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Abstract

Using Lemke’s scheme, we give a complementary pivot algorithm for computing an equi-

librium for Arrow-Debreu markets under separable, piecewise-linear concave (SPLC) utili-

ties. Despite the PPAD-completeness of this case, experiments indicate that our algorithm

is practical – on randomly generated instances, the number of iterations it needs is linear in

the total number of segments (i.e., pieces) in all the utility functions specified in the input.

Our paper settles a number of open problems:

• Eaves [16] gave an LCP formulation and a Lemke-type algorithm for linear Arrow-

Debreu model. We generalize both to the SPLC case, hence settling the relevant part

of his open problem.

• Our path following algorithm for SPLC markets, together with a result of Todd [54],

gives a direct proof of membership of such markets in PPAD and settles a question of

Vazirani and Yannakakis [55].

• We settle a question of Devanur and Kannan [10] of obtaining a “systematic way of

finding equilibrium instead of the brute-force way” for the separable case and we obtain

a strongly polynomial algorithm if the number of goods or agents is constant.

• We give a combinatorial way of interpreting Eaves’ algorithm for the linear case, hence

answering Eaves’ question [16], “That the algorithm can be interpreted as a ‘global

market adjustment mechanism’ might be interesting to explore.”

1 Introduction

The study of computability of market equilibria started twelve years ago in theoretical com-

puter science, and once polynomial time algorithms were found for markets under linear utility
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functions [11, 12, 31, 24, 30, 57, 42, 56, 14], interest shifted to more general utility functions.

In economics, it is customary to assume that utility functions are concave, since they capture

the important condition of decreasing marginal utilities1. Since we are studying computability

in a finite precision model of computation, we need to restrict attention to piecewise-linear con-

cave (PLC) utility functions; clearly, by making the pieces fine enough, we can obtain a good

approximation to the original utility functions.

Within the class of PLC utilities, it is important to distinguish between the separable and

non-separable cases. As detailed in Section 1.1, whereas the former always admit rational equi-

libria, if all parameters of the market are rational numbers, the latter may have only irrational

equilibria and are difficult to deal with. For these reasons, understanding the complexity of

markets under separable PLC (SPLC) utility functions became the next major challenge. This

long-standing open question was settled in [5], showing that the problem is PPAD-complete for

both Fisher and Arrow-Debreu market models.

As a result, under the assumption P 6= PPAD, a polynomial time algorithm for this case is not

possible. On the other hand, efficiently computing market equilibria is of practical importance,

e.g., see [18, 51], and its computability had been the subject of intense work in economics as

well [4, 17, 20, 22, 37, 49]. Our main result is a complementary pivot algorithm for computing

an equilibrium in an Arrow-Debreu market under SPLC utility functions. Experimental results

on randomly generated instances suggest that our algorithm will be fast in practice.

Starting with the (pivoting-based) simplex algorithm for linear programming [8], by now

several prominent algorithms exhibiting the following phenomena are known: They perform

well in practice even though their worst case behavior is exponential; the latter is exhibited

via intricately doctored up instances that are designed to make the algorithm perform poorly,

e.g., the Klee-Minty example for simplex [33]. Another algorithm exhibiting this phenomena is

the classical Lemke-Howson algorithm for computing a Nash equilibrium of a 2-person bimatrix

game, which will henceforth be called 2-Nash [36, 44]; this is also a complementary pivot algo-

rithm. We expect our algorithm to also be exponential in the worst case, and we leave the open

problem of finding such a family of instances.

In addition to being practical, the Lemke-Howson algorithm has yielded deep structural

properties of 2-Nash equilibria, such as oddness of the number of equilibria as well as index,

degree and stability [25, 48, 50]. It also motivated the definition of the complexity class PPAD

[43] as described in the following quote from [55]:

The definition of the class PPAD was designed to capture problems that allow for

path following algorithms, in the style of the algorithms of Lemke-Howson [36] and

Scarf [47]. Our result, showing membership in PPAD for both market models under

1Furthermore, such utilities introduce convexity in the problem, which is a natural condition without which
even fixed point theorems are not applicable. Additionally, convexity is crucial for designing algorithms for the
problem.
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separable, piecewise-linear, concave utility functions, establishes the existence of such

path following algorithms for finding equilibria for these market models; however, it

does so indirectly, by appealing to the characterization of PPAD given in [21]. It

will be interesting to obtain natural, direct algorithms for this task (hence leading to

a more direct proof of membership in PPAD), which may be useful for computing

equilibria in practice.

The starting point of our work was the open problem described in this quote. Our algorithm

is a path following algorithm and yields, together with Todd’s result [54], a direct proof of

membership of the problem in PPAD. We build on the work of Eaves [15], who obtained a path

following algorithm for Arrow-Debreu markets under linear utilities, using Lemke’s algorithm.

Both Lemke-Howson and Lemke’s algorithms are complementary pivot algorithms; however,

their mode of operation has some basic differences. The former requires a starting dummy

solution, while the latter constructs a starting solution by introducing an extra dimension, see

Section 2. Also, in Lemke’s algorithm, all the complementarity conditions are satisfied on the

followed path, whereas in the Lemke-Howson algorithm, all but one condition are satisfied on

the path. Lemke’s algorithm is useful for solving a broader class of problems, including 2-Nash

[35, 53, 34].

We note that whereas several complementary pivot algorithms have been given for Nash

equilibria after the work of Lemke and Howson [35, 19, 28, 34, 53], no such algorithms were

obtained for market equilibria following Eaves’ work. In the next section, we will attempt to

give a reason for this.

1.1 The importance of rationality

A complementary pivot algorithm is possible for a problem only if it exhibits rationality, i.e., if

all parameters are set to rational numbers, the solution must be rational.

Eaves ends his 1975 report [15] with the following sentence:

Also under study are extensions of the overall method to include piecewise linear

concave utilities, production, etc., if successful, this avenue could prove important in

real economic modeling.

However, in his 1976 journal paper [16], he drops this sentence and instead adds:

... now let us suppose that each trader has a piecewise linear concave utility function

in lieu of a linear one. We asked the same question, given rational data, does there

exist a rational equilibrium? Andreu Mas-Colell (personal communication, 1975)

generated the following 3-trader and 2-good example to demonstrate the negative.

He goes on to stating an example of a market with Leontief utilities that has only irrational

equilibria and concludes:
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Consequently, one can conclude that Lemke’s algorithm cannot be used to solve this

class of exchange problems.

One can surmise that Eaves did not consider the case of SPLC markets. Moreover, rationality

of equilibria for this case was established only in 2009 – independently in [10] and [55]. Indeed,

rationality had played a crucial role in his own work on the linear case, since rationality is

essential for obtaining an LCP formulation for a problem.

Stymied in an effort to compute an equilibrium of the linear pure exchange model

using Lemke’s algorithm, the author approached David Gale with the following ques-

tion. If W and U are rational, does there exist a rational equilibrium? The success

of the present paper rests upon the argument given in Gale (private communication

1974) which supplied an affirmative answer ...

1.2 Our results

As stated above, our main result is a Lemke-type algorithm for SPLC Arrow Debreu markets,

hence solving the relevant subcase of the question posed by Eaves [15]. At a technical level, this

involves two main ideas: The first is to derive an LCP formulation for the given problem, and

the second is to prove that the polyhedron associated with the augmented LCP has no secondary

rays. For the second part, we need to assume that the SPLC market satisfies strong connectivity

– this is among the weakest known conditions for existence of a market equilibrium (see Section

3.2). Without imposing any condition, an SPLC market may not admit an equilibrium, and

determining if it has one is NP-complete [55].

We note that a deficiency of Lemke’s algorithm is that in general it does not guarantee

a solution: this happens if the path starting with the primary ray ends in a secondary ray,

see Sections 2 and 5. For several classes of LCPs it is known that their polyhedra do not

have secondary rays, and hence Lemke’s algorithm is guaranteed to terminate in a solution [7].

However, our LCP does not lie in any of these classes [1], hence necessitating a separate proof

of this fact.

