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Abstract

After more than a decade of work in TCS on the computability of market equilibria, com-
plementary pivot algorithms have emerged as the best hope of obtaining practical algorithms.
So far they have been used for markets under separable, piecewise-linear concave (SPLC) utility
functions [30] and SPLC production sets [31]. Can his approach extend to non-separable utility
functions and production sets? A major impediment is rationality, i.e., if all parameters are set
to rational numbers, there should be a rational equilibrium.

Recently, [42] introduced classes of non-separable utility functions and production sets, called
Leontief-free, which are applicable when goods are substitutes. For markets with these utility
functions and production sets, and satisfying mild sufficiency conditions, we obtain the following
results:

• Proof of rationality.

• Complementary pivot algorithms based on a suitable adaptation of Lemke’s classic algo-
rithm.

• A strongly polynomial bound on the running time of our algorithms if the number of goods
is a constant, despite the fact that the set of solutions is disconnected.

• Experimental verification, which confirms that our algorithms are practical.

• Proof of PPAD-completeness.

Next we give a proof of membership in FIXP for markets under piecewise-linear concave
(PLC) utility functions and PLC production sets by capturing equilibria as fixed points of a
continuous function via a nonlinear complementarity problem (NCP) formulation.

Finally we provide, for the first time, dichotomies for equilibrium computation problems,
both Nash and market; in particular, the results stated above play a central role in arriving at
the dichotomies for exchange markets and for markets with production. We note that in the
past, dichotomies have played a key role in bringing clarity to the complexity of decision and
counting problems.

∗Supported by NSF Grants CCF-0914732 and CCF-1216019.
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1 Introduction

Market equilibrium is an inherently algorithmic notion: this should be obvious from the fact that
Walras, who while defining this notion in 1874 [61], also gave a mechanism for arriving at an
equilibrium, namely the tatonnement process (see Section 1.5 for a brief history of work since
then). In 1975, Eaves [25] gave a complementary pivot algorithm for the linear case of the Arrow-
Debreu market model. Although this approach was far superior than previous ones (see Section
1.3 for details), it was not extended to more general utility functions until two years ago, when [30]
extended it to separable, piecewise-linear concave (SPLC) utility functions and [31] extended it to
SPLC production sets.

A major impediment to extension to non-separable utility functions was that a necessary condi-
tion for this approach is rationality, i.e., if all parameters are set to rational numbers, there should
be a rational equilibrium (obviously, this condition is satisfied by SPLC utilities and SPLC produc-
tion sets). In 1976, Mas-Colell gave an example using a non-separable utility function which has
only irrational equilibria (mentioned in [26]). Additionally, the difficulty of finding algorithms for
Arrow-Debreu markets under non-separable utility functions was well known. The only positive
results we are aware of are: For Fisher’s market model, which is a subcase of the Arrow-Debreu
model, under constant elasticity of substitution (CES) utility functions [16], and for differentiable,
concave utility functions, but in a non-standard model which allows perfect price discrimination
[59]. For Arrow-Debreu market model under CES utility functions for ρ ≥ −1 [14].

Our first result is a complementary pivot algorithm for a class of non-separable utility functions
and production sets, called Leontief-free (LF), defined recently in [42] (see Section 1.1). We first
prove rationality for this class – this does not contradict Mas-Colell’s example, since it used Leontief
utility functions which do not lie in this class. Experiments confirm that our algorithms are practical
and, since they are path-following algorithms, they yield proofs of membership of these problems in
the class PPAD, defined by Papadimitriou in [?]. Additionally, we also establish PPAD-hardness for
these problems. In case the number of goods is a constant, we establish strongly polynomial bounds
on the running time of our algorithms, despite the fact that the set of solutions is disconnected.
For problems whose solutions lie in a continuous domain (i.e., the convex combination of two
solutions does qualify for being a solution, but may not be one), it is well known that polynomial
time algorithms exploit convexity of the set of solutions in a critical manner and very few such
algorithms are known for problems in which the solution set is not convex; we are only aware of
[1, 30, 31].

In economics, it is customary to assume that utility functions are concave, and production
sets are convex. Since we are in a finite precision model of computation, we will assume that
utility functions are piecewise-linear and concave (PLC) and production sets are polyhedral; we
call it PLC production since the boundary of polyhedral production set can be defined by a PLC
correspondence. Clearly by making the pieces fine enough, the approximation to the original
utilities and production sets can be made as good as needed.

Our second result concerns the class FIXP [28], which captures the complexity of computing an
equilibrium for k-player Nash, henceforth denoted k-Nash, for k ≥ 3 [28]. We prove membership
in FIXP for a very general class of markets, namely markets under PLC utility functions (which
include SPLC as well as non-separable PLC functions) and PLC production sets. These proofs
involve capturing equilibria as fixed points of a continuous function via a nonlinear complementarity
problem (NCP) formulation. We note that at present very few problems have been shown to be in
FIXP and we believe this technique, using an NCP formulation, will find use in the future.

In the endeavor, over the last half century, to classify natural computational problems by
their complexity, dichotomies have played a key role in bringing much clarity; these dichotomies
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characterize how the complexity of a certain problem changes as a certain parameter is changed.
Perhaps the most well known of these dichotomies is Schaefer’s theorem, which gives a complete
characterization of when a restriction of SAT, defined via relations over the Boolean domain, is in
P and when it is NP-complete. Following this result, a lot of work was done on dichotomies for
decision problems, e.g., see [7, 18], and for counting problems, see the extensive survey [9]; in the
latter case the dichotomy is between P and #P-complete.

Our third result provides, for the first time, dichotomies for equilibrium computation problems.
We start by observing that the results already known on Nash equilibrium lead to a dichotomy
that respects three different criteria, computation complexity being one of them, see Table 1. In a
nutshell, this dichotomy establishes a qualitative difference between 2-Nash and k-Nash for k ≥ 3.
The two results stated above, together with other results, lead to analogous dichotomies for market
equilibrium. Table 4 gives a dichotomy for exchange markets, establishing a qualitative difference
between LF utility functions and piecewise-linear concave (PLC) utility functions. Table 5 gives it
for markets with production, but with utility functions being the simplest possible, i.e., linear; it
draws a sharp contrast between LF production sets and PLC production sets. Interestingly enough,
the same three criteria apply to both these dichotomies as well.

After a decade of intense work on equilibrium computation, at this point two facts are self-
evident: First, equilibrium problems have their own character1 which is quite distinct from that
of decision, optimization or counting problems. Second, equilibrium computation has grown into a
full-fledged area within the theory of algorithms and computational complexity.

1.1 Leontief-free utility functions and Leontief-free production sets

A utility function over a set of divisible goods is said to be separable if it is the sum of utilities of
individual goods, and non-separable otherwise. If the utilities of individual goods are PLC and the
joint utility is separable, then we have a separable, PLC (SPLC) utility function. An analogous
notion for production was given in [31], namely, the production of a firm is separable, piecewise-
linear concave (SPLC) if the firm produces a single finished good from any one of a set of raw goods,
with the production of the finished good from each raw good being given by a PLC function, and
the total production of the finished good being additive over all raw goods. For example, suppose a
firm produces bread from either wheat or corn, each given by a PLC function. If the total quantity
of bread produced from both wheat and corn is additive2, then the firm’s production function is
SPLC.

The irrational example of Mas-Colell, mentioned above, used Leontief utilities, which are non-
separable, and are applicable when goods are complements. A typical example is bread and butter,
assuming that the agent wants these goods in a certain proportion and derives no utility from only
bread or only butter. Next consider an agent who has the option of eating bread or bagels at
breakfast. Assume she has PLC utilities for each and eventually gets satiated from each. Clearly,
her joint utility for consuming a combination of bread and bagels should not be additive, since both
satiate her desire for the same type of food at breakfast, and it should be sub-additive. Thus, a
non-separable utility function is called for. However, the kind of non-separability that needs to be
formalized here is quite different from that captured by Leontief utilities, since in this case, goods

1E.g., an early observation of [41] was that NP-hardness could not be used for establishing intractability of
computing a Nash equilibrium: since this is a total problem, a proof of NP-hardness would be tantamount to showing
NP = co-NP, a result considered highly unlikely.

2Clearly, it would be more realistic to assume that the total production is sub-additive, since the same machinery
and labor are presumably being used for producing bread from wheat and from corn. This extension is achieved
below via the notion of Leontief-free production.
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are substitutes and not complements.
[42] introduced the notion of Leontief-free (LF) utility functions for this purpose, see Section 4

for a formal definition. SPLC utilities are a subclass of LF utilities, and LF utilities are a subclass

of submodular utilities (shown in [42]), see
Figure 1. [42] also introduced the notion of
Leontief-free production to model a firm that
uses a set of raw goods, that are substitutes, to
produce a set of finished goods, that are also
substitutes, e.g., a firm that uses full-fat milk
and low-fat milk as raw goods to produce the
finished goods yogurt and ice cream. Given the
PLC production function of each finished good
from each raw good, Leontief-free production
sets help model the sub-additivities that set in
when the firm uses several raw goods to pro-
duce several finished goods. Once again, SPLC
production is a subclass of LF production. A
natural application of our complementary pivot
algorithms for these notions is for pricing a new
good, since it will be competing with its sub-
stitutes.

Figure 1:

The name Leontief-free was chosen to indicate that Leontief-type constraints, i.e., desiring two
or more goods in fixed proportions, are disallowed in these utility functions and production sets,
in fact as shown in [42] adding even one such constraint to a Leontief-free utility function or the
production set can lead to irrationality.

1.2 The classes PPAD and FIXP

The two complexity classes PPAD, defined by Papdimitriou [47], and FIXP, defined by Etessami
and Yannakakis [28], have played an important role in this theory, e.g., they capture the complexity
of 2-Nash and k-Nash, for k ≥ 3, respectively. These classes appear to be quite disparate – whereas
solutions to problems in the former are rational numbers, those to the latter are algebraic numbers,
as observed in [58]. And whereas the former is contained in function classes NP ∩ co-NP, the latter
lies somewhere between P and PSPACE, and is likely to be closer to the harder end of PSPACE
[62].

Informally, PPAD is the class of problems that allow for “path-following algorithms” and for this
reason, PPAD has an intimate connection with complementary pivot algorithms: obtaining such
an algorithm for a problem gives, together with Todd’s result [56], membership of the problem in
PPAD. Furthermore, the Lemke-Howson algorithm provided a key motivation for the definition of
this class. On the other hand, a problem is in FIXP if its solutions are in one-to-one correspondence
with the fixed points of a function which is defined using the operations of +, ∗, /, max, and an
arbitrary number of rational constants.

The only results showing membership in FIXP or proving FIXP-hardness for market equilibrium
questions we are aware of are: [28] prove that the problem of computing an equilibrium in an Arrow-
Debreu market is FIXP-complete provided the excess demand is an algebraic function of the prices
and this model is a simplified version of the standard model in that individual utility functions are
not given, only the aggregate excess demand function is given. [12] show that an Arrow-Debreu
market under CES utility functions is in FIXP provided the elasticity parameter for each agent is
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a rational number ρi < 1 and is given in unary. [62] show that an Arrow-Debreu market under
Leontief utility functions is in FIXP; observe that in the latter cases as well, excess demand is an
algebraic function of the prices. No markets with production have been shown to be in FIXP, and
whereas several standard market models are expected to be FIXP-hard, see [58], none are shown
FIXP-hard yet.

For markets under PLC utility functions, considered in this paper, optimal bundles of buyers
are not unique. Therefore, excess demand will not be a function, it will be a correspondence –
this is a new difficulty we need to overcome. For markets with production, the amount of each
good available is not a constant, which leads to another difficulty to be overcome. As stated
above, these markets may not have rational equilibria and so don’t admit an LCP. Instead, we give
an nonlinear complementarity problem (NCP) whose solutions are in one-to-one correspondence
with market equilibria. We then design a continuous function F over a convex, compact domain
which is computable by a FIXP circuit, and we show that the fixed points of F are in one-to-
one correspondence with the solutions of the NCP, and hence market equilibria. We believe this
technique for proving membership in FIXP using an NCP formulation will find use in the future.

1.3 Complementary pivot algorithms

An algorithm that walks on the one-skeleton of a polyhedron to find a solution, which is necessarily
at a vertex of the polyhedron, is called a pivoting-based algorithm. The classic example of such an
algorithm is the simplex algorithm of Dantzig [19] for linear programming. An algorithm which
additionally is attempting to satisfy certain complementarity conditions is called a complementary
pivot algorithm, classic examples being the Lemke-Howson algorithm [37] for 2-Nash and Eaves’
algorithm [26] for the linear case of the Arrow-Debreu market model; the latter is based on Lemke’s
algorithm [36] (see Appendix A for a brief description).

The common feature of these three algorithms is that they run fast on randomly chosen examples
(established in [55, 48, 30], respectively) even though they take exponential time in the worst case
(established in [35] and [48] for the first two algorithms and left as an open problem in [30] for
the third); the worst case examples are artificially contrived to make the algorithm perform poorly.
These algorithms also tend to yield deep structural properties of the underlying problem, e.g.,
strong duality; index, degree and stability for 2-Nash equilibria [51]; and oddness of number of
equilibria [30], respectively.

Our complementary pivot algorithms for computing equilibria for an Arrow-Debreu market
under Leontief-free utilities and Leontief-free production sets are based on Lemke’s algorithm [36].
It turns out that the LCP (linear complementarity problem) that captures the set of equilibria of
our market is in a non-standard form – it has variables which do not participate in complementarity
conditions. As a result, Lemke’s algorithm is not directly applicable: if such a variable becomes
zero, the algorithm requires that its complementarity condition be relaxed, but there is none! Let
us call such variables abnormal and the rest normal.

We get around this problem by first observing that our non-standard LCP has additional struc-
ture: with each abnormal variable we can associate a set of normal variables. Second, we make the
following modification to the basic Lemke algorithm. We show that the algorithm can be executed
in such a way that whenever an abnormal variable becomes zero at a vertex, a double label is
created corresponding to a normal variable (see Section 9 for an explanation of these terms). We
then move out of this vertex by relaxing this double label.

One deficiency of Lemke’s algorithm is that it is not guaranteed to terminate with a solution
– this requires an additional argument. We prove termination by showing that the polyhedron
associated with our augmented LCP does not have any secondary rays (see the Appendix A for
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a detailed explanation), if the market satisfies a mild sufficiency condition (see Section 10 for
details). If the number of goods is a constant then we show how to partition the polyhedron
corresponding to the augmented LCP into polynomially many regions so that each region has at
most two vertices that are solutions of the augmented LCP. As a consequence, the path traced by
the algorithm on the one-skeleton of this polyhedron is only polynomially long, hence showing that
our algorithms are strongly polynomial for this cases, in addition to being practical. We note that
[22] had given a polynomial time algorithm for general PLC utility functions, provided the number
of goods is a constant. However, their algorithm does an exhaustive search over polynomially
many configurations and is therefore not practical. Thus our algorithm answers their question of
obtaining a “systematic way of finding equilibrium instead of the brute-force way.”

1.4 Dichotomies and summary of results

We will assume throughout this paper that all numbers given in an instance are rational. Table
1 gives the dichotomy for Nash equilibrium computation. The rationality of 2-Nash was first
established as a corollary of the Lemke-Howson algorithm [37], and the first 3-Nash game having
only irrational equilibria was given by Nash [46].

Table 1:
2-Nash k-Nash, k ≥ 3

Nature of solution Rational [37] Algebraic; irrational example [46]

Complexity PPAD-complete [47, 20, 11] FIXP-complete [28]

Practical algorithms Lemke-Howson [37] ?

Recent results have yielded analogous dichotomies for market equilibrium computation and are
presented in Tables 2 and 3, for consumption and production, respectively. These results include the
complexity results of [10, 60], establishing PPAD-completeness of computing equilibria for Arrow-
Debreu markets under SPLC utilities, the new complementary pivot algorithms [30] and [31], and
a proof of membership of PLC markets in FIXP, which is established in the current paper. Note
that in the tables, results of the current paper have been indicated as CP.

We note that the separable vs. non-separable dichotomy is a very natural one and has arisen in
other situations before, e.g., for the min-cost flow problem where the objective is a convex function
of flows through individual edges, a polynomial time algorithms have been known for a while if
the convex function is additively separable over edges [43, 32]3. Hence there was every reason to
believe that we had arrived at as good an understanding of the complexity of computing market
equilibria (via as convincing a dichotomy), as we had for Nash equilibrium. However, that turned
out not to be the case, as described below.

Table 2:
SPLC utilities PLC utilities

Nature of solution Rational [22, 60] Algebraic [22]; irrational example [26]

Complexity PPAD-complete [10, 60] FIXP: CP (Theorem 3.6); FIXP-hardness?

Practical algorithms
GMSV [30]

?
(based on Lemke [36])

3A slight extension to non-separable convex functions was later given by [44].
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Table 3:
SPLC production PLC production

Nature of solution Rational [31]
Algebraic: CP (Theorem 3.9)

irrational example [31]

Complexity PPAD-complete [31] FIXP: CP (Theorem 3.17); FIXP-hardness?

