the additional required effect that v itself is
filtered out.

Now the formal description of the algorithm follows.

Definition 1. Applying the global filter with parameter ρ > 1 gives a cost c1

defined as c1(ij) = c(ij)
ρ for all i, j ∈ R, and c1(iv) = c(iv) for all i ∈ R and

v ∈ S.

Definition 2. Applying a local filter w.r.t X ⊆ S gives a cost c2. Let T1 =
MST (R ∪ X ; c1), and for each u ∈ X, Clos(u) denote the closest required
vertex to u. The cost c2 after applying the local filter w.r.t X is defined as
c2(Clos(u), j) = 1

2c(Clos(u), j) (half the original cost), for every u ∈ X and
j ∈ R (j 6= Clos(u)) that is adjacent to u in T1. c2(e) = c1(e) (the global filter
is retained) otherwise.



Algorithm Primal-Dual

1. Apply global filter with parameter ρ =
√

2 to get c1.
Initialize X ← ∅; c2 ← c1.

2. Repeat till Embed returns z
Run Embed on G, c2.
If Embed returns v then

X = X ∪ v; Apply local filter w.r.t X to get c2.
3. Return T1 = MST (R ∪X ; c1), z.

Theorem 6. The algorithm Primal-Dual terminates in at most |S| rounds,
returning a Steiner tree T1 and a feasible embedding z of G, c such that
c(T1) ≤

√
2 · γ(z) ≤

√
2 ·OPT .

Proof. (Sketch) Let T1 = E0 ∪E1, where E0 denotes the required-Steiner edges
and E1 denotes the required-required edges of T1. We bound the costs of these
two sets separately. Let E2 be the set of edges modified by the local filter, that
is, e such that c2(e) = 1

2c(e). Define T2 to be E2∪E1. It can be shown that T2 is
an MST with costs c2, and hence c2(T2) = γ(z). We have c(T1) = c(E0)+c(E1),
c2(T2) = c2(E2) + c2(E1) and it is enough to prove that

– c(E0) ≤
√

2c2(E2).
This is essentially a consequence of the observation that c1(T1) ≤MST (R; c1).
Since T2 = E1 ∪ E2 is also a spanning tree of R, we get c1(T1) ≤ c1(T2).
Expanding the costs, we get

c1(E0) + c1(E1) ≤ c1(E2) + c1(E1).

Since E0 are required vertex-Steiner edges, c1(E0) = c(E0). c1(E2) = c(E2)/
√

2 =√
2c2(E2) by definition, giving us c(E0) ≤

√
2c2(E2).

– c(E1) ≤
√

2c2(E1).
Since E1 costs are not modified by the local filter, c2(E1) = c1(E1) and in
fact the relation holds with equality. �

In fact, the above algorithm has a faster implementation. Although the algorithm
constructs the set X in a certain order, it turns out that the order does not
matter. Hence it is enough to simply apply the global filter and go through the
Steiner vertices (in any order) once, picking the ones that help.



Algorithm Reduced One-Pass Heuristic

1. Apply global filter with parameter ρ =
√

2 to get c1.
Initialize X ← ∅;

2. For all v ∈ S,
If MST (R ∪X ∪ v; c1) < MST (R ∪X ; c1), then

X = X ∪ v ;
3. Return T1 = MST (R ∪X ; c1).

Theorem 7. There exists a feasible embedding z of G, c such that for T1 re-
turned by Algorithm Reduced One-Pass Heuristic, c(T1) ≤

√
2 · γ(z).

The proof of Theorem 7 is similar to Theorem 6. Note that the above algo-
rithm makes at most |S| minimum spanning tree computations and is hence is
very efficient. In particular, it runs in strongly polynomial time.

4 The 4

3
Factor Approximation Algorithm

The primal-dual 4
3 approximation algorithm is along the lines of the one in the

previous section, with the major difference being that it drops Steiner vertices
from X when beneficial. The other differences are that it applies the global filter
with ρ = 4/3, and the definition of a local filter is somewhat different. And like
the earlier algorithm, the order of vertices picked/dropped does not matter. As
a result it can be implemented as a local search algorithm with an extra global
filtering step, which is what we present here.