Our algorithm yields several additional results analogous to those yielded by the Lemke-

Howson algorithm. First, together with a result of Todd [54], it yields a path following algorithm

for SPLC markets and therefore a direct proof of membership of this case in PPAD, hence settling

the open problem of [55]. Second, it yields the first elementary proof of existence of equilibrium

for SPLC markets, i.e., without using fixed point theorems. The best known example of an

elementary proof of existence is Lemke and Howson’s proof for existence of an equilibrium for

2-Nash, which follows from their algorithm [36]. Scarf has used their algorithm to derive other

elementary proofs, e.g., for showing that balanced games have a non-empty core [45, 46].

Third, it enables us to prove that SPLC markets have an odd number of equilibria (up

to scaling), assuming non-degeneracy, and we believe it should yield other insights as well,
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see Section 10. In the past, economists have considered the issue of oddness of equilibria for

regular markets, i.e., markets whose demand functions are continuously differentiable. Debreu

[9] showed that such markets have a finite number of equilibria and then using index theorems,

Dierker [13] showed that the number of equilibria is odd. We note that in general, in an SPLC

market an agent can have multiple optimal bundles, hence these markets don’t even have a well

defined demand function and are not regular. It is worth mentioning that economists have also

obtained algorithms for computing equilibria in regular markets, typically via homotopy-based

methods. Once again these methods are not applicable to our markets for reasons stated above.

At this point, it is natural to ask whether the pivoting steps of our algorithm have an

interpretation in the market itself. Indeed, this question was asked by Eaves [16] as well, “That

the algorithm can be interpreted as a ‘global market adjustment mechanism’ might be interesting

to explore.” We give a combinatorial way of interpreting Eaves’ algorithm for the linear case. We

note that it is quite different from the combinatorial interpretation of Garg et. al’s algorithm,

which is based on the Lemke-Howson approach, for the linear case [23].

For SPLC markets, Devanur and Kannan [10] gave a polynomial time algorithm to compute

an equilibrium when the number of goods or agents is a constant. Their algorithm resorts to

an exhaustive search of all possible configurations of allocations, and they leave the question of

obtaining a “systematic way of finding equilibrium instead of the brute-force way.” We settle

this question and we improve their running time to strongly polynomial.

This is achieved by showing that if the number of goods or agents is a constant, say c,

then the number of vertices (of the polyhedron) on the path starting with the primary ray is

polynomially bound. Of course, c occurs in the exponent of this polynomial, i.e., it is nO(c).

However unlike their algorithm, which explores all of the polynomially bounded (with c in the

exponent) configurations on each input, our algorithm does not do exhaustive search and will

terminate very quickly on typical inputs.

2 The Linear Complementarity Problem and Lemke’s Algorithm

Given an n×n matrix M , and a vector q, the linear complementarity problem2 asks for a vector

y satisfying the following conditions:3

My ≤ q, y ≥ 0 and y · (q −My) = 0. (1)

The problem is interesting only when q 6≥ 0, since otherwise y = 0 is a trivial solution. Let

us introduce slack variables v to obtain the equivalent formulation.

My + v = q, y ≥ 0, v ≥ 0 and y · v = 0. (2)

2We refer the reader to [7] for a comprehensive treatment of notions presented in this section.
3The standard way of formulating an LCP is ‘My ≥ −q, y ≥ 0 and y · (My + q) = 0’. However, the LCP

we construct in Section 4 is more amenable to the form given in (1).
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The reason for imposing non-negativity on the slack variables is that the first condition in

(1) implies q −My ≥ 0. Let P be the polyhedron in 2n dimensional space defined by the first

three conditions; we will assume that P is non-degenerate. Under this condition, any solution

to (2) will be a vertex of P, since it must satisfy 2n equalities. Note that the set of solutions

may be disconnected.

An ingenious idea of Lemke was to introduce a new variable and consider the system, which

is called the augmented LCP:

My + v − z1 = q, y ≥ 0, v ≥ 0, z ≥ 0 and y · v = 0. (3)

Let P ′ be the polyhedron in 2n+ 1 dimensional space defined by the first four conditions of

the augmented LCP; again we will assume that P ′ is non-degenerate. Since any solution to (3)

must still satisfy 2n equalities, the set of solutions, say S, will be a subset of the one-skeleton

of P ′, i.e., it will consist of edges and vertices of P ′. Any solution to the original system must

satisfy the additional condition z = 0 and hence will be a vertex of P ′.
Now S turns out to have some nice properties. Any point of S is fully labeled in the sense

that for each i, yi = 0 or vi = 0. We will say that a point of S has double label i if yi = 0 and

vi = 0 are both satisfied at this point. Clearly, such a point will be a vertex of P ′ and it will

have only one double label. Since there are exactly two ways of relaxing this double label, this

vertex must have exactly two edges of S incident at it. Clearly, a solution to the original system

(i.e., satisfying z = 0) will be a vertex of P ′ that does not have a double label. On relaxing

z = 0, we get the unique edge of S incident at this vertex.

As a result of these observations, we can conclude that S consists of paths and cycles. Of

these paths, Lemke’s algorithm explores a special one. An unbounded edge of S such that the

vertex of P ′ it is incident on has z > 0 is called a ray. Among the rays, one is special – the one on

which y = 0. This is called the primary ray and the rest are called secondary rays. Now Lemke’s

algorithm explores, via pivoting, the path starting with the primary ray. This path must end

either in a vertex satisfying z = 0, i.e., a solution to the original system, or a secondary ray.

In the latter case, the algorithm is unsuccessful in finding a solution to the original system; in

particular, the original system may not have a solution.

Remark: Observe that z1 can be replaced by za, where vector a has a 1 in each row

in which q is negative and has either a 0 or a 1 in the remaining rows, without changing its

role; in our algorithm, we will set a row of a to 1 if and only if the corresponding row of q

is negative. As mentioned above, if q has no negative components, (1) has the trivial solution

y = 0. Additionally, in this case Lemke’s algorithm cannot be used for finding a non-trivial

solution, since it is simply not applicable. However, Lemke-Howson scheme is applicable for

such a case; it follows a complementary path in the original polyhedron (2) starting at y = 0.

It guarantees termination at a non-trivial solution if the polyhedron is bounded.
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3 Arrow-Debreu Markets with SPLC Utility Functions

The Arrow-Debreu market model [2] consists of a set G of divisible goods and a set A of agents;

let |G| = n and |A| = m. Assume that the goods are numbered from 1 to n and the agents are

numbered from 1 to m. Each agent i ∈ A has an initial endowment of goods, say (wi
1, . . . , w

i
n)

where wi
j ≥ 0, ∀j ∈ G. These and other parameters defined below will be assumed to be rational

numbers. Without loss of generality (w.l.o.g.) we assume that each agent i has a positive amount

of at least one good and the total quantity of every good is unit.

In this paper, we deal with the case of SPLC utility functions. For each agent i and good j we

are specified a function f ij : R+ → R+ which is (non-negative) non-decreasing, piecewise-linear

and concave, and gives the utility that i derives as a function of the amount of good j that she

receives. Her overall utility, ui(x), for a bundle x = (x1, . . . , xn) of goods is additively separable

over the goods, i.e., ui(x) =
∑

j∈G f
i
j(xj).

Given prices p = (p1, . . . , pn) for all the goods, define the earning of agent i to be
∑

j∈G w
i
jpj ,

i.e., the amount of money she earns by selling her initial endowment. Agent i uses this money

to buy an optimal bundle of goods, i.e., a bundle that maximizes her utility. We say that p is

a market clearing price vector if there are choices of optimal bundles for the agents such that

after each agent is given such a bundle, there is no deficiency of any good and no surplus of any

good having a positive price (note that surplus quantities of any good having zero price can be

freely disposed off without decreasing agents’ utilities), i.e., the market clears. The problem is

to find such market clearing or equilibrium prices.

We call each piece of f ij a segment. The number of segments in function f ij is denoted by sij

and the kth segment of f ij is denoted by the triple (i, j, k). The slope of a segment specifies the

rate at which the agent derives utility per unit of additional good received. Suppose segment

(i, j, k) has domain [a, b] ⊆ R+, and slope c. Then, we define uijk = c and lijk = b− a. Note that

for each function f ij the amount of the last segment is infinity. However, since the total amount

of good j available in the market is unit, we assume w.l.o.g. that the amount of the last segment

is a small constant greater than one. Clearly, ∀k < sij , u
i
jk > uij(k+1) ≥ 0. We will denote this

market by M.

