
Replication Aspects in Distributed
Systems

Thesis submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Shantanu Sharma

Submitted to the Senate of Ben-Gurion University of the Negev

February 17, 2016

Beer-Sheva

Replication Aspects in Distributed
Systems

Thesis submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Shantanu Sharma

Submitted to the Senate of Ben-Gurion University of the Negev

Approved by the advisor:

Approved by the Dean of the Kreitman School of Advanced Graduate Studies:

February 17, 2016

Beer-Sheva

This work was carried out under the supervision of
Professor Shlomi Dolev
In the Department of Computer Science
Faculty of Natural Science

Research-Student’s Affidavit when Submitting the
Doctoral Thesis for Judgment

I, Shantanu Sharma, whose signature appears below, hereby declare that:
X I have written this Thesis by myself, except for the help and guidance offered by my
Thesis Advisors.
X The scientific materials included in this Thesis are products of my own research, culled
from the period during which I was a research student.

Date: February 17, 2016 Student’s name: Shantanu Sharma Signature:
Shantanu
Sharma

Digitally signed by Shantanu
Sharma
DN: cn=Shantanu Sharma,
o=UCI, ou=CS, email=shantnu.
sharma@uci.edu, c=US
Date: 2016.09.04 00:47:34
-07'00'

Acknowledgements

First, I would like to thank almighty “God” who gave me the inspiration to pursue research
as my beautiful career and to have rendezvous with two distinguished professors, Prof.
Shlomi Dolev and Prof. Jeffrey D. Ullman, during the whole journey of my graduate study.

Without Prof. Dolev’s guidance, this work would be impossible. I am heartily thankful
to Prof. Dolev for giving me a golden opportunity to work with him and his large research
group. He introduced me to the worlds of “Self-Stabilization” and “MapReduce.” He
encouraged me to work on MapReduce, which was a black-box for me in the beginning.
Undoubtedly, I am the luckiest student to have him as my Doctoral degree’s advisor. It
is extremely rare to have a mentor like him who is very cool and brilliant. It is not an
exaggeration that I learnt a lot from him in my personal and professional life.

I would also like to thank Prof. Jeffrey D. Ullman for assisting me in understanding the
models of MapReduce. He worked very closely with me on all research papers related to
MapReduce. It was great to have continuous guidance from Prof. Ullman throughout the
duration of my PhD. He encouraged me to think differently and allowed frequent discussion
on almost everything. He always provided me thoughtful insights and spent a lot of time
improving my writing skills. Prof. Ullman is extremely energetic, and I treasure the time
when we discussed Meta-MapReduce (Chapter 6) over an entire day, while we both were
in the United States (Prof. Ullman had arrived from India in the same morning). Beyond
the thesis work, he helped me in non-technical aspects as well; I learnt how to become a
better human being and a better student/researcher of computer science. I hope that I will
be able to sustain his acquaintances throughout my professional and personal life.

I am thankful to Prof. Foto N. Afrati (National Technical University of Athens), who
also discussed key-points in our research papers related to MapReduce. Prof. Afrati gave
many remarks to better understand and design efficient algorithms for MapReduce and
their proofs. I am also thankful to Prof. Jonathan Ullman (Northeastern University) for his
significant contribution in our data cube related paper (Chapter 8). I had the opportunity
to work with Prof. Ephraim Korach (BGU), who helped me in developing mathematical
proofs. I was delighted to work with Prof. Elad M. Schiller (Chalmers University of
Technology), who explained the core of distributed computing systems, in addition to

papers on self-stabilizing communication. I am also thankful to Prof. Ehud Gudes (BGU)
for assisting me over a long period of time and involving me in EMC’s World-Wide-Hadoop
project. Prof. Gudes was also active during two survey papers under the same project.

I am also pleased to work with other students of Prof. Dolev: Ariel Hanemann who
worked on self-stabilizing communication, Philip Derbeko who helped me in a review
paper related to privacy aspects of MapReduce, Yin Li who assisted me in figuring out
security issues in MapReduce, and Nisha Panwar who helped me to explore a new area, the
fifth generation of mobile communication.

Beyond the scope of this thesis, I am very thankful to Ximing Li and, again, Nisha
Panwar. Nisha helped me in many aspects that are completely beyond this thesis. I would
like to thank the Head of Department of Computer Science and all the secretaries of the
department who helped me at various stages.

This part is incomplete without acknowledging my master’s advisor, Prof. Awadhesh
Kumar Singh (National Institute of Technology Kurukshetra). Prof. Singh is the person
who showed the right path for my career in my master degree. His endless contributions
made me aware of the technical world.

I am also thankful to Prof. Sukumar Ghosh (University of Iowa) who inspired me
to pursue the higher study abroad. I was also honored by Prof. Maria Potop-Butucaru
(University Pierre et Marie Curie), Prof. Ajoy K. Datta (University of Nevada, Las Vegas),
Prof. Keren Censor-Hillel (Technion), Prof. Neeraj Mittal (The University of Texas at
Dallas), Dr. Marco Pistoia (IBM TJ Watson Research Center), and Prof. Moshe Vardi
(Rice University) for providing opportunities to present my research work.

Most importantly, I must thank my family for their support, patience, and understanding
my need to focus my time and effort in my thesis. Without my family, I would not be here
on this Earth to complete this thesis, let alone any other accomplishments in the past or
future.

Table of Contents

Abstract i

1 Introduction 1
1.1 End-to-End Communication Algorithms 1
1.2 MapReduce . 2
1.3 Overview of the Tasks Investigated . 4
1.4 Our Contributions and Thesis Outline . 6

I Replication Aspects in a Communication Algorithm 10

2 Background of a Self-Stabilizing End-to-End Communication Algorithm 11
2.1 Unreliable Communication Channels . 12
2.2 The Interleaving Model . 13
2.3 The Task . 14

3 Self-Stabilizing End-to-End Algorithm 15
3.1 A First Attempt Solution . 15
3.2 Self-Stabilizing End-to-End Algorithm (S 2E 2C) 18

II Replication Aspects in MapReduce 21

4 Intractability of Mapping Schemas 22
4.1 Preliminarily and Motivating Examples 22
4.2 Mapping Schema and Tradeoffs . 24
4.3 Intractability of Finding a Mapping Schema 26

5 Approximation Algorithms for the Mapping Schema Problems 28
5.1 Preliminary Results . 28
5.2 Optimal Algorithms for Equal-Sized Inputs 31

5.3 Generalizing the Technique for the Reducer Capacity q > 3 and Inputs of
Size ≤ q/k, k > 3 . 37

5.4 Generalizing the AU method . 40
5.5 A Hybrid Algorithm for the A2A Mapping Schema Problem 45
5.6 Approximation Algorithms for the A2A Mapping Schema Problem with an

Input > q/2 . 46
5.7 An Approximation Algorithm for the X2Y Mapping Schema Problem 49

6 Meta-MapReduce 50
6.1 The System Setting . 51
6.2 Meta-MapReduce: Description . 52
6.3 Extensions of Meta-MapReduce . 57

7 Interval Join 62
7.1 Preliminaries . 62
7.2 Unit-Length and Equally Spaced Intervals 65
7.3 Variable-Length and Equally Spaced Intervals 67

8 Computing Marginals of a Data Cube 72
8.1 Preliminaries . 72
8.2 Computing Many Marginals at One Reducer 74
8.3 The General Case . 80

III Replication Aspects in Secure and Privacy-Preserving
MapReduce 82

9 Security and Privacy Aspects in MapReduce 83
9.1 Security and Privacy Challenges in MapReduce 84
9.2 Privacy Requirements in MapReduce . 85
9.3 Adversarial Models for MapReduce Privacy 85

10 Privacy-Preserving Computations using MapReduce 87
10.1 Motivating Examples . 87
10.2 System Settings . 88
10.3 Creation and Distribution of Secret-Shares of a Relation 90
10.4 Count Query . 93
10.5 Search and Fetch Queries . 95
10.6 Equijoin . 99

10.7 Range Query . 103

11 Conclusion and Future Work 105

Bibliography 108

A Pseudocodes of the Self-Stabilizing End-to-End Communication Algorithm 118
A.1 Detailed Description of Algorithms 5 and 6 119
A.2 Correctness of Algorithms 5 and 6 . 120

B Proof of NP-Hardness of Mapping Schema Problems (Chapter 4) 128

C Pseudocodes of Approximation Algorithms for Mapping Schema Problems
and their Proofs (Chapter 5) 132
C.1 Preliminary Proofs of Theorems on Lower and Upper Bounds 132
C.2 Lower Bounds for Equal-Sized Inputs . 133
C.3 Algorithm for an Odd Value of the Reducer Capacity (Algorithm 7A) . . . 134
C.4 Algorithm for an Even Value of the Reducer Capacity (Algorithm 7B) . . . 135
C.5 Proof of Lemmas and Theorems related to Algorithms 7A and 7B 136
C.6 The First Extension to the AU method (Algorithm 8) 139
C.7 The Second Extension to the AU method (Algorithm 9) 141
C.8 A Theorem related to A Big Input . 142
C.9 Theorems related to the X2Y Mapping Schema Problem 142

D Proofs of Theorems related to Meta-MapReduce (Chapter 6) 144

E Proof of Theorems related to Interval Join (Chapter 7) 146
E.1 Proof of Theorems and Algorithm related to Unit-Length and Equally

Spaced Intervals . 146
E.2 Proof of Theorems and Algorithm related to Variable-Length and Equally

Spaced Intervals . 150

F Proof of Theorems related to Computing Marginals of a Data Cube
(Chapter 8) 154
F.1 Related Work on Data Cube . 154
F.2 Proof of Theorems . 154

G Pseudocodes and Theorems related to Privacy-Preserving MapReduce-based
Computations (Chapter 10) 159
G.1 Algorithm for Creating Secret-Shares . 159

G.2 Count Algorithm . 159
G.3 Single Tuple Fetch Algorithm . 161
G.4 Multi-tuple Fetch Algorithm . 162
G.5 Proof of Theorems related to Privacy-Preserving Equijoin 165
G.6 Pseudocodes related to Range Query . 167

Abstract

While hardware and software failures are common in distributed computing systems,
replication is a way to achieve failure resiliency (availability, consistency, isolation, and
reliability) by creating and maintaining several copies of hardware, data, and computing
protocols. In this thesis, we propose several approaches that deal with replication of data
(or messages) to design a self-stabilizing end-to-end communication algorithm and models
for MapReduce computations.

The first part presents a self-stabilizing end-to-end communication algorithm that
delivers messages in FIFO order over a non-FIFO, duplicating, and bounded capacity
channel. The duplication of messages is an essential replication aspect used to overcome
loss of messages, but at the same time introduces a challenging end-to-end control that is
designed in this work. The new algorithm delivers messages, in the same order as they are
sent by the sender, to the designated receiver only once without omission and duplication.

The second part deals with design of models and algorithms for MapReduce. In
MapReduce, an input is replicated to several reducers, and hence, the replication of an
input dominates the communication cost, which is a performance measure of a MapReduce
algorithm. A new MapReduce model is introduced here, where, for the first time, the
realistic settings in which inputs have non-identical memory sizes is taken into account.
The new model opens the door for many useful algorithmic challenges part of which are
solved in the sequel. In particular, we present two classes of matching problems, namely
the all-to-all and the X-to-Y matching problems, and show that these matching problems
are NP-hard in terms of optimization of the communication cost. We also provide several
near-optimal approximation algorithms for both the problems. Next, we provide a new
algorithmic approach for MapReduce algorithms that decreases the communication cost
significantly, while regarding the locality of data and mappers-reducers. The suggested
technique avoids the movement of data that does not participate in the final output.

In the second part, we also evaluate impacts on the communication cost for solving
the problem of interval join of overlapping intervals and provide 2-way interval join
algorithms regarding the reducer memory space. We also investigate the lower bounds
on the communication cost for the interval join problem for different types of intervals.

i

Finally, we consider the problem of computing many marginals of a data cube at one
reducer. We find the lower bound on the communication cost for the problem and provide
several almost optimal algorithms for computing many marginals.

The third part focuses on the security and privacy aspects in MapReduce. We figure
out security and privacy challenges and requirements in the scope of MapReduce, while
considering a variety of adversarial capabilities. Then, we provide a privacy-preserving
technique for MapReduce computations based on replication of information of the form
of Shamir’s secret-sharing. We show that though the creation of secret-shares of each
value results in increased replication, it makes impossible for an honest-but-curious (or a
malicious) cloud to learn the database and computations. We provide MapReduce-based
privacy-preserving algorithms for count, search, fetch, equijoin, and range-selection.

ii

Chapter 1

Introduction

A distributed system consists of independent computing nodes that aim to solve problems
over distributed information. The distributed system creates and maintains several copies
of identical data at different computing nodes, known as replicas, either as a consequence
of the computing protocol or as a part of the system design. The mechanism of creating
and maintaining replicas is known as replication. Replication (Chapter 14 of [36] and
Chapter 16 of [59]) is a way to achieve availability, consistency, isolation, and reliability
of data and computing protocols. In other words, the fault tolerant nature of data and
computing protocols can be accomplished using replication of the data and the computing
protocols. However, the replication mechanisms require a careful coordination, execution,
and agreement among replicated data and computing protocols.

In this thesis, we focus on replication of data in both the aspects, i.e., the replication
of data as a consequence of the underlining redundancy choice of the system infrastructure
(the replication of packets that leads to a non-FIFO reception), and the replication of data as
a part of the system design. Specifically, we focus on replication of packets in end-to-end
communication channels to provide a self-stabilizing end-to-end communication algorithm
and replication of data in MapReduce to provide the desired output and privacy-preserving
computations. In this chapter, we provide an overview of end-to-end communication
algorithms (in Section 1.1), an overview of MapReduce framework (in Section 1.2), the
problem statements of the thesis (in Section 1.3), and our contribution (in Section 1.4).

1.1 End-to-End Communication Algorithms

End-to-end communication and data-link algorithms are fundamental for any network
protocol [103], where a sender transmits messages over unreliable communication links
to a receiver in an exactly one fashion. In addition, errors are introduced during the

1

transmission of packets. Noise in transmission media is also a significant source of
errors that result in omission, duplication, and reordering of a message during message
transmission. Therefore, most of the end-to-end communication and data-link algorithms
assume an initial synchronization between senders and receivers. In addition, error
detecting and correcting techniques are employed as an integral part of the transmission in
communication networks. Still, when there is a large volume of communication sessions,
the probability that an error will not be detected increases, which leads to a possible
malfunction of the communication algorithm. In fact, it may lead the algorithm to an
arbitrary state from which the algorithm may never recover unless it is self-stabilizing [42].

Afek and Brown [4] present a self-stabilizing alternating bit protocol (ABP) for
FIFO packet channels without the need for initial synchronization. Self-stabilizing token
passing was used as the basis for self-stabilizing ABP over unbounded capacity and FIFO
preserving channels in [62, 48]. Dolev and Welch [54] consider the bare network to
be dynamic networks with FIFO non-duplicating communication links, and use source
routing over the paths to cope with crashes. In [23], an algorithm for self-stabilizing unit
capacity data link over a FIFO physical link is assumed. Cournier et al. [37] consider a
snap-stabilizing algorithm [29] for message forwarding over message switched network.
They ensure one time delivery of the emitted message to the destination within a finite time
using a destination based buffer graph and assuming underline FIFO packet delivery.

In the context of dynamic networks and mobile ad hoc networks, Dolev et al. [53,
51, 52] presented self-stabilizing algorithms for token circulation, group multicast, group
membership, resource allocation and estimation of network size. Dolev et al. [43] presented
a self-stabilizing data link algorithm for reliable FIFO message delivery over bounded
non-FIFO and non-duplicating channels. The algorithm [43] delivers a message to a
receiver exactly once and is also applicable to arbitrary state of dynamic networks of
bounded capacity that omit and reorder packets. This algorithm deals only with duplication
of messages by the sender; however, the algorithm is not able to handle duplication of
packets by the (possibly overlay) channel. To the best of our knowledge, there is no
algorithm that handles duplication of packets by the channel.

1.2 MapReduce

Data mining operations on large-scale data require data division on several machines, and
then, merge the output results. Such a parallel execution provides outputs in a timely
manner. However, there are several open challenges to be considered in such a parallel
computing model, including distribution of data, failure of machines, ordering of the
outputs, scalability of the system, load balancing, and synchronization among machines.

2

In order to resolve these issues, a programming model, MapReduce [38], was
introduced by Google in 2004. MapReduce executes parallel processing using a cluster
of computing nodes over large-scale data, without any costly and dedicated computing
node like a supercomputer. Since then MapReduce is a standard benchmark for parallel
processing over large-scale data, while other companies, including Yahoo, Amazon, and
Facebook, are also using MapReduce. Details about MapReduce can be found in Chapter
2 of [76].

Applications and models of MapReduce. Matrix multiplication [14], similarity join [106,
111, 13, 24], detection of near-duplicates [87], interval join [31], spatial join [66, 65, 104],
graph processing [11, 85], pattern matching [79], data cube processing [91, 100, 107],
skyline queries [12], k-nearest-neighbors finding [115, 80], star-join [117], theta-join [92,
116], and image-audio-video-graph processing [113] are a few applications of MapReduce
in the real world. Some models for an efficient MapReduce computation are presented by
Karloff et al. [72], Goodrich [61], Lattanzi et al. [73], Pietracaprina et al. [98], Goel and
Munagala [60], Ullman [105], Afrati et al. [15, 18], and Fish et al. [57].