Practical algorithms
GV [31]

?
(based on Lemke [36])

Using the notions of Leontief-free utilities and production sets, we extend the dichotomies given
in Tables 2 and 3 to those in Tables 4 and 5, respectively. Proofs of rationality in both cases
came as a surprise, considering the non-separability involved. In both cases, we assume that the
market satisfies mild sufficiency conditions (see Section 8.1 for details), and we derive a linear
complementarity problem (LCP) formulation whose solutions are in one-to-one correspondence
with the set of equilibria. As a corollary, we get a proof of rationality for both these markets. Note
that an LCP with rational data always has a rational solution (similar to an LP).

For Tables 3 and 5, which give dichotomies for production, we also need to specify the class of
utility functions of agents. For this, we have used the following convention. For “negative” results,
such as PPAD-hardness or irrational example, we assume the most restricted utilities, i.e., linear
in both tables. For “positive” results, such as containment in PPAD or rationality of equilibria, we
assume the most general utilities, i.e., SPLC in Table 3 and Leontief-free in Table 5.

Table 4:
Leontief-free utilities PLC utilities

Nature of solution Rational: CP (Theorem 7.7) Algebraic [22]; irrational example [26]

Complexity
PPAD-complete: CP In FIXP: CP (Theorem 3.6);

(Theorem 10.12) FIXP-hardness?

Practical algorithms
CP

?
(based on Lemke [36])

Table 5:
Leontief-free production PLC production

Nature of solution Rational: CP (Theorem 8.13)
Algebraic: CP (Theorem 3.9;

irrational example [31]

Complexity
PPAD-complete: CP In FIXP: CP (Theorem 3.17)

(Theorem 10.12) FIXP-hardness?

Practical algorithms
CP

?
(modification of Lemke’s algorithm)

1.5 A brief history of work on computability of market equilibria

The introduction of the tatonnement process, by Walras [61], was followed by decades of concerted
effort within mathematical economics for proving that it converges to an equilibrium. However,
in the 1960s, serious issues were found: Scarf gave an example [50] on which the tatonnement
process cycles and the Sonnenschien-Debreu-Mantel theorem [54, 21, 38] showed that assumptions
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on individual demand functions do not constrain aggregate demand function, implying that the
task was hopeless.

At this point, interest switched to centralized algorithms, rather than distributed mechanisms,
since equilibrium computation is important, e.g., for policy analysis, especially taxation policy, see
[52, 24]. Impressive approaches were given by Scarf [49] and Smale [53]; however, these algorithms
were quite slow and moreover they suffered from numerical instability issues. Despite these short-
comings, these algorithms were used. See [16] for other works in economics, including the discovery
of some remarkable convex programs that capture equilibrium allocations and prices for specific
market models, including the famous Eisenberg-Gale program [27].

With applications to markets on the Internet in the backdrop, around twelve years ago re-
searchers in TCS started bringing to bear tools from the modern theory of algorithms and compu-
tational complexity to this question. After the linear utilities case was successfully tackled [23, 33],
the next general case was SPLC utilities. However, when this long-standing open question was
settled in the negative – the problem was shown PPAD-complete [10, 13, 60] – there seemed little
point in proceeding to more general utility functions. In this situation, complementary pivot al-
gorithms have brought new hope as far as practical algorithms are concerned. The limits of this
approach are currently unclear and need to be understood thoroughly. Another important question
is to find ways of dealing with irrationality by extending this approach, e.g., via a suitable way of
approximation.

Notations. We mostly follow: capital letters denote matrices of constants, like W ; bold lower case
letters denote vector of variables, like x,y; Greek letters are used for dual variables, and calligraphic
capital letters denote sets like A,G. Indices i, j, k and f refer to agent i, good j, segment k, and
firm f respectively. Similarly,

∑
i,
∑

j ,
∑

k, and
∑

f refer to summation over all agents, all goods,
all segments, and all firms respectively. Appendix B summarizes the notation used in this paper
for a quick reference.

2 The Arrow-Debreu Market Model

The Arrow-Debreu market model [3] consists of a set G of divisible goods, a set A of agents and a
set F of firms. Let n denote the number of goods in the market.

The production capabilities of a firm is defined by a set of production schedules. If a firm can
produce a bundle xp of goods using bundle xr as raw material, then such a production schedule
defines a production possibility vector (PPV) (xp − xr). The set of PPVs of a firm determines its
production capabilities. Let Sf ∈ Rn denote the PPV set of firm f . Following are the standard
and natural assumptions on Sf (see [3]).

1. Set Sf is closed and convex, and contains the origin.

2. The set of produced goods and raw goods of a firm are disjoint. Define Rf def
= {j ∈ G | vj <

0, v ∈ Sf} to be the set of raw goods and Pf def
= {j ∈ G | vj > 0, v ∈ Sf} to be the set of

produced goods, then Rf ∩ Pf = ∅.

3. Downward close - Adding to raw material does not decrease the production, i.e., if v ∈ Sf ,
and w ≤ v, while wj ≥ 0,∀j ∈ Pf then w ∈ Sf .

4. No production out of nothing - {⊕f∈FS
f} ∩ Rn+ = 0.
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The goal of a firm is to produce as per a profit maximizing (optimal) schedule. Firms are owned
by agents: Θi

f is the profit share of agent i in firm f such that ∀f ∈ F ,
∑

i∈AΘi
f = 1.

Each agent i comes with an initial endowment of goods; W i
j is amount of good j with agent i.

The preference of an agent i over bundles of goods is captured by a non-negative, non-decreasing
and concave utility function Ui : Rn+ → R+. Non-decreasingness is due to free disposal property, and
concavity captures the law of diminishing marginal returns. Each agent wants to buy a (optimal)
bundle of goods that maximizes her utility to the extent allowed by her earned money – from initial
endowment and profit shares in the firms. Without loss of generality, we assume that total initial
endowment of every good is 1, i.e,

∑
i∈AW

i
j = 1,∀j ∈ G4.

Given prices of goods, if there is an assignment of optimal production schedule to each firm and
optimal affordable bundle to each agent so that there is neither deficiency nor surplus of any good,
then such prices are called market clearing or market equilibrium prices. The market equilibrium
problem is to find such prices when they exist. In a celebrated result, Arrow and Debreu [3]
proved that market equilibrium always exists under some mild conditions, however the proof is
non-constructive and uses heavy machinery of Kakutani fixed point theorem.

A well studied restriction of Arrow-Debreu model is exchange economy, i.e., markets without
production firms.

3 Membership in FIXP

In this section, we show that equilibrium computation problem in markets with PLC utility func-
tions and PLC production functions is in FIXP [28].

We first obtain a characterization of market equilibrium in terms of the solutions of a non-
linear complementarity problem5 (NCP) formulation and then design a continuous function F
over a convex and compact domain, computable by a FIXP circuit, i.e., algebraic circuit with
{max,min,+,−, ∗, /} operators and rational constants. Further we show that assuming the weak-
est known sufficiency conditions for the existence of market equilibrium given by Arrow and Debreu
[3]6, fixed points of F are in one-to-one correspondence with the solutions of NCP, and hence are
related to market equilibria.

Etessami and Yannakakis [28] showed membership in FIXP for exchange markets (markets
without production) with explicit algebraic demand function, however this approach does not work
for markets with PLC utilities. A major difficulty is that the demand of an agent (or firm) is
not an explicit algebraic function of given prices; it is not even unique. The same difficulty was
experienced by [60] in proving membership of exchange markets with SPLC utilities in PPAD,
and they resort to the characterization of PPAD (given in [28]) as a class of exact fixed-point
computation problems for polynomial time computable piecewise-linear Brouwer functions. No
such characterization for FIXP is known. Further we also consider markets with production firms,
which has its own difficulties, like handling market clearing conditions becomes non-trivial due to
indefinite quantities of goods in the market.

We develop a novel technique for proving membership in FIXP (PPAD) from NCP (LCP),
which may be of independent interest. To keep things simple, first we show our result for the
exchange markets with PLC utilities, and then extend it to also include PLC production.

4This is like redefining the unit of goods by appropriately scaling utility and production parameters.
5see [17, 45] for the definition of nonlinear complementarity problem.
6We note that Maxfield [39] sufficiency conditions based on economy graph are not suitable for PLC markets.
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3.1 Exchange economy

The piecewise-linear and concave (PLC) utility function, of agent i, ui : Rn+ → R+ can be described
as

ui(x
i) = min

k
{
∑
j

U ijkx
i
j + T ik},

where U ijk’s and T ik’s are given non-negative rational numbers. Given prices p, agent i’s optimal
bundle is a solution of the following linear program (LP):

maxui

ui ≤
∑
j

U ijkx
i
j + T ik, ∀k∑

j

xijpj ≤
∑
j

W i
jpj

xij ≥ 0, ∀j

(1)

Let γik and λi be the non-negative dual variables of constraints in the above LP. From the
optimality conditions, we get the following linear constraints and complementarity conditions. Note
that the constraints are linear assuming prices are given. All variables introduced will have a non-
negativity constraint; for the sake of brevity, we will not write them explicitly.

∀j :
∑
k

U ijkγ
i
k ≤ λipj and xij(

∑
k

U ijkγ
i
k − λipj) = 0

∀k : ui ≤
∑
j

U ijkx
i
j + T ik and γik(ui −

∑
j

U ijkx
i
j − T ik) = 0∑

j

xijpj ≤
∑
j

W i
jpj and λi(

∑
j

xijpj −
∑
j

W i
jpj) = 0∑

k

γik = 1

(2)

From strong duality, (1) and (2) are equivalent. Further by simple algebra, these conditions
also give

ui = λi
∑
j

W i
jpj +

∑
k

γikT
i
k. (3)

Hence ui is a redundant variable and can be eliminated using the above expression, however for
clarity we keep it as a placeholder variable for the above expression. We get the above constraints
for each agent i and all together, they capture the optimal bundle and budget constraints of every
agent. At market equilibrium, we also need market clearing of each good, which is essentially,∑

i x
i
j ≤ 1, ∀j. By putting these together and now treating price p as variables, we get the

nonlinear complementarity problem (NCP) formulation as shown in Table 6. Since equilibrium
prices are scale invariant in Arrow-Debreu market, we have put

∑
j pj = 1 as well.

The next lemma follows from the above analysis.

Lemma 3.1 If (p,x,λ,γ) is a solution of E-NCP, then (p,x) is a market equilibrium. Further if
(p,x) is a market equilibrium, then ∃(λ,γ) such that (p,x,λ,γ) is a solution of E-NCP.

Sufficiency Conditions. Market equilibrium may not exist, and it is NP-complete to decide
whether there exists an equilibrium even in markets with SPLC utility functions [60]. Arrow-Debreu
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Table 6: E-NCP

∀(i, j) :
∑
k

U ijkγ
i
k ≤ λipj and xij(

∑
k

U ijkγ
i
k − λipj) = 0

∀(i, k) : ui ≤
∑
j

U ijkx
i
j + T ik and γik(ui −

∑
j

U ijkx
i
j − T ik) = 0

∀i :
∑
j

xijpj ≤
∑
j

W i
jpj and λi(

∑
j

xijpj −
∑
j

W i
jpj) = 0

∀j :
∑
i

xij ≤ 1 and pj(
∑
j

xij − 1) = 0

∀i :
∑
k

γik = 1 and ui = λi
∑
j

W i
jpj +

∑
k

γikT
i
k∑

j

pj = 1

[3] showed that market equilibrium exists under the following sufficiency conditions: W > 0 and
each agent is non-satiated. In case of PLC utilities, non-satiation condition implies that for every
k, there exists a j such that U ijk > 0.

Next we define a continuous function F : D → D, where D is convex and compact and show that
fixed points of F are in one-to-one correspondence with the solutions of E-NCP, and hence are
related to market equilibria using Lemma 3.1. Since F is continuous on a convex and compact D,
there exists a fixed point. Clearly, for such a theorem, we need to assume sufficiency conditions.

To define D, first we obtain upper bounds on all variables at equilibrium. Let xmax
def
= 1.1,

Wmin
def
= min(i,j)W

i
j , Umax

def
= max(i,j,k) U

i
jk, Tmax

def
= max(i,k) T

i
k, and λmax

def
= 2n(Umax+Tmax)/Wmin.

Note that Wmin > 0 under sufficiency conditions. Since the total quantity of every good is 1,
0 ≤ xij < xmax at equilibrium. Using (3), we get λi ≤ n(Umax+Tmax)/Wmin < λmax at equilibrium.

Let D
def
= {(p,x,γ,λ) ∈ RN+ |

∑
j pj = 1; xij ≤ xmax;

∑
k γ

i
k = 1; λi ≤ λmax}, where N is the

total number of variables, and let (p,x,γ,λ)
def
= F (p,x,γ,λ) as given in Table 7.

The following claim is straightforward using Lemma 3.1 and we omit its proof.

Claim 3.2 Every market equilibrium gives a fixed point of F .

Next assuming sufficiency conditions for the existence of market equilibrium, we show that ev-
ery fixed point of F gives a market equilibrium. Table 8 gives all the conditions that might lead to
a fixed point of F based on update rule in Table 7.

Reading Table 8. Consider (3.1), which says that if xij = 0, then for this input to be a fixed point,

it must be the case that
∑

k U
i
jkγ

i
k ≤ λipj , otherwise xij 6= xij . Similarly, suppose

∑
k U

i
jkγ

i
k < λipj ,

then it must be the case that xij = 0. Next consider (1.2), which says that if pj > 0 and
∑

i x
i
j > 1

for some j, then for this input to be fixed point, it must be the case that whenever pj > 0 we have∑
i x

i
j > 1 and whenever pj = 0, we have

∑
i x

i
j ≤ 1, otherwise p 6= p.

10



Table 7: FIXP Circuit for Exchange Economy

pj =
pj + max{

∑
i x

i
j − 1, 0}∑

j

(pj + max{
∑

i x
i
j − 1, 0})

γik =
γik + max{ui −

∑
j U

i
jkx

i
j − T ik, 0}∑

k

(γik + max{ui −
∑

j U
i
jkx

i
j − T ik, 0})

xij = min
{

max
{
xij +

∑
k U

i
jkγ

i
k − λipj , 0

}
, xmax

}
λi = min

{
max

{
λi +

∑
j x

i
jpj −

∑
jW

i
jpj , 0

}
, λmax

}

Table 8: Conditions for a Fixed Point Based on Update Rule in Table 7

p = p

case 1:
∑

i x
i
j ≤ 1 (1.1)

If pj = 0, then
∑

i x
i
j ≤ 1

case 2:
If pj > 0, then

∑
i x

i
j > 1

(1.2)

γi = γi

case 1: ui ≤
∑

j U
i
jkx

i
j + T ik (2.1)

If γik = 0, then ui ≤
∑

j U
i
jkx

i
j + T ikcase 2:

If γik > 0, then ui >
∑

j U
i
jkx

i
j + T ik

(2.2)

xij = xij

xij = 0
∑

k U
i
jkγ

i
k ≤ λipj (3.1)

0 < xij < xmax
∑

k U
i
jkγ

i
k = λipj (3.2)

xij = xmax
∑

k U
i
jkγ

i
k ≥ λipj (3.3)

λi = λi

λi = 0
∑

j x
i
jpj ≤

∑
jW

i
jpj (4.1)

0 < λi < λmax
∑

j x
i
jpj =

∑
jW

i
jpj (4.2)

λi = λmax
∑

j x
i
jpj ≥

∑
jW

i
jpj (4.3)

Next we show that none of the conditions in shaded rows, namely (1.2), (2.2), (3.3) and (4.3), are
satisfied at fixed points of F , which implies that each fixed point of F gives a solution of E-NCP,
and hence market equilibrium.

Claim 3.3 At every fixed point of F , 0 < λi < λmax,∀i.

Proof : First suppose that λi = λmax for some i at a fixed point. It implies that for every good
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j such that pj ≥ Wmin
2n , we have xij = 0 (from (3.1)). Hence,

∑
j x

i
jpj < Wmin, which contradicts∑

j x
i
jpj ≥

∑
jW

i
jpj (from (4.3)). Hence λi < λmax, ∀i at a fixed point.

Next suppose that λi = 0 for some i at a fixed point. It implies that for every γik > 0 and
U ijk > 0, we have xij = xmax (from (3.3)). Note that here we use the sufficiency condition that for

every k there exists a j such that U ijk > 0. Further pj > 0 for such goods and
∑

i x
i
j > 1 for all

goods whose pj > 0 (from (1.2)). By this, we get
∑

i,j x
i
jpj > 1 =

∑
i,jW

i
jpj . This further implies

that ∃i′ such that
∑

j x
i′
j pj >

∑
jW

i′
j pj and λi′ = λmax, which is a contradiction. 2

Claim 3.4 At every fixed point of F ,
∑

i x
i
j ≤ 1,∀j.

Proof : Suppose ∃j such that
∑

i x
i
j > 1. It implies that pj > 0 (from (1.2)). This further

implies that whenever pj > 0, we have
∑

i x
i
j > 1. Hence, we have

∑
ij x

i
jpj > 1 =

∑
i,jW

i
jpj . By

this, we get that ∃i′ such that
∑

j x
i′
j pj > W i′

j pj and hence λi′ = λmax (from (4.3)), contradicting
Claim 3.3. 2

Note that Claim 3.4 implies that xij < xmax, ∀(i, j) at every fixed point of F .