3.1 Characterizing optimal baskets

Next, we characterize optimal baskets of an agent i relative to prices p. Define the bang-per-buck

of agent i from segment (j, k) relative to prices p to be

bpbi
jk =

uijk
pj
.

We take 0/0 as 0. The value bpbi
jk represents the utility derived by agent i per unit of money

while obtaining good j corresponding to segment (j, k).
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Clearly, i’s optimal bundle will consist of goods obtained on segments yielding highest pos-

sible bang per buck and can be computed as follows. Sort i’s segments by decreasing bang

per buck and partition the segments by equality, i.e., each equivalence class will consist of all

segments having equal bang-per-buck. Let the classes be: Q1, Q2, . . .. At prices p, the segments

in Ql make i equally happy, and strictly happier than those in Ql+1, Ql+2, . . .. Hence, she would

start buying partitions in order, until all her money (
∑

j w
i
jpj) is exhausted. Suppose she ex-

hausts all her money at kthi partition. The segments in partitions 1 to ki−1 will be called forced,

those in partition ki will be called flexible and those in partitions ki+1 and higher will be called

undesirable. Indeed, every optimal bundle is obtained in this manner: it must fully allocate all

segments in the forced partitions; the money left over after this allocation is spent on segments

in the flexible partition in any manner, since all these segments have equal bang per buck; and

no allocation is made corresponding to segments in undesirable partitions.

3.2 Strong connectivity

In general there may not exist market equilibrium prices; in fact, for SPLC utilities, it is NP-hard

to determine if they exist [55]. However, an equilibrium is guaranteed to exist under certain

sufficient conditions. Let us say that agent i is non-satiated by good j if the last segment of f ij
has positive slope, i.e., uijsij > 0.

• Strong connectivity: Construct a directed graph whose nodes correspond to agents of

market M and there is an edge from i′ to i only if there is a good possessed by agent i′

for which agent i is non-satiated. Market M satisfies strong connectivity if this graph is

strongly connected.

Strong connectivity is among the weakest known sufficient conditions for existence of mar-

ket equilibrium, see Maxfield [39]4. Henceforth we will assume that market M satisfies this

condition.

4 LCP Formulation

Building on Eaves’ formulation for the linear utilities case, we derive an LCP formulation for

Arrow-Debreu markets with SPLC utility functions. Since the formulation turns out to be quite

complex, we will do it in stages. As stated in Section 3.2, we have assumed that the given

market M satisfies strong connectivity, hence equilibrium does exist.

4Earlier, Arrow and Debreu [2] had proved that the following are the sufficient conditions:

• Non-zero initial endowments: Every agent posses a non-zero amount of every good.

• Non-satiation: Every agent is non-satiated by some good.
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The LCP needs to accomplish two main tasks: ensuring market clearing (i.e., that every

good is fully sold and the money of each agent, obtained by selling her initial endowment, is

fully spent) and ensuring that each agent obtains an optimal bundle of goods.

The first task is easy and in fact it does not even need complementarity – just non-negativity

suffices. Let pj be a variable that denotes good j’s price and let qijk be a variable that denotes

the amount of money spent by agent i for buying good j corresponding to segment (j, k). All

variables introduced will have a non-negativity constraint; for the sake of brevity, we will not

write them explicitly. Also, for each agent i, let us introduce a variable λi. For now, our intention

is that 1/λi will be the bang-per-buck of the flexible partition of i’s allocation5. Because of the

assumptions made on M in Section 3, λi will turn out to be positive.

The first task is accomplished by the following constraints; we have included the correspond-

ing complementarity conditions in order to obtain an LCP in the standard form. (We will refer

to these as follows: the equation number will refer to the constraint and the equation number

with a prime will refer to the complementarity condition, e.g., (4) refers to the first constraint

below and (4’) refers to the corresponding complementarity condition.)

∀j ∈ G :
∑
i,k

qijk ≤ pj and pj

∑
i,k

qijk − pj

 = 0 (4)

∀i ∈ A :
∑
j

wi
jpj ≤

∑
j,k

qijk and λi

∑
j

wi
jpj −

∑
j,k

qijk

 = 0 (5)

Lemma 1 The sets of constraints given in (4) and (5) hold if and only if the market clears.

Proof : Adding the constraints in (4) over all goods and those in (5) over all agents we get

∑
i,j,k

qijk ≤
∑
j

pj and
∑
i,j

wi
jpj ≤

∑
i,j,k

qijk,

respectively. Since
∑

i,j w
i
jpj =

∑
j pj , both these inequalities are equalities. Finally, by non-

negativity, all the constraints in (4) and (5) must hold with equality, hence proving the lemma.

2

Ensuring optimal bundles is somewhat more involved and requires the full power of comple-

mentarity. Consider a segment (i, j, k) in i’s flexible partition. By the remarks made above, we

want

1

λi
= bpbi

jk =
uijk
pj
.

5Eventually, in Lemma 3 we will show that 1/λi is a lower bound on the bang-per-buck of the flexible partition
of i’s allocation.
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Let (i, j′, k′) be a segment in one of i’s forced partitions. Clearly, bpbi
j′k′ > bpbi

jk. To compensate

for this, for each segment (i, j, k) in i’s utility functions let us introduce variable γijk which can

be viewed as a supplementary price associated with this segment.

Consider the following constraints and complementarity conditions:

∀(i, j, k) : uijkλi ≤ pj + γijk and qijk(uijkλi − pj − γijk) = 0 (6)

∀(i, j, k) : qijk ≤ lijkpj and γijk(qijk − lijkpj) = 0 (7)

Let us denote the LCP defined by the sets of constraints and complementarity conditions

given in (4), (5), (6) and (7), together with non-negativity on all variables, as LCP (1).

Lemma 2 Any equilibrium of market M yields a solution to LCP (1).

Proof : Consider an equilibrium of M. Substitute for the variables pj , q
i
jk, λi in the manner

described above. Since the market clears, by Lemma 1, (4) and (5) are satisfied. Substitute for

the variables γijk as follows: if segment (i, j, k) is flexible or undesirable, set it to zero, and if it

is forced, set it so that the following equality is satisfied

1

λi
=

uijk
pj + γijk

.

Clearly, all the γijks satisfy non-negativity. Now, it is easy to verify that in each of the three

cases – that the segment (i, j, k) is forced, flexible or undesirable – the constraints (6) and (7),

and complementarity conditions (6’) and (7’) are all satisfied. 2

LCP (1) suffers from two shortcomings. First, since the rhs vector of the constraints, denoted

by q in Section 2, is zero, the polyhedron is highly degenerate – in fact, it is a cone with its vertex

at the origin. Another eventuality that results from q being zero is that Lemke’s algorithm is

simply not applicable, as mentioned in the Remark in Section 2 – for that q needs to have some

negative entries. Second, LCP (1) admits solutions that don’t correspond to equilibria, e.g., pick

an arbitrary subset G′ ⊂ G and find an equilibrium for the market consisting of agents A and

goods G′. Set the corresponding variables in accordance with this equilibrium. For each good

j ∈ (G \ G′), set pj = 0 and for each segment (i, j, k) of this good, set qijk = 0 and γijk = uijkλi.

One can verify that this is a solution to LCP (1).

Both these shortcomings can be circumvented as follows. For a good j, define desire(j) to be

the total amount represented by its non-zero utility segments, i.e., desire(j) =
∑

(i,k):ui
jk

>0 l
i
jk.

Assuming strong connectivity, we observe the following:

• If for good j desire(j) ≤ 1, then there is an equilibrium of market M in which pj = 0.
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• If desire(j) > 1 then pj > 0 in every equilibrium of market M.

If for some good j, desire(j) ≤ 1, then we may safely set pj = 0 and solve the rest of the

market. Therefore we further assume that desire of every good is more than one and hence

marketM admits an equilibrium with each good having a positive price. Furthermore, since in

the Arrow-Debreu model, a non-zero scaling of an equilibrium price vector yields an equilibrium

price vector, we can impose the condition ∀j ∈ G : pj ≥ 1, or equivalently ∀j ∈ G : pj = p′j + 1

and p′j ≥ 0, where p′j is a new variable.