1.2.1 Overview of MapReduce

MapReduce, see Figure 1.1, works in two phases: the Map phase and the Reduce phase,
where two user-defined functions, namely, the map function and the reduce function, are
executed over large-scale data. In MapReduce, the data is represented of the form of 〈key,

value〉 pairs.

Original input

data

The map phase

Step 2: Assign map tasks

Split1

Split2

Splitm

split1

Mapper for 1st split

split2

Mapper for 2nd split

Mapper for mth split

splitm

Reducer

for k1

Reducer

for k2

Reducer

for kr

k2, split2

Output 1

Output 2

Output r

Master process
Step 1: Fork a master process and

some number of worker processes

Step 3:

Read input splits and Map tasks’

execution

Step 4:

Read intermediate data and

Reduce tasks’ execution

The reduce phase

Step 2: Assign reduce tasks

Input data

Notation: ki: key

Figure 1.1: An execution of a MapReduce algorithm.

The Map Phase. A MapReduce computation starts from the Map phase where a
user-defined map function works on a single input and produces intermediate outputs of

3

the form 〈key , value〉 pairs. A single input, for example, can be a tuple of a relation. An
application of the map function to a single input is called a mapper. Several mappers
execute in parallel and provide intermediate outputs of the form of 〈key, value〉 pairs.
The Reduce Phase. The Reduce phase provides the final output of MapReduce
computations. The reduce phase executes a user-defined reduce function on its inputs,
i.e., outputs of the Map phase. An application of the reduce function to a single key and its
associated list of values is called a reducer. Since there are several keys in the indeterminate
output, there are also multiple reducers that work in parallel.

Word count example. Word count is a traditional example to illustrate a MapReduce
computation, where the task is to count the number of occurrences of each word in
a collection of documents. In this example, the original input data is a collection of
documents, and a single input is a single document. Each mapper takes a document
and implements a user-defined map function that results in a set of 〈key, value〉 pairs
({〈w1, 1〉, 〈w2, 1〉, . . . , 〈wn, 1〉}), where each key, wi, represents a word of the document,
and each value is 1. The reduce task is executed subsequently, where a user-defined reduce
function aggregates all the occurrences of a particular word wi and outputs a 〈wi, n〉 pair,
where wi is a word that appears in at least one of the given documents, and n is the total
number of occurrences of wi in all the given documents. Recall that there is a reducer for
each word, wi, and this reducer adds all the occurrences of the word, wi.

Apache Hadoop [1] is a well-known and widely used open-source software
implementation of MapReduce for distributed data storage and processing over large-scale
data. More details about Hadoop and its Hadoop distributed file system (HDFS) may be
found in Chapter 2 of [78]. YARN [2] is the latest version of Hadoop-0.23, details about
YARN may be found in [90]. The current MapReduce and Hadoop systems are designed
to process data at a single location, i.e., locally distributed processing. Thus, they are
not able to process data at geo(graphically)-distributed multiple-clusters. There are some
frameworks based on MapReduce for processing geo-distributed datasets without moving
them to a single location, and these frameworks are reviewed in our paper [44].

1.3 Overview of the Tasks Investigated

In this thesis, we deal with six problems concerned with data replication for designing
communication protocols, computation protocols, and system frameworks, as follows:
Problem 1: Self-stabilizing end-to-end communication over duplicating channels.
The first problem deals with data replication for designing a self-stabilizing end-to-end
communication protocol. The first problem is how to design an algorithm for a bounded

4

capacity, duplicating, and non-FIFO network, while (i) ensuring exactly one copy of packet
delivery in the same order as it was sent, (ii) handling corruption, omission, and duplication
of messages by the channel, (iii) ensuring applicability to dynamic networks, and (iv) not
worrying about starting configurations. The solution to this problem is given in Chapters 2
and 3.
Problem 2: Different-sized inputs in MapReduce. Now, all the following problems deal
with replication of data and computations in MapReduce. We define two problems where
exactly two inputs are required for computing an output:
All-to-All problem. In the all-to-all (A2A) problem, a list of inputs is given, and each pair of

inputs corresponds to one output.
X-to-Y problem. In the X-to-Y (X2Y) problem, two disjoint listsX and Y are given, and each

pair of elements 〈xi, yj〉, where xi ∈ X, yj ∈ Y, ∀i, j, of the list X and Y corresponds
to one output.

Computing common friends on a social networking site and the drug-interaction
problem [105] are examples of A2A problems. Skew join is an example of a X2Y problem.

A mapping schema defines a MapReduce algorithm. A mapping schema assigns inputs
to reducers, so that no reducer exceeds its maximum capacity (i.e., a constraint on the lists
of inputs that can be assigned a reducer) and all pairs of inputs (in A2A problem) or all
pairs of X-to-Y inputs (in X2Y problem) meet in some reducers.

We, for the first time, consider that the inputs may have non-identical sizes. An
important and real parameter to measure the performance of a MapReduce algorithm is
the communication cost — the total amount of data that has to be transferred from the map
phase to the reduce phase. The communication cost comes with a tradeoff in the degree of
parallelism at the reduce phase. A mapping schema is optimal if there is no other mapping
schema with a lower communication cost. In this scope, we investigate how to construct
optimal mapping schemas or good approximations for the A2A and the X2Y problems.
The solution to this problem is given in Chapters 4 and 5.
Problem 3: Meta-MapReduce. In the third problem, we are interested in reducing the
amount of data to be transferred to the site of the cloud executing MapReduce computations
(and the amount of data transferred from the map phase to the reduce phase). In several
problems, the final output depends on some inputs, and there, it is not required to send the
whole input data to the site of mappers, followed by (intermediate output) data from the
map phase to the reduce phase. Hence, the next problem is how to design an algorithmic
approach for MapReduce algorithms regarding localities of data and computations, while
avoiding the movement of data that do not participate in the final output. The solution to
this problem is given in Chapter 6.
Problem 4: Interval join. This problem deals with the designing communication cost

5

efficient algorithms for the problem of interval join of overlapping intervals, where two
relations X and Y are given. Each relation contains binary tuples that represent intervals,
i.e., each tuple corresponds to an interval and contains the starting-point and ending-point
of this interval. The problem lies in assigning each pair of intervals 〈xi, yj〉, where xi ∈
X and yj ∈ Y , ∀i, j, such that intervals xi and yj share at least one common time, to
reducers, while minimizing the communication cost. The solution to this problem is given
in Chapter 7.
Problem 5: Computing marginals of a data cube. A data cube [63, 67, 64] is a useful
tool for analyzing high dimensional data. A marginal of a data cube is the aggregation
of the data in all those tuples that have fixed values in a subset of the dimensions of the
cube. In this scope, the problem is how to compute all the marginals of a data cube using
a single round of MapReduce, while minimizing the communication cost. The solution to
this problem is given in Chapter 8.
Problem 6: Secret shared private MapReduce. The last problem is how to provide
information-theoretically secure data and computation outsourcing and query execution
using MapReduce. If we can build a technique for information-theoretically secure data
and computation outsourcing, and as many MapReduce-based queries’ executions, then
a user can retrieve only the desired result without involving the source of the data. In
addition, during the execution of queries, users and clouds cannot breach the privacy of data
and computations, as a consequence. The solution to this problem is given in Chapters 9
and 10.

1.4 Our Contributions and Thesis Outline

Here, we provide an outline of the thesis that is divided into three parts. The thesis is based
on our six research papers [47, 9, 6, 10, 16, 50] and three survey papers [44, 39, 95].

The first part focuses on replication aspects in terms of the duplication of messages
that is used to overcome loss of messages and design a self-stabilizing end-to-end
communication algorithm. The second part focuses on replication aspects in MapReduce
in terms of the duplication of data and MapReduce computations; specifically, the focus
is on (i) building a new model for MapReduce, where, for the first time, the realistic
settings in which inputs have non-identical memory sizes is considered, (ii) designing an
algorithmic technique that regards localities of data and computation sites, and (iii) solving
the problems of interval join of overlapping intervals and computing the marginals of a data
cube. The third part focuses on replication aspects in terms of creating secret-shares of data
for ensuring privacy-preserving MapReduce-based computations in the public clouds.

6

Part I
Chapter 2. In this chapter, we provide assumptions behind the development of the
self-stabilizing end-to-end communication algorithm, such as unreliable communication
channels, the interleaving model, and asynchronous executions.

Chapter 3. This chapter begins with a description of a simple end-to-end communication
algorithm, which is self-stabilizing. However, this algorithm creates a huge overhead on
the network. Nevertheless, the simple self-stabilizing end-to-end communication algorithm
provides an outline to understand our proposed algorithm that contains the following
characteristics, as: (i) able to deliver a message to a designated receiver exactly one time;
(ii) applicable to dynamic networks of bounded capacity that replicate, omit, and reorder
packets; and (iii) applicable to an arbitrary state of the network. The content of this chapter
appeared in SSS 2012 [47], and the full version of this paper is under review in a journal.

Part II
Chapter 4. In this chapter, we focus on techniques to decrease the communication cost in
MapReduce computations and introduce the term reducer capacity. The communication
cost can be optimized by minimizing the amount of data, which is directly dependent on
the number of reducers. However, a reducer cannot hold more inputs whose sum of sizes
is greater than the capacity of the reducer, we call it the reducer capacity. A single reducer
of big enough capacity can hold all the inputs and results in the minimum communication
cost and the minimum replication rate (the number of reducers to which an input is sent).
However, the use of a single reducer results in no parallelism at the reduce phase and
increases in the clock time to finish the MapReduce job.

In this chapter, we consider different-sized inputs and show the relevance of the reducer
capacity by considering two classes of problems. We show that these two problems are
NP-hard in terms of optimization of the communication cost, and hence, we cannot achieve
optimal communication cost. We also study three tradeoffs, as: (i) a tradeoff between the
reducer capacity and the number of reducers; (ii) a tradeoff between the reducer capacity
and the parallelism at the reduce phase; and (iii) a tradeoff between the reducer capacity
and the communication cost.
Chapter 5. We present several near optimal approximation algorithms for both the
problems studied in Chapter 4. Specifically, we first present preliminary results and a
bin-packing-based approximation algorithm that provides near optimal mapping schemas.
The bin-packing-based approximation algorithm applies a bin-packing algorithm on inputs,
and then, treats each of the bins as a single input. In addition, we present algorithms, which
are based on the bin-packing-based algorithm, to construct optimal mapping schemas in
certain cases. For each algorithm, we find upper bounds on the communication cost, the

7

replication rate, and the number of reducers. The content of Chapter 4 and this chapter
appeared in DISC 2014 as a brief announcement [5] and in BeyondMR 2015 as an extended
abstract [8]. The full version of this paper is accepted in ACM Transactions on Knowledge
Discovery from Data (TKDD) [9].

Chapter 6. The federation of the cloud and big data activities is the next challenge, where
MapReduce should be modified to avoid (big) data migration across remote (cloud) sites.
This is exactly the scope of this chapter, where only essential data for obtaining the result
is transmitted, reducing communication, and preserving data privacy as much as possible.
In this chapter, we propose an algorithmic technique for MapReduce algorithms, called
Meta-MapReduce, that decreases the communication cost by allowing us to process and
move metadata to clouds and from the map phase to reduce phase. In addition, we explore
hashing and filtering techniques for reducing the communication cost and attempt moving
only relevant data to the site of mappers-reducers. The ability to use these algorithms
depends on the capability of the platform, but many systems today, such as Spark [114],
Pregel [84], or recent implementations of MapReduce offer the necessary capabilities. The
content of this chapter appeared in SSS 2015 as a brief announcement [6]. An extended
abstract of this paper is under review in a conference/workshop.

Chapter 7. In the previous three chapters, we restricted a reducer from holding inputs
whose sum of sizes is more than the capacity of the reducer. In this chapter, we consider
equal-sized inputs, and hence, all the reducers hold an equal number of inputs. We now
define the reducer size [15] as the maximum number of inputs that can be assigned to a
reducer. We find the lower bound on the replication rate and the communication cost for the
problem of interval join of overlapping intervals. We extend the algorithm for interval join
proposed in [31] while regarding the reducer size. We consider three types of intervals such
as unit-length and equally spaced, variable-length and equally spaced, and equally spaced
with specific distribution of the various lengths. The content of this chapter appeared in
BeyondMR 2015 [10], and the full version of this paper is under review in a journal.

Chapter 8. In this chapter, we consider the problem of computing the data cube marginals
of a fixed order k, we call it kth-other marginals (i.e., all those marginals that fix n − k

dimensions of an n-dimensional data cube and aggregate over the remaining k dimensions),
using a single round of MapReduce. We show that the replication rate is minimized when
the reducers receive all the necessary inputs to compute one marginal of higher order. We
define the problem in terms of covering sets of k dimensions with sets of a larger size
m, a problem studied under the name “covering numbers [22, 34].” We present several
algorithms (for different values of k and m) that meet or come close to yield the minimum
possible replication rate for a given reducer size. The content of this chapter [16] is under

8

review in a conference/workshop.

Part III
Chapter 9. While MapReduce is not directly related to the cloud, in the current
days, several public clouds, e.g., Amazon Elastic MapReduce, Google App Engine,
IBM’s Blue Cloud, and Microsoft Azure, enable users to perform MapReduce cloud
computations without considering physical infrastructures and software installation. Thus,
the deployment of MapReduce in public clouds enables users to process large-scale data
in a cost-effective manner and establishes a relationship between two independent entities,
i.e., clouds and MapReduce. However, public clouds do not guarantee the rigorous security
and privacy of computations as well as of stored data. In this chapter, we highlight
security and privacy challenges in MapReduce, privacy requirements for MapReduce, and
adversarial models in the context of the privacy in MapReduce. The content of this chapter
appeared in Elsevier Computer Science Review [39].

Chapter 10. The main obstacle for providing a privacy-preserving framework for
MapReduce in the adversarial (public) clouds is computational and storage efficiency.
An adversarial cloud may breach the privacy of data and computations. Hence, in
this chapter, we are interested in making a secure and privacy-preserving computation
execution and storage-efficient technique for MapReduce computations in the clouds.
We look at information-theoretically secure data and computation outsourcing and query
execution using MapReduce. Specifically, our focus is on four types of privacy-preserving
queries, as follows: count, search and fetch, equijoin, and fetch tuples with
a value belonging in a range. By developing privacy-preserving data and computation
outsourcing techniques, a user receives only the desired result without knowing the whole
database; moreover, the clouds are also unable to learn the database and the query. The
content of this chapter appeared in DBSec 2016 as an extended abstract [50], and the full
version of this paper is under review in a journal.

9

Part I

Replication Aspects in a Communication
Algorithm

10

Chapter 2

Background of a Self-Stabilizing
End-to-End Communication Algorithm

Contemporary communication and network technologies enhance the need for automatic
recovery. Having a self-stabilizing, predictable, and robust basic end-to-end
communication primitive for dynamic networks facilitates the construction of high-level
applications. Such applications are becoming extremely essential nowadays where
countries’ main infrastructures, such as the electrical smart-grid, water supply networks,
and intelligent transportation, are based on cyber-systems. We can abstract away the exact
network topology, dynamicity and churn and provide (efficient) exactly once message
transmission using packets by considering communication networks that has bounded
capacity and yet allow omissions, duplications and reordering of packets.

In practice, error detection is a probabilistic mechanism that may not detect a
corrupted message, and therefore, the message can be regarded legitimate, driving the
system to an arbitrary state after which, availability and functionality may be damaged
forever, unless there is human intervention. There is a rich research literature about
Automatic Repeat reQuest (ARQ) techniques for obtaining fault-tolerant protocol that
provide end-to-end message delivery. However, when initiating a system in an arbitrary
state, a non-self-stabilizing algorithm provides no guarantee that the system will reach a
legal state after which the participants maintain a coherent state.

Fault-tolerant systems that are self-stabilizing [42, 40] can recover after the occurrence
of transient faults, which can drive the system to an arbitrary system state. The system
designers consider all configurations as possible configurations from which the system
is started. One significant challenge is to provide an ordering for message transmitted
between the Sender and the Receiver. Usually, new messages are identified by a new
message number; a number greater than all previously used numbers. Counters of 64-bits,

11

or so, are usually used to implement such numbers. Such designs were justified by claiming
that 64-bit values suffice for implementing (practically) unbounded counters. However, a
single transient fault may cause the counter to reach the upper limit at once.

In this chapter, we describe our assumptions about the system and network for building
a self-stabilizing end-to-end communication protocol.

2.1 Unreliable Communication Channels

We consider a (communication) graph of N nodes (or processors), p1, p2, . . ., pN . The
graph has (direct communication) links, (pi, pj), whenever pi can directly send packets
to its neighbor, pj (without the use of network layer protocols). The system establishes
bidirectional communication between the Sender, ps, and the Receiver, pr, which may not
be connected directly. Namely, between ps and pr there is a unidirectional (communication)

channel (modeled as a packet set) that transfers packets from ps to pr, and another
unidirectional channel that transfer packets from pr to ps.

When node pi sends a packet, pckt, to node pj , the operation send adds a copy of
pckt to the channel from pi to pj , as long as the system follows the assumption about the
upper bound on the number of packets in the channel, where (pi = ps) ∧ (pj = pr) or
(pi = pr)∧ (pj = ps). We intentionally do not specify (the possibly unreliable) underlying
mechanisms that are used to forward a packet from the Sender to the Receiver, e.g., flood
routing and shortest path routing, as well as packet forwarding protocols. Once pckt arrives
at pj , pj triggers the receive event, and deletes pckt from the channel set. We assume that
when node pi sends a packet, pckt, infinitely often through the channel from pi to pj , node
pj receives pckt infinitely often.

