
Secure Acknowledgment Aggregation and

Multisignatures with Limited Robustness⋆

Claude Castelluccia1,2, Stanis law Jarecki1, Jihye Kim1, and Gene
Tsudik1

1 University of California, Irvine
Computer Science Department, Irvine, CA 92697-3425

{stasio,jihyek,gts}@ics.uci.edu
2 INRIA Rhône-Alpes, 38334 Saint Ismier CEDEX, France

claude.castelluccia@inrialpes.fr

Abstract. In certain reliable group-oriented and multicast applications,
a source needs to securely verify whether all (and if not all, which) in-
tended receivers have received a message. However, secure verification of
individual acknowledgments from all receivers can impose a significant
computation and communication burden. Such cost can be significantly
reduced if intermediate nodes along the distribution tree aggregate the
acknowledgments produced by the multicast receivers into a single mul-
tisignature.
The approach explored in prior work on acknowledgment aggregation
[11] is based on a multisignature scheme of [1]. However, this multisigna-
ture scheme requires a relatively new cryptographic assumption of “Gap
Diffie-Hellman”. In contrast, we propose a solution using multisignature
schemes secure under more standard and long-standing security assump-
tions. In particular, we show how to extend previously known non-robust
multisignature scheme [9] based on the discrete logarithm assumption to
achieve limited robustness. Our extension – which also generalizes to
certain other multisignature schemes – allows for efficient multisignature
generation in the presence of (possibly malicious) node and communica-
tion failures, as long as the number of such faults does not exceed certain
threshold.

1 Introduction

Multicast (one-to-many) and group communication is widespread in a va-
riety of settings. Popular examples include IP Multicast, p2p content shar-
ing, digital cable TV transmission, mobile ad hoc networks (MANETs)
and application-layer replication protocols. Multicast security has been
the subject of much attention in the research literature. Most of the rele-
vant work has been in the context of key management, multicast/broadcast

⋆ An early version of this work was presented at the 2004 Security in Communication
Networks (SCN’04) conference [4].

encryption and efficient content authentication. One of the related is-
sues that has not been sufficiently considered is the problem of secure
(authenticated) acknowledgments. In certain reliable multicast settings,
after sending out a multicast message, the source is interested in estab-
lishing whether all (and if not all, which) group members have received
the message.

In this paper we propose several new techniques for efficient authenti-
cation of acknowledgments generated in response to a multicast message.
We are interested in schemes which are efficient, scalable, robust with
respect to failures and malicious participants, as well as provably secure
under long-standing (standard) cryptographic assumptions such as the
difficulty of computing discrete logarithms.

The paper is organized as follows: the rest of this section sets the stage
for our work, reviews prior work and summarizes our contribution. The
next section describes our main result, a new multisignature scheme based
on Discrete Logarithm Assumption which offers a limited robustness and
can be used for acknowledgment aggregation. Section 3 contains a security
proof for this scheme, together with the discussion about optimality of
our robustness bound and an extension that allows for larger exponent
sizes. Section 4 considers an optimized variant of the scheme applicable in
the symmetric key setting. Section 5 discusses performance and presents
an optimization that reduces the number of communication stages to only
one. In Appendix A we show how our robust multisignature scheme based
on the discrete logarithm problem generalizes to other multisignature
schemes, using as an example a scheme based on Guillou-Quisquater (GQ)
signatures [6].

1.1 Problem Statement

We assume that packets are sent from the source to group members (in-
tended receivers) along a delivery tree. This tree is rooted at the source
and members are represented as leaves and, possibly, also as intermedi-
ate nodes. The delivery tree is not necessarily binary, i.e., a node can
have more than two children. However, for the sake of simplicity in the
presentation, we assume that the group members are leaves of a binary
multicast tree rooted at the source.

After multicasting a message M to the group, the source needs to make
sure that all members have received it. One simple solution is to ask each
member to send an authenticated acknowledgment back to the source.
However, this solution is not scalable as it results in the acknowledgment
implosion problem, i.e. the individual acknowledgments take up too much

2

bandwidth, which is often a scarce resource. While the computational cost
of verifying the individual acknowledgments can be sped up via various
batch signature verification techniques, such techniques do not address
the need to save the communication resources.

1.2 Prior Work

Nicolosi and Mazieres [11] recently proposed to reduce the computation
and the communication costs associated with acknowledgment verification
by aggregating multiple acknowledgments using a multisignature scheme
of Boldyreva [1]. A multisignature scheme is a generalization of the stan-
dard notion of a signature to messages signed by groups of users. In a
multisignature scheme [10], s is called a multisignature on message M
issued by a group of players G if (s,M) passes certain verification equa-
tion involving the set of all public keys in group G. If the multisignature
scheme is secure, this happens only (except for negligible probability) if
all players in group G indeed signed M .3 Efficiency-wise, we would like a
multisignature scheme to ensure that both the size of the resulting mul-
tisignature as well as the time required to verify it are similar to sizes and
times incurred by standard signatures, irrespective of the group size.

It is easy to illustrate multisignatures using the scheme of [1], which
is a generalization of a plain signature scheme (BLS) proposed by Boneh
et al. [3]. Assuming that an element g is a generator of such a group, in a
BLS signature the user’s private key is x, the public key is a group element
y = gx, the signature on a (hashed) message M is s = Mx, and the signa-
ture verification consists of checking that (g, y,M, s) is a Diffie-Hellman
(DDH) tuple. Boldyreva’s multisignature scheme generalizes BLS signa-
tures by defining string s as a multisignature on M issued by a group of
players G if (g, y,M, s) is a DDH tuple for y =

∏

i∈G yi. Note that if each
si is a BLS signature issued by player i on M , then s =

∏

i∈G si is a mul-
tisignature on M issued by players in G. Both schemes are secure in the
Random Oracle Model under the so-called “Gap Diffie-Hellman” (GDH)
group assumption, which requires that even if it is easy to decide whether
a tuple of four group elements (g, y, z, w) is a Diffie-Hellman tuple, i.e.
whether DLg(y) = DLz(w), still computing a DH function Fg,y(z) = (z)x

on a random group element z is intractable without the knowledge of
x = Dloggy. The GDH assumption is hypothesized to hold in certain

3 Thus, multisignatures, referred to as “Accountable Subgroup Multisignatures” by
Micali, et al. are a special case of so-called “aggregate signatures” [2] which enable
aggregation of signatures by multiple signers on possibly different messages.

3

elliptic curve groups with Weil pairings, where decisional Diffie-Hellman
can be efficiently computed via the pairing, but where computational
Diffie-Hellman still appears to be hard [7, 5].