The new LCP, LCP (2) is given below; non-negativity is imposed on each of the variables

occurring in it. Observe that on substituting p′j = pj−1, the only change from the previous LCP

is in (8’). As in LCP (1), this complementarity condition is not needed for establishing market

clearing. However, it does play important role in proving Corollary 7; see also the Remark in

Section 4.2.

∀j ∈ G :
∑
i,k

qijk − p′j ≤ 1 and p′j

∑
i,k

qijk − p′j − 1

 = 0 (8)

∀i ∈ A :
∑
j

wi
jp
′
j −

∑
j,k

qijk ≤ −
∑
j

wi
j and λi

∑
j

wi
j(p
′
j + 1)−

∑
j,k

qijk

 = 0 (9)

∀(i, j, k) : uijkλi − p′j − γijk ≤ 1 and qijk(uijkλi − p′j − 1− γijk) = 0 (10)

∀(i, j, k) : qijk − lijkp′j ≤ lijk and γijk(qijk − lijkp′j − lijk) = 0 (11)

It is easy to check that Lemmas 1 and 2 still hold. Additionally, we prove:

Lemma 3 In any solution to LCP (2), each agent receives an optimal bundle of goods w.r.t.

the prices of goods given by this solution.

Proof : Consider an agent i. First observe that λi > 0, for otherwise (10) will be satisfied as

a strict inequality hence forcing, via (10’), qijk = 0 for each segment of i and hence contradicting

market clearing.

Among all segments of i on which a positive allocation has been made, consider one having

the lowest bang-per-buck, say it is (i, j, k). Let Q be the partition it belongs to and let its

bang-per-buck be

uijk
pj

=
1

σi
.

Now, by the constraint (10) for this segment, and the non-negativity of γijk, we get that λi ≥ σi.
Define Q to be the flexible partition, all partitions having bang-per-buck strictly higher than

1/σi to be forced partitions, and all partitions having bang-per-buck strictly lower than 1/σi
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to be undesirable partitions. Next, we will prove that the names given are in accordance with

those in Section 3.1.

Consider an arbitrary segment of i, say (i, j, k). If it is in a forced partition, it must have

γijk > 0 in order to satisfy (10). As a result, in order to satisfy (11’), the inequality (11) must

be satisfied with equality, i.e., this segment is fully allocated. And if (i, j, k) is in an undesirable

partition, it must satisfy (10) as a strict inequality. Hence, qijk = 0 by (10’), i.e., it is totally

unallocated.

Finally, if (i, j, k) ∈ Q, there are two cases. If λi > σi, then in order to satisfy (10), γijk > 0.

Again, in order to satisfy (11’), the inequality (11) must be satisfied with equality, i.e., all

segments in partition Q must be fully allocated. And if λi = σi, γ
i
jk = 0 in order to satisfy

(10). As a result, the only constraints on qijk are that 0 ≤ qijk ≤ lijkpj , i.e., the allocation on this

segment is flexible. In order to satisfy market clearing, in both cases, the total money spent on

segments in Q must exhaust all the money of i that is remaining after all forced partitions are

allocated.

In both cases we get that 1/λi is a lower bound on the bang-per-buck of the flexible partition,

i.e., 1/σi, as was promised. Also, by the characterization given in Section 3.1, i receives an

optimal bundle of goods. 2

4.1 Our non-degeneracy assumption

Recall that in Section 2 while outlining Lemke’s algorithm, we had assumed that the polyhe-

dron corresponding to the LCP was non-degenerate. Now, it turns out that the polyhedron

corresponding to LCP (2) has an inherent degeneracy, so we need to clarify the non-degeneracy

assumption we are making. The degeneracy comes about because of the following fact estab-

lished in the proof of Lemma 1: adding the constraints in (4) over all goods and those in (5)

over all agents yields two identical equations. Henceforth, we will say that the polyhedron

corresponding to LCP (2) is non-degenerate if it has no other degeneracies.

Lemmas 1, 2 and 3 give us:

Theorem 4 The set of solutions of LCP (2) capture exactly the set of equilibria of market M,

up to scaling. Furthermore, if polyhedron P corresponding to LCP (2) is non-degenerate, then

the solutions of LCP (2) will be in one-to-one correspondence with the equilibria of M, up to

scaling.

Theorem 4 settles the appropriate subcase of the open problem posed by Eaves (1975) [15],

of formulating an LCP to capture equilibria of markets with piecewise-linear, concave utility

functions.

Remark: Observe that in the case that all segments of the flexible partition, Q, are fully

allocated, the setting of λi for agent i is not unique – it can be set to any value in the range

[σi, δi), where 1/δi is the bang-per-buck of the first undesirable partition. It is for this reason
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that for an arbitrary market M, the statement of Theorem 4 cannot be strengthened to claim

a one-to-one correspondence between the solutions of LCP (2) and the equilibria of market M,

up to scaling. However, in the non-degenerate case, the segments of partition Q will not be fully

allocated and the one-to-one correspondence will hold.

4.2 The augmented LCP

LCP (2) has the same form as the formulation given in (1) in Section 2. Next, we obtain its

augmented LCP, i.e., in the form of the formulation given in (3); however, for simplicity we will

not add slack variables at this stage.

Observe that the rhs vector, i.e., q, of LCP (2) does have negative entries and therefore, as

stated in the Remark in Section 2, Lemke’s algorithm is applicable. Further, as stated in that

remark, the z variable needs to be added only in the constraints and complementarity conditions

that have a negative rhs; in our case these are precisely (9) (with slack variables added). Hence,

we make two changes to LCP (2) to obtain the augmented LCP, which we call LCP (3). First,

we change (9) as follows:

∀i ∈ A :
∑
j

wi
jp
′
j −

∑
j,k

qijk − z ≤ −
∑
j

wi
j and λi

∑
j

wi
j(1 + p′j)−

∑
j,k

qijk − z

 = 0 (12)

Second, we impose non-negativity on z. Our algorithm will traverse a path on the 1-skeleton

of the polyhedron defined by the constraints of LCP (3), as described in Section 2.

Remark: Clearly, the set of solutions of LCP (3) in which z = 0 enjoy all properties

established in Theorem 4 and its lemmas. However, if z > 0, even market clearing, which was

shown in Lemma 1, does not hold. Despite the non-applicability of Lemma 1, observe that by

(8’), if p′j > 0, then good j must be fully sold. This fact will be used at multiple places, e.g., for

proving Corollary 7.

5 Proving Non-existence of Secondary Rays

Recall from Section 2 that the set of solutions of LCP (3), called S, consists of paths and cycles.

A crucial fact needed for the correctness of our algorithm is that the polyhedron P ′, defined by

the constraints of LCP (3), has no secondary rays and hence the path starting with the primary

ray must lead to a solution with z = 0, i.e., an equilibrium for market M. Our proof will

critically use the fact that M satisfies strong connectivity. Recall that a ray is an unbounded

edge of S such that the vertex of P ′ it is incident on satisfies z > 0.

Consider an arbitrary ray that is incident on the vertex (y∗, z∗), with z∗ > 0, and has the

direction vector (y◦, z◦). The set of points on the ray is:

R = {(y∗, z∗) + α(y◦, z◦) | ∀α ≥ 0}.
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Clearly, every one of these points is a solution of LCP (3). Now, this fact imposes such heavy

constraints on y∗,y◦, z∗ and z◦ that only one possibility results, namely, y∗ = y◦ = 0, z∗ > 0

and z◦ = 0, i.e., this ray is the primary ray. This is precisely the reason that P ′ has no secondary

rays.

We prove this fact below. The proof is long since we need to show that each of the other

possibilities leads to a contradiction. All but one of the contradictions6 uses the following simple

fact: (y∗, z∗) + α(y◦, z◦) needs to be a solution of LCP (3) for unbounded values of α. Let us

start by showing that y◦ ≥ 0 and z◦ ≥ 0. If not, for sufficiently large α we will get a point that

has a negative coordinate, contradicting a non-negativity constraint in LCP (3).

The vector y consists of four types of variables, i.e., y = (λ,p′, q,γ). Let p′◦ denote the

price variables in the direction vector y◦. At the top level, we will consider the three cases:

(i) p′◦ > 0, (ii) p′◦ 6> 0, p′◦ 6= 0, and (iii) p′◦ = 0. The first two cases lead to contradictions, the

second through strong connectivity. Finally, in the third case we show that only one alternative

can hold: that R is the primary ray.