Our proposed self-stabilizing algorithm is oblivious to the channel implementation,
which we model as a packet set that has no guarantees for reliability or FIFO order
preservation. We assume that, at any given time, the entire number of packets in the system
does not exceed a known bound, which we call capacity. This bound can be calculated by
considering the possible number of network links, number of system nodes, the (minimum
and maximum) packet size and the amount of memory that each node allocates for each
link. Thus, at any time the sent packets may be omitted, reordered, and duplicated, as long
as the system does not violate the channel capacity bound. Note that transient faults can
bring the system to consist of arbitrary, and yet capacity bounded, channel sets from which
convergence should start and consistency regained.

12

2.2 The Interleaving Model

Self-stabilizing algorithms do not terminate [42]. The non-termination property can be
easily identified in the code of a self-stabilizing algorithm: the code is usually a do forever
loop that contains communication operations with the neighbors. An iteration is said to be
complete if it starts in the loop’s first line and ends at the last.

Every node, pi, executes a program that is a sequence of (atomic) steps, where a step
starts with local computations and ends with a communication operation, which is either
send or receive of a packet. For ease of description, we assume the interleaving model,
where steps are executed atomically; a single step at any given time. An input event can
either be a packet reception or a periodic timer going off triggering pi to send. Note that
the system is asynchronous. The non-fixed spontaneous node actions and node processing
rates are irrelevant to the correctness proof.

The state, si, of a node pi consists of the value of all the variables of the node including
the set of all incoming communication channels. The execution of an algorithm step can
change the node’s state, and the communication channels that are associated with it. The
term (system) configuration is used for a tuple of the form (s1, s2, · · · , sN), where each si
is the state of node pi (including packets in transit for pi). We define an execution (or run)

R = c0, a0, c1, a1, . . . as an alternating sequence of system configurations, cx, and steps ax,
such that each configuration cx+1 (except the initial configuration c0) is obtained from the
preceding configuration, cx, by the execution of the steps ax. We often associate the step
index notation with its executing node pi using a second subscript, i.e., aix . We represent
the omissions, duplications, and reordering using environment steps that are interleaved
with the steps of the processors in R.

2.2.1 Asynchronous executions that allow progress

We say that an asynchronous execution, R, allows progression when every algorithm step
that is applicable infinitely often in R is executed infinitely often in R. Moreover, we
require that R allows progression with respect to communication. Namely, pi’s infinitely
often send operations of a packet, pckt, to pj , imply infinitely often receive operations
of pckt by pj . Thus, the communication graph may often change and the communication
delays may change, as long as they respect the upper bound, N , on the number of nodes,
the network capacity and the above requirements. We allow any churn rate, assuming
that joining processors reset their own memory, and by that prevent the introduction of
information about packets other than the ones that exist in {p1, p2, . . . , pN}, i.e., respecting
the assumed bounded packet capacity of the entire network.

13

When considering system convergence to legal behavior, we measure the number
of asynchronous rounds. We define the first asynchronous round in an execution R as
the shortest prefix, R′, of R in which node pi sends at least one packet to pj via their
communication channel, and pj receives from this channel at least one packet that was sent
from pi, where (pi = ps ∧ pj = pr) or (pi = pr ∧ pj = ps). The second asynchronous
round, R′′, is the first asynchronous round in R’s suffix that follows the first asynchronous
round, R′, and so on. Namely, R = R′ ◦R′′ ◦R′′′ . . ., where ◦ is the concatenation operator.

2.3 The Task

We define the system’s task by a set of executions called legal executions (LE) in which the
task’s requirements hold. A configuration c is a safe configuration for an algorithm and the
task of LE provided that any execution that starts in c is a legal execution, which belongs to
LE. An algorithm is self-stabilizing with relation to the task LE when every (unbounded)
execution of the algorithm reaches a safe configuration with relation to the algorithm and
the task.

The proposed self-stabilizing end-to-end communication (S2E2C) algorithm
(Chapter 3) provides FIFO and exactly once-delivery guarantees for bounded networks
that omit, duplicate, and reorder packets within the channel. Moreover, the algorithm
considers arbitrary starting configurations and ensures error-free message delivery. In
detail, given a system execution, R, and a pair, ps and pr, of sending and receiving nodes,
we associate the message sequence sR = im0, im1, im2, . . ., which are fetched by ps, with
the message sequence rR = om0, om1, om2, . . ., which are delivered by pr. Note that we
list messages according to the order they are fetched (from the higher level application) by
the Sender, thus two or more (consecutive or non-consecutive) messages can be identical.
The S2E2C task requires that for every legal execution, R ∈ LE, there is an infinite suffix,
R′, in which infinitely many messages are delivered, and sR′ = rR′ . It should be noted that
packets are not actually received by the Receiver in their correct order, but eventually it
holds that the Receiver delivers the messages to its application layer by the order in which
they were fetched by the Sender from its application layer.

When demonstrating safety properties, such as the order of message delivery, we
consider asynchronous executions that allow progression, which can include omission
steps. Note an adversarial execution can include (selective) packet omission in a way
that will prevent packet exchange between the Sender and the Receiver. Thus, when
demonstrating liveness properties, such as how long does it take the system to reach a
legal execution, we consider nice executions. I.e., we say that an asynchronous execution
R that allows progression is nice when it does not include any omission step.

14

Chapter 3

Self-Stabilizing End-to-End Algorithm

In this chapter, we first provide a simple (first attempt solution) end-to-end communication
algorithm that is self-stabilizing and copes network faults, such as packet omissions,
duplications, and reordering. This first attempt algorithm has has a large overhead, but
it prepares the presentation of our proposal for an efficient solution (Section 3.2) that is
based on error correcting codes.

3.1 A First Attempt Solution

We regard two nodes, ps and pr, as sender, and respectively, receiver; see our first attempt
sketch of an end-to-end communication protocol in Figure 3.1. The goal is for ps to fetch
messages, m, from its application layer, send m over the communication channel, and for
pr to deliver m to its application layer exactly once and in the same order by which the
Sender fetched them from its application layer. The Sender, ps, fetches the message m and
starts the transmission of (2 ·capacity+1) copies of m to pr, and pr acknowledges m upon
arrival. These transmissions use distinct labels for each copy, i.e., (2 · capacity + 1) labels
for each of m’s copies. The Sender, ps, does not stop retransmitting m’s packets until it
receives (capacity + 1) distinctly labeled acknowledgment packets from pr; see details in
Figure 3.1.

Let us consider the set of packets X = {〈ai, `, dat〉}`∈[1,2·capacity+1] that pr receives
during a legal execution, where ai = 0, as in the example that appears in Figure 3.1. We
note that X includes a majority of packets in X that have the same value of dat, because
the channel can add at most capacity packets (due to channel faults, such as message
duplication, or transient faults that occurred before the starting configuration), and thus, ps
has sent at least (capacity+ 1) of these packets, i.e., the majority of the arriving packets to
pr have originated from ps, rather than the communication channel between ps and pr (due

15

Self-Stabilizing End-to-End Communication in Dynamic Networks 9

ps pr

〈ldai, lbl〉ldai=2,lbl∈[1,2·capacity+1]

〈ai, lbl, dat〉ai=0,lbl∈[1,2·capacity+1]

〈0, 2 · capacity + 1, dat〉

〈0, 1, dat〉
〈0, 2, dat〉

〈2, capacity + 1〉

〈2, 1〉
〈2, 2〉

Acknowledgment packet set Packet set
(packet_set)(ACK_set)

LastDeliveredIndex = 2AltIndex = 0

1

The communication channels do not indicate to their receiving ends whether the
transmitted packets were subjects to duplication, omission or reordering. The algorithm
facilitates the correct delivery of m by letting ps send (2 · capacity + 1) copies of
the message m = 〈dat〉 to pr, and requiring pr to receive (2 · capacity + 1) packets,
where the majority of them are copies of m. Namely, ps maintains an alternating
index, AltIndex ∈ [0, 2], which is a counter that is incremented in modulo 3 every
time m is fetched and by that allow recovery from an arbitrary starting configuration.
Moreover, ps transmits to pr a set of packets, 〈ai, lbl, dat〉, where ai = AltIndex,
and lbl are packet labels that distinguish this packet among all of m’s copies. The
example illustrated above shows that when transmitting the packet set {〈0, 1, dat〉,
〈0, 2, dat〉, . . ., 〈0, 2 · capacity + 1, dat〉}, the alternating index, 0, distinguishes between
this transmission set, and its predecessor set, which has the alternating index 2, as
well as the successor sets, which has the alternating index 1. This transmission ends
once pr receives a packet set, {〈0, `, dat〉}`∈[1,2·capacity+1], that is distinctly labeled by
` with respect to the alternating index 0. (Note that when receiving a packet with a
label that exists in the received packet set, the Receiver replaces the existing packet
with the arriving one.) During legal executions, the set of received packets includes
a majority of packets that have the same value of dat. When such a majority indeed
exists, pr delivers m = 〈dat〉. After this decision, pr updates LastDeliveredIndex← 0
as the value of the last delivered alternating index.
The correct packet transmission depends on the synchrony of m’s alternating index at
the sending-side, and LastDeliveredIndex on the Receiver side, as well as the packets
that pr accumulates in packet setr. The Sender repeatedly transmits this packet set
until it receives (capacity + 1) distinctly labeled acknowledgment packets, 〈ldai, lbl〉,
from the Receiver for which it holds that ldai = AltIndex. The Receiver acknowledges
the Sender for each incoming packet, 〈ai, lbl, dat〉, using acknowledgment packet
〈ldai, lbl〉, where ldai refers to the value, LastDeliveredIndex, of the last alternating
index for which there was a receiving-side message delivery to the application layer.
Thus, with respect to the above example, ps does not fetch another application
layer message before it receives at least (capacity + 1) acknowledgment packets; each
corresponding to one of the (2 · capacity + 1) packets that pr received from ps. On the
receiving-side, pr delivers the message, m = 〈dat〉, from one of the (capacity+1) (out of
(2 · capacity+1)) distinctly labeled packets that have identical dat and ai values. After
this delivery, pr assigns ai to LastDeliveredIndex, resets its packet set and restarts
accumulating packets, 〈ai′, lbl′, dat′〉, for which LastDeliveredIndex 6= ai′.

Fig. 1 An end-to-end communication protocol (first attempt)

has to follow the reception of at least (capacity + 1), out of (2 · capacity + 1),
distinctly labeled packets, pckt = 〈x + 1, ∗, dat〉, in the sequence. This must
be due to m’s (sending-side) fetch, ps transmission of m’s packets, pckt =
〈x+ 1, ∗, dat〉, from ps to pr, and m’s (receiving-side) delivery.

The above first-attempt solution delivers each message exactly once in
its (sending-order) while producing a large communication overhead. The

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The communication channels do not indicate to their receiving ends whether the
transmitted packets were subject to duplication, omission or reordering. The algorithm
facilitates the correct delivery of m by letting ps send (2 · capacity + 1) copies of
the message m = 〈dat〉 to pr, and requiring pr to receive (2 · capacity + 1) packets,
where the majority of them are copies of m. Namely, ps maintains an alternating
index, AltIndex ∈ [0, 2], which is a counter that is incremented modulo 3 every
time m is fetched and by that allow recovery from an arbitrary starting configuration.
Moreover, ps transmits to pr a set of packets, 〈ai, lbl, dat〉, where ai = AltIndex, and
lbl are packet labels that distinguish this packet among all of m’s copies. The example
illustrated above shows that when transmitting the packet set {〈0, 1, dat〉, 〈0, 2, dat〉,
. . ., 〈0, 2 · capacity + 1, dat〉}, the alternating index, 0, distinguishes between this
transmission set, and its predecessor set, which has the alternating index 2, as well as
the successor sets, which has the alternating index 1. This transmission ends once pr
receives a packet set, {〈0, `, dat〉}`∈[1,2·capacity+1], that is distinctly labeled by ` with
respect to the alternating index 0. (Note that when receiving a packet with a label
that exists in the received packet set, the Receiver replaces the existing packet with the
arriving one.) During legal executions, the set of received packets includes a majority of
packets that have the same value of dat. When such a majority indeed exists, pr delivers
m = 〈dat〉. After this decision, pr updates LastDeliveredIndex ← 0 as the value of
the last delivered alternating index.
The correct packet transmission depends on the synchrony of m’s alternating index at
the sending-side, and LastDeliveredIndex on the Receiver side, as well as the packets
that pr accumulates in packet_setr. The Sender repeatedly transmits this packet set until
it receives (capacity + 1) distinctly labeled acknowledgment packets, 〈ldai, lbl〉, from
the Receiver for which it holds that ldai = AltIndex. The Receiver acknowledges the
Sender for each incoming packet, 〈ai, lbl, dat〉, using acknowledgment packet 〈ldai, lbl〉,
where ldai refers to the value, LastDeliveredIndex, of the last alternating index for
which there was a receiving-side message delivery to the application layer. Thus, with
respect to the above example, ps does not fetch another application layer message before
it receives at least (capacity + 1) acknowledgment packets; each corresponding to one
of the (2 · capacity + 1) packets that pr received from ps. On the receiving-side, pr
delivers the message, m = 〈dat〉, from one of the (capacity + 1) (out of (2 · capacity +
1)) distinctly labeled packets that have identical dat and ai values. After this delivery,
pr assigns ai to LastDeliveredIndex, resets its packet set and restarts accumulating
packets, 〈ai′, lbl′, dat′〉, for which LastDeliveredIndex 6= ai′.

Figure 3.1: An end-to-end communication protocol (first attempt)

16

to channel faults or transient faults that occurred before the starting configuration). The
protocol tolerates channel reordering faults, because the Sender fetches one message at a
time, and since it does not fetch another before it receives an acknowledgment about the
delivery of the current one. The protocol marks each packet with a distinct label in order
to allow a packet selection that is based on majority in the presence of duplication faults.

The above first-attempt solution delivers each message exactly once in its
(sending-order) while producing a large communication overhead. The proposed solution
(Section 3.2) uses error correction codes and has a smaller overhead. It fetches a number
of messages, m, on the sending-side. Then, it concurrently transmits them to the other end
after transforming them into packets that are protected by error correction codes, and then,
delivering them at their sending order without omission, or duplication. We explain how
to circumvent the difficulty that the communication channel can introduce up to capacity
erroneous packets by considering the problem of having up to capacity erroneous bits in
any packet.

3.1.1 Error correction codes for payload sequences

Error correction codes [89] can mitigate bit-flip errors in (binary) words, where such words
can represent payload in single data packet, or as we show here, can be used to help recover
wrong words in a sequence of them. These methods use redundant information when
encoding data, so that after the error occurrence, the decoding procedure will be able to
recover the originally encoded data without errors. Namely, an error correction code ec()
encodes a payload w (binary word) of length wl with payload c = ec(w) of length cl,
where cl > wl. The payload w can be later restored from c′ as long as the Hamming
distance between c′ and c is less than a known error threshold, tecc, where the Hamming
distance between c′ and c is the smallest number of bits that one has to flip in c, in order to
get c′.

Existing methods for error correction codes can also be used for a sequence of packets
and their payloads, see Figure 3.2. These sequences are encoded on the sender-side,
and sent over a bounded capacity, omitting, duplicating and non-FIFO channel, before
decoding them on the receiver-side. On that side, the originally encoded payload sequence
is decoded, as long as the error threshold is not smaller than the channel capacity, i.e.,
tecc ≥ capacity.

This method removes the issue of having up to capacity erroneous packets by
considering the problem of having up to capacity erroneous bits in any packet. This
problem is solved by using error correction codes to mask the erroneous bits. The
proposed solution allows correct message delivery even though up to capacity of packets

17

are erroneous, i.e., packets that appeared in channel (due to transient faults that occurred
before the starting configuration) rather than added to the channel by Sender, or due to
channel faults during the system execution.

3.2 Self-Stabilizing End-to-End Algorithm (S 2 E 2 C)
We propose an efficient S2E2C algorithm that fetches a number of messages, m, and
encodes them according to the method presented in Figure 3.2. The Sender then
concurrently transmits m’s encoded packets to the receiving end until it can decode
and acknowledge m. Recall that the proposed method for error correction can tolerate
communication channels that, while in transit, omit, duplicate and reorder m’s packets, as
well as add up to capacity packets to the channel (due to transient faults that have occurred
before the starting configuration rather than packets that the Sender adds to the channel
during the system execution). We show how the Sender and the Receiver can use the
proposed error correction method for transmitting and acknowledging m’s packets. The
pseudocodes of the Sender Algorithm 5 and the Receiver Algorithm 6 are presented in
Appendix A.

Reliable, ordered, and error-checked protocols in the transport layer, such as TCP/IP,
often consider the delivery of a stream of octets between two network ends. The algorithm
presented in Figure 3.2 considers a transport layer protocol that repeatedly fetches another
part of the stream. Upon each such fetch, the protocol breaks that part of the stream into m
sub-parts, and the protocol refers to m sub-parts as the application layer messages. Note
that the size of each such message can be determined by the (maximal) payload size of
packets that the Sender transmits to the Receiver, because the payload of each transmitted
packet needs to accommodate one of the n-bit words that are the result of transposing m
stream sub-parts.