Claim 3.5 At every fixed point of F , ui ≤
∑

j U
i
jkx

i
j + T ik,∀(i, k).

Proof : Note that ui is a placeholder variable for λi
∑

jW
i
jpj +

∑
k γ

i
kT

i
k. Suppose ∃(i, k)

such that ui >
∑

j U
i
jkx

i
j + T ik, then we have ∀(i, k), γik > 0 ⇒ ui >

∑
j U

i
jkx

i
j + T ik (from

(2.2)). This implies that
∑

k uiγ
i
k >

∑
j,k U

i
jkx

i
jγ
i
k +

∑
k T

i
kγ

i
k. From Claims 3.4 and 3.3, we have∑

k U
i
jkγ

i
kx

i
j = λipjx

i
j ,∀(i, j) and

∑
j x

i
jpjλi =

∑
jW

i
jpjλi,∀i. Putting these together, we get that

ui >
∑

jW
i
jpjλi +

∑
k T

i
kγ

i
k, which is a contradiction. 2

Claims 3.3, 3.4, 3.5 imply that none of the conditions (1.2), (2.2), (3.3), (4.3) are satisfied at
fixed points of F . Therefore, we get the following theorem.

Theorem 3.6 Assuming sufficient conditions of the existence of market equilibrium, every fixed
point of F gives a solution of E-NCP and hence a market equilibrium. Further, F can be computed
by a FIXP-circuit and hence market equilibrium computation problem for PLC utilities is in FIXP.

Remark 3.7 This technique can be used to obtain Linear-FIXP (equivalent to PPAD) circuit for
markets with SPLC utilities using the linear complementary problem (LCP) formulation given in
[30], thereby giving alternate proof of membership in PPAD for such markets. However, the same
approach for proving membership in Linear-FIXP does not seem to work for 2-Nash using its LCP
formulation.

3.2 Markets with production

Recall from Section 2 that each firm has a production technology to produce a set of goods from a
set of different raw goods. The PLC production technology of firm f can be described as∑

j

Df
jkx

f,p
j ≤

∑
j

Cfjkx
f,r
j + T fk , ∀k,

where Df
jk’s, C

f
jk’s and T fk ’s are given non-negative rational numbers, and xf,pj and xf,rj denote the

amount of good j produced and used respectively. In the above expression, the first summation is
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on goods j which can be produced by firm f , and the second summation is on goods j which can
be used as a raw material. These two sets of goods are disjoint as described in Section 2, however
for simplicity we do not introduce more symbols and taking summation over all goods. Further,
variables xf,pj and xf,rj are respectively defined only for those goods j which can be produced and
used by firm f .

Given prices p, firm f ’s profit maximizing plan is a solution of the following linear program
(LP):

max
∑
j

pjx
f,p
j −

∑
j

pjx
f,r
j∑

j

Df
jkx

f,p
j ≤

∑
j

Cfjkx
f,r
j + T fk , ∀k

xf,pj ≥ 0, xf,rj ≥ 0

(4)

Let δfk be the non-negative dual variable of constraints in the above LP. From the optimality
conditions, we get the following linear constraints and complementarity conditions. Note that the
constraints are linear assuming prices are given. All variables introduced will have a non-negativity
constraint; for the sake of brevity, we will not write them explicitly.

∀k :
∑
j

Df
jkx

f,p
j ≤

∑
j

Cfjkx
f,r
j + T fk and δfk (

∑
j

Df
jkx

f,p
j −

∑
j

Cfjkx
f,r
j + T fk ) = 0

∀j : pj ≤
∑
k

Df
jkδ

f
k and xf,pj (pj −

∑
k

Df
jkδ

f
k ) = 0

∀j :
∑
k

Cfjkδ
f
k ≤ pj and xf,rj (

∑
k

Cfjkδ
f
k − pj) = 0

(5)

From strong duality, (4) and (5) are equivalent. Let φf captures the profit of firm f , i.e.,

φf =
∑

j pjx
f,p
j −

∑
j pjx

f,r
j . Further by simple algebra, these conditions also give

φf =
∑
k

δfkT
f
k . (6)

We get the above constraints for each firm k and all together, they capture the optimal pro-
duction plan of every firm. Next we need to add constraints capturing optimal bundle of agents
and market clearing. For this, we only need to modify market clearing constraints in (6) appropri-
ately and we get the nonlinear complementarity problem (NCP) formulation AD-NCP for market
equilibrium as shown in Table 9.

The next lemma and theorem follow from the construction.

Lemma 3.8 If (p,x,xp,xr,λ,γ, δ) is a solution of AD-NCP, then (p,x,xp,xr) is a market equi-
librium. Further, if (p,x,xp,xr) is a market equilibrium, then ∃(λ,γ, δ) such that (p,x,xp,xr,λ,γ, δ)
is a solution of AD-NCP.

Theorem 3.9 Equilibrium prices are algebraic in markets with PLC utilities and PLC production.

Sufficiency Conditions. For markets with production, Arrow-Debreu [3] gave the following
sufficiency conditions for the existence of equilibrium: W > 0, each agent is non-satiated, no
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Table 9: AD-NCP

∀(f, k) :
∑
j

Df
jkx

f,p
j ≤

∑
j

Cfjkx
f,r
j + T fk and δfk (

∑
j

Df
jkx

f,p
j −

∑
j

Cfjkx
f,r
j − T

f
k ) = 0

∀(f, j) : pj ≤
∑
k

Df
jkδ

f
k and xf,pj (pj −

∑
k

Df
jkδ

f
k ) = 0

∀(f, j) :
∑
k

Cfjkδ
f
k ≤ pj and xf,rj (

∑
k

Cfjkδ
f
k − pj) = 0

∀(i, j) :
∑
k

U ijkγ
i
k ≤ λipj and xij(

∑
l

U ijkγ
i
k − λipj) = 0

∀(i, k) : ui ≤
∑
j

U ijkx
i
j + T ik and γik(ui −

∑
j

U ijkx
i
j − T ik) = 0

∀i :
∑
j

xijpj ≤
∑
j

W i
jpj +

∑
f

Θi
fφ

f and λi(
∑
j

xijpj −
∑
j

W i
jpj −

∑
f

Θi
fφ

f ) = 0

∀j :
∑
i

xij +
∑
f

xf,rj ≤ 1 +
∑
f

xf,pj and pj(
∑
i

xij +
∑
f

xf,rj − 1−
∑
f

xf,pj ) = 0

∀i :
∑
k

γik = 1 and ui = λi(
∑
j

W i
jpj +

∑
f

Θi
fφ

f ) +
∑
k

γikT
i
k

∀f : φf =
∑
k

δfkT
f
k∑

j

pj = 1

production out of nothing and no vacuous production. In case of PLC production, the last two
conditions mean that the following linear constraints define a bounded polyhedron.

∀(f, k) :
∑
j

Df
jkx

f,p
j ≤

∑
j

Cfjkx
f,r
j + T fk

∀j :
∑
f

xf,rj ≤ 1 +
∑
f

xf,pj

∀(f, j) : xf,pj ≥ 0; xf,rj ≥ 0

(7)

where first is production constraint and second is supply constraint. Let x∗ be the maximum
possible value of a variable over these constraints. Note that the bit length of x∗ is polynomial in
the size of input and can be computed in polynomial time.

Next we define a continuous function F : D → D, where D is convex and compact and show that
fixed points of F are in one-to-one correspondence with market equilibrium. Since F is continuous
on a convex and compact D, there exists a fixed point. Clearly, for such a theorem, we need to
assume sufficiency conditions.

To define D, first we obtain upper bounds on all variables at equilibrium. Let xpmax
def
= x∗+1 and

xmax
def
= 2lxpmax+2, where l is total number of firms and x∗ is as discussed above in sufficiency con-

dition. Next define min and max of every input C,D, T, U,W like Cmin
def
= min(f,j,k){C

f
jk | C

f
jk > 0}
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and Cmax
def
= max(f,j,k)C

f
jk. Let xrmax

def
= xmax+(nxpmaxDmax/Cmin), δmax

def
= max{1/Cmin, 1/Dmin}+1,

and λmax
def
= 4nxmax(Umax+Tmax)/Wmin.

Clearly, xij < xmax, x
f,p
j < xpmax and xf,rj < xrmax at equilibrium. Using ui = λi(

∑
jW

i
jpj +∑

f Θi
fφ

f )+
∑

k γ
i
kT

i
k, we get λi ≤ nxmax(Umax+Tmax)/Wmin < λmax at equilibrium. Using

∑
k C

f
jkδ

f
k ≤

pj , we get an upper bound on δfk at equilibrium as: δfk ≤ 1/Cmin < δmax.

LetD
def
= {(p,x,xp,xr,γ, δ,λ) ∈ RN+ |

∑
j pj = 1; xij ≤ xmax; xf,pj ≤ x

p
max; xf,rj ≤ xrmax;

∑
k γ

i
k =

1; δfk ≤ δmax; λi ≤ λmax}, where N is the total number of variables, and let (p,x,xp,xr,γ, δ,λ)
def
=

F (p,x,xp,xr,γ, δ,λ) as given in Table 10.

Table 10: FIXP Circuit for Markets with Production

pj =
pj + max{

∑
i x

i
j +

∑
f x

f,r
j − 1−

∑
f x

f,p
j , 0}∑

j

(pj + max{
∑

i x
i
j +

∑
f x

f,r
j − 1−

∑
f x

f,p
j , 0})

γik =
γik + max{ui −

∑
j U

i
jkx

i
j − T ik, 0}∑

k

γik + max{ui −
∑

j U
i
jkx

i
j − T ik, 0}

δ
f
k = min

{
max

{
δfk +

∑
j D

f
jkx

f,p
j −

∑
j C

f
jkx

f,r
j − T

f
k , 0
}
, δmax

}
xij = min

{
max

{
xij +

∑
k U

i
jkγ

i
k − λipj , 0

}
, xmax

}
xf,pj = min

{
max

{
xf,pj + pj −

∑
kD

f
jkγ

i
k, 0
}
, xpmax

}
xf,rj = min

{
max

{
xf,rj +

∑
k C

f
jkδ

f
k − pj , 0

}
, xrmax

}
λi = min

{
max

{
λi +

∑
j x

i
jpj −

∑
jW

i
jpj , 0

}
, λmax

}

The following claim is straightforward using Lemma 3.8 and we omit its proof.

Claim 3.10 Every market equilibrium is a fixed point of F .

Next assuming sufficiency conditions for the existence of market equilibrium, we show that
every fixed point of F is a market equilibrium. Table 11 gives all the conditions that might lead to
a fixed point of F based on the update rule in Table 10 (see reading Table 8 in previous section for
how to read this). We show that none of the conditions in shaded rows, namely (1.2), (2.2), (3.3),
(4.3), (5.3), (6.3) and (7.3), are satisfied at fixed points of F , which implies that each fixed point
of F gives a solution of AD-NCP in Table (9) and hence a market equilibrium.

Claim 3.11 At every fixed point of F ,
∑

j D
f
jkx

f,p
j ≤

∑
j C

f
jkx

f,r + T fk , ∀(f, k).

Proof : Suppose ∃(f, k) such that
∑

j D
f
jkx

f,p
j >

∑
j C

f
jkx

f,r+T fk , then we have δfk = δmax (from

(7.3)). This implies that whenever Df
jk > 0, we have xf,pj = 0 (from (6.1)), which contradicts the

starting assumption. 2
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Table 11: Conditions for a Fixed Point Based on Update Rule in Table 10

p = p
case 1:

∑
i x

i
j +

∑
f x

f,r
j ≤ 1 +

∑
f x

f,p
j (1.1)

pj = 0 and
∑

i x
i
j +

∑
f x

f,r
j ≤ 1 +

∑
f x

f,p
j

case 2:
pj > 0 and

∑
i x

i
j +

∑
f x

f,r
j > 1 +

∑
f x

f,p
j

(1.2)

γi = γi
case 1: ui ≤

∑
j U

i
jkx

i
j + T ik (2.1)

γik = 0 and ui ≤
∑

j U
i
jkx

i
j + T ik

case 2:
γik > 0 and ui >

∑
j U

i
jkx

i
j + T ik

(2.2)

xij = xij

xij = 0
∑

k U
i
jkγ

i
k ≤ λipj (3.1)

0 < xij < xmax
∑

k U
i
jkγ

i
k = λipj (3.2)

xij = xmax
∑

k U
i
jkγ

i
k ≥ λipj (3.3)

λi = λi

λi = 0
∑

j x
i
jpj ≤

∑
jW

i
jpj +

∑
f,k Θi

fδ
f
kT

f
k (4.1)

0 < λi < λmax
∑

j x
i
jpj =

∑
jW

i
jpj +

∑
f,k Θi

fδ
f
kT

f
k (4.2)

λi = λmax
∑

j x
i
jpj ≥

∑
jW

i
jpj +

∑
f,k Θi

fδ
f
kT

f
k (4.3)

xf,rj = xf,rj

xf,rj = 0
∑

k C
f
jkδ

f
k ≤ pj (5.1)

0 < xf,rj < xrmax
∑

k C
f
jkδ

f
k = pj (5.2)

xf,rj = xrmax
∑

k C
f
jkδ

f
k ≥ pj (5.3)

xf,pj = xf,pj

xf,pj = 0 pj ≤
∑

kD
f
jkδ

f
k (6.1)

0 < xf,pj < xpmax pj =
∑

kD
f
jkδ

f
k (6.2)

xf,pj = xpmax pj ≥
∑

kD
f
jkδ

f
k (6.3)

δ
f
k = δfk

δfk = 0
∑

j D
f
jkx

f,p
j ≤

∑
j C

f
jkx

f,r
j + T fk (7.1)

0 < δfk < δmax
∑

j D
f
jkx

f,p
j =

∑
j C

f
jkx

f,r
j + T fk (7.2)

δfk = δmax
∑

j D
f
jkx

f,p
j ≥

∑
j C

f
jkx

f,r
j + T fk (7.3)

Claim 3.12 At every fixed point of F ,
∑

k C
f
jkδ

f
k ≤ pj , ∀(f, j).

Proof : Suppose ∃(f, j) such that
∑

k C
f
jkδ

f
k > pj , then we have xf,rj = xrmax (from (5.3)).
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It implies that whenever Cfjk > 0, we have δfk = 0 (from (7.1)), which contradicts the starting
assumption. 2

Claim 3.13 If
∑

i,j x
i
jpj +

∑
f,j x

f,r
j pj >

∑
i,jW

i
jpj +

∑
f,j x

f,p
j pj, then ∃i such that

∑
j x

i
jpj >∑

jW
i
jpj +

∑
f,k Θi

fT
f
k δ

f
k .

Proof : This proof is by contradiction. Suppose we have
∑

j x
i
jpj ≤

∑
jW

i
jpj+

∑
f,k Θi

fT
f
k δ

f
k , ∀i,

then summing it over all i and using
∑

i Θi
f = 1, we get∑

i,j

W i
jpj +

∑
f,k

T fk δ
f
k ≥

∑
i,j

xijpj >
∑
i,j

W i
jpj +

∑
f,j

xf,pj pj −
∑
f,j

xf,rj pj (8)

Claims 3.11 and 3.12 imply that xf,rj (
∑

k C
f
jkδ

f
k−pj) = 0,∀(f, j) and δfk (

∑
j D

f
jkx

f,p
j −

∑
j C

f
jkx

f,r
j −

T fk ) = 0, ∀(f, k), and it further implies that
∑

f,k T
f
k δ

f
k =

∑
f,j,k δ

f
kD

f
jkx

f,p
j −

∑
f,j x

f,r
j pj . Using this

and (8) we get
∑

f,j,k δ
f
kD

f
jkx

f,p
j >

∑
f,j x

f,p
j pj , which is a contradiction because (6.1), (6.2) and

(6.3) imply that
∑

f,j,k δ
f
kD

f
jkx

f,p
j ≤

∑
f,j x

f,p
j pj . 2

Claim 3.14 At every fixed point of F ,

• 0 < λi < λmax, ∀i

•
∑

i x
i
j +

∑
f x

f,r
j ≤ 1 +

∑
f x

f,p
j ,∀j

• xij < xmax,∀(i, j)

Proof : First suppose that λi = λmax for some i at a fixed point. It implies that for every
good j such that pj ≥ Wmin/2nxmax, we have xij = 0 (from (3.1)). Hence,

∑
j x

i
jpj < Wmin, which

contradicts (4.3). Hence 0 < λi < λmax, ∀i at a fixed point.
Next suppose that λi = 0 for some i at a fixed point. It implies that for every γik > 0 and

U ijk > 0, we have xij = xmax (from (3.3)). Note that here we use the sufficiency condition that for

every k there exists a j such that U ijk > 0. Since xmax is much larger than 1 +
∑

f x
f,p
j , we have

pj > 0 for such goods and
∑

i x
i
j +

∑
f x

f,r
j > 1 +

∑
f x

f,p
j for all goods whose pj > 0 (from (1.2)).