W.r.t. a solution T to LCP (3), define the surplus of agent i to be the difference of her

earnings and the amount of money she spends, i.e.,
∑

j w
i
jpj −

∑
j,k q

i
jk.

Claim 5 W.r.t. a solution T to LCP (3):

• if λi = 0 then the surplus of i equals her earnings.

• if λi > 0 then the surplus of i equals z.

Proof : If λi = 0 then for each segment (i, j, k) of i, (10) is satisfied with strict inequality.

Hence, by (10’), qijk = 0. Hence i does not spend any money and her surplus equals her earnings.

If λi > 0 then by (12’), z =
∑

j w
i
j(1 + p′j) −

∑
j,k q

i
jk. Hence, by (12), z represents her

unspent money. Since z ≥ 0, i’s surplus is non-negative. 2

Lemma 6 If in a solution, T , to LCP (3), each good is fully sold then z = 0.

Proof : Since each good j is fully sold, pj =
∑

i,k q
i
jk. Adding over all goods we get

∑
i,j,k q

i
jk =∑

j pj . The l.h.s. of this equation is the total money spent by all agents. Since there is one unit

of each good,
∑

i,j w
i
jpj =

∑
j pj . The l.h.s. of this equation is the total money earned by all

agents. The two equations imply that the total surplus of all agents is zero. Since z ≥ 0, by

Claim 5, each agent has non-negative surplus. Therefore, each agent must have zero surplus.

Hence by Claim 5, z = 0. 2

Corollary 7 p′◦ 6> 0.

6The exception is the contradiction in Corollary 7.
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Proof : Suppose p′◦ > 0. Then, at every point of R with α > 0, p′ > 0 and therefore by

(8’) every good is fully sold. Hence, by Lemma 6, z = 0, Now, we have already established that

p′∗ ≥ 0 and z◦ ≥ 0, and by definition of a ray, z∗ > 0. Therefore, at every point of R with α > 0,

z > 0 leading to a contradiction. 2

Lemma 8 It cannot be the case that p′◦ 6> 0 and p′◦ 6= 0.

Proof : Assume that p′◦ 6> 0 and p′◦ 6= 0. Let S ⊂ G be the set of goods for which the

vector p′◦ is zero and S be the remaining goods; by assumption, both these sets are non-empty.

Let A1 ⊆ A be the set of agents who are non-satiated by at least one good in S. Clearly, the

prices of goods in S remain constant throughout R and those of goods in S go to infinity. Hence

eventually, the bang-per-buck of all segments corresponding to goods from S will dominate that

of goods from S.

By (8), each good in S is fully sold. Now, since only goods in S can remain unsold, the total

surplus of all agents is bounded. Since z ≥ 0, by Claim 5 each agent has a non-negative surplus

and hence the surplus of each agent is bounded. Now, consider an agent i who has a good from

S in her initial endowment. Since her earnings go to infinity and her surplus is bounded, she

must eventually buy up all segments corresponding to goods in S for which she has positive

utility. We will use this observation to derive a contradiction by considering the following three

cases.

Case 1, A1 = A: By the observation made above, any agent having a non-zero amount of a

good from S must eventually demand more than one unit of some good in S, contradicting (8).

Case 2, ∅ ⊂ A1 ⊂ A: By strong connectivity there must be i1 ∈ A1 and i2 ∈ (A \A1) such

that i1 has a good for which i2 is non-satiated. Since i2 6∈ A1, this good must be from S. Since

i1 has a good from S, by the observation made above, i1 must eventually demand more than

one unit of some good in S, contradicting (8).

Case 3, A1 = ∅: Consider an arbitrary agent i. For strong connectivity to hold, there must

be some agent i1 such that i has a good for which i1 is non-satiated. Since A1 = ∅, this good

is from S. Hence each agent has a good from S in her initial endowment. Let j ∈ S. Now, by

the observation made above, all agents will eventually buy all segments of j for which they have

positive utility, contradicting (8), since desire(j) > 1. 2

Lemma 9 If p′◦ = 0 then R is the primary ray, i.e., y◦ = 0 and y∗ = 0.

Proof : If p′◦ = 0 then the price of each good remains constant on ray R. Since by (8) no good

can be oversold, q◦ = 0. Furthermore, the money earned by each agent i remains unchanged

throughout R. Therefore, the forced, flexible and undesirable partitions of i remain unchanged

and hence, corresponding to each of her undesirable and partially allocated segments, γijk = 0

throughout R.
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A consequence of strong connectivity is that each agent i must be non-satiated for some

good, say j. Hence there must be a segment (i, j, k), with uijk > 0, that is undesirable or

partially allocated. Now, in order to satisfy the constraint (10), λi cannot increase, forcing

λ◦ = 0. As a result, for a forced segment (i, j, k), γijk cannot increase – otherwise (10’) will

force qijk = 0. Putting this together with the assertion about undesirable and partially allocated

segments made above, we get that γ◦ = 0. Hence, y◦ = 0. Therefore z◦ > 0, or else the direction

vector will be the all zero vector.

Next we show that y∗ = 0. Throughout R, for each agent i the money spent and money

earned remain unchanged; however, z increases. Therefore,
∑

j w
i
jp
′
j −

∑
jk(qijk) − z <

∑
j w

i
j

at each point of R except possibly at the vertex of polyhedron P ′. Hence λi has to be zero on

the rest of the ray, forcing λ∗ = 0. Therefore, for each segment, (10) is satisfied as a strict

inequality, which forces q∗ = 0 by (10’). Now, by (8’), this forces p′∗ = 0, and in turn (11’)

forces γ∗ = 0. Altogether we get y∗ = 0. 2

Corollary 7, Lemma 8 and Lemma 9 give:

Theorem 10 The polyhedron P ′, defined by the constraints of the augmented LCP for SPLC

market M, LCP (3), has no secondary rays.

6 Algorithm and Results

Before presenting the algorithm, let us add slack variables to the constraints of LCP (3) – assume

that the slack variable that is added to the ith constraint is vi. This gives us an LCP in the form

of the formulation given in (3); call it LCP (3’). The algorithm appears in Table 1. Here T0

is the solution to LCP (3’) corresponding to the vertex of polyhedron P ′ at which the primary

ray is incident.

Table 1: Complementary Pivot Algorithm for SPLC Utilities

Initialization: Let T ← T0

While z > 0 in the current solution T to LCP (3’), do
Let i be the double label in solution T , i.e., vi = yi = 0 at T .
If vi just became 0 at the current vertex, then pivot by relaxing yi = 0.
Else, pivot by relaxing vi = 0.

Let T ′ be the solution to LCP (3’) at the newly reached vertex. T ← T ′.
Endwhile
Output solution T .

Theorem 10 directly yields:

Theorem 11 If an SPLC market M satisfies strong connectivity and the desire of each good

exceeds one, then M admits an equilibrium and Algorithm 1 terminates with one.
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Theorem 11 settles the appropriate case of the open problem, posed by Eaves (1975) [15], as

described in the Introduction. The algorithm also gives a constructive proof of the existence of

equilibrium for SPLC markets that satisfy strong connectivity.

6.1 The class PPAD

As stated in the Introduction, the class PPAD [43] attempts to capture the complexity of prob-

lems that are total, i.e., always have solutions, and moreover admit “path-following” algorithms

for finding one. The latter notion, and the class are defined by the following canonical problem.

END OF A LINE: Let G be a directed graph defined by two polynomial time Turing machines

P (predecessor) and S (successor). The indegree and outdegree of every node in G is at most

one, and there are no isolated nodes. Clearly, G consists of a set of paths and cycles. Turing

machines P and S take a node as input and output its predecessor and successor, respectively.

Given a node with no predecessor and the machines P and S, the problem is to find another

node with either no predecessor or no successor.

Every problem in PPAD is polynomial time reducible to END OF A LINE, e.g., the Lemke-

Howson algorithm and Todd’s result show membership in PPAD for 2-Nash. The graph G in

this case is formed by the set of nodes and edges where at most one fixed “label” is missing.

6.2 Further Results

Theorem 12 Assuming strong connectivity, the problem of computing an equilibrium of a mar-

ket with SPLC utilities is in PPAD.