The S2E2C algorithm extends the first attempt end-to-end communication protocol
(Figure 3.1), i.e., the Sender, ps, transmits the packets 〈ai, lbl, dat〉, and the Receiver,
pr, acknowledges using the 〈ai, lbl〉 packets, where ai ∈ [0, 2] is the state alternating
index, and lbl are packet labels that are distinct among all of the packets that are
associated with messages m = 〈dat〉. Moreover, it uses the notation of the proposed
error correction method (Figure 3.2), i.e., the Sender fetches batches of pl application layer
messages of length ml bits that are coded by n bit payloads that tolerate up to capacity
erroneous bits. The Sender, ps, fetches pl (application layer) messages, m = 〈dat〉,
encodes them into n (distinctly labeled) packets, 〈ai = AltIndexs, lbl, dat〉, according
to the proposed error correction method (Figure 3.2), and repeatedly transmits these
n (distinctly labeled) packets to pr until ps receives from pr (at least) (capacity + 1)

18

� -�- �-

6 66

pl

3

2

1

n
aiai ai

1 2

ml n > ml

lbl

AltIndex

Error
Correcting
Encoding

Ist Packet IIed Packet nth Packet

plth Message

IIed Message

Ist Message

-

The (sending-side) encoder considers a batch of (same length) messages as a (bit) matrix,
where each message (bit representation) is a matrix row. It transposes these matrices
by sending the matrix columns as encoded data packets. Namely, the Sender fetches,
[mj]j∈[1,pl], a batch of pl messages from the application layer each of length ml bits,
and calls the function Encode([mj]j∈[1,pl]). This function is based on an error correction
code, ecc, that for ml bits word, mj , codes an n bits words, cmj , such that cmj can
bear up to capacity erroneous bits, i.e., ecc’s error threshold, tecc, is capacity. The
function then takes these pl (length n bits) words, cmj , and returns n (length pl bits)
packet payloads, [pyldk]k∈[1,pl], that are the columns of a bit matrix in which the jth row
is cmj’s bit representation, see the image above for illustration.
The (receiver-side) uses the function Decode([pyld′k]k∈[1,pl]), which requires n packet
payloads, and assumes that at most capacity of them are erroneous packets that appeared
in channel (due to transient faults that occurred before the starting configuration) rather
than added to the channel by the Sender, or due to channel faults during the system
execution, i.e., from [pyldk]k∈[1,pl].
This function first transposes the arrived packet payloads, [pyld′k]k∈[1,pl] (in a similar
manner to Encode()), before using ecc for decoding [mj]j∈[1,pl] and delivering the
original messages to the Receiver’s application layer.
Namely when the Receiver accumulates n distinct label packets, capacity of the packets
may be wrong or unrelated. However, since the ith packet, out of the n distinctly labeled
packets, encodes the ith bits of all the pl encoded messages, if the ith packet is wrong, the
decoder can still decode the data of the original pl messages each of length ml < n. The
ith bit in each encoded message may be wrong, in fact, capacity of packets maybe wrong
yielding capacity of bits that may be wrong in each encoded message. However, due to
the error correction, all the original pl messages of length ml can be recovered, so the
Receiver can deliver the correct pl messages in the correct order. Note that in this case,
although the channel may reorder the packets, the labels maintain the sending-order,
because the ith packet is labeled with i. In this proposed solution, the labels also facilitate
duplication fault-tolerance, because the Receiver always holds at most one packet with
label i, i.e., the latest.

Figure 3.2: Packet formation from messages

19

(distinctly labeled) acknowledgment packets 〈ldai′, lbl′〉, for which after convergence
ldai′ = AltIndex. The Receiver repeatedly transmits the acknowledgment packets
〈ldai′, lbl′〉, which acknowledge the messages in the previous batch that it had delivered
to its application layer that had the alternating index, ai = LastDeliveredIndex. Note
that the Receiver repeatedly sends (capacity + 1) acknowledgment packets, as a response
to the n received packets, rather than a particular packet that has arrived. Namely, pr
accumulates arriving packets, 〈ai, lbl, dat〉, whose alternating indexes, ai, is different from
the last delivered one, LastDeliveredIndex. Moreover, once pr has n (distinctly labeled)
packets, which are {〈ai, `, dat〉}`∈[1,n] : ai 6= LastDeliveredIndex, the Receiver pr
updates LastDeliveredIndex according to ai, as well as use the proposed error correction
method (Figure 3.2) for decoding m before delivering it.

Note that ps transmits to pr a set of n (distinctly labeled with respect to a single
alternating index) of m’s packets, i.e., m’s packets, which the channel can omit, duplicate
and reorder. Thus, once pr receives n packets, pr can use the proposed error correction
method (Figure 3.2) as long as their alternating index is different from the last delivered
one, LastDeliveredIndex, because at least (n − capacity) of these packets were sent by
ps. Similarly, pr transmits to ps a set of (capacity + 1) (distinctly labeled with respect to
a single alternating index) of m’s acknowledgment packets. Thus, once (capacity + 1) of
m’s acknowledgment packets (with ldai matching to AltIndex) arrive at the sending-side,
ps can conclude that at least one of them was transmitted by pr, as long as their alternating
index, ldai, is the same as the one used for m, AltIndex.

The correctness arguments show that eventually we will reach an execution in which
the Sender fetches a new message batch infinitely often, and the Receiver will deliver the
messages fetched by the Sender before its fetches the next message batch. Thus, every
batch of pl fetched messages is delivered exactly once, because after delivery the Receiver
resets its packet set and changes its LastDeliveredIndex to be equal to the alternating
index of the Sender. The Receiver stops accumulating packets from the Sender (that their
alternating index is LastDeliveredIndex) until the Sender fetches the next message batch,
and starts sending packets with a new alternating index. Note that the Sender only fetches
new messages after it gets (capacity + 1) distinctly labeled acknowledgments, 〈ldai, lbl〉
(that their alternating index, ldai, equals to ps’s AltIndex). When the Receiver holds n
(distinctly labeled) packets out of which at most capacity are erroneous ones, it can convert
the packets back to the original messages, see (Figure 3.2).

The correctness of Algorithms 5 and 6 is given in Appendix A.2.

20

Part II

Replication Aspects in MapReduce

21

Chapter 4

Intractability of Mapping Schemas

In the second and the third parts of the thesis, we will investigate impacts of replications in
designing models and algorithms for MapReduce.

A MapReduce algorithm can be described by a mapping schema, which assigns inputs
to a set of reducers, such that for each required output there exists a reducer that receives
all the inputs that participate in the computation of this output. Reducers have a capacity,
which limits the sets of inputs that they can be assigned. However, individual inputs
may vary in terms of size. We consider mapping schemas where input sizes are part of
the considerations and restrictions. One of the significant parameters to optimize in any
MapReduce job is the communication cost — the total amount of data that is required to
move from the map phase to the reduce phase. The communication cost can be optimized
by minimizing the number of copies of inputs sent to the reducers.

In this chapter, we consider a family of problems where it is required that each input
meets with each other input in at least one reducer. In this chapter, we define and prove that
the all-to-all mapping schema problem is NP-hard for z > 2 identical capacity reducers
(in Sections 4.2.1 and 4.3.1). Also, we define the X-meets-Y mapping schema problem

and prove that the same problem is NP-hard for z > 1 identical capacity reducers (in
Sections 4.2.2 and 4.3.2).

4.1 Preliminarily and Motivating Examples

Communication cost. An important performance measure for MapReduce algorithms
is the amount of data transferred from the mappers (the processes that implement the
map function) to the reducers (the processes that implement the reduce function). This
is called the communication cost. The minimum communication cost is, of course, the
size of the desired inputs that provide the final output, since we need to transfer all these

22

inputs from the mappers to the reducers at least once. However, we may need to transfer
the same input to several reducers, thus increasing the communication cost. Depending
on various factors of our setting, each reducer may process a larger or smaller amount of
data. The amount of data each reducer processes however affects the wall clock time of
our algorithms and the degree of parallelization. If we send all data in one reducer, then
we have low communication (equal to the size of the data) but we have low degree of
parallelization, and thus, the wall clock time increases.
Reducer capacity. The maximum amount of data a reducer can hold is a constraint when
we build our algorithm. We define reducer capacity to be the upper bound on the sum of
the sizes of the values that are assigned to the reducer. For example, we may choose the
reducer capacity to be the size of the main memory of the processor on which the reducer
runs or we may arbitrarily set a low reducer capacity if we want high parallelization. We
always assume in this chapter that all the reducers have an identical capacity, denoted by q.
Examples.

Example 4.1 Computing common friends. An input is a list of friends. We have such lists

for m persons. Each pair of lists of friends corresponds to one output, which will show us

the common friends of the respective persons. Thus, it is mandatory that lists of friends of

every two persons are compared. Specifically, the problem is: a list F = {f1, f2, . . . , fm}
ofm friends is given, and each pair of elements 〈fi, fj〉 corresponds to one output, common

friends of persons i and j; see Figure 4.1.

f1

m lists of friends

f2

f3

fm-1

Common friends
of 1 and 2

Common friends
of 1 and 3

Common friends
of � − 1 and �fm

Figure 4.1: Computing common friends
example.

A B

a1 b1

a2 b1

a3 b1

a4 b1

.

.

.

an b1

B C

b1 c1

b1 c2

b1 c3

b1 c4

.

.

.

b1 cp





B

A B C

a1 b1 c1

a1 b1 c2

.

.

.

an b1 cp

=

X Y Z

Figure 4.2: Skew join example for a heavy
hitter, b1.

Example 4.2 Skew join of two relations X(A,B) and Y (B,C). The join of relations

X(A,B) and Y (B,C), where the joining attribute is B, provides output tuples 〈a, b, c〉,
where (a, b) is in A and (b, c) is in C. One or both of the relations X and Y may have a

large number of tuples with an identical B-value. A value of the joining attribute B that

occurs many times is known as a heavy hitter. In skew join of X(A,B) and Y (B,C), all

23

the tuples of both the relations with an identical heavy hitter should appear together to

provide the output tuples.

In Figure 4.2, b1 is considered as a heavy hitter; hence, it is required that all the tuples

of X(A,B) and Y (B,C) with the heavy hitter, B = b1, should appear together to provide

the desired output tuples, 〈a, b1, c〉 (a ∈ A, b1 ∈ B, c ∈ C), which depend on exactly two

inputs.

4.2 Mapping Schema and Tradeoffs

Our system setting is an extension of the standard system setting [15] for MapReduce
algorithms, where we consider, for the first time, inputs of different sizes. In this section, we
provide formal definitions and some examples to show the tradeoff between communication
cost and degree of parallelization.
Mapping Schema. A mapping schema is an assignment of the set of inputs to some given
reducers so that the following two constraints are satisfied:
• A reducer is assigned inputs whose sum of the sizes is less than or equal to the reducer

capacity q.
• For each output, we must assign its corresponding inputs to at least one reducer in

common.
Optimal Mapping Schema. A mapping schema is optimal when the communication cost
is minimum. The number of reducers we use often is minimal for an optimal mapping
schema but this may not always be the case. We offer insight about communication cost
and number of reducers used in Examples 4.3 and 4.4.
Tradeoffs. The following tradeoffs appear in MapReduce algorithms and in particular in
our setting:
• A tradeoff between the reducer capacity and the number of reducers. For example, large

reducer capacity allows the use of a smaller number of reducers.
• A tradeoff between the reducer capacity and the parallelism. For example, if we want to

achieve a high degree of parallelism, we set low reducer capacity.
• A tradeoff between the reducer capacity and the communication cost. For example, in the

case reducer capacity is equal to the total size of the data then we can use one reducer and
have minimum communication (of course, this goes at the expense of parallelization).

In the subsequent subsections, we present two mapping schema problems, namely the A2A

mapping schema problem and the X2Y mapping schema problem. In addition, the readers
will also see the impact of the above mentioned tradeoff in the mapping schema problems
and ways for obtaining an optimal mapping schema.

24

4.2.1 The All-to-All Mapping Schema Problem

An instance of the A2A mapping schema problem consists of a list of m inputs whose input
size list isW = {w1, w2, . . . , wm} and a set of z identical reducers of capacity q. A solution
to the A2A mapping schema problem assigns every pair of inputs to at least one reducer in
common, without exceeding q at any reducer.

w1 = w2 = w3 = 0.20q, w4 = w5 = 0.19q, w6 = w7 = 0.18q

w1, w2, w3, w4

The second way to assign inputs
(optimum communication cost)

w1, w2, w5, w6

w1, w2, w7

w3, w4, w5, w6

w3, w4, w7

w5, w6, w7

w1, w2, w3, w4, w7

w1, w2, w5, w6, w7

w3, w4, w5, w6, w7

The first way to assign inputs
(non-optimum communication cost)

1

Figure 4.3: An example to the A2A mapping schema problem.

Example 4.3 We are given a list of seven inputs I = {i1, i2, . . . , i7} whose size list is W =

{0.20q, 0.20q, 0.20q, 0.19q, 0.19q, 0.18q, 0.18q} and reducers of capacity q. In Figure 4.3,

we show two different ways that we can assign the inputs to reducers. The best we can

do to minimize the communication cost is to use three reducers. However, there is less

parallelism at the reduce phase as compared to when we use six reducers. Observe that

when we use six reducers, then all reducers have a lighter load, since each reducer may

have capacity less than 0.8q.

The communication cost for the second case (3 reducers) is approximately 3q, whereas

for the first case (6 reducers) it is approximately 4.2q. Thus, in tradeoff, in the 3-reducers

case we have low communication cost but also lower degree of parallelization, whereas in

the 6-reducers case we have high parallelization at the expense of the communication cost.

𝑤1 = 𝑤2 = 0.25𝑞, 𝑤3 = 𝑤4 = 0.24𝑞, 𝑤5 = 𝑤6 = 0.23𝑞,
𝑤7 = 𝑤8 = 0.22𝑞, 𝑤9 = 𝑤10 = 0.21𝑞, 𝑤11 = 𝑤12 = 0.20𝑞

𝑤1, 𝑤2, 𝑤1
′ , 𝑤2

′

𝑤3, 𝑤4, 𝑤1
′ , 𝑤2

′

𝑤5, 𝑤6, 𝑤1
′ , 𝑤2

′

𝑤7, 𝑤8, 𝑤1
′ , 𝑤2

′

𝑤9, 𝑤10, 𝑤1
′ , 𝑤2

′

𝑤11, 𝑤12, 𝑤1
′ , 𝑤2

′

𝑤1, 𝑤2, 𝑤3, 𝑤1
′

𝑤1, 𝑤2, 𝑤3
′ , 𝑤4

′

𝑤3, 𝑤4, 𝑤3
′ , 𝑤4

′

𝑤5, 𝑤6, 𝑤3
′ , 𝑤4

′

𝑤7, 𝑤8, 𝑤3
′ , 𝑤4

′

𝑤9, 𝑤10, 𝑤3
′ , 𝑤4

′

𝑤11, 𝑤12, 𝑤3
′ , 𝑤4

′

𝑤4, 𝑤5, 𝑤6, 𝑤1
′

𝑤7, 𝑤8, 𝑤9, 𝑤1
′

𝑤10, 𝑤11, 𝑤12, 𝑤1
′

𝑤1, 𝑤2, 𝑤3, 𝑤2
′

𝑤4, 𝑤5, 𝑤6, 𝑤2
′

𝑤7, 𝑤8, 𝑤9, 𝑤2
′

𝑤10, 𝑤11, 𝑤12, 𝑤2
′

𝑤1, 𝑤2, 𝑤3, 𝑤3
′

𝑤4, 𝑤5, 𝑤6, 𝑤3
′

𝑤7, 𝑤8, 𝑤9, 𝑤3
′

𝑤10, 𝑤11, 𝑤12, 𝑤3
′

𝑤1, 𝑤2, 𝑤3, 𝑤4
′

𝑤4, 𝑤5, 𝑤6, 𝑤4
′

𝑤7, 𝑤8, 𝑤9, 𝑤4
′

𝑤10, 𝑤11, 𝑤12, 𝑤4
′

𝑤1
′ = 𝑤2

′ = 0.25𝑞, 𝑤3
′ = 𝑤4

′ = 0.24𝑞

Inputs of list 𝑋

Inputs of list 𝑌

The first way to assign inputs

using 12 reducers

The second way to assign inputs

using 16 reducers

Figure 4.4: An example to the X2Y mapping schema problem.

25

4.2.2 The X2Y Mapping Schema Problem

An instance of the X2Y mapping schema problem consists of two disjoint listsX and Y and
a set of identical reducers of capacity q. The inputs of the listX are of sizesw1, w2, . . . , wm,
and the inputs of the list Y are of sizes w′1, w

′
2, . . . , w

′
n. A solution to the X2Y mapping

schema problem assigns every two inputs, the first from one list, X , and the second from
the other list, Y , to at least one reducer in common, without exceeding q at any reducer.

Example 4.4 We are given two lists, X of 12 inputs, and Y of 4 inputs (see Figure 4.4)

and reducers of capacity q. We show that we can assign each input of the list X with each

input of the list Y in two ways. In order to minimize the communication cost, the best way

is to use 12 reducers. Note that we cannot obtain a solution for the given inputs using less

than 12 reducers. However, the use of 12 reducers results in less parallelism at the reduce

phase as compared to when we use 16 reducers.

4.3 Intractability of Finding a Mapping Schema

In this section, we will show that the A2A and the X2Y mapping schema problems do not
possess a polynomial solution. In other words, we will show that the assignment of two

required inputs to the minimum number of identical-capacity reducers to find solutions to
the A2A and the X2Y mapping schema problems cannot be achieved in polynomial time.

4.3.1 NP-hardness of the A2A Mapping Schema Problem

A list of inputs I = {i1, i2, . . . , im} whose input size list is W = {w1, w2, . . . , wm}
and a set of identical reducers R = {r1, r2, . . . , rz}, are an input instance to the A2A

mapping schema problem. The A2A mapping schema problem is a decision problem that
asks whether or not there exists a mapping schema for the given input instance such that
every input, ix, is assigned with every other input, iy, to at least one reducer in common.
An answer to the A2A mapping schema problem will be “yes,” if for each pair of inputs
(〈ix, iy〉), there is at least one reducer that holds them.