Since the aggregation of BLS signatures into a multisignature does
not require participation of the signers, this multisignature scheme en-
ables robust aggregation of acknowledgments by the intermediate nodes
along a multicast delivery tree: Each intermediate node can verify – given
the (combined) public keys of the nodes below it – whether the (aggre-
gated) acknowledgments it receives are correct, and then aggregate them
further for the node above. Together with an aggregation of the valid mul-
tisignatures he receives, each node also passes up identities of members
involved in this multisignature. In this way, the source receives the final
multisignature and the identities of members whose signatures it contains.
Note that this scheme uses constant bandwidth on every link (modulo the
size of the list of identities that increases as the message approaches the
root), and that the cost of multisignature verification is the same as the
verification of a standard BLS signature. Furthermore, this solution im-
plicitly provides traceability by allowing the source to eventually identify
any malicious participants who might send bogus acknowledgments.

1.3 Our Contribution

While efficient and robust, the above scheme is based on relatively new
GDH cryptographic assumption. In this paper we show that a robust mul-
tisignature scheme – and thus a robust acknowledgment aggregation – can
be obtained based under more standard cryptographic assumption of the
hardness of the discrete logarithm (DL) problem. Our solution is an im-
provement on the non-robust DL-based multisignature scheme proposed
in [9]. Like the scheme in [9], our scheme is a variant of the Schnorr’s
signature scheme [13], provably secure (in the Random Oracle Model)
under the discrete logarithm assumption. However, by tying together the
individual players’ commitments into Schnorr signatures with the aid of a
Merkle hash tree [8], our multisignature scheme has a novel property of ro-
bustness: Using the new scheme, a group of signers can efficiently generate
a multisignature even in the presence of (some number of) communica-
tion failures between participating players and/or malicious behavior on
the part of (some of) the players. In contrast, the multisignature scheme
of [9] would have to be restarted from scratch in the case of a single com-
munication or node fault during a multisignature generation protocol.

Our scheme achieves only limited robustness as the number of the
communication and/or malicious node faults it can tolerate is bounded

4

by a threshold, which is linear in the bit length of the modulus involved in
the underlying discrete logarithm problem. The approximate relationship
between the size n of the signing group, the maximal threshold t of faults,
and the size |q| of the modulus that determines the size of the exponents
in the underlying discrete logarithm problem, is |q| = Ω(t ∗ ln n). The
exact constraint we impose on tuple (t, n, q) is that St,n/q is negligible,
where St,n =

(

n
0

)

+
(

n
1

)

+ . . . +
(

n
t

)

. Since St,n ≤ t(ne/t)t, this constraint
holds if, for example, q ≥ t(ne/t)t ∗ 280.

This constraint enables us to achieve full robustness, i.e. t ≤ n, for
small groups of signers, e.g. n = 256, using 344-bit exponents. Assuming
that standard 160-bit exponentiation modulo a 1024-bit modulus can
be done in about 1 − 2 milliseconds on a modern PC, our signing and
verification would then take only 2−4 milliseconds. For larger groups our
scheme can tolerate smaller thresholds at this cost, e.g. n ≈ 106 and t = 32
require 597-bit q, but increasing the tolerated threshold size to t = 103

results in 11K-bit exponentiation, which makes the scheme significantly
less efficient than standard signature schemes, but the signatures can still
be computed and verified in about 1/10-th of a second.

Interestingly, the above bound on the robustness threshold of our
scheme is tight: If the n, t, q parameters do not satisfy it the multisignature
scheme becomes efficiently forgeable. This does not endanger our scheme
since the check that the parameters are picked correctly is effectively a
part of the (multi)signature verification procedure.

1.4 Discussion of Requirements on Multisignature Schemes

We note that our scheme suffers from the same limitation as the mul-
tisignature schemes proposed before, including the BLS-signature based
multisignature of Boldyreva [1] and the Schnorr-signature based multisig-
nature of Micali et al. [9]. Namely, all these schemes make special require-
ments on the generation of the participants’ public keys. (Identification
of these requirements was one of the contributions of [9].)4

One possible requirement is that all certification authorities (CA-s)
that certify the participants’ public keys must be honest. In particular, as
part of each certification process, each participant must provide a zero-
knowledge proof of knowledge of its private key and this proof must be
verified by an honest CA. As pointed out in [9], this requirement makes

4 In contrast, the aggregate signature scheme of [2] does not impose these requirements
on the public keys, but that scheme only aggregates the bandwidth taken by the
aggregate signature, leaving the verification time proportional to the size of the
signing group.

5

delegation problematic, precludes self-delegation completely, and is ap-
propriate only if all certificates are signed by very few completely trusted
entities.

An alternative requirement under which all these schemes, including
ours, are secure is that all participants generate and certify their public
keys as part of a special distributed protocol. While this requirement
avoids trusted third parties (i.e., CA-s) completely, it is applicable only to
small groups and is thus unsuitable for a general public key infrastructure.

However, while these limitations remain a serious problem for general
applications of multisignatures, they do not influence the application of
multisignatures to multicast acknowledgment aggregation. In this con-
text, we can safely assume that all participants’ keys are certified by a
single trusted CA. Moreover, in some applications we can even assume
that the CA might have access to everyone’s private key. Therefore in
the subsequent sections we choose to present our multisignature scheme
assuming a single trusted certification authority.

We note that similarly to the BLS-based scheme of [1], but unlike
the Schnorr-based scheme of [9], our scheme does not require that all
players involved in the multisignature generation protocol take as input
the set G of players that participate in this protocol. We believe that
the closer analysis of the security proof given for the original scheme of
Micali et al. shows that this requirement is not needed in that scheme as
well. However, similarly to the scheme of [9] our security analysis requires
that the players in our scheme participate in only one instance of this
protocol at any given time. However, this requirement can be relaxed
and the opening and closing messages from two consecutive instances of
this protocol (e.g. for acknowledging two consecutive multicasts) can be
piggybacked on one another. We describe this optimization of our protocol
in Section 5.

2 DL-based Multisignature Scheme

In this section we construct a multisignature scheme based on a prior
extension of the Schnorr signature scheme [13]. Before describing the
scheme, we briefly mention certain environmental features and param-
eters.

2.1 Computational Setting and Initialization

As expected in the original Schnorr signature scheme [13], we assume
common parameters (p, q, g) where p, q are large primes (q is a large di-

6

visor of p − 1) and g is an element of order q in Z
∗
p. As in the Schnorr

signature scheme we assume a hash function h : {0, 1}∗ → Zq, which
we model as a random oracle. All equations involving multiplication or
exponentiation are meant modulo p.