Proof : By Theorem 10, Algorithm 1 must converge to an equilibrium. Now, by Todd’s

result [54] on the orientability of the path followed by a complementary pivot algorithm, we get

a proof of membership of the problem in PPAD. 2

This settles the question posed by Vazirani and Yannakakis in [55] of obtaining a direct proof

of the membership of the problem in PPAD.

Observe that the polyhedron corresponding to LCP (3) has the same inherent degeneracy as

that of LCP (2), and explained in Section 4.1. The reason is that at any solution to LCP (3) at

which z = 0, the market clearing conditions are satisfied and the dependence in the constraints

established in Lemma 1 holds. Once again, we will say that the polyhedron corresponding to

LCP (3) is non-degenerate if it has no other degeneracies. Let v be a vertex solution to LCP (3)

with z = 0. Then it is easy to show that there is exactly one j ∈ G with p′j = 0 at v. Relaxing

p′j = 0 gives an unbounded edge, starting at v, at which z remains zero. Therefore, every point

of this edge corresponds to a market equilibrium in which the prices at v are appropriately

scaled.
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Theorem 13 If the polyhedron P ′ corresponding to LCP (3) of an SPLC market is non-

degenerate, then M has an odd number of equilibria, up to scaling.

Proof : As observed in Section 2, the set of solutions, S, to LCP (3) consists of paths and

cycles. The solutions of LCP (3) satisfying z = 0 are precisely the solutions to LCP (2). By

Theorem 4, the latter are in one-to-one correspondence with the equilibria of market M, up to

scaling. Now, solutions of LCP (3) satisfying z = 0 occur at endpoints of such paths (under

non-degeneracy). One of the paths starts with the primary ray and ends with an equilibrium.

Since by Theorem 10 P ′ has no secondary rays, the rest of the equilibria must be paired up.

Hence there are an odd number of equilibria. 2

7 Strongly Polynomial Bound

Devanur and Kannan [10] gave a polynomial time algorithm for SPLC markets when either the

number of goods or the number of agents is a constant, using the “cell decomposition” technique

and the fact that the number of nonempty regions (cells) formed by n hyperplanes in Rd is at

most O(nd). We use similar techniques to show a strongly polynomial bound on the number of

fully labeled vertices in the polytope P ′ of LCP (3), when number of goods or agents is constant.

This in turn gives a strongly polynomial bound for our algorithm for this case.

Suppose the number of goods, i.e., n, is a constant. The idea is to decompose the (p1, . . . , pn, z)-

space (i.e., Rn+1
+ ) into cells by a set of polynomially many hyperplanes such that every cell

corresponds to a unique setting of forced, flexible and undesirable partitions. Then we show

that every fully labeled vertex of P ′ can be naturally mapped (by projection) to a cell and this

mapping maps at most two vertices to any given cell. We describe below how to get the cell

decomposition.

7.1 Constant number of goods

Consider Rn+1
+ with coordinates p1, · · · , pn, z. For each 5-tuple (i, j, j′, k, k′), where i ∈ A,

j 6= j′ ∈ G, k ≤ sij and k′ ≤ sij′ , introduce hyperplane uijkpj′ − uij′k′pj = 0. These hyperplanes

divide the space into cells and each cell has one of the signs <,=, > for each hyperplane. For

each agent, these signs give partial order on the bang-per-buck of her segments. Using this

information for a given cell, we can sort all segments (j, k) of agent i by decreasing bang-per-

buck, and partition them by equality into classes: Qi
1, Q

i
2, . . .. Let Qi

<l denote Qi
1∪Qi

2∪. . .∪Qi
l−1.

Similarly, we define Qi
≤l and Qi

>l.

Next we want to capture the flexible partition. To do this, we further subdivide a cell by

adding hyperplane
∑

(j,k)∈Qi
<l
lijkpj =

∑
j∈G w

i
jpj − z, for each agent i and each of her partitions

Qi
l. For any given subcell, let Qi

li
be the right most partition such that

∑
(j,k)∈Qi

<li

lijkpj <
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∑
j∈G w

i
jpj − z, then Qi

li
is the flexible partition for agent i. In addition, we add hyperplanes

pj = 1, ∀j ∈ G and z = 0, and consider only those cells where pj ≥ 1 and z ≥ 0.

Given a vertex (y, z) on the path traced by our algorithm, there is a natural cell associated

with it, namely due to projection of it on (p, z)-space.

Lemma 14 Each cell is mapped onto from at most two fully labeled vertices of the polyhedron

P ′ corresponding to LCP (3). Furthermore, if a cell is mapped onto from two vertices, then they

must be adjacent.

Proof : Every fully labeled vertex and every cell has its own settings of forced, flexible and

undesirable partitions, for each agent. Hence, if a fully labeled vertex maps onto a cell, then

these two settings, one coming from the cell and the other from the vertex, must match. A

fully labeled vertex v = (λ,p′, q,γ, z), which maps onto a given cell must satisfy the following

equalities. In the cell,

• If pj > 1 then
∑

ik q
i
j,k − p′j − 1 = 0 else p′j = 0 at v.

• If
∑

j w
i
jpj − z ≥ 0 (second set of hyperplanes for the tuple (i, 1)) then

∑
j w

i
j(p
′
j + 1) −∑

j,k q
i
jk − z = 0 else λi = 0 at v.

• If uijkpj′ − uij′k′pj ≥ 0 for a (j′, k′) ∈ Qi
li

then uijkλi − p′j − 1− γijk = 0 else qijk = 0 at v.

• If uijkpj′ − uij′k′pj > 0 for a (j′, k′) ∈ Qi
li

then qijk − lijkp′j − lijk = 0 else γijk = 0 at v.

Since from each of complementary conditions given above one equality is enforced, their

intersection forms a line. If this line does not intersect P ′, no fully labeled vertex gets mapped

to the cell under the consideration. If it does then intersection can be either a fully labeled

vertex, say v, or a fully labeled edge – we will say that an edge of the polyhedron P ′ is fully

labeled if the solution represented by each point of this edge is fully labeled. In the former case

only vertex v gets mapped to the cell and in the latter case only the endpoints of the fully

labeled edge map to the cell – clearly these are two adjacent vertices of P ′. 2

Note that the total number of hyperplanes we introduced is strongly polynomial, thereby

creating strongly polynomially many cells.

7.2 Constant number of agents

So far, we had considered a partitioning of the segments corresponding to each agent. For this

case, we will consider a partitioning of the segments corresponding to each good, as detailed

below. Besides this change, the analysis for this case is similar to that of the previous case.

Consider Rm
+ with coordinates λ1, · · · , λm. Every fully labeled vertex (λ,p′, q,γ, z) naturally

gets mapped to this space by taking projection on λ. Before getting into cell decomposition we

discuss some properties of fully labeled vertices.
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Given a fully labeled vertex, for every good j sort all its segments (i, j, k) in decreasing order

of uijkλi, and partition them by equality into classes: Qj
1, Q

j
2, . . .. It is easy to verify that at

this vertex, good j gets allocated in the order of partitions, starting from the first. If a segment

(i, j, k) ∈ Qj
l is allocated (i.e., qijk > 0), then all the segments in partitions before Qj

l must be

completely allocated. We call the last allocated partition as flexible partition, all the partitions

before it as forced partitions and all partitions after it as undesirable partitions for good j.

Further, let (i, j, k) be a segment in flexible partition of good j. Then, we have uijkλi = 1 + p′j ,

otherwise all the segments in this partition are either undesirable or all of them are forced for

the corresponding agents. Therefore, the flexible partition of any good defines its price.

Next we decompose the Rm
+ space into cells (by introducing hyperplanes) such that every

cell captures the segment configurations for each good. Introduce hyperplanes of type uijkλi −
ui
′
jk′λi′ = 0 for each 5-tuple (i, i′, j, k, k′), where i 6= i′ ∈ A, j ∈ G, k ≤ sij and k′ ≤ si′j . Given

a cell, the signs of these hyperplanes in the cell give partial order of segments (i, k) for every

good j based on uijkλi. For each good j sort its segments in decreasing value of uijkλi using this

partial order, and partition them by equality into classes: Qj
1, Q

j
2, . . ..