In this section, we prove that the A2A mapping schema problem is NP-hard in the case
of z > 2 identical reducers. In addition, we prove that the A2A mapping schema problem

has a polynomial solution to one and two reducers.
If there is only one reducer, then the answer is “yes” if and only if the sum of the input

sizes
∑m

i=1wi is at most q. On the other hand, if q <
∑m

i=1wi, then the answer is “no.” In
case of two reducers, if a single reducer is not able to accommodate all the given inputs,
then there must be at least one input that is assigned to only one of the reducers, and hence,

26

this input is not paired with all the other inputs. In that case, the answer is “no.” Therefore,
we achieve a polynomial solution to the A2A mapping schema problem for one and two
identical-capacity reducers.

We now consider the case of z > 2 and prove that the A2A mapping schema problem

for z > 2 reducers is at least as hard as the partition problem.

Theorem 4.5 The problem of finding whether a mapping schema of m inputs of different

input sizes exists, where every two inputs are assigned to at least one of z ≥ 3

identical-capacity reducers, is NP-hard.

The proof appears in Appendix B.

4.3.2 NP-hardness of the X2Y Mapping Schema Problem

Two lists of inputs, X = {i1, i2, . . . , im} whose input size list is Wx = {w1, w2, . . . , wm}
and Y = {i′1, i′2, . . . , i′n} whose input size list is Wy = {w′1, w′2, . . . , w′n}, and a set of
identical reducers R = {r1, r2, . . . , rz} are an input instance to the X2Y mapping schema

problem. The X2Y mapping schema problem is a decision problem that asks whether or not
there exists a mapping schema for the given input instance such that each input of the list
X is assigned with each input of the list Y to at least one reducer in common. An answer
to the X2Y mapping schema problem will be “yes,” if for each pair of inputs, the first from
X and the second from Y , there is at least one reducer that has both those inputs.

The X2Y mapping schema problem has a polynomial solution for the case of a single
reducer. If there is only one reducer, then the answer is “yes” if and only if the sum of the
input sizes

∑m
i=1wi +

∑n
i=1w

′
i is at most q. On the other hand, if q <

∑m
i=1wi +

∑n
i=1w

′
i,

then the answer is “no.” Next, we will prove that the X2Y mapping schema problem is an
NP-hard problem for z > 1 identical reducers.

Theorem 4.6 The problem of finding whether a mapping schema of m and n inputs of

different input sizes that belongs to list X and list Y , respectively, exists, where every two

inputs, the first from X and the second from Y , are assigned to at least one of z ≥ 2

identical-capacity reducers, is NP-hard.

The proof appears in Appendix B.

27

Chapter 5

Approximation Algorithms for the
Mapping Schema Problems

In this chapter, we will provide approximation algorithms for the A2A and the X2Y mapping
schema problems.

5.1 Preliminary Results

Since the A2A Mapping Schema Problem is NP-hard, we start looking at special cases
and developing approximation algorithm to solve it. We propose several approximation
algorithms for the A2A mapping schema problem that are based on bin-packing algorithms,
selection of a prime number p, and division of inputs into two sets based on their sizes.

Each algorithm takes the number of inputs, their sizes, and the reducer capacity (see
Table 5.2). The approximation algorithms have two cases depending on the sizes of the
inputs, as follows:
1. Input sizes are upper bounded by q

2
.

2. One input is of size, say wi, greater than q
2
, but less than q, and all the other inputs have

size less than or equal to q−wi. In this case most of the communication cost comes from
having to pair the large input with every other input.

Of course, if the two largest inputs are greater than the given reducer capacity q, then there
is no solution to the A2A mapping schema problem because these two inputs cannot be
assigned to a single reducer in common.
Parameters for analysis. We analyze our approximation algorithms on the communication

cost, which is the sum of all the bits that are required, according to the mapping schema, to
transfer from the map phase to the reduce phase.

Table 5.1 summarizes all the results in this chapter. Before describing the algorithms,

28

Cases Theorems Communication cost Approximation ratio

The lower bounds for the A2A mapping schema problem

Different-sized inputs 5.1 s2

q

Equal-sized inputs 5.4 m
⌊
m−1
q−1

⌋
The lower bounds for the X2Y mapping schema problem

Different-sized inputs 5.20 2·sumx·sumy

q

Optimal algorithms for the A2A mapping schema problem (∗ equal-sized inputs)

Algorithm for reducer capacity q = 2 5.9 m(m− 1) optimal

Algorithm for reducer capacity q = 3 5.9 m
⌊
m−1

2

⌋
optimal

The AU method: When q is a prime number 5.9 m
⌊
m−1
q−1

⌋
optimal

Non-optimal algorithms for the A2A mapping schema problem and their upper bounds

Bin-packing-based algorithm, not including
an input of size > q

2

5.3 4s2

q
1
4

Algorithm 7 5.12 q
2k

⌈
sk

q(k−1)

⌉
(
⌈

sk
q(k−1)

⌉
− 1) 1/k − 1

Algorithm 8: The first extension of the AU
method

5.14 qp(p+ 1) + z′ q/(q + 1)

Algorithm 9: The second extension of the
AU method

5.18 q2 × (q(q + 1))l−1 (ql − 1)/q(q − 1)(q + 1)l−1

Bin-packing-based algorithm considering an
input of size > q

2

5.19 (m− 1) · q + 4s2

q
s2

mq2

A non-optimal algorithm for the X2Y mapping schema problem and their upper bounds

Bin-packing-based algorithm, q = 2b 5.21 4·sumx·sumy

b
1
4

Approximation ratio. The ratio between the optimal communication cost and the communication cost obtained from an
algorithm.
Notations: s: sum of all the input sizes. q: the reducer capacity. m: the number of inputs. sumx: sum of input sizes of the
list X . sumy : sum of input sizes of the list Y . p: the nearest prime number to q. l > 2. k > 1.

Table 5.1: The bounds for algorithms for the A2A and the X2Y mapping schema problems.

we look at lower bounds for the above parameters as they are expressed in terms of the
reducer capacity q and sum of sizes of all inputs s.

Theorem 5.1 (Lower bounds on the communication cost and number of reducers)
For a list of inputs and a given reducer capacity q, the communication cost and the number

of reducers, for the A2A mapping schema problem, are at least s2

q
and s2

q2
, respectively,

where s is the sum of all the input sizes.

The proof of the theorem is given in Appendix C.1.

5.1.1 Bin-packing-based approximation

Our general strategy for building approximation algorithms is as follows: we use a known
bin-packing algorithm to place the given m inputs to bins of size q

k
. Assume that we need

29

Algorithms Inputs

Non-optimal algorithms for the A2A mapping schema problem

Bin-packing-based algorithm Any number of inputs of any size

Algorithm 7 Any number of inputs of size at most q
k

, k > 3

Algorithm 8: The first extension of the AU method p2 + p · l + l, p+ l = q, l > 2

Algorithm 9: The second extension of the AU method ql, l > 2 and q is a prime number

A non-optimal algorithm for the X2Y mapping schema problem

Bin-packing-based algorithm, > q
2

Any number of inputs of any size

Notations: wi and wj : the two largest size inputs of a list. p: the nearest prime number to q. wk: the largest input of a list
X . w′k: the largest input of a list Y .

Table 5.2: Reducer capacity and input constraints for different algorithms for the mapping
schema problems.

x bins to place m inputs. Now, each of these bins is considered as a single input of size q
k

for our problem of finding an optimal mapping schema. Of course, the assumption is that
all inputs are of size at most q

k
.

First-Fit Decreasing (FFD) and Best-Fit Decreasing (BFD) [33] are most notable
bin-packing algorithms. FFD or BFD bin-packing algorithm ensures that all the bins
(except only one bin) are at least half-full. There also exists a pseudo polynomial
bin-packing algorithm, suggested by Karger and Scott [71], that can place the m inputs
in as few bins as possible of certain size.

For an example, let us discuss in more detail the case k = 2. In this case, since
the reducer capacity is q, any two bins can be assigned to a single reducer. Hence, the
approximation algorithm uses at most x(x−1)

2
reducers, where x is the number of bin; see

Figure 5.11 for an example. For this strategy a lower bound on communication cost depends
also on k as follows:

w1 = w2 = w3 = 0.20q, w4 = w5 = 0.19q,
w6 = w7 = 0.18q

w1, w2

Four bins, each of size q
2

w3, w4 w5, w6 w7

w1, w2 w3, w4

Six reducers

w1, w2 w5, w6

w1, w2 w7

w3, w4 w5, w6

w3, w4 w7

w5, w6 w7

1

Figure 5.1: Bin-packing-based approximation algorithm.

1Note that this is not an optimal mapping schema for the given inputs.

30

Theorem 5.2 (Lower bound on the communication cost) Let q > 1 be the reducer

capacity, and let q
k
, k > 1, is the bin size. Let the sum of the given inputs is s. The

communication cost, for the A2A mapping schema problem, is at least s
⌊ sk

q
−1

k−1
⌋
.

The proof of the theorem is given in Appendix C.1. This communication cost in the
above theorem, as expected, is larger than the one in Theorem 5.1, where no restriction in
a specific strategy was taken into account.

Example for k = 2. Let us apply our strategy to the case where k = 2, i.e., we have the
algorithm: (i) we do bin-packing to put the inputs in bins of size q

2
; and (ii) we provide a

mapping schema for assigning each pair of bins to at least one reducer. Such a schema is
easy and has discussed in the literature (e.g., [105]).

FFD and BFD bin-packing algorithms provide an 11
9
· OPT approximation ratio [70],

i.e., if any optimal bin-packing algorithm needs OPT bins to place (m) inputs in the bins
of a given size q

2
, then FFD and BFD bin-packing algorithms always use at most 11

9
· OPT

bins of an identical size (to place the given m inputs). Since we require at most x(x−1)
2

reducers for a solution to the A2A mapping schema problem, the algorithm requires at most
(11

9
·OPT)

2

2
reducers. Note that, here in this case, OPT does not indicate the optimal number of

reducers to assign m inputs that satisfy the A2A mapping schema problem; OPT indicates
the optimal number of bins of size q

2
that are required to place m inputs.

The following theorem gives the upper bounds that this approximation algorithm
achieves on the communication cost and the number of reducers.

Theorem 5.3 (Upper bounds on communication cost and number of reducers for
k = 2 using bin-packing) The above algorithm using a bin size b = q

2
where q is the

reducer capacity achieves the following upper bounds: the number of reducers and the

communication cost, for the A2A mapping schema problem, are at most 8s2

q2
and at most

4 s
2

q
, respectively, where s is the sum of all the input sizes.

The proof of the theorem is given in Appendix C.1.

5.2 Optimal Algorithms for Equal-Sized Inputs

As we explained, looking at inputs of same size makes sense because we imagine the inputs
are being bin-packed into bins of size q

k
, for k ≥ 2, and that once this is done, we can treat

the bins themselves as things of unit size to be sent to the reducers. Thus, in this section,
we will shift the notation so that all inputs are of unit size, and q is some small integer, e.g.,
3.

31

In this section, we provide optimal algorithms for q = 2 (in Section 5.2.1) and q = 3 (in
Section 5.2.2). Afrati and Ullman [18] provided an optimal algorithm for the A2A mapping

schema problem where q is a prime number and the number of inputs ism = q2. We extend
this algorithm for m = q2 + q + 1 inputs (in Section 5.2.3), and this extension also meets
the lower bound on the communication cost. We will generalize these three algorithms in
the Sections 5.3 and 5.4.

In this setting, by minimizing the number of reducers, we minimize communication,
since each reducer is more-or-less filled to capacity. So, we define: r(m, q) to be the
minimum number of reducers of capacity q that can solve the all-pairs problem for m
inputs. The following theorem sets a lower bound on r(m, q) and the communication cost
for this setting.

Theorem 5.4 (Lower bounds on the communication cost and number of reducers)
For a given reducer capacity q > 1 and a list of m inputs of size one, the communication

cost and the number of reducers (r(m, q)), for the A2A mapping schema problem, are at

least m
⌊
m−1
q−1
⌋

and at least
⌊
m
q

⌋⌊
m−1
q−1
⌋
, respectively.

The proof of the theorem is given in Appendix C.2.

5.2.1 Reducer capacity q = 2

Here, we offer a recursive algorithm and show that this algorithm does not only obtain the
bound r(m, 2) ≤ m(m−1)

2
, but it does so in a way that divides the reducers into m − 1

“teams” of m
2

reducers, where each team has exactly one occurrence of each input. We will
use these properties of the output of this algorithm to build an algorithm for q = 3 in the
next subsection.
The recursive algorithm. We are given a list A of m inputs. The intention is to have all
pairs of inputs from list A partitioned into m− 1 teams with each team containing exactly
m
2

pairs and each input appearing exactly once within a team. Hence, we will use m(m−1)
2

reducers for assigning pairs of each input.
We split A into two sublists A1 and A2 of size m

2
each. Suppose, we have the m

2
− 1

teams for a list of size m
2

. We will take the m
2
− 1 teams of A1, the m

2
− 1 teams of A2 and

“mix them up” in a rather elaborate way to form the m− 1 teams for A:
Let the teams for A1 and A2 be {g1, g2, g3, . . . , gm

2
} and {h1, h2, h3, . . . , hm

2
}

respectively. We will form two kind of teams, teams of kind I and teams of kind II as
follows:

Teams of kind I. We will form m
2

teams of kind I by taking one
input from A1 and one input from A2. For example, the first team for

32

A is {(g1, h1), (g2, h2), (g3, h3), . . . , (gm
2
, hm

2
)}, the second team for A is

{(g1, h2), (g2, h3), (g3, h4), . . . , (gm
2
, h1)}, and so on.

Teams of kind II. We will form the remaining m
2
− 1 teams having m

2
reducers in each.

In teams of kind I each pair (reducer) contains only inputs from one of the lists A1 or A2.
Now we produce pairs, with each pair having both inputs from A1 or A2. In order to do
that, we divide recursively divide A1 into two sublists and perform the operation what we
performed in the team of kind I. The same procedure is recursively implemented on A2.

Example 5.5 For m = 8, we form 7 teams. First we form teams of kind I. We divide 8

inputs into two lists A1 and A2. After that, we take one input from A1 and one input from

A2, and create 4 teams, see Figure 5.2a. Now, we recursively follow the same rule on each

sublist, A1 and A2, and create 3 remaining teams of kind II, see Figure 5.2b.

1,5 1,6 1,7 1,8
2,6 2,7 2,8 2,5
3,7 3,8 3,5 3,6
4,8 4,5 4,6 4,7

Team 1 Team 2 Team 3 Team 4
(a) Teams of kind I

1,3 1,4 1,2
2,4 2,3 3,4
5,7 5,8 5,6
6,8 6,7 7,8

Team 5 Team 6 Team 7
(b) Teams of kind II

Figure 5.2: The teams for m = 8 and q = 2.

Actually in Figure 5.3, the teams for this example are shown in non-bold face fonts

(two in each triplet in Figure 5.3, notice that they are from 1-8) in teams 1 through 7 in

Figure 5.3.

The following theorem is easy to prove.

Theorem 5.6 1. In each team an input appears only once.

2. In each team all inputs appear.

3. There are m− 1 teams which is the minimum possible.

4. This is an optimal mapping scheme that assigns inputs to reducers.2

This works if the number of inputs is a power of two. We can use known techniques to
make it work with good approximation in general.

2Interested readers may see the proof of Algorithm 7A in Appendix C.5.1 for the proof of the statements
(1) and (2). An input gets paired with the remaining m− 1 inputs, and by the statement (2) an input can appear
exactly once in a team. Hence, we need m− 1 teams to assign all the pairs of an input, resulting statement (3)
is true. Since a team hold m

2 reducers that provide m
2 pairs and there are total m(m−1)

2 pairs of inputs, we are
using m(m−1)

2 reducers. Thus. this is an optimal mapping schema.

33

5.2.2 Reducer capacity q = 3

Here, we present an algorithm that constructs an optimal mapping schema for q = 3. Our
recursive algorithm starts by taking the mapping schema constructed in previous subsection
for q = 2. We showed there that for q = 2, we can not only obtain the bound r(m, 2) ≤
m(m−1)

2
, but that we can do so in a way that divides the reducers into m − 1 teams of m

2

reducers in each team, where each team has exactly one occurrence of each input.
Now, we split m inputs into two disjoint sets: set A and set B. Suppose m = 2n − 1.

SetA has n inputs and setB has n−1 inputs. We start with the n inputs in setA, and create
n− 1 teams of n

2
reducers, each reducer getting two of the n inputs in A, by following the

algorithm given in Section 5.2.1. Next, we add to all reducers in one team another input
from set B. I.e., in a certain team we add to all n

2
reducers of this team a certain input from

set B, and thus, we form a triplet for each reducer.
Since there are n − 1 teams, we can handle another n − 1 inputs. This is the start of a

solution for q = 3 and m = 2n − 1 inputs. To complete the solution, we add the reducers
for solving the problem for the n − 1 inputs of the set B. That leads to the following
recurrence

r(m, 3) =
n(n− 1)

2
+ r(n− 1, 3), where m = 2n− 1

r(3, 3) = 1

We solve the recurrence for m a power of 2, and it exactly matches the lower bound of
r(m, 3) = m(m−1)

6
. Moreover, notice that we can prove that this case is optimal either by

proving that r(m, 3) = m(m − 1)/6 (as we did above) or by observing that every pair of
inputs meets exactly in one reducer. This is easy to prove. Hence the following theorem:

Theorem 5.7 This algorithm constructs an optimal mapping schema for q = 3.