As mentioned in the introduction, we assume a single trusted CA
that signs all participants’ public keys. We describe our multisignature
scheme using the specific application of acknowledgment aggregation as
the underlying context. Namely, we assume that the group of players
who are potential participants in the multisignature generation are mul-
ticast group members and that they are logically organized in a binary
tree, with group members represented as leaves. The intermediate tree
nodes are represented by the multicast delivery network and the source
S is represented as the root. For simplicity, we will assume that the tree
is complete, i.e. that the number of leaves is n = 2d for some d. We
note, however, that the scheme is equally applicable to non-binary and
incomplete trees as well as trees where intermediate nodes are themselves
receivers or group members.5

We denote the left and right children of S as N0 and N1. More gen-
erally, the left and right children of Ni are defined as Ni0 and Ni1 (see
Figure 1 for example). Each member Ni randomly selects its secret key
xi ∈ [0, q − 1] and sets its public key yi = gxi . As discussed in the in-
troduction, under the assumption of a single trusted CA, the proof of
security requires that during the registration of the public key yi a player
must pass a zero knowledge proof of possession of the discrete logarithm
xi = DLg(yi).

6 When our scheme is used for efficient acknowledgment ag-
gregation, the trusted source can either check each player’s ZK proof, or,
to support the “optimistic” mode of the protocol operation, the source
simply picks Ni’s secret xi himself and shares it with the player. (We
describe this optimization in Section 4.)

We assume that each node Ni knows the public keys of all members
(tree leaves) in the subtree rooted at Ni. Each node can also aggregate
the keys of all the members in his subtree. The aggregated public key
yi is computed as yi = yi0 ∗ yi1, where yi0, yi1 are (possibly aggregated)
public keys of Ni’s children. Using this notation, y = yǫ is a product of
the public keys of all group members y =

∏

i∈G yi.

5 In a more general case, the tree structure needs to be computed jointly by the
participating players, and both the intermediate nodes as well as the source would
involve special functions executed by the players with appropriate roles.

6 If no trusted CA’s can be assumed, to assuage the problem of concurrent composition
of such proofs, our multisignature scheme would have to generate all public keys
simultaneously, in a distributed protocol proposed by [9].

7

2.2 Scheme Overview

In the Schnorr signature scheme, a signature on message M under key
y = gx is generated by producing a one-time “commitment” r = gv

for a random v ∈ [0, q − 1], computing a “challenge” c = h(m, r), and
issuing a “response” z = v + c∗x mod q. The signature is a pair (r, z) s.t.
gz = r∗yc mod p and c = h(m, r). Micali, et al. aggregate such signatures,
i.e. pairs (ri, zi) produced by members of some group G, by running a 3-
round protocol: (1) everyone broadcasts its commitment ri = gvi , (2)
everyone combines r =

∏

i∈G ri and computes the challenge c = h(m, r),
and, (3) everyone broadcasts their responses zi = vi + c ∗ xi mod q. It’s
easy to see that (c, z), where z =

∑

i∈G zi, is a “Schnorr multisignature”
for the group G, with y =

∏

i∈G yi as the verification key.7

However, this scheme is not robust against node and link failures dur-
ing the computation of the multisignature. For example, if a node first
sends a commitment ri but fails to send a valid response zi, the mul-
tisignature has to be recomputed from scratch. To alleviate this problem,
instead of hashing a simple product of all ri’s as above, we compute the
challenge c via a Merkle-tree [8] aggregation of the ri values. Namely, the
ri values of each two neighbouring leaf nodes are hashed together by their
parents, these hashes are then hashed together by their parents, and so
on until the root hashes the values passed to it by its two children into
the final c.8 Since a Merkle Tree is a commitment to all the ri’s, the re-
sulting challenge c is meaningful to all subsets of ri’s that were used to
create it, and hence it can be used for a multisignature involving those
(and only those) players that respond to c with a proper response zi’s. We
note that the Merkle tree we construct is not standard because we fold
into the intermediate values ri accumulated so far (see Figure 1), which
allows for a more efficient handling of potential faults occurring later in
the protocol.

7 In the extended version [10], the authors show that the same scheme also works
without broadcast, e.g., if players communicate in a ring-like fashion. That version
improves communication costs but is also not robust.

8 We note that Micali, et al. use a Merkle tree in the key generation protocol, but they
use it to enable provable security in the absence of a trusted CA, whereas we use it
in the multisignature generation protocol to achieve robustness. The two concerns
are independent, and in particular the Micali et al. technique of key generation can
be adopted to our scheme if trusted CAs cannot be assumed. (See the discussion in
section 1.4.)

8

2.3 Multisignature Generation

The multisignature generation protocol has 4 stages. We use the term
stage, as opposed to round, to take into account the structure of the
delivery tree. Thus, each stage, whether upward- or downward-bound,
takes log n rounds.

Each player is assumed to store all information passing through it,
but can discard this information once the protocol ends. We assume that
the players participate in one instance of this protocol at a time. (We will
relax this assumption slightly in Section 5.)

Stage 0: This is the stage of the actual message delivery, i.e., source sends
a message M along the delivery tree.

Stage 1: Each member Ni that receives M randomly selects vi ∈ [0, q−1]
and sends to its parent the commitment ri = gvi and the partial chal-
lenge ci = h(ri). A node Nj that receives two commitments and partial
challenges {rj0, cj0} and {rj1, cj1} from its two children, Nj0 and Nj1,
stores these values, generates its own commitment and partial challenge
rj = rj0 ∗ rj1 and cj = h(rj0, rj1, cj0, cj1). It then forwards {rj , cj} to its
parent, as illustrated in Figure 1. Each Ni also passes up the identities of
nodes in Ni’s subtree which participated in the protocol. Alternatively, if
all group members participate in the protocol by default, the intermediary
nodes only pass to each other identities of nodes that did not participate.
If some node Nj on the tree does not send correct values to its parent,
the parent assigns rj = 1 and cj = 0.

Stage 2: When the source receives the two tuples {r0, c0} and {r1, c1}
from its two children N0 and N1, it computes r = r0 ∗ r1 and the final
challenge c = h(M,G, r0, r1, c0, c1). The source then sends back the set G
and values (c, r1, c1) to N0, and G and (c, r0, c0) to N1. N0 then sends G
and (c, r1, c1, r01, c01) to N00 and G and (c, r1, c1, r00, c00) to N01, and so
on. Figure 2 shows an example of how the challenge c is propagated from
the source to the members.