By this, we get
∑

i,j x
i
jpj +

∑
f,j x

f,r
j pj >

∑
i,jW

i
jpj +

∑
f,j x

f,p
j pj . Using Claim 3.13, it implies

that ∃i′ such that
∑

j x
i′
j pj >

∑
jW

i′
j pj +

∑
f,k Θi′

f T
f
k δ

f
k and λi′ = λmax (from (4.3)), which is a

contradiction.
Finally suppose that there exists a j such that

∑
i x

i
j +

∑
f x

f,r
j > 1 +

∑
f x

f,p
j , then we have

pj > 0 and whenever pj > 0,
∑

i x
i
j +

∑
f x

f,r
j > 1 +

∑
f x

f,p
j (from (1.2)). It implies that there

exists an i such that λi = λmax, which is a contradiction. This also implies that xij < xmax, ∀(i, j).
2

The proof of next claim is similar as in Claim 3.5, hence omitted.

Claim 3.15 At every fixed point of F , ui ≤
∑

j U
i
jkx

i
j + T ik, ∀(i, k).

Claim 3.16 At every fixed point of F , pj ≤
∑

kD
f
jkδ

f
k , ∀(f, j).
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Proof : Suppose there exists a (f, j) such that pj >
∑

kD
f
jkδ

f
k at a fixed point, then xf,pj = xpmax

(from (6.3)). Claims 3.14 and 3.11 imply that
∑

i x
i
j +
∑

f x
f,r
j ≤ 1 +

∑
f x

f,p
j ,∀j and

∑
j D

f
jkx

f,p
j ≤∑

j C
f
jkx

f,r + T fk ,∀(f, k), which leads to a contradiction since xf,pj = xpmax cannot satisfy these
constraints as discussed in the sufficiency conditions. This claim uses the no production out of
nothing and no vacuous production conditions. 2

Together Claims 3.11, 3.12, 3.14, 3.15 and 3.16 imply that none of the conditions (1.2), (2.2),
(3.3), (4.3), (5.3), (6.3), and (7.3) are satisfied at fixed points of F . Therefore, we get the following
theorem.

Theorem 3.17 Assuming sufficient conditions of the existence of market equilibrium, every fixed
point of F gives a solution of AD-NCP and hence a market equilibrium. Further, F can be computed
by a FIXP-circuit and hence market equilibrium computation problem for PLC utilities and PLC
production is in FIXP.

Remark 3.18 This technique can be used to obtain Linear-FIXP (equivalent to PPAD) circuit for
markets with SPLC utilities and SPLC production using the linear complementary problem (LCP)
formulation given in [31], thereby giving alternate proof of membership in PPAD for such markets.

4 Leontief-free Utility Functions and Production Sets

We first give a high level description of these notions, which were introduced in [42] for dealing
with the situation in which goods are substitutes. Interestingly enough, there was no analogous
notion in economics: the only notion dealing with substitutes in economics is constant elasticity
of substitution (CES) utilities; however, as noted in [42], these utility functions are too restrictive,
since the requirement that the agent have constant elasticity of substitution over the whole domain
is too stringent and moreover can lead to odd optimal bundles. Furthermore, CES utilities satisfy
constant returns to scale and hence do not capture decreasing marginal utilities due to satiation.

Let G be a set of divisible goods, G = {1, 2, . . . , n}, and f be a PLC utility function of an agent
for these goods, f : Rn+ → R+. Recall from the Introduction that f is separable if it is the sum of
utilities of individual goods, i.e. f(x) =

∑
j∈G fj(xj), where fj : R+ → R+ is the utility function

of the agent for good j, j ∈ G. A utility function that is not separable is said to be non-separable.
Leontief utilities are an important class of non-separable utilities, capturing situations in which
goods are complements. Given parameters aj , j ∈ G, the Leontief utility of a bundle is defined to

be f(x) = minj∈G

{
xj
aj

}
. Clearly, if aj = 0, good j is not desired at all; we will assume that at least

two of these parameters are non-zero; if only one is, then this function is linear.
Observe that under a Leontief utility function, every infinitesimal amount of utility derived is

obtained from all goods having non-zero aj’s, consumed in the desired proportions. In contrast,
under a Leontief-free (LF) function, goods compete for every infinitesimal amount of utility derived
via the mechanism of segments. We will first introduce the notion of segments for an separable
PLC (SPLC) utility function f(x) =

∑
j∈G fj(xj); recall that SPLC utilities form a subclass of LF

utilities. Each “piece” of fj , for each good j, defines a segment; each segment has three parameters.
Clearly, each piece has two parameters, an upper bound in utility that can be accrued for the good
obtained under this piece, which could be ∞, and the rate at which utility is accrued per unit of
good obtained. These two parameters and the name of the good, i.e., j, are the three parameters
associated with each segment of fj . In preparation for introducing general LF functions, let us
compute the utility derived for bundle x under f as follows. Write an LP that considers all possible
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allocations of x to the segments and attempts to maximize the sum of the utilities accrued under all
segments (the utility accrued under a segment cannot exceed the upper bound specified). Clearly,
if f is SPLC, the optimal solution will allocate each good to the segments having the highest rates.

Next, let us turn to a general LF function. The three parameters of each of its segments are:

1. An upper bound on the total utility that can be accrued for goods obtained under this
segment, which could be ∞.

2. A non-empty subset of goods.

3. Corresponding to each good specified above, the rate at which utility is accrued per unit of
good obtained.

Once again, the utility derived for a bundle x is computed via an analogous LP. Unlike the SPLC
case, the solution of the LP has no easy description. In particular, which good(s) of a segment
get how much allocation depends on the bundle x and can change drastically from one bundle to
another.

A Leontief-free production set, which generalizes SPLC production, is also specified via segments.
Let disjoint sets Sr and Sf be the set of raw goods and finished goods of a firm. In general, any
good in Sf can be produced from any good in Sr; the precise rate of production is specified via the
parameters of the segments7. Before defining the parameters of segments, let us give the notion
of raw units. Each of the raw goods is first converted to raw units and then the raw units are
converted to finished goods. The three parameters of each of its segments are:

1. An upper bound on the total number of raw units this segment can handle, which could be
∞.

2. Two non-empty subset, Tr and Tf , where Tr ⊆ Sr and Tf ⊆ Sf .

3. Corresponding to each good j ∈ Tr the rate at which raw units are obtained from j, and
corresponding to each good j′ ∈ Tr the rate at which j′ is obtained from raw units.

For given prices of raw goods and finished goods, a production schedule yielding optimal profit can
be obtained by solving an LP which is analogous to that for an LF utility function.

4.1 A min-max relation

As indicated in Section 4, substitutability among goods is intimately connected to satiation, i.e.,
sub-additivity, in the joint utility obtained from a bundle of goods. In order to show that the
notion of Leontief-free utility functions is well-founded, [42] study the extreme cases of satiation,
assuming PLC utilities. They note that as far as intra-good satiation is concerned, the extreme
cases are linear (in case of no satiation) and a PLC function which goes flat after only one piece
(in case of maximal satiation). For inter-good satiation, they define the following notions.

Fix PLC functions fj : R+ → R+, ∀j ≤ n, where fj represents the utility obtained when only
good j is consumed. Let vj denote an n-dimensional unit vector with one on jth co-ordinate. The
following definition is with respect to fjs.

Definition 4.1 We say that a PLC function f : Rn+ → R+ is consistent, if it is Leontief-free, and
its restriction to good j is fj. Formally, f(x ∗ vj) = fj(x),∀j ≤ n,∀x ∈ R+.

7Of course, if the rate turns out to be zero for a pair of goods j, j′, then j′ cannot be produced from j.
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Let fmax : Rn+ → R denote the joint utility for the extreme case when there is no inter-good
satiation. Clearly, this function should be simply additive over fj(xj), i.e., with no sub-additivity.
Hence

∀x ∈ Rn+, fmax(x) =
∑
j

fj(xj),

i.e., it is simply the SPLC combination of the utilities for individual goods.
For the other extreme, i.e., maximal inter-good satiation, define

fmin(x) = min
f : consistent

f(x), ∀x ∈ Rn+ (9)

Definition 4.2 Given a bundle x, we say that utility t ∈ R+ is feasible if the following holds:
There is a division of [0, t] into sub intervals say I1, . . . , Ih, where each interval is closed and∑
k ≤ h|Ik| = t. Further, there is an assignment of intervals to goods, such that xj ≤

∑
I∈Sj

f−1j (I),∀j ≤
n, where Sj is the set of intervals assigned to good j.

They show that fmin satisfies the following min-max relation:

∀x ∈ Rn+ min
f :consistent

f(x) = max
t:feasibleforx

t

Further, they show that fmin is a Leontief-free function an LP for it can be computed from the
fjs in polynomial time. Moreover, predictions made by fmin are consistent with the function one
would derive for maximal inter-good satiation in natural situations.

The next two sections will introduce the notation we will follow in this paper for specifying LF
utility functions and production sets; as in the definition of Leontief functions given above, we
will dispense with explicitly specifying subsets of goods corresponding to each segment by allowing
rates to be zero.

4.2 Utility functions

A Leontief-free utility function Ui is specified by a set of segments. On segment k the agent derives
utility

∑
j cjxj from bundle x, say up to l units of utility, where cj ’s are non-negative. Intuitively,

on this segment a unit amount of good j fetches cj amount of utility. The common limit l on the
maximum amount of utility that can be derived on this segment makes it non-separable. We define

U ijk
def
= cj and Lik

def
= l. We note that Lik can be infinity.

Let xjk denote the amount of good j consumed by the agent on this segment, then the overall
utility Ui(x) from a bundle x is calculated by solving the following linear program.

max :
∑

k uk
s.t. ∀k : uk =

∑
j U

i
jkxjk; uk ≤ Lik

∀j :
∑

k xjk ≤ xj

Since each U ijk is non-negative, Ui is non-negative. It is non-decreasing due to maximization,
and it is concave because for a convex combination z = λx + (1 − λ)y, 0 < λ < 1 of bundles x
and y, the corresponding convex combination of their optimal is a feasible point in the polyhedron
corresponding to Ui(z), and hence Ui(z) ≥ λUi(x) + (1− λ)Ui(y).

In a Leontief-type preference a set of goods are needed in a fixed proportion to derive non-zero
utility, i.e., goods are complementary. For e.g., an agent needs one bread and half cube butter to
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make a sandwich (a unit utility), i.e., u ≤ #bread, u ≤ 2 · #butter cubes. Such a preference is
not allowed in above construction, as every uk depends on exactly one linear equation on amounts,
hence is Leontief-free.

4.3 Production sets

Recall from Section 2 that each firm f has a set Sf of production possibility vectors. We assume
that set Sf is polyhedral and define a subclass of polyhedral production sets called Leontief-free.
Such a production set is defined by a set of segments. A segment is defined as follows, where xrj ’s

and xpj ’s denote the amount of goods used and produced respectively. We treat 0
0 as 0.

R =
∑

j∈Rf cjx
r
j ;
∑

j∈Pf

xpj
dj
≤ R; R ≤ l

Essentially the above expression implies that on this segment 1/cj amount of j ∈ Rf contributes
to one unit of raw material and from this at most dj′ amount of j′ ∈ Pf can be produced.8 Further,
at most l units of raw material can be used to do production at this rate. This representation
disallows Leontief-type productions such as making a sandwich from two slices of bread and a
butter cube, or producing a unit of gasoline and a unit of petroleum gas from a unit of petroleum.

For the kth segment of firm f , we define Cfjk
def
= cj , D

f
jk

def
= dj and Lfk

def
= l. We note that Lfk can be

infinity. Let xrjk’s and xpjk’s denote the goods used and produced on segment k respectively, then
combined production of firm f on all the segments is:

∀k : Rk =
∑

j∈Rf C
f
jkx

r
jk;

∑
j∈Pf

xpjk

Df
jk

≤ Rk; Rk ≤ Lfk
∀k : ∀j ∈ Rf , xrjk ≥ 0; ∀j ∈ Pf , xpjk ≥ 0

Let Sf be the projection of the above set on −
∑

k x
r
jk, ∀j ∈ R

f and
∑

k x
p
jk, ∀j ∈ P

f . Clearly,

Sf is a polyhedral set, and by construction it satisfies all the four assumptions stated in Section 2.
We will call this market, with Leontief-free utility and Leontief-free production sets, by Leontief-

free market and denote it by M.

5 Market Equilibrium Characterization

Given prices, each firm produces as per a profit maximizing (optimal) production plan and each
agent buys a utility maximizing (optimal) bundle that is affordable. At equilibrium, demand of
each good meets its total supply. In this section we characterize optimal production plan and
optimal bundle for Leontief-free markets.

Suppose prices of goods are given, and pj denotes the price of good j. Since, agents earn from
their shares in the profits of firms too, let φf denote the maximum profit of firm f at prices p,
which we will calculate later. First we characterize optimal bundles. Define the bang-per-buck of

agent i from good j on segment (i, k) relative to prices p as bpbijk
def
=

U i
jk

pj
.

The value bpbijk represents the utility derived by agent i per unit of money while obtaining good
j on segment (i, k). Since the budget of agent i is fixed at given prices, clearly she will prefer to
obtain goods with higher bang-per-buck. Using this intuition next we state conditions for optimal

bundles. Define bang-per-buck of a segment (i, k) to be bpbik
def
= maxj bpbijk. Let x be a bundle of

goods for agent i, where xjk is the amount of good j she obtains on segment (i, k).

8The reason behind putting djs in the denominator is to not allow production of good j when dj is zero.
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B0. Feasibility: ∀k,∀j : xjk ≥ 0; ∀k :
∑

j U
i
jkxjk ≤ Lik, and

∑
j,k xjkpj ≤

∑
jW

i
jpj +

∑
f Θi

fφ
f .

B1. An agent, if obtains goods on a segment, obtains only those yielding maximum bang-per-buck.
Formally, if xjk > 0 then bpbijk = bpbik.

B2. Goods are obtained on segment (i, k) only if all the segments with bang-per-buck higher than
bpbik are bought fully. Formally, if xjk > 0 and bpbik′ > bpbik then

∑
j U

i
jk′xjk′ = Lik′ .

Thus, an optimal bundle of agent i can be computed as follows: sort her segments by decreasing
bang per buck bpbik and partition the segments by equality, i.e., each equivalence class will consist
of all segments having equal bang-per-buck. Let the classes be: Q1,Q2, . . .. At prices p, segments
in Ql make i equally happy. She starts buying partitions in order, until all her money (

∑
jW

i
jpj +∑

f Θi
fφ

f ) is exhausted. Suppose she exhausts all her money at kthi partition. The segments in
partitions 1 to ki−1 are called forced, those in partition ki are called flexible and those in partitions
ki+1 and higher are called undesired.

Lemma 5.1 At prices p, bundle x′ is an optimal bundle for agent i iff it satisfies B0, B1 and B2.

Proof : It is easy to see that an optimal bundle of agent i is a solution of the following opti-
mization problem.

max :
∑

k

∑
j U

i
jkxjk

subject to ∀k :
∑

j U
i
jkxjk ≤ Lik∑

j,k xjkpj ≤
∑

jW
i
jpj +

∑
f Θi

fφ
f

∀(j, k) : xjk ≥ 0

(10)

Note that, given prices the above formulation is a linear program (LP). Therefore, feasibility and
Karush-Kuhn-Tucker (KKT) conditions completely characterize its solutions [5], Hence bundle x′

has to satisfy them. Further, feasibility and B0 are equivalent. Next we show that KKT conditions
are equivalent to B1 and B2. Let βk, and δ be the non-negative dual variables of the first and
second inequalities of (10) respectively. The KKT conditions of this LP are:

∀(j, k) : δ
1−βk ≥

U i
jk

pj
and xjk > 0 ⇒ δ

1−βk =
U i
jk

pj

∀k : βk > 0 ⇒
∑

j U
i
jkxjk = Lik

Note that, if goods are obtain on (i, k) then bpbik = δ/1−βk else bpbik ≤ δ/1−βk. Therefore, B1

and the first KKT condition are equivalent. Suppose goods are obtained on (i, k) and bpbik′ > bpbik,
then it must be the case that βk′ > βk ≥ 0. Hence, the second KKT condition and B2 are also
equivalent. 2

Next we characterize optimal production plans for firms. Recall that on segment (f, k), 1/Cf
jk

units of good j ∈ Rf is considered as a unit of raw material and can be used to produce Df
j′k amount

of good j′ ∈ Pf . Therefore, pj/Cf
jk is the cost per unit raw material when good j is used, and Df

j′kpj′

is the revenue earned by producing good j′ from a unit raw material. We define cost-per-unit (cpu),
revenue-per-unit (rpu) and profit-per-unit (ppu) of firm f on segment (f, k) to be

cpufk
def
= min

j∈Rf

pj

Cfjk
, rpufk

def
= max

j∈Pf
Df
jkpj , and ppufk

def
= rpufk − cpufk respectively.
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Let (xr,xp) be the bundles of goods used and produced by firm f , where xrjk and xpjk are the
amount of good j used and produced on segment k respectively. Consider the following conditions
for optimality.

P0. Feasibility. ∀k :
∑

j∈Pf

xpjk

Df
jk

≤
∑

j∈Rf C
f
jkx

r
jk ≤ L

f
k , and ∀k : xpjk ≥ 0, ∀j ∈ Pf ; xrjk ≥ 0,∀j ∈

Rf .

P1. A firm, if it produces on a segment, uses the least cost raw goods and produces maximum
revenue fetching goods. Formally, if xrjk > 0 then pj/Cf

jk = cpufk , and if xpjk > 0 then

Df
jkpj = rpufk .