Example 5.8 An example is shown in Figure 5.3. We explained how this figure is

constructed for q = 2 (the non-bold entries). Now we use the algorithm just presented

here to construct the 35 (= 15× 14
6

) reducers. We explain below in detail how we construct

these 35 reducers.

We are given 15 inputs (I = {1, 2, . . . , 15}). We create two sets, namely A of y = 8

inputs and B of x = 7 inputs, and arrange (y − 1) ×
⌈
y
2

⌉
= 28 reducers in the form of

7 teams of 4 reducers in each team. These 7 teams assign each input of the set A with all

other inputs of the set A and all the inputs in the set B as follows. We pair every two inputs

of the set A and assign them to exactly one of 28 reducers as we explained in Section 5.2.1.

34

4, 8, 9

Team 1

3, 7, 9

2, 6, 9

1, 5, 9

4, 5, 10

Team 2

3, 8, 10

2, 7, 10

1, 6, 10

4, 6, 11

Team 3

3, 5, 11

2, 8, 11

1, 7, 11

4, 7, 12

Team 4

3, 6, 12

2, 5, 12

1, 8, 12

6, 8, 13

Team 5

5, 7, 13

2, 4, 13

1, 3, 13

6, 7, 14

Team 6

5, 8, 14

2, 3, 14

1, 4, 14

7, 8, 15

Team 7

5, 6, 15

3, 4, 15

1, 2, 15

I = {1, 2, . . . , 15}
A = {1, 2, . . . , 8}
B = {9, 10, . . . , 15}

1

Team 8

10, 12, 13

9, 11, 13

Team 9

10, 11, 14

9, 12, 14

Team 10

11, 12, 15

9, 10, 15 13, 14, 15I1 = {9, 10, . . . , 15}
A1 = {9, 10, 11, 12}
B1 = {13, 14, 15} An additional reducer

1

Figure 5.3: An example of a mapping schema for q = 3 and m = 15.

Once every pair of y = 8 inputs of the set A is assigned to exactly one of 28 reducers, then

we assign the ith input of the set B to all the four reducers of (i − 8)th team. Thus, e.g.,

input 10 is assigned to the four reducers of Team 2.

Now these 28 reducers have seen that each pair of inputs from set A meet in at least

one reducer and each pair of inputs, one from A and one from B meet in at least one

reducer. Thus, it remains to build more reducers so that each pair of inputs (both) from set

B meet. According to the recursion we explained, we break set B into sets A1 and B1, of

size 4 and 3 respectively, and we apply our method again. In particular, we create two sets,

A1 = {9, 10, 11, 12} of y1 = 4 inputs and B1 = {13, 14, 15} of x1 = 3. Then, we arrange

(y1 − 1)×
⌈
y1
2

⌉
= 6 reducers in the form of 3 teams of 2 reducers in each team. We assign

each pair of inputs of the set A1 to these 6 reducers, and then ith input of the set B1 to all

the two reducers of a team, see Team 8 to Team 10.

The last team is constructed so that all inputs inB1 meet at the same reducers (sinceB1

has only 3 elements and 3 is the size of a reducer, one reducer suffices for this to happen).

Open Problem. Now the interesting observation is that if we can argue that the resulting
reducers can be divided into m−1

2
teams of m

3
reducers each (with each team having one

occurrence of each input), then we can extend the idea to q = 4, and perhaps higher.

5.2.3 When q or q − 1 is a prime number

An algorithm to provide a mapping schema for the reducer capacity q, where q is a prime
number, and m = q2 inputs is suggested by Afrati and Ullman in [18]. This method meets
the lower bounds on the communication cost. We call this algorithm the AU method.

For the sake of completeness, we provide an overview of the AU method. Interested
readers may refer to [18]. We divide the m inputs into q2 equal-sized subsets (each with
m
q2

inputs) that are arranged in a Q = q × q square. The subsets in row i and column j are
represented by Si,j , where 0 ≤ i < q and 0 ≤ j < q.

35

We now organize q(q+1) reducers in the form of q+1 teams of q players (or reducers)
in each team. Note that sum of sizes of the inputs in each row and column of the Q square
is exactly q.

The teams are arranged from 0 to q, and the reducers are arranged from 0 to q − 1. We
first arrange inputs to the team q. Since the sum of the sizes in each column of the P square
is q, we place one column of the P square to one reducer of the team q. Now we place the
inputs to the remaining teams. We use modulo operation for the assignment of each subset
to each team. The subset Si,j is assigned to a reducer r of each team t, 0 ≤ t < q, such that
(i+ tj)modulo q = r. An example for q = 3 and m = 9 is given in Figure 5.4.

S0,0 S0,1 S0,2

S1,0 S1,1 S1,2

S2,0 S2,1 S2,2

Team 0

S0,0

S0,1

S0,2

0

S1,0

S1,1

S1,2

1

S2,0

S2,1

S2,2

2

Team 1

S0,0

S1,2

S2,1

0

S0,1

S1,0

S2,2

1

S0,2

S1,1

S2,0

2

Team 2

S0,0

S1,1

S2,2

0

S

S1,0

S2,1

1

S0,2

S1,2

S2,0

2

Team 3

S0,0

S1,0

S2,0

0

S0,1

S1,1

S2,1

1

S0,2

S1,2

S2,2

2

Figure 5.4: The AU method for the reducer capacity p = 3 and m = 9.

Total required reducers. The AU method uses q(q+ 1) reducers, which are organized in the
form of q + 1 teams of q reducers in each team, and the communication cost is q2(q + 1).
A simple extension of the AU method. Now, we can extend the AU method as follows:
we can add q + 1 additional inputs, add one to each reducer and add one more reducer that
has the q + 1 new inputs. That gives us reducers of size q = q + 1 and m = q2 + q + 1, or
r(q2 + q + 1, q + 1) = q(q + 1) + 1 = q2 + q + 1. If you substitute m = q2 + q + 1 and
p = p + 1, you can check that this also meets the bound of r = m(m−1)

q(q−1) . In Figure 5.5, we
show a mapping schema for this extension to the AU method for q = 4 and m = 14.

Team 1

10

m = 13
A = {1, 2, . . . , 9}
B = {10, 11, . . . , 13}

1, 4, 7

102, 5, 8

103, 6, 9

q = 4

Team 2

111, 5, 9

112, 6, 7

113, 4, 8

Team 3

121, 6, 8

122, 4, 9

123, 5, 7

Team 4

131, 2, 3

134, 5, 6

137, 8, 9

10, 11, 12, 13

An extra reducer

1

Figure 5.5: An optimum mapping schema for q = 4 and m = 14 by extending the AU
method.

In conclusion, in this section we have shown the following:

Theorem 5.9 We can construct optimal mapping schemas for the following cases:

1. q = 2.

2. q = 3.

3. q being a prime number and m = q2.

4. q − 1 being a prime number and m = (q − 1)2 + q.

36

Open Problem: Can we generalize the last idea to get optimal schemas for more cases?
Approximation Algorithms for the A2A Mapping Schemas Problem. We can use the
optimal mapping schemas of Section 5.2 to construct good approximation of mappings
schemas in many cases. The general techniques, we will use in this section move along the
following dimensions/ideas:
• Assuming that there are no inputs of size greater than q

k
, construct bins of size q

k
, and

treat each of the bins as a single input of size 1 and assume the reducer capacity is k.
Then apply one of the optimal techniques of Section 5.2 to construct a mapping schema.
These algorithms are presented in Sections 5.3 and 5.5.
• Getting inspiration from the methods developed (or only presented – in the case of the AU

method) in Section 5.2.3, we extend the ideas to construct good approximation algorithms
for inputs that are all of equal size (see Sections 5.4.1 and 5.4.2).
Thus, in Sections 5.3, 5.4, and 5.5, we will give several such techniques and show that

some of them construct mapping schemas close to the optimal. To that end, we have already
shown a schema based on bin-packing algorithms in Section 5.1.1.

5.3 Generalizing the Technique for the Reducer Capacity
q > 3 and Inputs of Size ≤ q/k, k > 3

In this section, we will generalize the algorithm for q = 3 given in Section 5.2.2 and
present an algorithm (Algorithm 7) for inputs of size less than or equal to q

k
and k > 3. For

simplicity, we assume that k divides q evenly throughout this section.

5.3.1 Algorithm 7A

We divide Algorithm 7 into two parts based on the value of k as even or odd. Algorithm 7A
considers that k is an odd number. Pseudocode of Algorithm 7A is given in Appendix C.3.
Algorithm 7A works as follows:

First places all the given inputs, say m′, to some bins, say m, each of size q
k
, k > 3

is an odd number. Thus, a reducer can hold an odd number of bins. After placing all the
m′ inputs to m bins, we can treat each of the m bins as a single input of size one and the
reducer capacity to be k. Now, it is easy to turn the problem to a case similar to the case of
q = 3. Hence, we divide the m bins into two sets A and B, and follow a similar approach
as given in Section 5.2.2.

Aside. Equivalently, we can consider q to be odd and the inputs to be of unit size. In what
follows, we will continue to use q, which is an odd number, as the reducer capacity and

37

assume all inputs (that are actually bins containing inputs) are of unit size.

Example 5.10 If q = 30 and k = 5, then we can pack given inputs to some bins of size

6. Hence, a reducer can hold 5 bins. Equivalently, we may consider each of the bins as a

single input of size 1 and q = 5.

For understanding of Algorithm 7A, an example for q = 5 is presented in Figure 5.6,
where we obtain m = 23 bins (that are considered as 23 unit-sized inputs) after
implementing a bin-packing algorithm to given inputs.

Team 1

17

I = {1, 2, . . . , 23}
A[] = {1, 2, . . . , 16}
B[] = {17, 18, . . . , 23}

1, 2 3, 4 5, 6 7, 8 9, 10 11, 12 13, 14 15, 16

1, 2 9, 10

173, 4 11, 12

175, 6 13, 14

177, 8 15, 16

Team 2

181, 2 11, 12

183, 4 13, 14

185, 6 15, 16

187, 8 9, 10

Team 3

191, 2 13, 14

193, 4 15, 16

195, 6 9, 10

197, 8 11, 12

Team 4

201, 2 15, 16

203, 4 9, 10

205, 6 11, 12

207, 8 13, 14

Team 5

211, 2 5, 6

213, 4 7, 8

219, 10 13, 14

2111, 12 15, 16

Team 6

221, 2 7, 8

223, 4 5, 6

229, 10 15, 16

2211, 12 13, 14

Team 7

231, 2 3, 4

235, 6 7, 8

239, 10 11, 12

2313, 14 15, 16

y
2 = 8 groups

2117, 18 19, 20

2217, 18 19, 20

2317, 18 19, 20

21, 22, 23

Additional reducers for the set B

1

Figure 5.6: Algorithm 7 – an example of a mapping schema for q = 5 and 23 bins.

Algorithm 7A consists of six steps as follows:
1. Implement a bin-packing algorithm: Implement a bin-packing algorithm to place all the

given m′ inputs to bins of size q
k
, where k > 3 and the size of all the inputs is less than

or equal to q
k
. Let m bins are obtained, and now each of the bins is considered as a single

input.
2. Division of bins (or inputs) to two sets, A and B: Divide m inputs into two sets: A of

size y =
⌊
q
2

⌋
(
⌊

2m
q+1

⌋
+ 1) and B of size x = m− y.

3. Grouping of inputs of the set A: Group the y inputs into u =
⌈

y
q−dq/2e

⌉
disjoint groups,

where each group holds
⌈
q−1
2

⌉
inputs. (We consider each of the u (=

⌈
y

q−dq/2e
⌉
) disjoint

groups as a single input that we call the derived input. By making u disjoint groups3 (or
derived inputs) of y inputs of the set A, we turn the case of any odd value of q to a case

3We suppose that u is a power of 2. In case u is not a power of 2 and u > q, we add dummy inputs each of
size

⌈
q−1
2

⌉
so that u becomes a power of 2. Consider that we require d dummy inputs. If groups of inputs of

the set B each of size
⌈
q−1
2

⌉
are less than equal to d dummy inputs, then we use inputs of the set B in place of

dummy inputs, and the set B will be empty.

38

where a reducer can hold only three inputs, the first two inputs are pairs of the derived
inputs and the third input is from the set B.)

4. Assigning groups (inputs of the set A) to some reducers: Organize (u−1)×
⌈
u
2

⌉
reducers

in the form of u− 1 teams of
⌈
u
2

⌉
reducers in each team. Assign every two groups to one

of (u− 1)×
⌈
u
2

⌉
reducers. To do so, we will prove the following Lemma 5.11.

Lemma 5.11 Let q be the reducer capacity. Let the size of an input is
⌈
q−1
2

⌉
. Each pair

of u = 2i, i > 0, inputs can be assigned to 2i − 1 teams of 2i−1 reducers in each team.4

5. Assigning inputs of the set B) to the reducers: Once every pair of the derived inputs is
assigned, then assign ith input of the set B to all the reducers of ith team.

6. Use previous steps on the inputs of the set B: Apply (the above mentioned) steps 1-4 on
the set B until there is a solution to the A2A mapping schema problem for the x inputs.

Algorithm correctness. The algorithm correctness appears in Appendix C.5.1.

Theorem 5.12 (The communication cost obtained using Algorithm 7A or 7B) For

a given reducer capacity q > 1, k > 3, and a set of m inputs whose sum of sizes

is s, the communication cost, for the A2A mapping schema problem, is at most
q
2k

⌈
sk

q(k−1)
⌉
(
⌈

sk
q(k−1)

⌉
− 1).

The proof of the theorem is given in Appendix C.5.
Approximation factor. The optimal communication cost (from Theorem 5.2) is sb(sk

q
−

1)/k − 1c ≈ s2

q
· k
k−1 and the communication cost of the algorithm (from Theorem

5.12) is q
2k

⌈
sk

q(k−1)
⌉
(
⌈

sk
q(k−1)

⌉
− 1) ≈ s2k/q(k − 1)2. Thus, the ratio between the optimal

communication and the communication of our mapping schema is approximately 1
k−1 .

5.3.2 Algorithm 7B

For the sake of completeness, we include the pseudocode of the algorithm for handling
the case when k is an even number. We call it Algorithm 7B and pseudocode is given in
Appendix C.4. In this algorithm, we are given m′ inputs of size less than or equal to q

k
and

k ≥ 4 is an even number.
Similar to Algorithm 7A, Algorithm 7B first places all the m′ inputs to m bins, each of

size q
k
, k > 2 is an even number. Thus, a reducer can hold an even number of bins. After

placing all the m′ inputs to m bins, we can treat each of the m bins as a single input of size
one and the reducer capacity to be k. Now, we easily turn this problem to a case similar to
the case of q = 2. Hence, we divide the m bins into two set A and B, and follow a similar
approach as given in Section 5.2.1.

4The proof appears in Appendix C.5.

39

Example 5.13 If q = 30 and k = 6, then we can pack given inputs to some bins of size

5. Hence, a reducer can hold 6 bins. Equivalently, we may consider each of the bins as a

single input of size 1 and q = 6.

Note. Algorithms 7A and 7B are based on a fact that how do we pack inputs in a well

manner to bins of even or odd size. To understand this point, consider q = 30 and m′ = 46.
For simplicity, we assume that all the inputs are of size three. Now, consider k = 5, so we
will use 23 bins each of size 6 and apply Algorithm 7A. On the other, consider k = 6, so
we will use 46 bins each of size 5 and apply Algorithm 7B.

5.4 Generalizing the AU method

In this section, we extend the AU method (Section 5.2.3) to handle more than q2 inputs,
when q is a prime number, Algorithms 8 and 9. Recall that the AU method can assign
each pair of q2 inputs to reducers of capacity q. We provide two extensions: (i) take m =

p2 +p · l+ l identical-sized inputs and assign these inputs to reducers of capacity p+ l = q,
where p is the nearest prime number to q, in Section 5.4.1, and (ii) take m = ql inputs,
where l > 2, and assign inputs to reducers of capacity q, in Section 5.4.2. Pseudocodes of
Algorithms 8 and 9 are given in Appendix C.6 and Appendix C.7, respectively.

5.4.1 When we consider the nearest prime to q

We provide an extension to the AU method that handles m = p2 + p · l + l identical-sized
inputs and assigns them to reducers of capacity p + l = q, where p is the nearest prime
number to q. We call it the first extension to the AU method (Algorithm 8).
Algorithm 8: The First Extension of the AU method. We extend the AU method by
increasing the reducer capacity and the number of inputs, see Algorithm 8. Consider that
the AU method assigns p2 identical-sized inputs to reducers of capacity p, where p is a
prime number. We add l(p+ 1) inputs and increase the reducer capacity to p+ l (= q).

In other words, m identical-sized inputs and the reducer capacity q are given. We select
a prime number, say p, that is near most to q such that p + l = q and p2 + l(p + 1) ≤ m.
Also, we divide the m inputs into two disjoint sets A and B, where A holds at most p2

inputs and B holds at most l(p+ 1) inputs.
Algorithm 8 consists of six steps, as follows:

1. Divide the given m inputs into two disjoint sets A of y = p2 inputs and B of x = m− y
inputs, where p is the nearest prime number to q such that p+l = q and p2+l(p+1) ≤ m.

2. Perform the AU method on the inputs of the set A by placing y inputs to p+ 1 teams of p
bins in each team, where the size of each bin is p.

40

3. Organize p(p + 1) reducers in the form of p + 1 teams of p reducers in each teams, and
assign jth bin of ith team of bins to jth reducer of ith team of reducers.