The point of this process is that each node Ni, including the inter-
mediary nodes, receives the challenge c together with the values lying on
the so-called “co-path” of node Ni in the Merkle hash tree, which in our
case are values (rj , cj), which are necessary for node Ni to (re)compute
the sequence of hash functions that lead from its own values (ri, ci) to
the challenge c. More formally, we will denote such set as MHPathi =
{(rj, cj)}j∈copathi

, where copathi = {i}∪{i[0,k]̄ik+1}k=0,...,|i|−1, where i[0,k] de-
notes the k-bit prefix of the bit string i, including the empty string i0, īk+1

9

(r0, c0)

Source S

N0

N01

N010 N011

(r1,c1)

r01 = r010*r011
c01=h(r010,r011,c010,c011)

(r00, c00) (r01, c01)

N00

N000
N001

(r010, c010) (r011, c011)

r011=gv011

c011=h(r011)
r010=gv010

c010=h(r010)

r0 = r00*r01
c0=h(r00,r01,c00,c01)

r = r0*r1
c=h(M,G,r0,r1,c0,c1)

Fig. 1. Computation of the Merkle Tree

denotes the complement of the k + 1-st bit of i, and “i[0,k]̄ik+1” denotes
their concatenation. For example, copath011 = {011, 010, 00, 1}. Using the
MHPathi information, each Ni can recompute cj = h(rj0, rj1, cj0, cj1) and
rj = rj0 ∗ rj1 consecutively, for each proper non-empty prefix j of i, and
finally verify that c = h(M,G, r0, r1, c0, c1). We denote this operation as
checking if c = hMHT (M,G,MHPathi). For example, for N011 the set of
co-path values is MHPath011 = {(r011, c011), (r010, c010), (r00, c00), (r1, c1)},
and the verification if c = hMHT(M,G,MHPath011) consists of recomput-
ing r01 = r010 ∗ r011 and c01 = h(r010, r011, c010, c011), r0 = r00 ∗ r01 and
c0 = h(r00, r01, c00, c01), and checking if c = h(M,G, r0, r1, c0, c1). In fact,
since the intermediary nodes Ni know the (ri0, ci0) and (ri1, ci1) values of
their children, the intermediary nodes know sets MHPathi0 and MHPathi1

in addition to MHPathi. They will use this knowledge in the next stage
in case a child sends a faulty response then.

Stage 3: If the challenge c verifies, each signer Ni sends back its response
zi = vi+c∗xi mod q. Importantly, Ni needs to then either erase the private
value vi used here or mark as used and never re-use it on a different c.
An intermediate node Nj that receives values zj0 and zj1 from its two
children verifies each of them by checking that gzj0 = rj0 ∗ (yj0)c and
gzj1 = rj1 ∗ (yj1)c. If the equations verify, Nj forwards to its parent the
aggregated value zj = zj0 + zj1 mod q, and so on until the aggregated

10

(c, r1, c1)

Source S

N0

N01

N010 N011

(c,r0,c0)

(c,r1,c1,r00,c00,r011,c011) (c,r1,c1,r00,c00,r010-,c010)

(c, r1, c1,r01, c01) (c, r1, c1,r00, c00)

Fig. 2. Transmission of the challenge value c

z = z0 + z1 mod q value reaches the source. Note that in the absence of
faults we have gz = ryc because gzi = riy

c
i for every i ∈ G, as illustrated

in Figure 3.

z0 = z00+ z01

Source S

N0

N01

N010 N011

z1

z00

z010 Z011

z010 = v010+ c*x010
z011 = v011+ c*x011

z01= z010+ z011

z = z0+ z1
gz ?= r*Y c

Fig. 3. Default propagation of responses zi

If one of the signatures is incorrect (let’s say zj1), Nj sets zj to zj0

instead of zj0 + zj1 mod q, and sends to its parent the value zj together
with two sets, Mj = {j1} and MHSetj = {MHPathj1}, containing the
information about the faulty node Nj1 in Nj’s subtree. Note that Nj ’s

11

parent knows some part of the MHPathj1 information, so in practice not
all this information needs to be sent, but for simplicity of description we
will denote it as MHPathj1. The parent, let’s say Nk such that j = k1,
performs two checks: (1) Nk checks if gzj = rj/rj1 ∗ (yj/yj1)c; and (2)
Nk checks if the information about the faulty node is correct by checking
that c = hMHT(M,G,MHPathj1).

In general, each intermediate node Nj passes up a response zj along
with a set Mj of indices of faulty nodes in Nj ’s subtree, i.e. nodes whose zi

values were not delivered (possibly in accumulated form) to Nj , as well as
a set MHSetj = {MHPathi}i∈Mj

of values containing the ri commitments
that correspond to the missing zi challenges together with the information
needed to verify that these supplied ri commitments are correct. Each
node Nk upon receiving such messages from its children first performs
the following tests, for its two branches b = 0 and b = 1:

1. Nk sets r′kb = rkb/(
∏

i∈Mkb
ri) and y′kb = ykb/(

∏

i∈Mkb
yi) and checks

if gzkb = r′kb ∗ (y′kb)
c

2. Nk checks if c = hMHT(M,G,MHPathi) for each i ∈ Mkb

If everything verifies, Nk passes up zk = zk0 + zk1 mod q, Mk = Mk0 ∪
Mk1, and MHSetk = MHSetk0 ∪MHSetk1. In case of a failure in branch b,
Nk passes up only the correct values, i.e. zk = zkb̄, and passes up the new
set of the missing values as Mk = Mkb̄ ∪ {kb} and MHSetk = MHSetkb̄ ∪
{MHPathkb}. If both branches fail, Nk passes up just Mk = {k}, and
implicitly MHSetk is set as MHSetk = {MHPathk} by Nk’s parent.

Figure 4 illustrates this step when one of the member’s signature is in-
correct. For lack of space on the picture, we denote there a simplified ver-
sion of the verification of aggregated signatures performed by each inter-
mediary node. In our example, N01 detects that the signature generated
by N011 is incorrect because gz011 6= r011 ∗ yc

011. N01 then sets z01 to z010

and forwards the message M01 = {011} and MHSet01 = {MHPath011} to
its parent N0. N0 then checks if c = hMHT(G,M,MHPath011) and verifies
the signature aggregated so far by checking whether gz01 = r01/r011 ∗
(y01/y011)c and gz00 = r00 ∗ (y00)c, which on figure 4 we summarily de-
note as verifying if gz0 = r0/r011 ∗ (y0/y011)c. The N0 node then forwards
z0 = z00 + z01 mod q, M0 = M01 and MHSet0 = MHSet01 to the root,
who does the final check and aggregation.