P2. No production on the loss making segments. Formally, if ppufk < 0 then xrjk = 0, xpjk = 0,∀j.

P3. Segments with positive profit are utilized fully. Formally, if ppufk > 0 then
∑

j∈Rf C
f
jkx

r
jk =

Lfk .

P4. If the price of produced good is positive then production should match the raw material used,

i.e.,
∑

j∈Pf

xpjk

Df
jk

=
∑

j∈Rf C
f
jkx

r
jk.

Intuitively an optimal production plan for firm f can be obtained as follows. If ppufk > 0

then segment (f, k) should be utilized to its maximum production limit. If ppufk < 0 then no

production on (f, k) at all, and if ppufk = 0 then it doesn’t matter how much of segment (f, k) is
utilized. The segments with strictly positive profit will be called forced, zero profit segments will
be called flexible and negative profit segments will be called undesired. The total profit of firm f is

φf
def
=
∑

k,ppuf
k≥0

Lfkppufk .

Lemma 5.2 At prices p, (xr
′
,xp

′
) correspond to an optimal production of firm f iff it satisfies

P0-P4.

Proof : An optimal production plan of firm f at prices p is a solution of the following LP.

max :
∑

j∈Pf pj
∑

k x
p
jk −

∑
j∈Rf pj

∑
k x

r
jk

subject to ∀k :
∑

j∈Rf C
f
jkx

r
jk ≤ L

f
k

∀k :
∑

j∈Pf

xpjk

Df
jk

≤
∑

j∈Rf C
f
jkx

r
jk

∀k : ∀j ∈ Pf , xpjk ≥ 0; ∀j ∈ Rf , xrjk ≥ 0

(11)

Since feasibility and KKT conditions characterize solutions of an LP, plan (xr
′
,xp

′
) has to

satisfy them. Clearly, condition P0 is equivalent to feasibility in (11). We show that the KKT
conditions are equivalent to conditions P1-P4. Let αk and πk be the non-negative dual variables
of first and second inequalities of LP (11) respectively. The KKT conditions are:

∀k, ∀j ∈ Rf : πk − αk ≤
pj

Cf
jk

and xrjk > 0⇒ πk − αk =
pj

Cf
jk

∀k, ∀j ∈ Pf : πk ≥ Df
jkpj and xpjk > 0⇒ πk = Df

jkpj

∀k : αk > 0⇒
∑

j∈Rf C
f
jkx

r
jk = Lfk

∀k : πk > 0⇒
∑

j∈Pf

xpjk

Df
jk

=
∑

j∈Rf C
f
jkx

r
jk
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First two KKT conditions are equivalent to condition P1. Thus for segments with production
cpufk = πk−αk, rpufk = πk and ppufk = αk. On segment (f, k) if price of a good produced is positive,

then clearly πk > 0 and hence the fourth KKT condition and P4 are equivalent. If ppufk < 0 then
either the first or the second KKT condition hold with strict inequality, and therefore P2 is satisfied.
Given that there is production on segment k, it is easy to see that ppufk = αk. The third KKT
condition is equivalent to P3. 2

We note that if p is an equilibrium price vector then so is α · p, for any α > 0, with optimal
bundle and optimal production plans unchanged - scale invariant.

6 Leontiefness and Irrationality

In this section we describe examples of markets with exactly one Leontief type utility or production
segment and only irrational equilibrium prices. First we construct an exchange market where all
utility functions are linear except one.

Example 6.1 Consider a market with two goods and three agents. The endowments of agents are
w1 = w2 = w3 = (1, 1). Utility function of every agent has only one segment, and there is no limit
on the segments. Let xij be the amount of good j obtained by agent i on its segment. For agent 1 it

is U1 = x11, and for agent 2 it is U2 = x22; both linear. For agent 3 it is Leontief, namely U3 ≤ x31/2
and U3 ≤ x32.

Since, equilibrium prices are scale invariant, set p1 = 1. The fact that both the inequality
of U3 should hold with equality at equilibrium, together with market clearing conditions, give us
p22 + 2p2 − 2 = 0. The only non-negative solution is p2 =

√
3 − 1. Equilibrium allocations are

x11 =
√

3, x22 =
√
3/(
√
3−1) and x31 = 2x32 =

√
3/(
√
3+1).

Next two examples are of markets with firms. Utility functions of all the agents are linear
in both. The first has one Leontief type constraint on raw goods, and the second has it on the
produced goods.

Example 6.2 Consider a market with three goods, three agents and one firm. Endowments of
agents are w1 = w2 = w3 = (1, 1, 0). Each utility function has one linear segment; U1 = x11,
U2 = x22 and U3 = x33. The firm is owned by agent 3, i.e., Θ3

1 = 1. It has exactly one production
segment without any upper limit on the raw material used. i.e., L1 = ∞, and needs two units of
good 1 and a unit of good 2 to produce a unit of good 3. Let xrjs and xpjs be the amount of goods
used and produce by the firm on its only segment, then the conditions are 2 · xp3 ≤ xr1, and xp3 ≤ xr2.

Again set p1 = 1. Due to the demand of the third agent, the firm has to produce at equilibrium.
Further, firm makes zero profit or else it will want to produce infinite. Hence, we have p3 = 2 + p2.
The market clearing conditions give p22 + 2p2 − 2 = 0. Thus the only equilibrium prices of this
market are p1 = 1, p2 =

√
3 − 1 and p3 = (1+

√
3)/2. At equilibrium the allocation and production

variables are: x11 =
√

3, x22 =
√
3/(
√
3−1) and x33 = xp3 = xr1/2 = xr2 =

√
3/(
√
3+1).

Example 6.3 Again the goods and agents are as in Example 6.2, and there is one firm with only
one production segment without any upper limit. But now the firm can produce a unit of good 3
and two units of good 2 from a unit of good 1, i.e., xp3 ≤ xr1 and xp2 ≤ 2 · xr1.

Set p1 = 1. At equilibrium the firm will produce with zero profit. Hence, p1 = p3 + 2p2.
Market clearing conditions give 2p22 − 6p2 + 1 = 0. By solving this, the only equilibrium prices
we get are p1 = 1, p2 = (3−

√
7)/2 and p3 =

√
7 − 2, and allocation and production variables are

x11 = 5−
√
7/2, x22 = (5−

√
7)/(3−

√
7) and x33 = xp3 = xp2/2 = xr1 = (5−

√
7)/2(

√
7−2).
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7 LCP Formulation for Leontief-free Exchange Market

In order to convey the main ideas without introducing too much complication, we first derive linear
complementarity problem (LCP)9 formulation for exchange markets with Leontief-free utilities. In
case of exchange markets, it needs to capture two main aspects: optimal bundle to each agent, and
market clearing. It is relatively easy to ensure market clearing so we do that first.

We define variable pj to denote the price of good j. We define variable qijk to denote money

spent by agent i to obtain good j on segment k, instead of the amount variable xijk to avoid

quadratic expression in agent’s market clearing condition, namely
∑

j,k x
i
jkpj is the money spent

by agent i. All variables have non-negativity constraints; for the sake of brevity, we will not write
them explicitly. As is the case with Garg et al. [30] and Eaves [26] the task of market clearing does
not need complementarity – just non-negativity suffices. However, with every constraint we also
include corresponding complementarity condition to obtain an LCP in standard form.

∀j ∈ G :
∑

i,k q
i
jk ≤ pj and pj(

∑
i,k q

i
jk − pj) = 0 (12)

∀i ∈ A :
∑

jW
i
jpj ≤

∑
j,k q

i
jk and λi(

∑
jW

i
jpj −

∑
j,k q

i
jk) = 0 (13)

We will refer to the constraints as follows: The equation number refers to the inequality and the
equation number with a prime refers to the complementarity condition, i.e., (12) refers to the
inequality and (12’) refers to the complementarity condition.

Lemma 7.1 The set of constraints given in (12) and (13) hold if and only if the market clears.

Proof : Adding the constraints in (12) over all goods and those in (13) over all agents we get∑
i,j,k q

i
jk ≤

∑
j pj and

∑
i,jW

i
jpj ≤

∑
i,j,k q

i
jk,

respectively. Since
∑

i,jW
i
jpj =

∑
j pj , both these inequalities are equalities. Finally, by non-

negativity, all the constraints in (12) and (13) must hold with equality, which proves the lemma.
2

Since, utilities are non-separable, ensuring optimal bundle is more tricky. For optimal bundle
of agent i, we derive the constraints through KKT conditions of LP (10) restated below. Here xijk
is the amount of good j agent i obtains on segment k.

∀(j, k) : δ
1−βk ≥

U i
jk

pj
and xijk > 0 ⇒ δ

1−βk =
U i
jk

pj

∀k : βk > 0 ⇒
∑

j U
i
jkx

i
jk = Lik

To ensure B0, the total utility on segment (i, k) should not be more than Lfk . We use the above
conditions to derive an equivalent upper bound on the total money spent of segment (i, k).

∀k :
∑

j U
i
jkx

i
jk ≤ Lik ⇒

∑
j

U i
jk

pj
(xijkpj) ≤ Lik ⇒ δ

1−βi
k

∑
j q

i
jk ≤ Lik ⇒

∑
j q

i
jk ≤ Lik

(
1
δ −

βk
δ

)
9Refer to Appendix A for detailed description of LCP.
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To get linear constraints, we replace 1/δ with λi and βk/δ with γik. Intuitively 1/λi captures the
bang-per-buck of flexible segments for agent i, and γik’s are supplements for her forced segments.
The next two conditions follows from the above KKT two conditions respectively.

∀(i, k),∀j : U ijk(λi − γik)− pj ≤ 0 and qijk(U
i
jk(λi − γik)− pj) = 0 (14)

∀(i, k) :
∑

j q
i
jk ≤ Lik(λi − γik) and γik(

∑
j q

i
jk − Lik(λi − γik)) = 0 (15)

Remark 7.2 Without using KKT conditions, equations (14) and (15) are not clear at all, as the
trick of adding supplement variables in prices from [30] does not extend to Leontief-free utilities.

Lemma 7.3 The set of constraints given in (14) and (15) hold if every agent gets an optimal
bundle.

Proof : Consider an equilibrium of M. Substitute for the variables pj , q
i
jk, λi in the manner

described above. Substitute for the variables γik as follows: if segment (i, k) is flexible or undesirable,
set it to zero, and if it is forced, set it so that the following equality is satisfied

1

λi − γik
= max

j

U ijk
pj

.

Clearly, all the γiks satisfy non-negativity. Now, it is easy to verify that in each of the three cases –
that the segment (i, k) is forced, flexible or undesirable – the constraints (14) and (14’) are satisfied.
For upper bound on the utility, we need to ensure that

∑
j U

i
jkx

i
jk ≤ Lik. Which is equivalent to∑

j
U i
jk/pj(xijkpj) ≤ Lik. From (14’) we have,

xijk > 0⇒ qijk > 0⇒ 1
λi−γik

=
U i
jk

pj
. This gives

∑
j q

i
jk

λi−γik
≤ Lik

Thus, constraints (15) and (15’) are also satisfied. 2

Let the constraints (12) through (15) and (12’) through (15’), together with non-negativity on
all variables, define our LCP. The following lemma is a direct consequence of Lemmas 7.3 and 7.1.

Lemma 7.4 Every market equilibrium of M is a solution of LCP.

The polyhedron defined by the linear inequalities of an LCP is called its feasible region. Note
that all inequalities of LCP are homogeneous, forming a cone with origin being its vertex as the
feasible region. Lemke’s scheme when applied to LCP will terminate at origin, which is not an
equilibrium. Further, LCP may admit more non-equilibrium solutions where prices of a set of
goods is set to zero.

We overcome all these shortcomings as follows. First we ensure that price of every good is non-
zero at equilibrium. Define desire(j) to be roughly the lower bound on total amount that agents
may demand if price of good j is set to zero, i.e.,

desire(j) =
∑

(i,k):U i
jk>0

Lik
maxd U

i
dk

Lemma 7.5 Equilibrium prices of an exchange marketM are strictly positive if desire(j) > 1, ∀j.
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Proof : Suppose, some goods have zero price at an equilibrium. Let Z ⊆ G be the set of such
goods. If goods of Z fetches non-zero utility on a segment, then it is a forced segment with infinite
bang-per-buck, and only zero priced goods are obtained it. Let S be the set of such segments.

∑
(i,k)∈S ,j∈Z

xijk =
∑

j∈Z ;(i,k)∈S :U i
jk>0

U ijkx
i
jk

U ijk

≥
∑

(i,k)∈S

1

maxj U ijk

∑
j∈Z

U ijkx
i
jk =

∑
(i,k)∈S

Lik
maxj U ijk

≥
∑

j∈Z desire(j) >
∑

j∈Z 1

A contradiction to market clearing condition. 2

We assume that in market M, desire(j) > 1, for each good j. This ensures that equilibrium
prices are strictly positive (Lemma 7.5). Since, equilibrium prices are scale invariant, we will lower
bound the price variables by one in LCP to get a non-homogeneous LCP as follows: Replace pj
with p′j + 1 and p′j ≥ 0. The resulting LCP, call it NH-LCP, is as follows.

∀(i, k), ∀j : U ijk(λi − γik)− p′j ≤ 1 and qijk(U
i
jk(λi − γik)− p′j − 1) = 0 (16)

∀(i, k) :
∑

j q
i
jk ≤ Lik(λi − γik) and γik(

∑
j q

i
jk − Lik(λi − γik)) = 0 (17)

∀j ∈ G :
∑

i,k q
i
jk − p′j ≤ 1 and p′j(

∑
i,k q

i
jk − (p′j + 1)) = 0 (18)

∀i ∈ A :
∑

jW
i
jp
′
j −

∑
j,k q

i
jk ≤ −

∑
jW

i
j and λi(

∑
jW

i
j (p
′
j + 1)−

∑
j,k q

i
jk) = 0 (19)

Next theorem is a direct consequence of Lemmas 7.1, 7.4, 7.5 and 7.3

Theorem 7.6 The solutions of NH-LCP capture exactly the equilibria of Leontief-free exchange
market M up to scaling, assuming that for every good j the desire(j) is at least 1.

Since every LCP has a solution which forms a vertex of its polyhedron (see Appendix A), we
get the following using as a corollary of Theorem 7.6.

Theorem 7.7 Leontief-free exchange market M with all parameters rational that has an equi-
librium admits equilibrium prices which are polynomial sized rational numbers, assuming that for
every good j desire(j) is at least 1.

Since NH-LCP is in the standard form, Lemke’s scheme10 can be directly applied to it. The
procedure may end on a secondary ray, as market equilibrium may not always exist [60]. Assuming
weakest known sufficiency conditions [39] we can show that there are no secondary rays in the
polyhedron corresponding to NH-LCP. However, we omit this proof. It subsumes in the no-
secondary ray proof for the complete LCP of Leontief-free market in Section 10.1. Next, we proceed
to a more interesting problem of capturing production as complementarity.

10Refer to Appendix A for the description of Lemke’s scheme
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8 LCP for Arrow-Debreu Market with Leontief-free Production

At Arrow-Debreu market equilibrium firms produce as per optimal production plans, agents obtain
optimal bundles and market clears. We will derive LCP conditions to ensure optimal production
plan to each firm. The conditions (14) and (15) for optimal bundle remain as they are, however
market clearing conditions have to be modified to take into account the produced and used goods
by firms.

As done for optimal bundle, LCP constraints for optimal production plans can be derived
through KKT conditions of LP (11). However it is mathematically involved and unintuitive. Here
we describe a more (intuitive) direct LCP construction, using P0-P4 of Section 5.

Remark 8.1 Amount variables are more suitable to capture optimal production. However we fi-
nally need to merge it with the formulation of optimal bundle and market clearing to get a complete
LCP. Hence, we have to use the money (value) variables here too, which makes the task of capturing
conditions P0 and P4 very tricky.

Define variable qf,rjk to denote the money firm f spends to buy raw good j on segment k

(≡ pjx
f,r
jk ), and variable qf,pjk to denote the revenue firm f earns by producing good j on segment

k (≡ pjx
f,p
jk ). To ensure optimal production for firm f , we need to capture forced, flexible and

undesired segments correctly. On segment (f, k) raw good j ∈ Rf costs pj/Cf
jk per unit raw material,

and we will capture the least such cost in variable τ fk . Condition P1 implies,

∀(f, k),∀j ∈ Rf : τ fk −
pj

Cf
jk

≤ 0 and qf,rjk (τ fk −
pj

Cf
jk

) = 0 (20)

As per conditions P1 and P2, production happens only on segments with non-negative profit
and that too only of maximum revenue fetching goods. On segment (f, k) revenue from good j ∈ Pf

is Df
jkpj per unit raw material used. Then the profit per unit raw material is max

j∈Pf D
f
jkpj − τ

f
k .

We will capture this value, if non-negative, in variable δfk as follows.

∀(f, k), ∀j ∈ Pf : Df
jkpj − τ

f
k − δ

f
k ≤ 0 and qf,pjk

(
Df
jkpj − τ

f
k − δ

f
k

)
= 0 (21)

For feasibility condition P0, non-negativity on qr and qp will ensure non-negativity on xr and
xp. Ensuring the upper bound of Lfk on

∑
j∈Rf C

f
jkx

f,r
jk is tricky, because direct substitution of

amount variables with money variables yields multi-variate polynomials. Using (20’) we get a linear
constraints in money variables instead, as follows.