Next we capture the flexible partition for every good. For a fully sold good, it may be

computed easily by just summing up the segment lengths starting from the first partition until

it becomes one. However, a fully labeled vertex may have undersold goods. Since the price of

such a good is fixed to one (p′ is zero), segments in its flexible partition have uijkλi = 1. To

capture this we introduce uijkλi − 1 = 0 for each (i, j, k). In general the flexible partition for

good j is the earlier one of the two: partition when good is fully sold and the partition with

uijkλi = 1. This can be easily deduced for a given cell from the signs of the hyperplanes. Further,

we put λi = 0 for each i ∈ A.

From the above discussion it is clear that given a cell the equalities of the fully labeled

vertices mapping to it may be worked out as done in Lemma 14. Further, we get one equality

for every complementary condition, since every cell captures complete segment configuration,

status of goods, and agents in the market. Thus, we get the following lemma.

Lemma 15 Each cell is mapped onto from at most two fully labeled vertices of the polyhedron

P ′ corresponding to LCP (3). Furthermore, if a cell is mapped onto from two vertices, then they

must be adjacent.

It is clear that our algorithm follows a systematic path instead of brute force enumeration

of all the cells. The next theorem follows directly from the above discussion, since the number

of hyperplane introduced is strongly polynomial in both the cases.

Theorem 16 For an SPLC market with a constant number of agents or goods, our algorithm

computes an equilibrium in strongly polynomial time.
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8 Combinatorial Interpretation for Linear Case

In this section, we give a complete combinatorial interpretation for Eaves’ algorithm for linear

case. We then provide an example to illustrate that our algorithm for the SPLC case has a

much more complex mechanism and we leave the open problem of obtaining its combinatorial

interpretation.

Dropping index k, since each utility function has only one segment, we specialize LCP (3)

to this case below; let us call it LCP (4) and denote its polyhedron by P l. Two additional

simplifications are made: First, 1/λi will be the maximum bang-per-buck of agent i, which is

defined to be

max
j∈G

uij
pj
.

Second, we don’t need the variables γijk and the constraints and complementarity conditions

given in (11). This was precisely the LCP derived by Eaves [16].

∀j ∈ G :
∑
i

qij − p′j ≤ 1 and p′j

(∑
i

qij − p′j − 1

)
= 0 (13)

∀i ∈ A :
∑
j

wi
jp
′
j −

∑
j

qij − z ≤ −
∑
j

wi
j and λi

∑
j

wi
j(p
′
j + 1)−

∑
j

qij − z

 = 0 (14)

∀(i, j) : uijλi − p′j ≤ 1 and qij(u
i
jλi − p′j − 1) = 0 (15)

Construct a bipartite graph whose vertices are A∪ G and (i, j) is an edge iff inequality (15)

is satisfied as an equality. Call this the tight graph and its edges the tight edges. By (15’), goods

can only be sold along tight edges. Hence, if p′j > 0, then the total sales on edges incident at j

must be one unit. Also, agents having λi = 0 do not have any edges incident at them and goods

having p′j = 0 may or may not have edges incident at them.

Next, let us analyze the changes that take place while moving along an edge e of polyhedron

P l during the algorithm. Since an equilibrium is not reached yet, z > 0 on e. The set of

inequalities that are tight remain unchanged at all points of e except for the two end vertices

where an extra inequality is tight. Consider the connected components of the tight graph;

singleton agents are not considered as a components.

By (13’), if p′j > 0, j must be fully sold. If all goods are fully sold, all of the agents’ money

must be spent, making z = 0. However, since z > 0, there is at least one undersold good, say j

and p′j = 0 at all points of edge e. Hence, in any component containing such a good, the prices

of goods and the λis of agents must remain unchanged while moving along e.

Next consider the remaining components. Since each good has edges to all agents who buy

this good, the goods of such a component are sold precisely to agents in this component. Now,
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if these agents do not own any goods from outside this component, then they cannot have

positive surplus, contradicting z > 0. Hence they must own goods from outside this component.

Furthermore, in such a component 1+p′j and λis change by the same factor in order to maintain

equalities of type (15) corresponding to tight edges. Since the agents in all these components

have the same surplus, namely z, the prices of all goods in these components either monotonically

increase or decrease while moving along e. Furthermore, they increase iff the surplus, and hence

z, monotonically decreases.

Next, let us analyze the changes on the entire path π followed by the algorithm. Let e1 and

e2 be two adjacent edges on π with a common vertex v = (y, z). While moving on π suppose

the algorithm enters v through e1 and leaves it through e2.

Lemma 17 If z is decreasing on e1 while moving towards v, then it keeps decreasing on e2 while

moving away from v.

Proof : The new tight inequality at v corresponds to its double label, and determines what

to relax to move on e2. There are six possibilities for the new tight inequality. For each of them

we argue that if z is decreasing while moving along e1 towards v, then it will monotonically

decrease while moving away from v on e2. Let the new tight inequality is at v be

1.
∑

i q
i
j − p′j ≤ 1: Then we relax p′j = 0 to obtain e2. Hence, prices monotonically increase

and z monotonically decreases on e2.

2. −
∑

j q
i
j +

∑
j w

i
jp
′
j − z ≤ −

∑
j w

i
j : Then we relax λi to move on e2. In this case agent i is

not part of any component yet, so all the prices and z remain constant.

3. p′j ≥ 0: This case never arises since then the prices should be decreasing on e1. A

contradiction to z decreasing on e1.

4. λi ≥ 0: This case never arises since then λis should be decreasing on e1. This in turn

implies prices are decreasing and z is increasing on e1, a contradiction.

5. ukl yk − p′l ≤ 1: Then we relax qkl = 0. This case is little involved.

On e1 let C0 be the set of components containing undersold goods, i.e., constant prices.

Let C1, . . . , Ch be the rest of the components. Clearly, k /∈ C0. Suppose, k ∈ C1 (w.l.o.g.).

There are two cases. The case when l ∈ C0 is easy. Since prices of goods in C1 are fixed

on e2, if rest of the prices decrease then the income and inturn surplus of agents in C1

decreases, a contradiction.

For the other case, let l ∈ C2 (w.l.o.g.). In component Cx suppose the 1 + p′js and λis

change by a multiplicative factor αx. Clearly, α1 > α2 ≥ 1. Consider all αx relative to α1,

or in other words all the price changes relative to price changes in C1. Now, on e2 since C1

and C2 merge into one component say C12, the prices of goods in C2 changes by a faster
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rate. Therefore, prices of all the goods outside C12 also changes by a faster rate. If all

of them decrease on e2 then earning of agents in C1 decreases by a faster rate than the

spending, implying that either their surplus decreases or they need to pull money from C2

through edge (k, l). Both leads to contradictions; negative flow on (k, l) in the latter case.

6. qij = 0: Then we relax uijyi − pj = 0. Similar analysis as the previous case works to show

that z monotonically decreases in this case too.

2

We know that on the primary ray z monotonically decreases. Hence by Lemma 17, it

decreases on the entire path starting with the primary ray, and at the end of the path, when

equilibrium is achieved, it becomes zero. Now, if there are more equilibria, they must be at the

endpoints of other paths, as shown in Theorem 13. Therefore, z = 0 at both the endpoints and

must increase monotonically while moving away from each endpoint, leading to a contradiction.

Hence we get:

Lemma 18 If the polyhedron P l of LCP (4) for a linear market is non-degenerate, then the

market has a unique equilibrium up to scaling.

Finally, we give an example to illustrate that our algorithm for the SPLC case has a much

more complex mechanism. In this example, neither does z decrease monotonically nor do prices

increase monotonically on the path starting with the primary ray.

Example 19 Consider a simple market with 2 agents, 3 goods and 2 segments for every pair

of agent and good, where

W =

[
0.4 0.3 0.1

0.6 0.7 0.9

]
, U1

G =

 0.2 0.1

0.9 0.7

0.8 0.6

, U2
G =

 0.9 0.7

0.8 0.1

0.4 0.2

,

L1
G =

 0.3 1

0.6 1

0.9 1

, L2
G =

 0.3 1

0.9 1

1 1

.

The changes in values of z, p′1, p
′
2 and p′3, during a run of the algorithm for this market, are

recorded in Table 2. Neither z nor p′js are monotonic as shown by the gray cells in the table.