12

c ?= h(M,G,MHPath011)
z = z0+ z1, gz ?= r/r011* (y/y011)c

z01 ,{011}, {MHPath011}

Source S

N0

N01

N010 N011

z1

z00

z010 z011 incorrect!

z010 = v010+ c * x101 z011 =^&$%#&@

z0 ,{011}, {MHPath011}

c ?= h(M,G,MHPath011)
z0 = z00+ z01 , gz0 ?= r0/r011* (y0/y011)c

z01 = z000 , gz01 ?= r01/r011* (y01/y011)c

Fig. 4. Propagation of responses zi in case of a fault at N011

2.4 Multisignature Verification

The final aggregation and verification performed by the root can be seen
as a verification of the following multisignature:

σ = [z, (r0, r1, c0, c1),M, {MHPathi}i∈M]

which is defined as a correct multisignature issued on message M by
players in G \M as long as:

gz =

(

r
∏

i∈M ri

)

∗





∏

i∈G\M

yi





c

where

c = h(M,G, r0, r1, c0, c1) and r = r0 ∗ r1

and moreover:

1. c = hMHT(M,G,MHPathi) for each i ∈ M

13

2. Values n = |G|, the number t of individual participants (implicitly)
specified by the missing set M, and the modulus q defining the size
of the exponents, satisfy the constraint that St,n/q is negligible, e.g.
less than 2−80, where St,n =

(

n
0

)

+
(

n
1

)

+ . . . +
(

n
t

)

.

Importantly, the criterion in point 2 above limits the number of the miss-
ing individual participants represented by the M set, and not just the size
of that set, i.e. the number of indices in set M, because set M in effect
represents subtrees of missing participants.

3 Security Analysis

We briefly recall the definition of security for a multisignature scheme
given by Micali, et al. [9]. The adversary A can corrupt any set of group
members, and he conducts a chosen message and subgroup attack, i.e. he
specifies the message M and the subgroup of players G which participate
in the multisignature generation protocol, and then participates, on be-
half of the corrupted group members, in the multisignature generation
protocol involving the specified group and message.

Definition 1. ([9]) We say that a multisignature scheme is secure if
every efficient adversary A which stages a chosen message and subgroup
attack against the multisignature scheme has at best negligible chance of
outputting triple (M,G, σ) s.t. (1) σ is a valid multisignature on M issued
by the group G, and (2) there exists an uncorrupted player Ni∗ ∈ G
who has never been asked by A to participate in a multisignature protocol
involving group G on message M .

Theorem 1. The multisignature scheme described in Section 2 is secure
in the Random Oracle Model under the Discrete Logarithm assumption.

Proof. The proof goes by exhibiting a simulator S which, with sizable
probability, converts a successful attack algorithm A against our new
multisignature scheme into an algorithm that computes discrete loga-
rithms. The simulation of this scheme is very similar to the simulation of
the Schnorr signature scheme, although it is less efficient, and hence the
exact security of our scheme is not optimal. However, a similar degrada-
tion, although for a different reason, is suffered by the exact security of
the multisignature scheme of [9]. The simulator’s goal is to compute, on
input a random y in Z

∗
p a discrete logarithm x = DLg(y). Without loss

of generality we can assume that the adversary forges a multisignature
issued by players G = {1, . . . , n}, all of whose members are corrupted

14

except of player Nn, on some message M which Nn is never ask to sign.
(This assumption does not hold if the adversary is adaptive, but the same
proof holds there too, except that the simulator has to guess the identity
of an uncorrupted player against whom the forgery claim is made.) The
simulator assigns yn = y as the public key of Nn, while it picks the private
keys xi of all the other players at random.

Since S knows the private data of all uncorrupted players except for
Nn, the only thing that the simulator needs to simulate are Nn’s re-
sponses. This is done similarly as in the Pointcheval and Stern’s proof
[12] of security of Schnorr signatures, except that as in the security proof
[10] of the Schnorr-based multisignature scheme of Micali, et al., the sim-
ulator needs to rewind the adversary in this simulation. Namely, when Nn

is asked to participate in the multisignature generation on message M , S
picks c and zn at random in Zq, outputs value rn = gzn ∗yc

n, and then em-
beds c in the answer to one of the A’s queries (M,G, r0, r1, c0, c1) to the
h oracle made after S issued its commitment rn. (Note that thanks to the
Merkle hash tree the adversary has only a negligible chance of embedding
rn into any values queried to h before rn is issued.) If this is not the c that
comes down to Nn in the second stage of the protocol together with some
correct co-path values MHPathn such that c = hMHT(M,G,MHPathn),
then S cannot proceed and the simulation has to wind back to right after
Nn outputs his commitment rn. (Note that the Merkle Tree hashing does
not help us here in any obvious way because the adversary can still try
any number of values r1, . . . , rn−1 he likes, form them together with rn

into many different Merkle Tree hash constructions, and pick any of the
resulting c values. For the same reason, however, it does not change any-
thing if the adversary makes the choice of group G, s.t. Nn ∈ G during this
hash query, and that’s why player Nn can be told the identity of group G
in state 2 instead of stage 0.) If qh is the maximal number of hash queries
made by A, this trial and error procedure eventually succeeds in expected
number of at most qh repeats, which slows the Schnorr-like simulation of
this signature process by only a polynomial factor. (We crucially use here
the assumption that the players do not participate in two multisignature
protocol instances at the same time.) When S is finally lucky and the
right c comes down to Nn, the simulator outputs its prepared answer zn.

Thus the simulation proceeds slowly but surely, and A eventually cre-
ates a valid multisignature involving Nn with non-negligible probability
ǫ = Ω(1/poly(k)) for k a security parameter. We will show that an argu-
ment similar to the “forking lemma” argument of Pointcheval-Stern [12]
applies in this case, and that in polynomial time, with constant probabil-

15

ity, such attack algorithm A can be used to produce a polynomial number
of related multisignature forgeries. The original proof of Pointcheval-Stern
given for security of Schnorr signatures requires extraction of only two
related forgeries from A. However, extraction of polynomial number of
such forgeries is not much different. Pointcheval-Stern argument applies
to any signature scheme whose form is (σ1, c, σ2) where σ1 is a commit-
ment, c = h(M,σ1) is the challenge, σ2 is some deterministic function of
message M and (σ1, c), and σ1 is chosen from a sufficiently large space.
In the case of our multisignature, thanks to the properties of the Merkle
hash tree in the random oracle model, when c is computed as a top of the
Merkle hash tree of all the ri values, all these ri values are committed.
Therefore when (M,G, r0, r1, c0, c1) is hashed into c, there is a fixed set
of values {ri}i∈G which are committed by this hash. Therefore, in our
case σ1 = (G, {ri}i∈G), c can be thought of as a hash of (M,σ1), and
σ2 = (z,M, {MHPathi}i∈M), but we can think of σ2 as only (z,M), since
the MHPathi values are just the appropriate elements of the Merkle hash
tree supplied for each i ∈ M.