4. Group the x inputs of the set B into u =
⌈

x
q−p
⌉

disjoint groups.
5. Assign ith group to all the reducers of ith team.
6. Use Algorithm 7A or Algorithm 7B to make each pair of inputs of the set B, depending

on the case of the value of q, which is either an odd or an even number, respectively.
Note that when we perform the above mentioned step 3, we assign each pair of inputs of
the set A to p(p + 1) reducers, and such an assignment uses p capacity of each reducer.
Now, each of p(p+1) reducers has q−p remaining capacity that is used to assign ith group
of inputs of the set B. Thus, all the inputs of the set A are assigned with all the m inputs.
Algorithm correctness. The algorithm correctness appears in Appendix C.6.1.

Theorem 5.14 (The communication cost obtained using Algorithm 8) Algorithm 8

requires at most p(p + 1) + z reducers, where z = 2l2(p+1)2

q2
, and results in at most

qp(p + 1) + z′ communication cost, where z′ = 2l2(p+1)2

q
, q is the reducer capacity, and p

is the nearest prime number to q.

The proof of the theorem is given in Appendix C.6. When l = q − p equals to one, we
have provided an extension of the AU method in Section 5.2.3, and in this case, we have an
optimum mapping schema for q and m = q2 + q + 1 inputs.
Approximation factor. The optimal communication cost using the AU method is q2(q + 1).
Thus, the difference between the communication of our mapping schema (q2(q + 1) + z′,
when assuming p is equal to q) and the optimal communication is z′. We can see two cases,
as follows:
1. When q is large. Consider that q is greater than square or cube of the maximum difference

between any two prime numbers. In this case, z′ will be very small, and we will get
almost optimal ratio.

2. When q is very small. In this case, then z′ plays a role as follows: here, the number of
inputs in the set B will be at most (p+ 1)l < q2. Thus, the ratio becomes q/(q + 1).

5.4.2 For input size m = ql

We also provide another extension to the AU method that handles m = ql identical-sized
inputs and assigns them to reducers of capacity q, where q is a prime number and l > 2.
We call it the second extension to the AU method (Algorithm 9, refer to Appendix C.7).
Algorithm 9: The Second Extension of the AU method. The second extension to the AU

method (Algorithm 9) handles a case when m = ql, where l > 2 and q is a prime number.
We present Algorithm 9 for m = ql, l > 2, inputs and the reducer capacity q, where q is a

41

prime number. Nevertheless, m inputs that are less than but close to ql can also be handled
by Algorithm 9 by adding dummy inputs such that m = ql, l > 2.

Algorithm 9 consists of two phases, as follows:

The first phase: creation of a bottom up tree. Here, we present a simple example for the
bottom-up tree’s creation for q = 3 and m = 34; see Figure 5.7.

1 4 7

2 5 8

3 6 9

10 13 16

11 14 17

12 15 18

19 22 25

20 23 26

21 24 27

28 31 34

29 32 35

30 33 36

37 40 43

38 41 44

39 42 45

46 49 52

47 50 53

58 51 54

55 58 61

56 59 62

57 60 63

64 67 70

65 68 71

66 69 72

73 76 79

74 77 80

75 78 81

𝑐1
3 𝑐4

3 𝑐7
3

𝑐2
3 𝑐5

3 𝑐6
3

𝑐3
3 𝑐6

3 𝑐9
3

𝑐10
3 𝑐13

3 𝑐16
3

𝑐11
3 𝑐14

3 𝑐17
3

𝑐12
3 𝑐15

3 𝑐18
3

𝑐19
3 𝑐22

3 𝑐25
3

𝑐21
3 𝑐23

3 𝑐26
3

𝑐20
3 𝑐24

3 𝑐27
3

𝑐1
2 𝑐4

2 𝑐7
2

𝑐2
2 𝑐5

2 𝑐8
2

𝑐3
2 𝑐6

2 𝑐9
2 Level 1

Level 2

Level 3

𝑐1
3

𝑐2
3 𝑐3

2 𝑐4
3 𝑐5

3 𝑐6
3 𝑐7

3
𝑐8
3 𝑐9

3 𝑐10
3 𝑐11

3 𝑐12
3 𝑐13

3 𝑐14
3 𝑐15

3 𝑐16
3 𝑐17

3 𝑐18
3 𝑐19

3 𝑐20
3 𝑐21

3 𝑐21
3 𝑐22

3 𝑐23
3

𝑐1
2 𝑐2

2 𝑐3
2

𝑐24
3 𝑐24

3 𝑐24
3

𝑐4
2 𝑐5

2 𝑐5
2 𝑐7

2 𝑐8
2 𝑐9

2

𝑐1
1 𝑐2

1 𝑐3
1

Figure 5.7: The second extension of the AU method (Algorithm 9): Phase 1 – Creation of the
bottom-up tree.

Example 5.15 (Bottom-up tree creation) A bottom-up tree for m = ql = 34

identical-sized inputs and q = 3 is given in Figure 5.7. Here, we explain how we

constructed it.

The height of the bottom up tree is l − 1, and the last (l − 1)th level has m inputs

in the form of m
q2

matrices of size q × q. Note that we have m
q

columns at the last level,

which holds m inputs; and these m
q

columns are called the input columns. We create the

tree in bottom-up fashion, where (l − 2)th level has m
q3

matrices, whose each cell value

refers to a input column of (l − 1)th level. We use a notation to refer a column of ith

level by cij , where j is column index. Note that each column, cij , at level i holds q columns

(ci+1
(j−1)q+1, c

i+1
(j−1)q+2, . . . c

i+1
jq) of (i+ 1)th level. In general, there are m

ql−i+2 matrices at level

i, whose each cell value, cij , refers to a column, ci+1
j , of (i+ 1)th level.

Following that the bottom-up tree for m = 34 identical-sized inputs and q = 3 has

height 3. The last level ((l − 1)th = 3rd) has 81 inputs in the form of m
q2

= 9 matrices of

size 3× 3. Note that we have m
q

= 24 columns at 3rd level; called the input columns. The

l − 2 = 2ed level has m
q3

= 3 matrices, whose each column, c2j , refers to q = 3 columns

(c3(j−1)q+1, c
3
(j−1)q+2, . . . c

3
jq) of 3rd level. Further, the root node is at level 1, whose each

column, c1j , refers to q = 3 columns (c2(j−1)q+1, c
2
(j−1)q+2, . . . c

2
jq) of 2ed level.

The second phase: creation of an assignment tree. The assignment tree is created in
top-down fashion. Our objective is to assign each pair of inputs to a reducer, where inputs

42

are arranged in the input columns of the bottom-up tree. If we can assign each pair of
input columns (of the bottom-up tree) in the form of (q × q)-sized matrices, then the
implementation of the AU method on each such matrices results in an assignment of every
pair of inputs to reducers. Hence, we try to make pairs of all the input columns by creating
a tree called the assignment tree.

Here, we present a simple assignment tree for m = 34 and q = 3 (see Figure 5.8).

𝑐1
2 𝑐4

2 𝑐7
2

𝑐2
2 𝑐5

2 𝑐8
2

𝑐3
2 𝑐6

2 𝑐9
2

𝑐1
1 𝑐2

1 𝑐3
1

𝑐1
3 𝑐13

3 𝑐25
3

𝑐2
3 𝑐14

3 𝑐26
3

𝑐3
3 𝑐15

3 𝑐27
3

𝑐1
2 𝑐5

2 𝑐9
2

𝑐4
3 𝑐16

3 𝑐19
3

𝑐5
3 𝑐17

3 𝑐20
3

𝑐6
3 𝑐18

3 𝑐21
3

𝑐2
2 𝑐6

2 𝑐7
2

𝑐7
3 𝑐10

3 𝑐22
3

𝑐8
3 𝑐11

3 𝑐23
3

𝑐9
3 𝑐12

3 𝑐24
3

𝑐3
2 𝑐4

2 𝑐8
2

𝑐1
3 𝑐17

3 𝑐22
3

𝑐2
3 𝑐18

3 𝑐23
3

𝑐3
3 𝑐19

3 𝑐24
3

𝑐1
2 𝑐6

2 𝑐8
2

𝑐4
3 𝑐10

3 𝑐25
3

𝑐5
3 𝑐11

3 𝑐26
3

𝑐6
3 𝑐12

3 𝑐27
3

𝑐2
2 𝑐4

2 𝑐9
2

𝑐7
3 𝑐13

3 𝑐19
3

𝑐8
3 𝑐14

3 𝑐20
3

𝑐9
3 𝑐15

3 𝑐21
3

𝑐3
2 𝑐5

2 𝑐7
2

𝑐1
3 𝑐4

3 𝑐7
3

𝑐2
3 𝑐5

3 𝑐8
3

𝑐3
3 𝑐6

3 𝑐9
3

𝑐1
2 𝑐2

2 𝑐3
2

𝑐10
3 𝑐13

3 𝑐16
3

𝑐11
3 𝑐14

3 𝑐17
3

𝑐12
3 𝑐15

3 𝑐18
3

𝑐4
2 𝑐5

2 𝑐6
2

𝑐19
3 𝑐22

3 𝑐25
3

𝑐20
3 𝑐23

3 𝑐26
3

𝑐21
3 𝑐24

3 𝑐27
3

𝑐7
2 𝑐8

2 𝑐9
2

1 49 67

2 50 68

3 51 69

𝑐1
3 𝑐17

3 𝑐22
3

4 52 70

5 53 71

6 54 72

𝑐2
3 𝑐18

3 𝑐23
3

7 55 73

8 56 74

9 57 75

𝑐3
3 𝑐19

3 𝑐24
3

1 52 73

2 53 74

3 54 75

𝑐1
3 𝑐18

3 𝑐24
3

4 55 67

5 56 68

6 57 69

𝑐2
3 𝑐19

3 𝑐22
3

7 49 70

8 50 71

9 51 72

𝑐3
3 𝑐17

3 𝑐23
3

1 55 70

2 56 71

3 57 72

𝑐1
3 𝑐19

3 𝑐23
3

4 49 73

5 50 74

6 51 75

𝑐2
3 𝑐17

3 𝑐24
3

7 52 67

8 53 68

9 54 69

𝑐3
3 𝑐18

3 𝑐22
3

1 4 7

2 5 8

3 6 9

𝑐1
3 𝑐2

3 𝑐3
3

49 52 55

50 53 56

51 54 57

𝑐17
3 𝑐18

3 𝑐19
3

67 70 73

68 71 74

69 72 75

𝑐22
3 𝑐23

3 𝑐24
3

𝑐1
3 𝑐10

3 𝑐19
3

𝑐2
3 𝑐11

3 𝑐20
3

𝑐3
3 𝑐12

3 𝑐21
3

𝑐1
2 𝑐4

2 𝑐7
2

𝑐4
3 𝑐13

3 𝑐22
3

𝑐5
3 𝑐14

3 𝑐23
3

𝑐6
3 𝑐15

3 𝑐24
3

𝑐2
2 𝑐5

2 𝑐8
2

𝑐7
3 𝑐16

3 𝑐25
3

𝑐8
3 𝑐17

3 𝑐26
3

𝑐9
3 𝑐18

3 𝑐27
3

𝑐3
2 𝑐6

2 𝑐9
2

… …

Level 1

Level 2

Level 3

Level 4

7

8

9

49

50

51

70

71

72

… …7

51

71

8

49

72

9

50

70

7

50

72

8

51

70

9

49

71

7

49

70

8

50

71

9

51

72

Figure 5.8: The second extension of the AU method (Algorithm 9): Phase 2 – Creation of the
assignment tree.

Example 5.16 (Assignment tree creation) The root node of the bottom-up tree becomes

the root node the assignment tree. Recall that the root node of the bottom-up tree is a q× q
matrix. First, consider the root node to understand the working of the AU method to create

the assignment tree. Consider that each cell value of the root node matrix is of size one,

and we have (q + 1) teams of q bins (of size q) in each team. Our objective to use the AU
method on the root node matrix is to assign each pair of cell values (〈c2x, c2y〉) in q(q + 1)

bins that results in an assignment of every pair of cell values 〈c2x, c2y〉 at a bin.

Now, we create matrices by using these bins (the bins created by the AU method’s

implementation on the root node) that are holding the indices of columns of the second level

(c2x) of the bottom-up tree. We take each bin and its q indices c2j , c
2
j+1, . . . c

2
j+q. We replace

each c2j with q columns as: c3(j−1)q+1, c
3
(j−1)q+2, . . . c

3
jq that results in q(q + 1) matrices of

size q × q, and these q(q + 1) matrices become child nodes of the root node. Now, we

consider each such matrix separately and perform a similar operation as we did for the

root node.

43

In this manner, the AU method creates (q(q + 1))i−1 child nodes (that are matrices

of size q × q) at ith level of the assignment tree, and they create (q(q + 1))i child nodes

(matrices of size q × q) at (i+ 1)th level of the assignment tree.

Recall that there are m
q

input columns at (l − 1)th level of the bottom-up tree that hold

the original m inputs. The implementation of the AU method on each node (q × q-sized)

matrix of (l−2)th level of the assignment tree assigns each pair of input columns at (l−1)th

level of the assignment tree. Further the AU method’s implementation on each matrix of

(l − 1)th level assigns every pairs of the original inputs to ql × (q + 1)l−1 reducers at lth

level, which have reducers in the form of (q(q + 1))l−1 teams of q reducers in each team.

For m = 34 identical-sized inputs and q = 3, we take the root node of the bottom-up

tree (Figure 5.7) that becomes the root node of the assignment tree. We implement the

AU method on the root node and assign each pair of cell values (c2j , 1 ≤ j ≤ 9)

to a bin of size q. Each cell value of the bins (c2j) is then placed by q = 3 columns

c3(j−1)q+1, c
3
(j−1)q+2, . . . c

3
jq that results in an assignment of each pair of columns of the

second level of the bottom-up tree. For clarity, we are not showing bins. For the next

3rd level, we again implement the AU method on all 12 matrices at 2nd level and get 144

matrices at the third level. The matrices at 3rd level are pairs of each input columns (of

the bottom-up tree). The AU method’s implementation on each matrix of 3rd level assigns

each pair of original inputs to reducers. For clarity, we are only showing all the matrixes

and teams at levels 3 and 4, respectively.

1

2

𝑘(𝑘 + 1)

𝑞(𝑞 + 1)𝑘−2

1

21

21

𝑘(𝑘 + 1)

𝑘 𝑘 + 1 + 1 𝑘 𝑘 + 1 +2 2𝑘(𝑘 + 1) (𝑘 𝑘 + 1)𝑙−1

…

…

………

…

… …

…
…… … …

…

Matrix of order 𝒌 × 𝒌 Level 1

Level 2

Level l-1

Level lTeams

Figure 5.9: An assignment tree created using Algorithm 9.

The assignment tree uses the root node of the bottom up tree, and we implement the AU

method on the root node that results in q(q + 1) child nodes at level two. Each child node
is a q × q matrix, and the columns of all the q(q + 1) matrices provide all-pairs of the cell
values of the root node matrix. At level i, the assignment tree has (q(q + 1))i−1 nodes, see
Figure 5.9. The height of the assignment tree is l, where (l−1)th level has all-pairs of input

columns and lth level has a solution to the A2A mapping schema problem for m inputs.
Algorithm correctness. Algorithm 9 satisfies the following Lemma 5.17:

Lemma 5.17 The height of the assignment tree is l, and lth level of the assignment tree

assigns each pairs of inputs to reducers.

44

Theorem 5.18 (The communication cost obtained using Algorithm 9) Algorithm 9

requires at most q × (q(q + 1))l−1 reducers and results in at most q2 × (q(q + 1))l−1

communication cost.

The proof of the theorem is given in Appendix C.7.
Approximation factor. The optimal communication is m(m−1)

q−1 (see Theorem 5.4). Replacing
m with ql we get ql(ql − 1)/(q − 1). Thus, the ratio between the optimal communication
and the communication of our mapping schema is (ql − 1)/q(q− 1)(q+ 1)l−1. We can see
two cases:
1. When q is large. Then we drop the constant 1 and the ratio is approximately equal to 1

q
.

2. When q is very small compared to ql. Then the ratio is ql/q(q − 1)(q + 1)l−1.
For q = 5, the inverse of the ratio is approximately (6/5)l−1. This is already acceptable
for practical applications if we think that the size of data is 5l, thus l may as well be
l = 9, in which case this ratio is approximately 4.3. For q = 2 and q = 3 we already have
optimal mappings schemas. Our conjecture is that there are optimal schemas for q = 4

and q = 5 even by using the techniques developed and presented here.

5.5 A Hybrid Algorithm for the A2A Mapping Schema
Problem

In the previous sections, we provide algorithms for different-sized and almost equal-sized
inputs. The hybrid approach considers both different-sized and almost equal-sized inputs
together. The objective of the hybrid approach is to place inputs to two different-sized bins,
and then consider each of the bins as a single input.