2

8.1 A combinatorial algorithm

The various observations made above lead to a combinatorial algorithm that is equivalent to

Eaves’ complementary pivot algorithm. We assume that the given market is non-degenerate;

this can be achieved by perturbation of uijs.
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Table 2: The values of z, p1, p2 and p3 as the algorithm runs on Example 19

iter. 1 2 3 4 5 6 7 8 9 10 11 12

z 2.2 1.9 1.9 1 1 0.8 0.8 0.7 0.725 0.275 0.05 0

1 + p′1 1 1 1 1 1 1 1 1 1 1.5625 1.375 1.5

1 + p′2 1 1 1 1 1 1 1 1.125 1.125 1.125 1.5 1.5

1 + p′3 1 1 1 1 1 1 1 1 1 1 1 1

Let A0 be the set of agents with surplus less than z, and let A1 = A \ A0. Consider the

bipartite graph between agents of A1 and all the goods consisting of tight edges. Say that edge

(i, j) is non-zero if agent i is spending money on good j7.

Let E be the set of all the non-zero edges. Let C0 be the set of components of E contain-

ing undersold goods; prices of goods in C0 remain unchanged. Let components of E \ C0 be

C1, . . . , Cl. Let αi be the factor with which prices of goods in Ci change (pj changes to αipj).

Note that α0 = 1. Using market clearing conditions, every αi can be written as a linear function

of z, namely ciz + di. Hence, as z changes αi changes accordingly.

Note that as the prices change the money owned by the agents change. Therefore maintaining

the feasible money allocation (i.e., qij ’s) is a challenging task. Define network N(E,p, z) as

follows: if (i, j) ∈ E, then put a directed edge from i to j with infinity capacity, cap(i, j) =∞.

Add a source node s and a sink node t to the network. From s, put a directed edge to every i ∈ A1

with capacity cap(s, i) =
∑l

k=0

∑
j∈Ck

wi
jαkpj−z, which is equivalent to

∑l
k=0

∑
j∈Ck

wi
jpj(ckz+

dk) − z, a linear equation in z. From every good j ∈ G, put a directed edge to t with capacity

cap(j, t) = αkpj if gj ∈ Ck. As per the flow the following invariant is maintained.

I. The cut (s,A1 ∪ G ∪ t) is always a min cut in N(E,p, z).

The complete algorithm is given in Table 3. Next, we describe how the threshold z for

the four events can be efficiently computed. For Events 1 and 2 this is straightforward. To

check Event 3 in any component except C0, do the following for every edge (i, j) ∈ E: Let S

be the set of agents of component containing j after removal of edge (i, j). Calculate z using∑
i∈S cap(s, i) =

∑
j∈Γ(S) cap(j, t), where Γ(S) is the set of neighbors of S in the graph formed

by E. The maximum z gives the threshold for Event 3 in components other than C0. In case of

C0 we observe that each of its component cannot have more than one undersold good. Further,

if flow on (i, j) becomes zero then good j has to be fully sold. In that case after removal of (i, j)

from E the component containing j has only fully sold goods, and hence the same procedure

applies. Since every component of C0 has exactly one undersold good, the z triggering Event 4

may be easily calculated: for each of its components calculate z that clears the market from the

goods side, and pick the maximum z among them.

7If the given market is non-degenerate, then at any point during a run of the algorithm there can be at most
one tight edge without any money flow.
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Table 3: Combinatorial Algorithm for Linear Utilities

Initialize:
pj ← 1,∀j ∈ G; ei ←

∑
j w

i
jpj , ∀i ∈ A; z ← maxi∈A ei;

A0 ← {i ∈ A | ei < z}; A1 = A \ A0; C0 ← G;
E ← {(i, j) ∈ (A1 × G) | bpbij = maxk∈G bpb

i
k};

while z 6= 0 do
Decrease z, while maintaining I, until one of the following events occurs:
Event 1: For an i ∈ A0 ei becomes z;
A1 ← A1 ∪ {i}; A0 ← A0 \ {i}; E ← E ∪ maximum bpb edges of i;

Event 2: A new edge (i, j) ∈ (A1 × G) becomes tight;
E ← E ∪ {(i, j)};

Event 3: Flow on a non-zero edge (i, j) becomes zero;
E ← E \ {(i, j)};

Event 4: An undersold good j ∈ C0 becomes fully sold;
C0 ← C0 \ {j}; Recompute C0;

endwhile

9 Experimental Results

Table 4 summarizes the results of experiments, done over randomly generated instances, with

a Matlab implementation of our algorithm. For each choice of number of agents and goods,

the total number of segments in all the utility functions was kept the same and is denoted by

#Seg in the table. The values of uijks, lijks and wi
js were drawn uniformly at random from the

intervals [0, 1], [0, 1
#Seg] and [0, 1], respectively. The wi

j values were scaled so that the total

amount of each good is unit. Finally, for each agent i and good j, corresponding uijks were

sorted in decreasing order to get the SPLC utility function f ij .

Table 4: Experimental Results over Random Instances

|A| x |G| x #Seg #Instances Min Iters Avg Iters Max Iters

5 x 5 x 5 1000 107 142.7 199

10 x 5 x 5 1000 130 154.3 197

10 x 10 x 5 1000 254 321.9 401

10 x 10 x 10 50 473 515.8 569

15 x 15 x 5 100 413 509.7 582

15 x 15 x 10 50 775 991 1090

15 x 15 x 15 10 1197 1261.3 1382

20 x 20 x 5 10 719 764 853

20 x 20 x 10 10 1093 1208.8 1473

Note that, even in the worst case the number of iterations is of the order of the total number

of segments of the utility functions, i.e.,
∑

i,j sij = |A|×|G|×#Seg. Figure 1 plots log2(
∑

i,j sij)
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Figure 1: Plot of log2(
∑

i,j sij) vs. log2(Max Iters)

vs. log2(Max Iters) for a comparative analysis.

10 Discussion

Besides parity [50], the Lemke-Howson algorithm has yielded numerous insights into structural

properties of 2-Nash equilibria, such as index, degree and stability [25, 48, 50]. It has been

the subject of much other work, e.g., [6] determine its smoothed complexity [52] and [44] give

an example on which it takes exponential time. All these issues are worth exploring for SPLC

equilibria and our algorithm as well. We note that the notion of index has already been studied

for regular markets [32, 38]; however, it uses the Hessian of the demand functions and hence is

not applicable to our case.

The question of whether any of the tracing procedures for Nash equilibrium computation

[19, 26, 27, 28, 35, 36, 40] can locate all the Nash equilibria of a game has been studied extensively

[3, 29, 41]. It would be interesting to determine if our algorithm can locate all the equilibria of

a given SPLC market by trying out all possible coefficients vectors for the z variable.

A natural question that arises from our result is whether one can obtain a practical algorithm

for the case of non-separable, piecewise-linear concave utilities via the following scheme: Obtain

a rational approximation of an equilibrium that is amenable to an LCP formulation and a

complementary pivot algorithm. Another open question, first raised in [55], is to prove that this

case is FIXP-complete; it is known to have algebraic equilibria.

An obvious approach to answering the question of [55] was to build on the work of [11], i.e.,

obtain a flow-based algorithm that iteratively adjusts prices, responding to certain min-cuts in

a network analogous to the one used in [11]. To show termination for such an algorithm, one

would need a potential function that changes monotonically, achieving its optimal value when

the algorithm finds an equilibrium. However, it turns out that as prices of goods change, the

value of forced allocations changes in such a way that it seems impossible to construct a suitable
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potential function. Another approach was to generalize the work of [23], who gave a Lemke-

Howson-type algorithm for the linear case, to SPLC utilities. However, the same obstacle, i.e.,

changing value of forced allocations, thwarts this attempt as well.

At present, we do not understand how our algorithm finesses the obstacle mentioned above.

However, we believe that obtaining a combinatorial understanding of our algorithm will clarify

this. Additionally, it is likely that even in the linear case, in practice, Eaves’ and our algorithms

are competitive over provably polynomial time algorithms – experiments are needed to confirm

or refute this.

The decade-long endeavor, within TCS, of understanding the computability of market equi-

libria has successfully addressed almost all broad, general classes of markets – the main exception

being markets with production. Following up on Eaves [15], we restate the question of studying

such markets.
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