As in the Pointcheval-Stern argument, see esp. Lemma 8 in [12], it
remains true here that, with a constant probability, a polynomial number
of re-runs of A produces a pair (M̂ , σ̂1) (at some point this pair must
be queried, in our case via a Merkle tree of hashes, into the hash func-
tion h), s.t. a random execution of A on the same fixed set of random
coins but on a random oracle h which acts the same until the (M̂ , σ̂1)
“query”, but uses fresh randomness from then on including for its answer
c = h(M̂,G, r0, r1, c0, c1) for (G, r0, r1, c0, c1) specified by σ̂1, produces a
related forgery (M̂, σ̂1, c, σ2), involving the same pair (M̂, σ̂1), with prob-
ability ǫ′ = Θ(ǫ/qh) where qh is the number of A’s queries to h, and hence
polynomial in k.

Therefore, since, as we will see below, our simulator will need n + 2
such related forgeries to compute its discrete logarithm challenge, if S
independently re-runs (in parallel) n + 2 instances of the adversary A for
Θ(log n/ǫ′) times each, where each instance of A executes on the same
random string and interacts with hash function h which acts the same
until A produces the (G, r0, r1, c0, c1) query, but which then uses indepen-
dent randomness in this and subsequent answers, then, with a constant
probability, all of these n + 2 parallel experiments produce related forg-

eries (M̂ , σ̂1, c
(j), σ

(j)
2), for j = 1, ..., n + 2. Note that the probability that

since the probability that one instance of an interaction of A with such h
produces the above forgery is ǫ′, the probability that t such experiments
fail to produce a forgery is e−tǫ′ for small values of ǫ′. Therefore the prob-

16

ability that all Θ(n) such experiments succeed when executed in parallel t
times each is (1−e−tǫ′)n, which is constant for t = Θ(log n/ǫ′). Moreover,
since n is polynomial in k, and each execution runs an independent copy
of h, the probability that any of these related forgeries share the same
challenge c, i.e. that c(i) = c(j) for some i 6= j, is negligible.

Thus, with constant probability, in polynomial time S has n+2 related

forgeries (M̂, σ̂1, c
(j), σ

(j)
2), s.t. each σ

(j)
2 specifies value z(j) and sets M(j),

and {MHPathi}i∈M(j) s.t.:

1. The number of individual participants implicitly specified by each set
M(j) is smaller than t s.t. S(t,n)/q < 2−80. (For simplicity, we use M(j)

here to describe this set of participants; Note that then M(j) ⊆ G and
n 6∈ M(j).)

2. As we argued before, in the random oracle model, the Merkle hash
tree construction guarantees that all the values ri specified by sets
{MHPathi}i∈M(j) for every j must, except for negligible probability,
belong to the set of n values r1, ..., rn. A violation in this condition
would imply that the adversary A finds a collision in the Merkle hash
tree. (Note that each instances of A executes against a hash function
which answers all queries in the same way until the (M,G, r0, r1, c0, c1)
query.)

3. Each z(j) satisfies gz(j)
= r/rM(j) ∗ (ynȳ/yM(j))c(j) , where r = r0 ∗ r1,

rM(j) =
∏

i∈M(j) ri, ȳ =
∏

i∈G\{n} yi, and yM(j) =
∏

i∈M(j) yi

happen only with negligible probability in ROM.
Let’s denote v = DL(r) where r = r0 ∗ r1, vi = DL(ri) for i = 1, .., n,

xn = DL(yn), and x̄ =
∑

i∈G\{n} xi. Then the condition in item (3)
translates into a linear equation on n + 2 unknowns v, v1, . . . , vn, xn, for
each j = 1, ..., n + 2:

z(j) = v −
∑

i∈M(j)

vi + c(j)(xn + x̄ −
∑

i∈M(j)

xi) mod q (1)

It remains for us to argue that, except for negligible probability, the
n + 2 equations of type (1) created by this interaction of A and S are
linearly independent, and hence, except for negligible probability, we can
solve them for xn and thus answer the DLP challenge. This is because
for every choice of membership in the set M(j), there is only at most
one value c(j) which makes the j-th equation linearly dependent on the
previous j − 1 equations. Therefore, the number of c(j) values which can
possibly make the new equation dependent on the previous ones is at
most St,n, the number of possible t-element subsets M(j) of G. Since c(j)

17

is always chosen at random, if St,n ≪ q and n is polynomial in the security
parameter then the probability that any of the n + 2 equations is linearly
dependent on the previous ones is negligible.

The necessity of running A for O(qHn log n/ǫ) times creates a poly-
nomial factor blow-up in the running time of the simulation. However, it
is worse only by the O(n log n) factor then the blow-up encountered in
the security argument for the regular Schnorr signature scheme using the
Pointcheval-Stern argument.

3.1 Optimality of the Robustness Bound

Interestingly, the robustness bound on t given by the constraint that
St,n ≪ q, is essential, and our multisignature scheme can be efficiently
forged if t = n and St,n = 2n > 2q. First, note that the adversary can
foil the above proof if he can force any n + 2 equations (1) to be linearly
dependent, which is in fact easy if |q| ≤ n − 1, and the choices bi ∈ {0, 1},
for i = 1, .., n − 1, of whether or not to include index i in set M, form a
binary representation of the challenge c. Moreover, this strategy of foiling
the reduction extends to an efficient forgery of a multisignature that can
be performed by n − 1 corrupted players against the honest n-th player.
If the ri values for i = 1, .., n are chosen as ri = yγi

n gβi s.t. each βi is
random in Zq but γi = 2i−1 for i = 1, .., n− 1 and γn = 0, then by setting
bits bi, for i = 1, .., n1 so that [bn−1..b1] forms a binary representation
of c < 2n−1 (from MSB to LSB), and bit bn = 1, the adversary can
hash these ri values in a Merkle hash tree and respond to any resulting
challenge c ∈ Zq with the set M of all players i s.t. i-th bit of c (= bi) is
0, and z is computed as

z =
n−1
∑

i=1

xibi +
n

∑

i=1

βibi mod q

The resulting tuple (M, z) always satisfies equation (1), and the forgery
always succeeds as long as the set t of the missing players can be as large
as n and n ≥ |q| + 1.