∑
j∈Rf C

f
jkx

f,r
jk ≤ L

f
k ⇒

∑
j∈Rf

Cf
jk

pj
pjx

f,r
jk ≤ L

f
k (Here pjx

f,r
jk = qf,rjk )

⇒ 1

τfk

∑
j∈Rf q

f,r
jk ≤ L

f
k ⇒

∑
j∈Rf q

f,r
jk ≤ L

f
kτ

f
k

Condition P3 needs that segments with positive profit are utilized completely (forced), and zero

profit segments can be utilized partially (flexible). As δfk captures the profit for these two types of
segments, we get

∀(f, k) :
∑

j∈Rf q
f,r
jk − L

f
kτ

f
k ≤ 0 and δfk (

∑
j∈Rf q

f,r
jk − L

f
kτ

f
k ) = 0 (22)

Finally, for P4, that the amount produced depends on the amount of raw material used, we
observe that total revenue is total cost plus profit.

∀(f, k) :
∑

j∈Pf q
f,p
jk =

∑
j∈Rf q

f,r
jk + Lfkδ

f
k (23)
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Lemma 8.2 The constraints (20) - (23) hold if every firm produces as per an optimal production
plan.

Proof : Consider an equilibrium of M. Substitute pj , q
f,r
jk and qf,pjk in the manner described

above. Set τ fk to min
j∈Rf pj/Cf

jk and δfk to max
j∈Pf D

f
jkpj − τ

f
k if non-negative, else set it to zero.

Note that due to Lemma 5.2 the optimal production plans satisfy P0-P4.
Since, τ fk captures cpufk and δfk captures ppufk if non-negative, conditions P1 and P2 ensure

that (20), (21), (20’) and (21’) are satisfied.
The way (22) is derived, clearly it has to be satisfied as every production adheres to feasibility

(P0) Further (22’) follows due to P3. Finally we observe that due to P4, if profit is zero on a
segment, then its revenue is same as its cost, and if the profit is positive, then revenue is cost plus
profit, which is exactly what (23) captures. 2

To take production into account the market clearing conditions (12) and (13) are modified as
follows.

∀j ∈ G :
∑
i,k

qijk +
∑

(f,k),j∈Rf

qf,rjk ≤ pj +
∑

(f,k),j∈Pf

qf,pjk

and pj

(∑
i,k q

i
jk +

∑
(f,k),j∈Rf q

f,r
jk − pj +

∑
(f,k),j∈Pf q

f,p
jk

)
= 0

(24)

Suppose, φf denotes the profit
∑

k L
f
kδ
f
k of firm f .

∀i ∈ A :
∑

jW
i
jpj +

∑
f Θi

fφ
f ≤

∑
j,k q

i
jk and λi(

∑
jW

i
jpj +

∑
f Θi

fφ
f −

∑
j,k q

i
jk) = 0

(25)

Lemma 8.3 The set of constraints given in (24) and (25) hold if and only if the market clears.

Proof : Similar to Lemma 7.1 the proof follows using
∑

iW
i
j = 1,∀j, and Lfkδ

f
k =

∑
j∈Pf q

f,p
jk −∑

j∈Rf q
f,r
jk , ∀(f, k) from (23). 2

Define ADLCP to be the LCP defined by constraints (14), (15), and (20) through (25), together
with their complementarity conditions and non-negativity on all the variables. The next lemma
follows from Lemmas 7.3, 8.2 and 8.3.

Lemma 8.4 Every market equilibrium of M is a solution of ADLCP.

As is the case with LCP, ADLCP too is homogeneous and suffers from the similar shortcomings
like conical feasible region with only one vertex, namely origin, and non-equilibrium solutions.
Again we can resolve these by constructing a non-homogeneous LCP, where all the market equilibria
are preserved up to scaling.

8.1 Conditions for positive equilibrium prices

One of the assumptions on production sets Sf ’s was that firms together can not produce something
out of nothing. In case of Leontief-free production, on segment (f, k) a unit of j ∈ Rf can produce

CfjkD
f
j′k units of j′ ∈ Pf . Construct a directed graph GF (M) where goods are nodes, and there is

an edge from j to j′ with weight max
(f,k),j∈Rf

,j′∈Pf C
f
jkD

f
j′k, if it is non-zero. Then no production

out of nothing condition on production (see Section 2) is equivalent to,
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Definition 8.5 (No production out of nothing (restated)) Market M satisfies no produc-
tion out of nothing, if weights of edges in every cycle of GF (M) multiply to strictly less than
one.

The above condition ensures that along any production cycle net amount of some good strictly
decreases, while all other goods remain the same. This implies that the net production of every
good is finite at any feasible production, as initial endowment of every good is unit. Therefore, the
amount of goods available to agents is always finite. Now if demand of a good is infinite at any
given prices, then it can not be equilibrium prices. Using this fact we define a condition to ensure
positive equilibrium prices.

Definition 8.6 (Non-satiation) Agent i is said to be non-satiated for good j if there exists a
segment (i, k) with U ijk > 0 and Lik infinity.

Lemma 8.7 Equilibrium prices of a Leontief-free market M are strictly positive if every good has
a non-satiated agent in M.

Proof : Suppose, prices of a set Z ⊆ G of goods is zero at an equilibrium. On a segment (i, k)
if U ijk > 0, j ∈ Z then bpbijk is infinity, implying that (i, k) is forced and only goods of Z are
bought on it. Since every good has a non-satiated agent, demand of at least one of zero priced
good is infinity. The no production out of nothing condition disallows infinite production of any
good, contradicting the market clearing condition. 2

Henceforth we assume that every good in M has a non-satiated agent.11

8.2 Non-homogeneous LCP

Now we can lower bound the price variables by a positive number, as equilibrium prices are positive
(Lemma 8.7) and scale invariant. However, we also want that negative rhs appears only in agent
side market clearing condition (25). This is needed to ensure that all the equilibrium conditions
except market clearing are satisfied on the path followed by the algorithm, which is crucial to prove
no secondary rays and in turn convergence of the algorithm.

Suppose, we lower bound pj by a positive rational number Ej . We do this by replacing pj with

p′j + Ej in ADLCP. Then to keep rhs of (21) non-negative we replace τ fk with τ ′fk + Efk where

Efk ≥ max
j∈Pf D

f
jkEj . Further, to keep the rhs of (20) non-negative Efk ≤ min

j∈Rf Ej/Cf
jk. In all

we have max
j∈Pf D

f
jkEj ≤ min

j∈Rf Ej/Cf
jk, i.e., no positive profit on (f, k) at prices E. We solve

the following to compute such a vector E,

∀(f, k), ∀j ∈ Rf , ∀j′ ∈ Pf : Df
j′kEj′ ≤

Ej

Cf
jk

∀j : Ej ≥ 1
(26)

Since the first condition of (26) is homogeneous, setting all Ejs to zeros is a solution, hence the
second condition. We denote the polyhedron of (26) by E .

Lemma 8.8 Polyhedron E is non-empty and has a non-empty interior.

11This assumption ensures infinite desire(j) for every good j. One can derive a better bound using no production
out of nothing condition, and then non-satiation condition will not be needed. But the bound is involved and that
adds to unnecessary complications later. To keep the arguments simple and intuitive, we stick to the non-satiation
condition.
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Proof : Taking logarithms, the first condition of (26) transforms to log(Ej′) − log(Ej) ≤
− log(CfjkD

f
j′k). and the second condition to log(Ej) ≥ 0. Rename log(Ej) by ej ; this gives a

system analogues to Ax ≤ b. By Farkas’ lemma this does not have a solution if and only if there
is a y ≥ 0, yTA = 0, yT b = −1 [4]. It is easy to check that for our system of equations, existence
of such a y implies a cycle of weight at least zero in the graph between firms, where the weight
on edge from j to j′ is log(CfjkD

f
j′k). This contradicts no production out of nothing assumption.

Further, this condition also implies that there is no cycle with log(CfjkD
f
j′k)’s adding to zero, hence

E has a non-empty interior. 2

Take a vector E from E (Lemma 8.8) and define Efk
def
= minj Ej/Cf

jk and replace τ fk with τ ′fk +Efk .
The resulting LCP, call it NH-ADLCP, is as follows. There are non-negativity constraints on all
the variables, however for brevity we omit them.

∀(i, k),∀j : U ijk(λi − γik)− p′j ≤ Ej and qijk(U
i
jk(λi − γik)− p′j − Ej) = 0 (27)

∀(i, k) :
∑

j q
i
jk ≤ Lik(λi − γik) and γik(

∑
j q

i
jk − Lik(λi − γik)) = 0 (28)

∀(f, k), ∀j ∈ Rf : τ ′fk −
p′j

Cf
jk

≤ Ej

Cf
jk

− Efk and qf,rjk (τ ′fk + Efk −
p′j+Ej

Cf
jk

) = 0 (29)

∀(f, k), ∀j ∈ Pf : Df
jkp
′
j − τ

′f
k − δ

f
k ≤ E

f
k −D

f
jkEj and qf,pjk

(
Df
jk(p

′
j + Ej)− τ ′fk − E

f
k − δ

f
k

)
= 0

(30)

∀(f, k) :
∑

j∈Rf q
f,r
jk − L

f
kτ
′f
k ≤ L

f
kE

f
k and δfk (

∑
j∈Rf q

f,r
jk − L

f
kτ
′f
k − L

f
kE

f
k ) = 0 (31)

∀(f, k) :
∑

j∈Pf q
f,p
jk =

∑
j∈Rf q

f,r
jk + Lfkδ

f
k (32)

∀j ∈ G :
∑

i,k q
i
jk +

∑
(f,k),j∈Rf q

f,r
jk − p

′
j −

∑
(f,k),j∈Pf q

f,p
jk ≤ Ej

and p′j

(∑
i,k q

i
jk +

∑
(f,k),j∈Rf q

f,r
jk − (p′j + Ej)−

∑
(f,k),j∈Pf q

f,p
jk

)
= 0

(33)

∀i ∈ A :
∑

jW
i
jp
′
j +

∑
f Θi

fφ
f −

∑
j,k q

i
jk ≤ −

∑
jW

i
jEj

and λi

(∑
jW

i
j (p
′
j + Ej) +

∑
f Θi

fφ
f −

∑
j,k q

i
jk

)
= 0

(34)

Here φf is a place holder for
∑

k L
f
kδ
f
k ; profit of firm f . Since E is a solution of (26), it is easy

to see that rhs of all the above inequalities except (34) are non-negative.

Remark 8.9 To avoid degeneracies to set in, zeros in the rhs should be avoided. To achieve this
for (30), E is taken from the interior of E (Lemma 8.8). Note that rhs of (28) will still remain

zero. We can fix this by replacing λi with λ′i +Ei, where Ei
def
= minj,k Ej/(U i

jk+1) so that rhs of (27)
remain positive.
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Lemma 8.10 At a solution of NH-ADLCP every agent receives an optimal bundle.

Proof : Given a solution of NH-LCP, let pj = p′j + 1 and xijk = qijk/pj. We will show that
allocation x assigns an optimal bundle to every agent at prices p. It suffices to show that for each
i, bundle xi satisfies B0-B2 at prices p (Lemma 5.1).

We have λi > 0 for each i or else due to (16’) all the qijk’s of agent i will be zero, contradicting
market clearing condition (19) of her. From (16) and (16’) we have

∀(i, k),∀j :
1

λi − γik
≥
U ijk
pj

and qijk > 0⇒ 1

λi − γik
=
U ijk
pj

This ensures that, on a segment only maximum bang-per-buck goods are obtained, if at all,
thereby satisfying B1. If goods are obtained on segment (i, k), then its bang-per-buck is captured
by bpbik = 1/(λi−γik). This with (17) also ensures B0 as follows.

∀(i, k) :
∑
j

qijk ≤ Lik(λi − γik)⇒
∑
j

U ijk
pj

qijk ≤ Lik ⇒
∑
j

U ijkx
i
jk ≤ Lik

Suppose for an agent i, goods are obtained on segments both (i, k) and (i, k′), and bpbik > bpbik′ .
In that case, as desired (i, k) is a forced segment as γik > γik′ ≥ 0 and (17’). Further, if goods are
not obtained at all on segment (i, k′′), then (17’) ensures that γik′′ is zero, and then using (16) we
have

∀j :
U ijk′′

pj
≤ 1

λi
≤ 1

λi − γik′
= bpbik′

Thus, xi satisfies B2. 2

Lemma 8.11 At a solution of NH-ADLCP every firm operates at an optimal production plan.

Proof : At a solution of NH-ADLCP, the price of good j is pj = p′j +Ej . Let xf,rjk = qf,rjk /pj and

xf,pjk = qf,pjk /pj be the amount of used and produced goods on respective production segments. These

are well defined since pj ’s are positive. Let τ fk = τ ′fk + Efk , which is upper bounded by minj pj/C
f
jk

(29); minimum cost per unit raw material. Due to Lemma 5.2, it suffices to show that (xf,r,xf,p)
satisfies P0-P4 at prices p. Clearly, non-negativity constraints of P0 are satisfied.

First we observe that on a segment, if at all, (29) and (29’) allows to spend money on only least
cost raw good and (30) and (30’) allows production of only maximum revenue fetching goods hence

P1 follows. For segment (f, k) variable δfk is non-zero only if some of qf,rjk ’s are non-zero too (31’).
Therefore, the equality in (32) ensures that there is production if and only if raw material is used.

Suppose (f, k) is undesired at prices p (negative profit). If τ fk captures the minimum cost, then
(30) holds with strict inequality, and (30’) does not allow any production. If it does not capture
the minimum cost then due to (29’) no raw material can be purchased on this segment. In all no
production on segment (f, k), and thus P2 follows.

If the segment is forced or flexible (non-negative profit), then

0 ≤ max
j∈Pf D

f
jkpj −min

j∈Rf
pj

Cf
jk

≤ Df
jkpj − τ

f
k , ∃j ∈ P

f (using (29))
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If τ fk is strictly less than the minimum cost, then last inequality above is also strict, and to

satisfy (30) δfk has to be positive. This is not possible since all qf,rjk ’s are zero due to (29’). So τ fk
is exactly the minimum cost per unit for segment (f, k), and then δfk is at least the profit per unit

(30). The δfk can not be strictly more than profit, otherwise (30’) will not allow any production

and violate (31’). To ensure upper limit of Lfk on the units of raw material used of P0, consider
(31).

∑
j∈Rf q

f,r
jk ≤ L

f
kτ

f
k ⇒

∑
j∈Rf

Cf
jk

pj
pjx

f,r
jk ≤ L

f
k (Using (29’))⇒

∑
j∈Rf C

f
jkx

f,r
jk ≤ L

f
k

If positive profit then the above inequality is tight due to (31’) as required. Finally (32) ensures
that total revenue equals total cost plus total profit. In other words, the amount produced is in
proportion to the raw material used, and thus P4 follows and hence remaining part P0 as well. 2

Next theorem is a consequence of Lemmas 8.4, 8.3, 8.10 and 8.11.

Theorem 8.12 The solutions of NH-ADLCP capture exactly the equilibria of Leontief-free Arrow-
Debreu market M up to scaling, assuming that for every good there is a non-satiated agent.

As is the case with exchange, rationality of equilibrium prices in Arrow-Debreu markets follows
using Theorem 8.12.

Theorem 8.13 Leontief-free Arrow-Debreu market M with all parameters rational that has an
equilibrium admits equilibrium prices which are polynomial sized rational numbers, assuming that
for every good there is a non-satiated agent.

9 Algorithm

From Theorem 8.12, computing an equilibrium of marketM is equivalent to solving NH-ADLCP.
The NH-ADLCP is in standard form except that variables τ ′fk s are not part of any complemen-

tarity conditions, and it has equalities (32). We call τ ′fk s as abnormal variables and rest as normal
variables. In this section we design a Lemke-type algorithm to solve this LCP. For detailed de-
scription of Lemke’s scheme refer to Appendix A. Like in Lemke, we augment the NH-ADLCP
by adding a slack variable z in the inequalities with negative rhs, namely (34).

∀i ∈ A :
∑

jW
i
jp
′
j +

∑
f Θi

fφ
f −

∑
j,k q

i
jk − z ≤ −

∑
jW

i
jEj

and λi

(∑
jW

i
j (p
′
j + Ej) +

∑
f Θi

fφ
f −

∑
j,k q

i
jk − z

)
= 0

(35)

We impose non-negativity on z and denote the augmented LCP by NH-ADLCP’. The algo-
rithm will follow a path of solutions of NH-ADLCP’, hence all the equilibrium conditions except
the market clearing will be satisfied through out the algorithm. We say that segment (f, k) is

undesired at a solution point if all its qf,rjk s are zero; no production.

9.1 Inherent Degeneracy and Non-Degeneracy Assumption

There are two types of degeneracies possible at a solution of NH-ADLCP’. The first is for each
undesired segment (f, k), the tight non-negativity constraints of qf,rjk s, qf,pjk s, δfk , and equality (32)
are linearly dependent. The second degeneracy comes about at a solution with z = 0, because of
the following fact established in Lemma 8.3: adding the constraints in (33) over all goods and those
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in (34) over all agents yields two identical equations. Henceforth, we will say that the polyhedron
corresponding to NH-ADLCP’ is non-degenerate if it has no other degeneracies.