Algorithm Reduced-Local-Search

1. Apply global filter with parameter ρ = 4/3 to get c1.
Initialize X ← ∅, T1 = MST (R; c1);

2. Repeat
If ∃v such that MST (R ∪X ∪ v; c1) < c1(T1), X = X ∪ v.
If ∃v such that MST (R ∪X \ v; c1) < c1(T1), X = X \ v.
T1 = MST (R ∪X ; c1).

Until No such v exists.
3. Return T1.

The plain local search algorithm (without the global filtering step) was stud-
ied [RV99] who showed that this algorithm gives a 3/2 factor approximation for
quasi-bipartite graphs. This factor is tight. So the simple modification of apply-
ing a global filter provably improves the performance of this algorithm. It was
shown in [Riz03] that this algorithm can be implemented efficiently.



We show that T1 returned by the algorithm is within 4/3 of the optimal by
exhibiting an embedding z of value greater than 3/4 times the cost of T1. As
in Section 3, the analysis proceeds by defining cost c2 and constructing tree T2.
The factor 4/3 comes from the parameter ρ used in the global filter and the
following property of T1.

Lemma 3. The degree of every Steiner vertex in T1 is at least 4.

Proof. It is easy to see that T1 doesn’t have vertices of degree 1 or 2. Suppose
there existed a Steiner vertex v ∈ T1 with deg(v) = 3. Let a, b, c be the required
vertices connected to v and assume c1(va) ≤ c1(vb) ≤ c1(vc) without loss of
generality. Now by triangle inequality property of c, we know c(va) + c(vb) ≥
c(ab). Since c(va) = c1(va) and c(vb) = c1(vb), we get 3

4 (c1(va) + c1(vb)) ≥
3
4c(ab) = c1(ab). Similarly 3

4 (c1(va) + c1(vc)) ≥ c1(ac). Thus c1(ab) + c1(ac) ≤
3
4 (2c1(va) + c1(vb) + c1(vc)) ≤ c1(va) + c1(vb) + c1(vc). Thus MST (R ∪ X)
would choose (ab) and (ac), rather than choosing (va), (vb), (vc). �

Theorem 8. For the tree T1 returned by Reduced-Local-Search, there ex-
ists a feasible embedding z such that c(T1) ≤ 4

3 · γ(z).

Proof. (Sketch) As in the proof of Theorem 6, denote the edges of T1 as E1∪E0.
Define c2 as: For every Steiner vertex v ∈ T1 and for every j 6= Clos(v) connected
to v in T1, let c2(Clos(v), j) = c1(vj). Note that c1(vj) ≤ c1(Clos(v), j), for
otherwise T1 would have picked (Clos(v), j) instead of (vj). Call these required
vertex-required vertex edges diminished. For every other edge, c2(e) := c1(e).
Let E2 be the set of diminished edges and let T2 := E1∪E2, be a required vertex
spanning tree. By the conditions of the algorithm, since T1 is an MST of R ∪X
with costs c1 and no Steiner vertices help X , T2 is an MST of R with costs c2

and no Steiner vertex helps T2. Thus, by Theorem 5 running Embed on G, c2

returns a feasible embedding z of value c2(T2). We now bound the cost of T1.
We have c(T1) = c(E1) + c(E0) = c(E1) + c1(E0). Note that c2(T2) =

c1(E1) + c2(E2) since E1 is not diminished. As in the proof of Theorem 6, we
argue term by term. By definition we have c(E1) = 3

4c1(E1).
Every Steiner vertex v ∈ T1 contributes deg(v) − 1 edges to E2 and deg(v)

edges in E0, where deg(v) is the degree of v in T1. By definition the deg(v)− 1
edges have cost exactly the cost of the largest deg(v)−1 edges of the deg(v) edges
it contributes to E0. By lemma 3, deg(v) ≥ 4 and thus we get c1(E0) ≤ 3

4c2(E2).
Adding, we get c(T1) ≤ 4

3c2(T2) = 4
3γ(z). �

5 Discussion

Clearly the most important question to address is whether the geometric ap-
proached to the bidirected cut relaxation describe here can be extended to gen-
eral graphs. In fact, there is a natural generalization of the Embed procedure
described above to the case where there are Steiner-Steiner edges; however, it
has not yielded any results for the general case. As noted above, one crucial



property possessed by quasi-bipartite graphs is Theorem 5: if the spanning tree
is optimal, then the relaxation is exact. However, this property is not satisfied
by general graphs. An interesting question would be upper bounding the gap in
such instances, and then perhaps our techniques of reducing costs may be useful.
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