3.2 Accommodating Larger Moduli q

The constraint St,n ≪ q can be satisfied for larger values of n and t
only by growing the size of q, |q| ≈ (t ∗ ln n). These values grow quite
large for larger n, t, for example for n = 106 and t = 103 we need |q| >
11, 000. If p is a prime then p must be larger than q which means that all

18

multiplications and exponentiations are done modulo a 11K-bit modulus,
which would make the scheme impractical. However, in a trusted CA
setting we adopt in this paper, a CA can pick a 1024-bit RSA modulus
n, an element g which is a generator of a large-order subgroup (e.g. the
squares modulo n) of Z

∗
n, and a parameter q = 2k for any integer k >

160. Our scheme would act in the same way in this setting, except that
all multiplications and exponentiations would be done modulo n, secret
keys xi could be chosen in {0, 1}k′

for k′ ≥ 512, hash function h which
produces challenge c would be a k-bit string, the vi’s would be chosen in
{0, 1}k′′

where k′′ = k + k′ + 80, and all operations on these exponents,
i.e. computing responses zi = vi + c ∗ xi and adding these zi’s during
the aggregation, would be done over the integers. Since no one, including
the combined powers of the adversary and the simulator, can compute
the modulus φ(n) that acts on these exponents, all equations (1) would
remain invertible as long as the constraint St,n ≪ 2k holds. Also, the k′′ =
k+k′+80 size of the exponents vi allows for statistically indistinguishable
simulation of the signatures on behalf of the uncorrupted player Nn. Since
the responses zi will be k′′-bit long, their accumulation will lead to z’s of
at most k′′ + log n size. Therefore the bandwidth in such scheme will still
be linear in k, and the signing, verifying, and aggregating costs will involve
(k + 762 + log n)-bit exponentiations modulo a 1024-bit long modulus.

4 A Multi-MAC Variant

If acknowledgment non-repudiation is not required, the source can share a
unique secret key with each intended receiver. In this case, the aggregation
scheme can be more appropriately called “multi-MAC” rather than “mul-
tisignature”. Moreover, while the basic scheme described above requires
four stages, the multi-MAC variant can run in an “optimistic” fashion,
which requires only two stages if no intermediate node acts maliciously.

In this variant, each member has a unique key zi shared with the
source. We assume that each such key is agreed upon or distributed when-
ever the member joins the group. Knowing all such keys, the source can
add them all up and obtain the aggregated key for any group G of players,
xG =

∑

i∈G xi. When a member Ni receives a message M from the source,
it replies by sending the acknowledgment acki = mxi , where m = h(M),
to its parent Nk, which, in turn, multiplies the acknowledgments of its
children and sends the resulting aggregated message acki = acki0 ∗ acki1

to its parent. The parent also passes up the identities of players that
participated in the acknowledgment in his subtree. If most members usu-

19

ally do participate, the parent can instead attach a vector identifying all
subtree members who do not participate. When the source computes the
final aggregated acknowledgment ack = ack0 ∗ack1 and combines the sets
of participating members into one set G, it can verify if all these members
indeed acknowledge receipt of M by checking whether ack = h(M)xG .

This protocol is robust only against non-malicious communication
faults. Also, to save memory, the source can pick all the members’ keys
as xk = h(s, k) where s is the source’s short secret. In this way, the
source would not have to store all secrets keys as it can easily compute
them on-the-fly.

The optimization allows the source to verify the aggregated acknowl-
edgment in two stages, however, it is not robust against malicious faults,
since, if the aggregated acknowledgment is invalid, the source is unable
to identify the malicious member(s). We therefore suggest to combine the
two schemes by piggybacking the commitment of the basic scheme with
the authenticators of the second scheme. As a result, the source can ver-
ify the aggregated acknowledgment in two stages. If the verification fails,
Stage 2 and Stage 3 of the basic scheme can be executed to trace the
malicious nodes and robustly compute the desired multisignature.

5 Communication Costs

The exact communication overhead introduced by our scheme depends
on the underlying communication medium. If players communicate over
a ring as in [10], the communication cost grows from O(n) to O(tn log n),
where t is the number of faults. If players communicate via reliable broad-
cast, as in [9], then the communication cost does not change. Whereas, if
they communicate via a multicast tree, as in the case of multicast acknowl-
edgment aggregation, the total communication cost is O(n + t(log n)2).

In the context of multicast acknowledgment aggregation, the compar-
ison of our scheme to that of Nicolosi and Mazieres [11] is as follows:
Assuming that the source shares symmetric keys with the receivers, if no
malicious node faults occur then our scheme can run in an “optimistic”
mode which provides an all-or-nothing verification of aggregated acknowl-
edgments and matches the communication cost of the scheme of Nicolosi
and Mazieres, i.e. it takes two communication stages and O(n) total band-
width, where n is the size of the multicast group. Moreover, our scheme
has a smaller computational overhead since we avoid expensive pairing
operations used in [11].

20

In case of malicious node faults, our robustness mechanisms kicks in.
This increases the cost to four stages and total bandwidth grows to O(n+
t(log n)2), t being the number of faults. In comparison, [11] takes only
two stages and total bandwidth remains O(n). Our scheme is therefore
applicable when the number of malicious faults and link failures is low,
which we believe to be the case for many applications.

However, we suggest a trivial optimization that, while still requiring
O(n + t(logn)2) bandwidth, allows our scheme to run in two stages thus
matching the round complexity of [11]. This optimization is based on the
assumption that, over time, the source sends multiple messages and the
delivery tree is relatively stable. The main idea is to combine Stage 3 of
one protocol run with Stage 1 of the next protocol run. This is possible
since a commitment generated by a receiver node does not need to depend
on the message sent by the source. Therefore, we can let each receiver
generate a commitment (for the next message) and send it along the tree
to the source, anticipating the subsequent protocol run. As a result, Stage
2 of the protocol can be combined with, or piggy-backed over, Stage 0
(the actual message delivery stage).

In more detail, when the source sends the very first message m1, the
protocol executes in full, as described in Section 2, except that, in Stage
3, each receiver i prepares for the next protocol execution (for a future
m2) by appending to the message (containing z1

i) a tuple: [r2
i , c2

i]. (Note
that the superscript represents the sequence number of the protocol run,
i.e., its index.) Then, in the next protocol run, Stage 0 and Stage 2 are
combined and Stage 1 is skipped altogether. In other words, the proto-
col starts with the source propagating the message m2 together with the
aggregated challenges. Similarly, in Stage 3, when each member replies
with its signature z2

i , it appends a tuple: [r3
i , c3

i] for the subsequent pro-
tocol run. Although this optimization does not lower overall bandwidth
overhead of our scheme, it significantly reduces the number of rounds
(and thus the latency) since the optimized protocol only has two stages:
message delivery and acknowledgment gathering.