A vertex with second type of degeneracy is also a solution of NH-ADLCP (market equilib-
rium), and hence a terminating point of the algorithm. At this vertex there will be a good j with
p′j = 0 to compensate, relaxing which leads to a ray of market equilibria; essentially scaled version
of the equilibrium at the vertex. The first type of degeneracy arise at intermediate vertices of the
algorithm as well. And to compensate we maintain the following invariant

(I): For each production segment (f, k) at least one of (29) hold with equality.

As a consequence the value corresponding to abnormal variable τ ′fk + Efk always captures the
minimum cost per unit raw material for segment (f, k). For forced and flexible segments (I)
holds automatically. However, for an undesired segment (f, k) (I) holds in a double label12, as for

some j ∈ Rf (29) is tight and qf,rjk is also zero. We call such a label an extra double label. The
algorithm keeps a list L of extra double labels, exactly one for each undesired segment, and makes
sure not to leave them explicitly in order to maintain (I). We note that, during the algorithm,
relaxing inequalities corresponding to labels in L at any intermediate vertex may lead to a dead
end. Further, maintaining (I) makes sure that even when τ fk ≥ 0 becomes tight at some vertex,
there is a valid double label to leave corresponding to a normal variable.

Before presenting the algorithm, let us add slack variables to the constraints of NH-ADLCP’
– assume that the slack variable that is added to the ith constraint is vi. This gives us an LCP
in the form of the formulation given in (38). The algorithm appears in Table 12. Here T0 is the
solution vertex of NH-ADLCP’ at which primary ray is incident, and L0 is the list of extra double
labels at T0. flag is set to one when there are two extra double labels for a segment, otherwise it is
set to zero. Since, all the main variables except z are zero on primary ray, all production segments
are undesired at T0, and L0 contains exactly one double label for each. Hence flag is initialized to
zero.

Table 12: Complementary Pivot Algorithm for a Leontief-free Market

Initialization: Let T ← T0 and L ← L0. flag← 0
While z > 0 in the current solution T to NH-ADLCP’, do

Let i /∈ L be the double label at solution T , i.e., vi = yi = 0 at T .
If flag = 1, then pivot by relaxing vi = 0 and set flag← 0.
Else if vi just became 0 at the current vertex, then pivot by relaxing yi = 0.
Else, pivot by relaxing vi = 0.
Let T ′ be the solution to NH-ADLPC’ at the newly reached vertex.
L′ ← L, T ← T ′ and L ← extra double labels at T .
If for an (f, k), L contains two labels l and l′, and l ∈ L′, then L ← L \ {l} and flag← 1.

Endwhile
Output solution T .

In the algorithm of Table 12, the last line of the While loop makes sure that L contains exactly
one extra double label for each undesired segment. At vertex T if there are two for an undesired
segment (f, k), then it must be the case that the new tight inequality also correspond to an extra
double label, hence all the double labels at T are extra (assuming non-degeneracy). We set the flag
to one when such a case arises. Only way to move away from T , while maintaining (I), is to leave

12Refer to Appendix A for definition
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one of the two extra double label of (f, k). Further, since the segment (f, k) is undesired, qf,rjk can
not be made positive, and the only way to leave the label is by relaxing (29), as done in line three
of the While loop. To move forward we have to leave the one which does not correspond to the
newly tight inequality at T , and hence we set L accordingly.

10 Correctness

For convergence of the algorithm, two things have to be ensured; a double label not in L, at every
intermediate vertex (a unique edge to move forward while maintaining (I)), and no secondary ray
in the polyhedron corresponding to NH-ADLCP’. The former is guaranteed in case of standard
LCPs, however the latter has to be taken care of in general for Lemke-type schemes (see Appendix
A).

Lemma 10.1 At every intermediate vertex, there exist a unique double label, not in L, to leave.
In other words there exists a unique edge to move forward while maintaining (I).

Proof : For existence we use induction. Let î ∈ arg maxi
∑

jW
i
jEj . Since on primary ray y is

zero and z varies from ∞ to
∑

jW
î
jEj , both (34) and λî ≥ 0 are tight for î, at its vertex T0, and

give a double label not in L.
Suppose, the algorithm moves from vertex T̂ to T by leaving a double label. Let L̂ and L be

the sets of extra double labels at T ′ and T respectively. There are two cases: either L ⊆ L̂ or not.
In the latter case suppose the newly formed extra double label correspond to segment (f, k) and

good j ∈ Rf . If there was production happening on (f, k) at T ′ but not at T , then qf,pj′k ≥ 0 for a

j′ ∈ Pf has become tight at T , giving a double label not in L. If there was no production on (f, k)
at T ′ as well, then L̂ also had an extra double label for (f, k), say l, which is removed by the last
line in the While loop of the algorithm to form L. Hence l is the double label to leave.

If L ⊆ L′, and the new tight inequality at T is other than τ ′fk ≥ 0 then it gives a valid double

label. Suppose for some (f, k), τ ′fk ≥ 0 becomes tight at T . Recall that for every segment (f, k) we
maintain one of (29) with equality, let it correspond to good j ∈ Rf on edge from T ′ to T . Since,
it holds with equality at T as well, its rhs must be zero and p′j ≥ 0 must have become tight as well
at T , giving a valid double label.

Uniqueness of a double label not in L follows from our non-degeneracy assumption. 2

Market equilibrium may not exist even in exchange markets with SPLC utilities [60]. Maxfield
gave a set of sufficiency conditions under which an equilibrium is guaranteed [39]. We have stated
all of them except one in Section 2, which we discuss next. Like agents, a firm can also be non-
satiated for a good. We say that a firm f is non-satiated for good j if there exists a segment (f, k)

with Cfjk > 0 and Lfk being infinity.

Definition 10.2 (Strong Connectivity) Construct a directed graph G(M), where agents and
firms are nodes. Put an edge from agent i to agent i′ if i has a good in her initial endowment for
which i′ is non-satiated, i.e., ∃j,W i

j > 0,∃k, U i′jk > 0, Lik =∞. Similarly, Put an edge from i to firm
f , if f is non-satiated for a good that agent i has. An edge from firm f to firm f ′ or agent i appears
if f can produce an infinite amount of a good for which f ′ or i is non-satiated respectively. We say
that M satisfies strong connectivity if G(M) has a strongly connected component containing all the
agents.
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Henceforth, we assume that M satisfies strong connectivity. To prove that our algorithm
terminates with an equilibrium, we will show that there are no secondary rays in NH-ADLCP’,
and hence the algorithm has to terminate at a vertex with z = 0.

10.1 No Secondary Rays

We denote the vector (p′, q,λ,γ, qp, qr, δ, τ ′) by y. Suppose, there is a secondary ray in the
polyhedron of NH-ADLCP’. Given a vertex (y∗, z∗) and direction vector (y◦, z◦) of a secondary
ray, it is defined as

R = {(y, z) | y = y∗ + εy◦, z = z∗ + εz◦, ε ≥ 0}

By definition of secondary ray, we have z∗ > 0. Due to non-negativity constraint on all the
variables, we immediately get that all the coordinates of y◦ and z◦ are non-negative. Based on the
number of non-zero co-ordinates of vector p′◦, the proof will have three cases. For the case when
p◦ = 0 we show that R is the primary ray. For the other two cases, when p′◦ > 0 or p′◦ 6= 0,p′◦ 6> 0,
we derive contradictions. In the former case we show that market clears in turn z∗ is zero, and in
the latter case we derive contradiction to the strong connectivity property of market M.

Lemma 10.3 At a solution of NH-ADLCP’, if λi is zero then so are all qijks of agent i. Further
agents never spend more than their earnings and their surplus is at most z.

Proof : The first part follows due to (27) and (27’). For the second part, there are two cases. For
an agent i if λi is zero, then she does not spend anything and hence her spending is less than her
earnings. For the case when λi > 0, z captures the surplus of agent i, which is always non-negative.
2

Lemma 10.4 If p′◦ > 0 then z∗ is zero.

Proof : Consider a point v = (y, z) on ray R. Since p′◦ > 0, we have p′ > 0. Then due to (33’)
market clears from goods side at v. Since no agent over spends at v (Lemma 10.3), the market has
to clear from agents side as well. Earnings of agent i is at least

∑
jW

i
jEj and hence is non-zero.

Since agents can spend only when their λi is non-zero (Lemma 10.3), z captures surplus of all the
agents (34’), and hence is zero. 2

Lemma 10.5 At a solution of NH-ADLCP’, there are no production cycles and total production
of every good is bounded.

Proof : Suppose there is a production cycle 1, . . . , d, 1 of firms, where firm a produces good ja
using good ja−1 on segment (a, ka) for f > 1, and firm 1 produces j1 using jd on segment (1, k1).
Since firms operate as per optimal production plan at solutions of NH-ADLCP’ (Lemma 8.11),
production on every segment fetches non-negative profit. This implies pjaD

a
jaka
≥ pja−1/C

a
ja−1ka

⇒
pja−1/pja ≤ Caja−1ka

Da
jaka

, for all a > 2, and for a = 1 replace a− 1 with d. Putting these together
for all the firms we get a contradiction to no positive cycle condition.

There may be production paths, where a good produced by one firm is used as a raw material
by another firm to produce another good and so on. However, since the good, getting used at
the starting of such a path, comes from only initial endowments of agents, its available quantity is
bounded. Hence, the maximum amount that can be produced at the end of such a path is bounded.
2
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Ray R is an edge of a polyhedron, defined by a set of tight inequalities. If a non-negativity
inequality of a variable is tight on R then that variable remains zero on entire R. Also, if a variable
is positive at a point on R, then it can never become zero.

Lemma 10.6 If p′◦ 6= 0 and p′◦ 6> 0 then market M does not satisfy strong connectivity.

Proof : Let G1 be the set of goods with p◦j = 0, and G2 be the rest of the goods. From the
hypothesis, we know that both G1 and G2 are non-empty. Since prices of goods in G2 are strictly
increasing, they are fully-sold on R (33’). Goods of G1 may be undersold and they contribute to
the surplus of agents (Lemma 10.3). Since maximum available amount of every good is bounded
(Lemma 10.5), the total surplus of agents is also bounded. The total surplus of agents is at most
m · z (Lemma 10.3), so we get z◦ = 0.

Using goods of G2 no good of G1 is produced on R, because such a production will eventually
incur losses. Then in the absence of production cycles, some goods of G2 have to be consumed by
agents in order to clear them. Let A2 be the set of such agents, and A1 be rest of them. Clearly,
A2 6= ∅. Agent i ∈ A2 has to be satiated for every good in G1 or else her bang-per-buck for such
a good will surpass the bang-per-buck of the goods she is buying from G2. By construction agents
of A1 do not buy goods of G2, hence their spending remains constant on R. In order to keep the
surplus constant, their earnings should also be constant. Therefore, they can not own any of the
goods from G2. Thus, there is no edge from an agent of A1 to an agent of A2 in G(M).

Let F2 be the set of firms non-satiated for goods in G2, and F1 be the rest of them. Production
segments where a good j′ ∈ G2 can be produced using a good j ∈ G1 will be profitable and hence
utilized fully. By construction, a firm f ∈ F1 uses goods of F1 on non-satiated segments. Therefore,
on such a segment it can not produce a good from G2. Thus, no edge from a firm of F1 or an
agent of A1 to an agent of A2 or a firm of F2 in graph G(M). In all there is no path from an
agent of A1 to an agent of A2 in G(M). Since, both A1 and A2 are non-empty, this violates strong
connectivity of market M. 2

Lemma 10.7 If p′◦ = 0 then y∗ and y◦ both are zero vectors, i.e., R is the primary ray.

Proof : Recall that all the variables can only increase on R. Since, conditions for optimal
production plan remain as they are in NH-ADLCP, at every point of R firms operate at optimal
production plan (Lemma 8.11). Therefore, if prices are constant on R then so are the money spent
on raw material, revenue and profits; qr

◦
= 0, qp

◦
= 0 and δ◦ = 0.

This puts an upper bound on total money that agents can spend (33), q◦ = 0. Now since agent
i is non-satiated for some good (strong connectivity condition), the corresponding segment will
always be either flexible or undesired always, and hence its γ is always set to zero. Then λi can not
increase in order to maintain (27); λ◦ = 0. Finally, (28) forces γ◦ to be zero. In all we get y◦ = 0.
Since the direction vector of a ray has to be non-zero we must have z◦ > 0.

Since, only z is increasing on the ray, at any of its point (y, z) except vertex v∗, all the (34)
hold with strict inequality. So then λ = λ∗ is zero using (34’). In that case q∗ = 0 (Lemma 10.3),
and in turn γ∗ = 0 (due to (28)). If good j is neither produced nor consumed then clearly p′j

∗ = 0,
as it is under sold (33’). Among the goods that are produced or consumed by firms, there will be
production paths at v∗ but no cycles (Lemma 10.5). Consider one such path. Suppose, good j is
getting produced at the end of this path. The p′j

∗ = 0, as it is not consumed by any firm or agent.
Since, a zero priced good can be produced only using zero priced raw material (no negative profit),
the prices of goods, produced or used on this entire path, are zero. Essentially p′∗ = 0. Finally,
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using conditions for optimal production and the fact that when prices are Ejs no firm makes profit,
we get τ ′∗ = 0 (29), then qp

∗
= 0 (30,30’), qr

∗
= 0 and δ∗ = 0 (32). Putting everything together

we have y∗ = 0. 2

Let the condition that for each good there exists an agent non-satiated for this good be called
enough demand. Lemmas 10.4, 10.6, and 10.7 give:

Theorem 10.8 The polyhedron of NH-ADLCP’, corresponding to a Leontief-free market M,
satisfying enough demand and strong connectivity, has no secondary rays.

Lemma 10.1, and Theorems 8.12 and 10.8 directly yields:

Theorem 10.9 If a Leontief-free marketM satisfies strong connectivity and enough demand, then
M admits an equilibrium and the algorithm in Table 12 terminates with one.

Theorem 10.9 gives the first practical (see Section 12 for experimental results) algorithm for such
a general class of production markets, and settles the appropriate case of the open problem, posed
by Eaves (1975) [25]. The algorithm also gives a constructive proof of the existence of equilibrium
for such markets.

Theorem 10.10 Assuming strong connectivity and enough demand the problem of computing an
equilibrium of a Leontief-free market is in PPAD.

Proof : By Theorem 10.9, the algorithm in Table 12 must converge to an equilibrium. Now, by
Todd’s result [56] on the orientability of the path followed by a complementary pivot algorithm, we
get a proof of membership of the problem in PPAD. 2

Theorem 10.11 If a Leontief-free marketM satisfies strong connectivity and enough demand, and
its polyhedron P ′ corresponding to NH-ADLPC’ is non-degenerate, then M has an odd number
of equilibria, up to scaling.

Proof : The solutions of NH-ADLCP’ satisfying z = 0 are precisely the solutions to NH-
ADLCP and hence capture exactly the equilibria of M (Theorem 8.12). Given any solution of

NH-ADLCP’ we can convert it to a solution that satisfies (I), by just changing τ fk s. Let S be
the set of solutions of NH-ADLCP’ satisfying (I). Clearly, all the solutions of NH-ADLCP’ are

captured by S up to change of τ fk s, a non important quantity for equilibrium prices and allocations.
As observed in Appendix A and using Lemma 10.1, the set S consists of paths and cycles. Now,
the points of S satisfying z = 0 occur at endpoints of such paths (under non-degeneracy). One of
the paths starts with the primary ray and ends with an equilibrium. Since by Theorem 10.8 the
polyhedron of NH-ADLCP’ has no secondary rays, the rest of the equilibria must be paired up.
Hence there are an odd number of equilibria. 2

Theorem 10.12 The problem of computing an equilibrium of a Leontief-free market is PPAD-
complete assuming the weakest known sufficiency conditions by Maxfield [39]. In general checking
existence of an equilibrium in these markets is NP-complete.

Proof : Containment in PPAD assuming the sufficiency conditions by Maxfield follows from
Theorem 10.10. Given prices of goods, checking if they are equilibrium prices can be done in
polynomial time using the characterization of Section 5, hence containment in NP follows in general.

As discussed in Section 2 SPLC utilities and SPLC production are subclass of Leontief-free
utilities and production respectively. The proof follows from the hardness results for SPLC utilities
and SPLC production [10, 13, 60, 15, 31]. 2
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11 Strongly Polynomial Bound

In this section we show that our algorithm is strongly polynomial when the number of goods is
constant. Recall that our algorithm traverses a path in the solution set S of NHAD-LCP’. For this,
we first create a cell-decomposition in the price space by introducing strongly polynomially many
hyperplanes. We note that the number of non-empty cells formed by N hyperplanes in Rd is at
most O(Nd). Thus we get strongly polynomial bound on number of cells. After this we show that
every vertex of S maps to a cell thus created and at most two vertices of S can map to a same cell.