This piggybacking does not violate the requirement that no player en-
gages in two instances of this protocol at once: That requirement is used
to enable efficient rewinding in the simulation, which would be prob-
lematic if the protocol asked player Ni to start the second instance of
the protocol by issuing commitment r2

i before that player “consumed”
the challenge c1 and issued its response z1

i in the previous instance of the
protocol. The optimized protocol we propose here remains secure because
it maintains this requirement: Player Ni issues his commitment r2

i after

21

issuing response z1
i (and only if he does issue this response), and sends

the two together.

6 Conclusions

In this paper we focused on the problem of secure and efficient aggrega-
tion of acknowledgments in reliable multicast settings. We constructed a
modification of a prior multisignature scheme that is scalable and able to
tolerate failure of a small number of participants, and examined its appli-
cation to acknowledgment aggregation. To reduce the round complexity
of our proposal, we suggested an optimization that allows us to match
the round complexity of prior state-of-the-art represented by the scheme
of [1, 11], while ensuring security of the resulting solution under weaker
and more standard cryptographic assumption of the hardness of discrete
logarithm.

References

1. A. Boldyreva. Efficient threshold signatures, multisignatures and blind signatures
based on the gap-diffie-hellman-group signature scheme. In Public Key Cryptogra-
phy 2003, 2003.

2. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiable en-
crypted signatures from bilinear maps. In Advances in Cryptology - EUROCRYPT
2003, 2003.

3. Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from the Weil
Pairing. In Colin Boyd, editor, Advances in Cryptology - ASIACRYPT 2001, pages
514–532, 2001.

4. Claude Castelluccia, Stanis law Jarecki, Jihye Kim, and Gene Tsudik. A robust mul-
tisignature scheme with applications to multicast acknowledgement aggregation.
In Security of Communication Networks: 4th International Conference, SCN’04,
pages 193 – 208, 2004.

5. Martin Gagne. Applications of bilinear maps in cryptography. Master’s thesis,
University of Waterloo, 2002.

6. L.C. Guillou and J.-J. Quisquater. A practical zero-knolwedge protocol fitted to
security microprocessor minimizing both transmission and memory. In Advances
in Cryptology - EUROCRYPT 1988, 1988.

7. A. Joux. The weil and tate pairings as building blocks for public key cryptosystems.
In Proceedings of the 5th International Symposium on Algorithmic Number Theory,
2002.

8. Ralph C. Merkle. A certified digital signature. In Advances in Cryptology -
CRYPTO 1989, 1989.

9. S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures. In ACM
Conference on Computer and Communications Security, October 2001.

10. S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures. avail-
able from www.cs.bu.edu/∼reyzin/research.html, 2001.

22

11. A. Nicolosi and D. Mazieres. Secure acknowledgement of multicast messages in
open peer-to-peer networks. In 3rd International Workshop on Peer-to-Peer Sys-
tems (IPTPS ’04), San Diego, CA, February 2004.

12. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361 – 396, 2000.

13. C. Schnorr. Efficient identification and signatures for smart cards. In Advances in
Cryptology - CRYPT0 1989, Santa Barbara, CA, August 1989.

A Robust Multisignature based on GQ Signatures

The robustness mechanism described in Section 2 can be applied to other
multisignature schemes which, similarly to the multisignature scheme of
Micali et al. [9], are based on signature schemes built from three-round
zero-knowledge proofs where the first round is a one-time commitment.
For example, our technique can be used with the Guillou-Quisquater (GQ)
signature scheme [6] which is secure under the RSA assumption in the
random oracle model [12]. As shown by Pointcheval and Stern [12], the
security argument for the GQ signature is identical to the security argu-
ment for the Schnorr signature, because both signature schemes are built
using a three-round zero-knowledge proof. The only difference is that they
use different one-way functions: Schnorr signatures use exponentiation of
a known base to a secret exponent modulo a prime, while GQ signa-
tures use exponentiation of a secret element to a known 80-bit exponent
modulo an RSA modulus. Since the security proof of our Schnorr-based
multisignature scheme presented in section 3 adopts the Pointcheval-Stern
argument, and the same argument holds for the GQ signature scheme,
an extension of this argument to the case of the multisignature scheme
based on GQ signatures, is virtually the same, except that the argument
relies on the hardness of taking roots modulo an RSA modulus instead
of on the hardness of discrete logarithm.

In the GQ scheme, each signer A gets a public key (n, e, JA) and
a private key a, such that JA ∗ ae = 1 mod n, where JA is a unique
identifier of the signer, n is the product of two large primes p and q,
and e ∈ {1, .., n − 1} such that gcd(e, (p − 1) ∗ (q − 1)) = 1. A signs
a message m by producing a one-time commitment r = ke mod n for
a random k, computing a challenge c = h(m||r) and issuing a response
z = k ∗ac mod n. The signature is then the pair (c, z) s.t. c = h(m||u) for
u = ze ∗ Jc

A mod n.
If we assume that a common third trusted party (TTP) computes

n and provides to each member i a unique public key (n, e, Ji) and a
corresponding private key ai, several GQ signatures (ci, zi), produced by
members of G, can be aggregated into a single multisignature as follows:

23

– First, each member broadcasts its own ri = ke
i mod n to the group.

– Next, each player computes r =
∏

i∈G ri, c = h(m||r), zi = ki ∗ac
i and

broadcasts zi.
– The pair (c, z), where z =

∏

i∈G zi, is a GQ multisignature for group
G, with (n, e,

∏

i∈G Ji) as a combined verification (public) key.

As with [9], this multisignature is not robust against node or link failures
during the computation of the multisignature. Fortunately, this can be
addressed with the same robustness technique described in Section 2, i.e.
by computing the challenge c via a Merkle hash tree aggregation of the
values ci, instead of simply multiplying them.

One advantage of the Schnorr-based scheme is that it only requires a
single on-line modular multiplication by the members (the signers), pro-
vided exponentiation may be done as a precomputation. It is therefore
better suited for CPU-constrained receivers. In contrast, the GQ-based
scheme requires one on-line modular multiplication and one on-line mod-
ular exponentiation (with an 80-bit exponent). If precomputation is not
possible, the Schnorr-based scheme requires one additional 160-bit mod-
ular exponentiation, whereas, the GQ-based scheme requires one 80-bit
modular exponentiation. The GQ-based scheme thus becomes more effi-
cient.

Multisignature verification in the Schnorr-based scheme is more ex-
pensive than in its GQ counterpart. The former requires one multiplica-
tion, one exponentiation with an 80-bit value and one – with a 160-bit
value. GQ-based scheme only requires one multiplication and one 80-bit
exponentiation.

24