The idea is to use the fact that each vertex of S has a particular setting of forced, flexible and
undesirable segments for both agents and firms. We essentially decompose price space into cells by
a set of hyperplanes so that every non-empty cell thus created corresponds to a setting of forced,
flexible and undesirable segments for both agents and firms. This gives a mapping between the
two. The challenge here is to carefully construct the hyperplanes so that we get such a setting for
every non-empty cell. [30, 31] also uses this approach for proving strongly polynomial bound for
complementary pivot algorithms.

We also note that most of these cells do not map onto by any vertex of S due to an additional
constraint on them that the surplus, i.e., spending – earning (captured by variable z), has to be
same for all agents. Hence, our algorithm is much faster than enumerating all of them in a brute-
force way to check for a solution. The same has been confirmed by the experiments.

Hyperplanes. Consider the cell decomposition in (p1, . . . , pn, z)-space by adding hyperplanes as
follows: For each 5-tuple (i, j, j′, k, k′), introduce hyperplane U ijkpj′ − U ij′k′pj = 0. Further, for

each 4 tuple (f, j, j′, k), introduce hyperplanes Cfj′kpj − Cfjkpj′ = 0, Df
jkpj − Df

j′kpj′ = 0 and

Df
jkC

f
j′kpj − pj′ = 0. These hyperplanes divide the space into cells and each cell has one of the

signs <,=, > for each hyperplane.
For each segment of every firm, these signs give information about (i) most profitable raw good,

i.e., minj pj/C
f
jk, (ii) most profitable produced good, i.e., maxj D

f
jkpj , and (iii) whether positive,

zero or negative profit (using the signs of hyperplanes Df
jkC

f
j′kpj − pj′ = 0). Let φ(f, k) denotes

the maximum profit on segment (f, k), i.e., φ(f, k) = Lfk(maxj D
f
jkpj − minj pj/C

f
jk). Recall that

each firm produces on positive profit segments to their full limit, and no production on negative
profit segments. Let φf denotes the profit of firm f (a placeholder variable). Using the information
above, φf =

∑
(f,k):φ(f,k)≥0 φ(f, k) can be obtained for each cell.

For each agent, these signs give partial order on the bang-per-buck of her segments. Using this
information for a given cell, we can sort all segments of agent i by decreasing bang-per-buck, and
partition them by equality into classes: Qi1, Q

i
2, · · · . Let Qi<l denote Qi1∪Qi2∪ . . .∪Qil−1. Similarly,

we define Qi≤l and Qi>l.

Recall that every segment (i, k) of an agent i has an upper bound Lik on the maximum utility
that can be obtained on that segment, and forced segments are fully bought, flexible are partially,
and undesirable are not bought at all. Further on every segment, money is spent only on those

goods which give maximum bang-per-buck. Define bang-per-buck of a segment (i, k) as bpb(i, k)
def
=

maxj U
i
jk/pj. Hence the total money spent on a segment (i, k) is: Li

k/bpb(i,k) (if forced), a value
∈ [0, Li

k/bpb(i,k)] (if flexible), and 0 (if undesirable).
Next we want to capture the flexible partition. To do this, we further subdivide a cell by adding

hyperplane
∑

k∈Qi
<l

Li
k/bpb(i,k) =

∑
j∈GW

i
jpj +

∑
f Θi

fφ
f − z, for each agent i and each of her parti-

tions Qil. For any given subcell, let Qili be the right most partition such that
∑

k∈Qi
<li

Li
k/bpb(i,k) <∑

jW
i
jpj − z, then Qili is the flexible partition for agent i. In addition, we add hyperplanes
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pj = Ej , ∀j ∈ G and z = 0, and consider only those cells where pj ≥ Ej and z ≥ 0.
Given a fully-labeled vertex (y, z) of P ′, there is a natural cell associated with it, namely due

to projection of it on (p, z)-space by mapping p′j to p′j + Ej and z to z itself.

Lemma 11.1 At most two vertices of S can map to a cell. Furthermore, if a cell is mapped onto
from two vertices, then they must be adjacent.

Proof : Given a cell we specify one equality for every complementarity condition, to be satisfied
by the fully-labeled vertex mapping to it. A fully labeled vertex v must satisfy the following
equalities. In the cell,

• If
Cf

jk

pj
= minj′

Cf

j′k
pj′

then τ ′fk −
p′j

Cf
jk

=
Ej

Cf
jk

− Efk else qf,rjk = 0 at v.

• If Df
jkpj = maxj′ D

f
j′kpj′ then Df

jkp
′
j − τ

′f
k − δ

f
k = Efk −D

f
jkEj else qf,pjk = 0 at v.

• If maxj D
f
jkpj ≥ minj

Cf
jk

pj
then

∑
j∈Rf q

f,r
jk − L

f
kτ
′f
k = LfkE

f
k else δfk = 0 at v.

• If
U i
jk

pj
≥

U i
j′k
pj′

for a Qili then U ijk(λi − γik)− p′j = Ej else qijk = 0 at v.

• If
U i
jk

pj
≤

U i
j′k
pj′

for a Qili then γik = 0 else
∑

j q
i
jk = Lik(λi − γik) at v.

• If
∑

jW
i
jpj+

∑
f Θi

fφ
f−z ≥ 0 (second set of hyperplanes for the tuple (i, 1)) then

∑
jW

i
jp
′
j+∑

f Θi
fφ

f −
∑

j,k q
i
jk = −

∑
jW

i
jEj else λi = 0 at v.

• If pj > Ej then
∑

i,k q
i
jk +

∑
(f,k),j∈Rf q

f,r
jk − p

′
j −

∑
(f,k),j∈Pf q

f,p
jk ≤ Ej else p′j = 0 at v.

Since the above conditions enforces one equality from each complementary condition of NHAD-
LCP’, their intersection forms a line. If this line does not intersect P ′, no fully labeled vertex gets
mapped to the given cell. If it does then intersection can be either a fully labeled vertex, say v,
or a fully labeled edge – we say that an edge of the polyhedron P ′ is fully labeled if the solution
represented by each point of this edge is fully labeled. In the former case only vertex v gets mapped
to the cell and in the latter case endpoints of the fully labeled edge map to the cell. 2

12 Experimental Results

We implemented our algorithm in Matlab and ran it on randomly generated instances of Leontief-
free Arrow-Debreu and Leontief-free exchange markets. Number of segments are kept the same in
all the utility functions and production sets, let it be denoted by #seg. An instance is created
by picking values uniformly at random – W i

j s from [0, 10], Θi
f s from [0, 1], U ijks from [0, 1], Liks

from [0, 10/#seg], Cfjk and Df
jk from [0, 1] (in order to avoid production out of nothing) and Lfks

from [0, 10/#seg]. For every firm j, Θi
f s are scaled so that they sum up to one. Typically, all

the coefficients are non-zero in each segment. The experimental results are given in Tables 13 and
14. Note that, even in the worst case the number of iterations is always linear in the total number
of parameters to represent the market. Total number of parameters in a market with n goods, m
agents and o firms is O((mn+ on)#seg).
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Table 13: Experimental Results for Leontief-free Exchange Market
(Min, Max and Avg columns give number of iterations of the algorithm)

#agents, #goods, #seg #Instances Min Max Avg

5, 5, 5 100 39 51 42.6

5, 5, 10 100 57 107 73.1

5, 5, 20 100 141 189 161.2

5, 5, 30 100 185 276 229.8

5, 10, 10 100 109 163 138.2

5, 10, 20 100 179 304 254.7

5, 10, 30 20 336 430 377.5

10, 5, 10 100 89 124 103.1

10, 5, 20 100 163 205 178.3

10, 5, 30 100 207 285 249.8

10, 10, 10 100 167 221 189.2

10, 10, 20 20 297 401 346.9

Table 14: Experimental Results for Arrow-Debreu Market with Leontief-free Production
(Min, Max and Avg columns give number of iterations of the algorithm)

#agents, #goods, #firms, #seg #Instances Min Avg Max

5, 5, 5, 2 100 15 27.8 40

5, 5, 5, 5 100 57 100.5 118

10, 5, 5, 2 100 28 57.9 60

10, 5, 5, 5 100 42 158.8 189

10, 10, 10, 2 100 47 89.1 110

10, 10, 10, 5 20 104 284.4 362

10, 10, 10, 10 10 131 592.3 884

15, 5, 5, 2 100 57 69.5 86

15, 5, 5, 5 100 200 232.4 273

15, 10, 10, 2 100 87 118.7 149

15, 10, 10, 5 10 474 772.3 1132

15, 10, 10, 10 10 1071 1141.2 1376
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13 Discussion

Considering the merits of complementary pivot algorithms, an obvious question is whether there
are other classes of non-separable utilities that admit such algorithms – of course, this will require a
proof of rationality for such classes. Another important question is to design practical, numerically
stable algorithms for computing equilibria in Arrow-Debreu markets under classes of non-separable
utilities that do not admit rational equilibria, most notably Leontief utilities. We note that Fisher
markets under Leontief utilities admit a convex program for computing equilibrium prices and
allocations, hence a practical algorithm is already known for this case.

Several optimization problems involve concave or convex objective functions and their efficient
solvability sometimes hinges on assuming that the function is separable. It will be interesting to
see whether Leontief-free non-separable functions are easy to handle in these situations. Promising
candidates include min-cost flow and multicommodity flow problems [29, 2, 5, 4].

Finally, we mention a third dichotomy for an equilibrium problem, namely for Eisenberg-Gale
markets, a notion defined in [34]. Such markets admit convex programs that yield equilibrium prices
and allocations analogous to the way the classical Eisenberg-Gale convex program [27] does for linear
Fisher markets [6]. [8] show that the class EG2 of Eisenberg-Gale markets for two agents admit
rational convex programs, as defined in [57], i.e., convex programs which always admit rational
solutions if all parameters are set of rational numbers, as well as polynomial time algorithms for
exact computation of equilibrium prices and allocations. Furthermore, if the set of feasible utilities
of the two agents can be described by a combinatorial LP (an LP whose matrix entries have
encoding size a polynomial in the dimension), then they give a strongly polynomial time algorithm
for finding equilibrium prices and allocations. In contrast, [34] give several examples of Eisenberg-
Gale markets for three agents which have only irrational equilibria. The ellipsoid algorithm will
find the equilibria to any required degree of accuracy in time polynomial in the number of bits of
accuracy.

13.1 Submodular ∩ PLC: Irrational Example

In this section we illustrate a market with submodular, PLC utility functions, with an irrational
equilibrium prices and allocation. Consider a market with two goods and three agents. All the
agents initially have one unit of each good, i.e., w1 = w2 = w3 = (1, 1). The utility functions of
the first two agents are linear,

U1(x1, x2) = x1 and U2(x1, x2) = x2

. For the third agent it is a PLC function defined by the following two hyper planes,

U3 ≤
5

2
x1 +

7

2
x2; U3 ≤ 2x1 + x2 + 1

Intersection of the above two hyper-planes is defined by line 0.5x1 + 2.5x2 = 1 in (x1, x2)-space.
Since, slope of this line is negative, it follows that the function is submodular.

Wlog we can assume that p1 = 1, and let p2 be p, which we will set latter. Note that, at these
prices each agent earns 1 + p. Since, the first agent is going to buy only good one, her market
clearing condition ensures x11 = 1 + p and x12 = 0. Similarly, for agent two we get p21 = 0 and
p22 = 1 + 1/p.

Further, it so happens that at equilibrium the optimal bundle (x31, x32) of agent 3 is on the
intersection of two hyper-planes, and therefore it satisfies 0.5x31+2.5x32 = 1. In addition, to ensure
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market clearing, it should satisfy x31 + px32 = 1 + p. Using these two we get that x31 = 3p+5
5−p and

x32 = 1− p5− p.
To ensure that all the goods are consumed, we have x11 + x21 + x31 = 3. Replacing all three by

corresponding expressions in p, we get

p2 − 10p+ 5 = 0

The roots of the above polynomial are 5± 2
√

5. Setting p to 5− 2
√

5 in p2 and all the xs gives
an equilibrium. This is because, by construction they satisfy market clearing conditions, and for
first two agents also the optimal bundle conditions. For the optimal bundle of the third agent,
replacing p in x31 and x32 gives bundle (2

√
5 − 3, 1 − 2/

√
5). One can check that this is the best

affordable bundle for agent 3 at prices p1 = 1 and p2 = 5− 2
√

5.
Since, in this example agent have the same initial endowment, if we consider a Fisher market

instead, where buyers have one dollar each, the equilibrium prices will still remain irrational.

Acknowledgements: We wish to thank Prof. Kenneth Arrow for valuable discussions on
Leontief-free utility functions.
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A Linear Complementarity Problem and Lemke’s Algorithm

Given an n× n matrix M , and a vector q, the linear complementarity problem asks for a vector y
satisfying the following conditions:

My ≤ q, y ≥ 0, q −My ≥ 0 and y · (q −My) = 0. (36)
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The problem is interesting only when q 6≥ 0, since otherwise y = 0 is a trivial solution. Let us
introduce slack variables v to obtain the equivalent formulation

My + v = q, y ≥ 0, v ≥ 0 and y · v = 0. (37)

Let P be the polyhedron in 2n dimensional space defined by the first three conditions; we will
assume that P is non-degenerate. Under this condition, any solution to (37) will be a vertex of P,
since it must satisfy 2n equalities. Note that the set of solutions may be disconnected.

An ingenious idea of Lemke was to introduce a new variable and consider the system:

My + v − z1 = q, y ≥ 0, v ≥ 0, z ≥ 0 and y · v = 0. (38)

Let P ′ be the polyhedron in 2n+ 1 dimensional space defined by the first four conditions; again
we will assume that P ′ is non-degenerate. Since any solution to (38) must still satisfy 2n equalities,
the set of solutions, say S, will be a subset of the one-skeleton of P ′, i.e., it will consist of edges
and vertices of P ′. Any solution to the original system must satisfy the additional condition z = 0
and hence will be a vertex of P ′.

Now S turns out to have some nice properties. Any point of S is fully labeled in the sense that
for each i, yi = 0 or vi = 0. We will say that a point of S has double label i if yi = 0 and vi = 0
are both satisfied at this point. Clearly, such a point will be a vertex of P ′ and it will have only
one double label. Since there are exactly two ways of relaxing this double label, this vertex must
have exactly two edges of S incident at it. Clearly, a solution to the original system (i.e., satisfying
z = 0) will be a vertex of P ′ that does not have a double label. On relaxing z = 0, we get the
unique edge of S incident at this vertex.

As a result of these observations, we can conclude that S consists of paths and cycles. Of these
paths, Lemke’s algorithm explores a special one. An unbounded edge of S such that the vertex
of P ′ it is incident on has z > 0 is called a ray. Among the rays, one is special – the one on
which y = 0. This is called the primary ray and the rest are called secondary rays. Now Lemke’s
algorithm explores, via pivoting, the path starting with the primary ray. This path must end either
in a vertex satisfying z = 0, i.e., a solution to the original system, or a secondary ray. In the latter
case, the algorithm is unsuccessful in finding a solution to the original system; in particular, the
original system may not have a solution.

Remark: Observe that z1 can be replaced by za, where vector a has a 1 in each row in which
q is negative and has either a 0 or a 1 in the remaining rows, without changing its role; in our
algorithm, we will set a row of a to 1 if and only if the corresponding row of q is negative. As
mentioned above, if q has no negative components, (36) has the trivial solution y = 0. Additionally,
in this case Lemke’s algorithm cannot be used for finding a non-trivial solution, since it is simply
not applicable.
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B Notations

Notation Description

Rn+ Set of non-negative n-dimensional real vectors
A Set of agents
G Set of goods
F Set of firms

Rf Set of raw goods, firm f can use

Pf Set of goods, firm f can produce
m Number of agents in the market
n Number of goods in the market
o Number of firms in the market

W Endowment matrix
W i
j Initial endowment of good j with agent i

U ijk Utility per unit of good j on segment k of agent i

Θi
f Agent i’s profit share in firm f

Cfjk Constant essentially captures usefulness of raw good j on segment k

of firm f production capability

Df
jk Constant essentially captures capability of firm f to produce good j on segment k

Lfk Upper bound on production on kth segment of firm f
Lik Upper bound on utility on kth segment of agent i
T ik Constant used in kth hyperplane of agent i’s PLC utility function

T fk Constant used in kth hyperplane of firm f ’s PLC utility function
Ej Lower bound imposed on price of good j to make LCP non-homogeneous

(obtained using Farkas’ Lemma)

Efk Lower bound imposed on τ fk to make algorithm converge
p Vector of price variables (p1, . . . , pn)
pj price of good j
xi Vector of amount allocated to agent i (xi1, . . . , x

i
n)

xij Amount of good j allocated to agent i

xijk Amount of good j allocated to agent i on segment k

xf,rj Amount of raw good j used by firm f

xf,pj Amount of produced good j by firm f

qijk Money spent on good j by agent i on segment k

qf,rjk Money spent on raw good j by firm f on segment k

qf,pjk Money earned from produced good j by firm f on segment k

τ fk Variable to capture the most profitable raw good to use on segment k by firm f

δfk Variable to capture the profit on segment k of firm f
φf Placeholder variable to capture total profit earned by firm f
λi Variable to essentially capture the bang-per-buck of agent i
γik Dual variable for kth hyperplane of agent i’ PLC utility function
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