Specifically, the hybrid approach uses the previously given algorithms
(bin-packing-based approximation algorithm) and Algorithms 7A, 7B, 8, 9. We
divide the given m inputs into two disjoint sets according to their input size, and then use
the bin-packing-based approximation algorithm and Algorithms 7A, 7B, 8, or 9 depending
on the size of inputs.
Hybrid Algorithm. We divide m inputs into two sets A that holds the input i of size
q
3
< wi ≤ q

2
, and B holds all the inputs of sizes less than or equal to q

3
. The algorithm

consists of four steps, as follows:
1. Use the bin-packing-based approximation algorithm to place all the inputs of:

(a) the set A to bins of size q
2
, and each such bin is considered as a single input of size q

2

that we call the big input. Consider that x big inputs are obtained.
(b) the set B twice, first to bins of size q

2
, where each bin is considered as a single input

of size q
2

that we call the medium input, and second, to bins of size q
3
, where each bin

45

𝑖1, 𝑖2 𝑖3, 𝑖4 𝑖5, 𝑖6

𝑖7

𝑖9, 𝑖10 𝑖8

𝑖11, 𝑖12 𝑖13

𝑖14

𝑖15

𝑖16𝑖5, 𝑖6, 𝑖9

𝑖7, 𝑖10

𝑖8, 𝑖12

𝑖11, 𝑖14

𝑖13

𝑖15

𝑖16

Big inputs (size  q/2) Medium inputs (size  q/2) Small inputs (size  q/3)

𝑖1, 𝑖2 𝑖5, 𝑖6, 𝑖9

𝑖11, 𝑖14

𝑖1, 𝑖2

𝑖1, 𝑖2

𝑖1, 𝑖2

𝑖1, 𝑖2

𝑖1, 𝑖2

𝑖1, 𝑖2

𝑖7, 𝑖10

𝑖8, 𝑖12

𝑖13

𝑖15

𝑖16

𝑖3, 𝑖4 𝑖5, 𝑖6, 𝑖9

𝑖3, 𝑖4

𝑖3, 𝑖4

𝑖3, 𝑖4

𝑖3, 𝑖4

𝑖3, 𝑖4

𝑖3, 𝑖4

𝑖7, 𝑖10

𝑖8, 𝑖12

𝑖13

𝑖15

𝑖16

𝑖5, 𝑖6

𝑖7

𝑖9, 𝑖10 𝑖8

𝑖11, 𝑖12 𝑖13

𝑖14

𝑖15

𝑖16

𝑖11, 𝑖14 𝑖5, 𝑖6

𝑖8

𝑖16 𝑖15

𝑖11, 𝑖12 𝑖9, 𝑖10

𝑖14

𝑖7

𝑖13

𝑖5, 𝑖6

𝑖15

𝑖13 𝑖7

𝑖14 𝑖9, 𝑖10

𝑖5, 𝑖6

𝑖13

𝑖14 𝑖11, 𝑖12

𝑖8 𝑖7

𝑖9, 𝑖10

𝑖15

𝑖16

An assignment of each pair of the big and medium inputs

An assignment of each pair of the small inputs

using the AU method

𝑖8𝑖11, 𝑖12 𝑖16

𝑖1, 𝑖2 𝑖3, 𝑖4

Assignment of big inputs

Figure 5.10: An example to show the working of the hybrid algorithm. We are given 15
inputs, where inputs i1 to i4 are of sizes greater than q

3
, and all the other inputs are of sizes

less than or equal to q
3
.

is also considered as a single input of size q
3

that we call the small input. Consider
that y medium and z small inputs are obtained.

2. Use x(x−1)
2

reducers to assign each pair of big inputs.
3. Use x× y reducers to assign each big input with each medium input.
4. Use the AU method, Algorithm 7A, 8, or 9 on the z small inputs, depending on the case,

to assign each pair of small inputs.
We present an example to illustrate the hybrid algorithm in Figure 5.10. Note that the

use of x(x−1)
2

reducers assigns each pair of original inputs whose size between q
3

and q
2
.

Also by using x × y reducers, we assign each big input (or original inputs whose size is
between q

3
and q

2
) with each original input whose size is less than q

3
. Further, the AU method,

Algorithm 7A, 8, or Algorithm 9 assigns each pair of original inputs whose size is less than
or equal to q

3
.

Algorithm correctness. The algorithm correctness shows that every pair of inputs is
assigned to reducers. Specifically, the algorithm correctness shows that each pair of the
big inputs is assigned to reducers, each of the big inputs is assigned to reducers with each
of the medium inputs, and each pair of the small inputs is assigned to reducers.

5.6 Approximation Algorithms for the A2A Mapping
Schema Problem with an Input > q/2

In this section, we consider the case of an input of size wi, q
2
< wi < q; we call such an

input as a big input. Note that if there are two big inputs, then they cannot be assigned to

46

a single reducer, and hence, there is no solution to the A2A mapping schema problem. We
assume m inputs of different sizes are given. There is a big input and all the remaining
m − 1 inputs, which we call the small inputs, have at most size q − wi. We consider the
following three cases in this section:
1. The big input has size wi, where q

2
< wi ≤ 2q

3
,

2. The big input has size wi, where 2q
3
< wi ≤ 3q

4
,

3. The big input has size wi, where 3q
4
< wi < q.

The communication cost is dominated by the big input. We consider three different
cases of the big input to provide efficient algorithms in terms of the communication cost,
where the first two cases can assign inputs to almost an optimal number of reducers, which
results in almost minimum communication cost. We use the previously given algorithms to
provide a solution to the A2A mapping schema problem for the case of a big input.

A simple solution is to use FFD or BFD bin-packing algorithm to place the small inputs
to bins of size q−wi. Now, we consider each of the bins as a single input of size q−wi. Let
x bins are used. We assign each of the x bins to one reducer with a copy of the big input.
Further, we assign the small inputs to bins of size q

2
, and consider each of such bins as a

single input of size q
2
. Now, we can assign each pair of bins (each of size q

2
) to reducers. In

this manner, each pair of inputs is assigned to reducers.
The big input of size q

2
< wi ≤ 2q

3
. In this case, we assume that the small inputs have at

most q
3

size. We use FFD or BFD bin-packing algorithm, the AU method (Section 5.2.3),
and Algorithms 8, 9 (Section 5.4). We proceed as follows:
1. First assign the big input with the small inputs.

(a) Use a bin-packing algorithm to place the small inputs to bins of size q
3
. Now, we

consider each of the bins as a single input of size q
3
.

(b) Consider that x bins are used. Assign each of the bins to one reducer with a copy of
the big input.

2. Depending on the number of bins, we use the AU method, and Algorithms 8, 9 to assign
each pair of the small inputs to reducers.

An example is given in Figure 5.11, where we place the small inputs to 9 bins of size q
3

and
assign each of the bins to one reducer with a copy of the big input. Further, we implement
the AU method on 9 bins to assign each pair of the small inputs.
The big input of size 2q

3
< wi ≤ 3q

4
. In this case, we assume that the small inputs have

at most q
4

size. We use a bin-packing algorithm and Algorithms 7B (Sections 5.3). We
proceed as follows:
1. First assign the big input with the small inputs.

(a) Use a bin-packing algorithm to place the small inputs to bins of size q
4
.

(b) Consider that x bins are used. Assign each of the bins to one reducer with a copy of

47

𝑖1 𝑖5, 𝑖6

𝑖7

𝑖9, 𝑖10 𝑖8

𝑖11, 𝑖12 𝑖13

𝑖4

𝑖3

𝑖2

A big input (size > q/2)

Small inputs (size  q/3)

𝑖1 𝑖5, 𝑖6

𝑖1

𝑖1

𝑖1

𝑖1

𝑖7

𝑖8

𝑖13

𝑖4

𝑖5, 𝑖6

𝑖7

𝑖9, 𝑖10 𝑖8

𝑖11, 𝑖12 𝑖13

𝑖4

𝑖3

𝑖2

𝑖5, 𝑖6

𝑖8

𝑖2 𝑖3

𝑖4 𝑖13

𝑖5, 𝑖6

𝑖3

𝑖13 𝑖7

𝑖4 𝑖9, 𝑖10

𝑖5, 𝑖6

𝑖13

𝑖4 𝑖11, 𝑖12

𝑖9, 𝑖10 𝑖2

An assignment of each small

input with the big input

An assignment of each pair of the small inputs

using the FU’s method𝑖1

𝑖1

𝑖3

𝑖2

𝑖11, 𝑖12 𝑖2 𝑖8

𝑖8 𝑖7 𝑖3

𝑖1

𝑖1

𝑖9, 𝑖10

𝑖11, 𝑖12

𝑖11, 𝑖12 𝑖9, 𝑖10 𝑖7

Figure 5.11: An example to show an assignment of a big input of size q
2
< wi ≤ 2q

3
with all

the remaining inputs of sizes less than or equal to q
3
.

the big input.
2. Depending on the number of bins, we use Algorithm 7B to assign each pair of small

inputs.
The big input of size 3q

4
< wi < q. In this case, we assume that the small inputs have at

most q − wi size. In this case, we use a bin-packing algorithm and place the small inputs
to bins of size q − wi. We then place each of the bins to one reducer with a copy of the big
input. Note that, we have not assigned each pair of small inputs. In order to assign each
pair of small inputs, we use the bin-packing-based approximation algorithm (Section 5.1.1)
or Algorithms 7A- 9 depending on size of the small inputs.

Theorem 5.19 (Upper bounds from algorithms) For a list ofm inputs where a big input,

i, of size q
2
< wi < q and for a given reducer capacity q, q < s′ < s, an input is replicated

to at mostm−1 reducers for the A2A mapping schema problem, and the number of reducers

and the communication cost are at mostm−1+ 8s2

q2
and (m−1)q+ 4s2

q
, respectively, where

s′ is the sum of all the input sizes except the size of the big input and s is the sum of all the

input sizes.

The proof of the theorem is given in Appendix C.8.
Approximation factor. The optimal communication cost (from Theorem 5.1) is s2/q and the
communication cost of the algorithm (from Theorem 5.19) is (m− 1)q + 4s2/q. Thus, the
ratio between the optimal communication and the communication of our mapping schema
is approximately s2

mq2
.

48

5.7 An Approximation Algorithm for the X2Y Mapping
Schema Problem

We propose an approximation algorithm for the X2Y mapping schema problem that is based
on bin-packing algorithms. Two lists, X of m inputs and Y of n inputs, are given. We
assume that the sum of input sizes of the lists X , denoted by sumx, and Y , denoted by
sumy, is greater than q. We analyze the algorithm on criteria (number of reducers and the
communication cost) given in Section 5.1. We look at the lower bounds in Theorem 5.20,
and Theorem 5.21 gives an upper bound from the algorithm. The bounds are given in
Table 5.1.

Theorem 5.20 (Lower bounds on the communication cost and number of reducers)
For a list X of m inputs, a list Y of n inputs, and a given reducer capacity q, the

communication cost and the number of reducers, for the X2Y mapping schema problem,

are at least 2·sumx·sumy
q

and 2·sumx·sumy
q2

, respectively.

The proof of the theorem is given in Appendix C.9.
Bin-packing-based approximation algorithm for the X2Y mapping schema problem. A
solution to the X2Y mapping schema problem for different-sized inputs can be achieved
using bin-packing algorithms. Let two listsX ofm inputs and Y of n inputs are given. The
algorithm will not work when a list holds an input of size wi and the another list holds an
input of size greater than q−wi, because these inputs cannot be assigned to a single reducer
in common. Let the size of the largest input, i, of the list X is wi; hence, all the inputs of
the list Y have at most size q − wi. We place inputs of the list X to bins of size wi, and let
x bins are used to place m inputs. Also, we place inputs of the list Y to bins of size q−wi,
and let y bins are used to place n inputs. Now, we consider each of the bins as a single
input, and a solution to the X2Y mapping schema problem is obtained by assigning each of
the x bins with each of the y bins to reducers. In this manner, we require x · y reducers.

Theorem 5.21 (Upper bounds from the algorithm) For a bin size b, a given reducer

capacity q = 2b, and with each input of lists X and Y being of size at most b, the number

of reducers and the communication cost, for the X2Y mapping schema problem, are at most
4·sumx·sumy

b2
, and at most 4·sumx·sumy

b
, respectively, where sumx is the sum of input sizes of

the list X , and sumy is the sum of input sizes of the list Y .

The proof of the theorem is given in Appendix C.9.
Approximation factor. The optimal communication is 2·sumx·sumy

q
. Thus, the ratio between

the optimal communication and the communication of our mapping schema is 1
4
.

49

Chapter 6

Meta-MapReduce

In the previous chapter, we investigated impacts on the communication cost when the
locations of input data and MapReduce computations are identical. However, ensuring
an identical location of data and mappers-reducers cannot always be guaranteed. It may be
possible that a user has a single local machine and wants to enlist a public cloud to help data
processing. Consequently, in both the cases, it is required to move data to the location of
mappers-reducers. Interested readers may refer to examples of MapReduce computations
where the locations of data and mappers-reducers are different in our review paper [44].

In order to motivate and demonstrate the impact of different locations of data and
mappers-reducers, we consider a real example of Amazon Elastic MapReduce1. Amazon
Elastic MapReduce (EMR) processes data that is stored in Amazon Simple Storage Service
(S3)2, where the locations of EMR and S3 are not identical. Hence, it is required to move
data from S3 to the location of EMR. However, moving the whole dataset from S3 to EMR
is not efficient if only small specific part of it is needed for the final output.

In this chapter, we are interested in minimizing the data transferred in order to avoid
communication and memory overhead, as well as to protect data privacy as much as
possible. In MapReduce, we transfer inputs to the site of mappers-reducers from the site of
the user, and then, several copies of inputs from the map phase to the reduce phase in each
iteration, regardless of their involvement in the final output. If few inputs are required to
compute the final output, then it is not communication efficient to move all the inputs to the
site of mappers-reducers, and then, the copies of same inputs to the reduce phase. There
are some works that consider the location of data [94, 96] in a restrictive manner and some
works [15, 41, 86] that consider data movement from the map phase to the reduce phase.
Motivating Example: Equijoin of two relations X(A,B) and Y (B,C). Problem

statement: The join of relations X(A,B) and Y (B,C), where the joining attribute is B,

1http://aws.amazon.com/elasticmapreduce/
2http://aws.amazon.com/s3/

50

provides output tuples 〈a, b, c〉, where (a, b) is in A and (b, c) is in C. In the equijoin of
X(A,B) and Y (B,C), all tuples of both the relations with an identical value of the attribute
B should appear together at the same reducer for providing the final output tuples.

Communication cost analysis: We now investigate the impact of different locations
of the relations and mappers-reducers on the communication cost. In Figure 6.1, the
communication cost for joining of the relations X and Y — where X and Y are located at
two different clouds and equijoin is performed on a third cloud — is the sum of the sizes
of all three tuples of each relation that are required to move from the location of the user to
the location of mappers, and then, from the map phase to the reduce phase. Consider that
each tuple is of unit size, and hence, the total communication cost is 12 for obtaining the
final output.

X

Y

Z

Mapper 1

Mapper 2

Mapper 3

Mapper 4

Mapper 5

Reducer for b1

Reducer for b2

Reducer for b3

b1, a1

b1, a2

b2, a3

b1, c1

b1, c2

A B

a1 b1

a2 b1

a3 b2

B C

b1 c1

b1 c2

b3 c3 Mapper 6 b3, c3

A B C

a1 b1 c1

a1 b1 c2

a2 b1 c1

a2 b1 c2

Figure 6.1: Equijoin of relations X(A,B) and Y (B,C).

However, if there are a few tuples having an identicalB-value in both the relations, then
it is useless to move the whole relations from the user’s location to the location of mappers,
and then, tuples from the map phase to the reduce phase. In Figure 6.1, two tuples of X
and two tuples of Y have a common B value (i.e., b1). Hence, it is not efficient to send
tuples having values b2 and b3, and by not sending tuples with B values b2 and b3, we can
reduce the communication cost.

6.1 The System Setting

The system setting is an extension of the settings presented in Section 4.2, where we
consider for the first time the locations of data and mappers-reducers. The setting is
suitable for a variety of problems where at least two inputs are required to produce an
output. In order to produce an output, we use the definition of the mapping schema, given
in Section 4.2.

The Model. The model is simple but powerful and assumes the following:

51

1. Existence of systems such as Spark, Pregel, or modern Hadoop.
2. A preliminary step at the user site who owns the dataset for finding metadata3 that has

smaller memory size than the original data.
3. Approximation algorithms (given in Chapter 5), at the cloud or the global reducer in

case of Hierarchical MapReduce [82]. The approximation algorithms assign outputs of
the map phase to reducers and regards the reducer capacity. Particularly, in our case,
approximation algorithms will assign metadata to reducers in such a manner that the size
of actual data at a reducer will not exceed than the reducer capacity and all the inputs that
are required to produce outputs must be assign at one reducer in common.
It should be noted that we are enhancing MapReduce and not creating entirely a new

framework for large-scale data processing; thus, Meta-MapReduce is implementable in the
state-of-the art MapReduce systems such as Spark, Pregel, or modern Hadoop.

6.2 Meta-MapReduce: Description

The idea behind the proposed technique is to process metadata at mappers and reducers,
and process the original required data at required iterations of a MapReduce job at reducers.
In this manner, we suggest to process metadata at mappers and reducers at all the iterations
of a MapReduce job. Therefore, the proposed technique is called Meta-MapReduce4

We need to redefine the communication cost, which was defined in Section 4.1, to take
into account the size of the metadata, the total amount of the (required) original data, and
different locations of data and computations.
The communication cost for metadata and data. In the context of Meta-MapReduce,
the communication cost is the sum of the following:
Metadata cost The total amount of metadata that is required to move from the location of

users to the location of mappers (if the locations of data and mappers are different) and
from the map phase to the reduce phase in each iteration of MapReduce job.

Data cost The total amount of required original data that is needed to move to reducers at
required iterations of a MapReduce job.

In Meta-MapReduce, users send metadata to the site of mappers, instead of original
data, see Figure 6.2. Now, mappers and reducers work on metadata, and at required
iterations of a MapReduce job, reducers call required original data from the site of users
(according to assigned 〈key , value〉 pairs) and provide the desired result. The detailed

3The term metadata is used in a different manner, and it represents a small subset, which varies according
to tasks, of the dataset. The selection of metadata depends on the problem.

4The proposed algorithmic technique is similar to Bloomjoin [83, 25]. However, due to distributed nature
of data in a MapReduce job, it is not trivial to apply Bloom filters in MapReduce [75].

52

execution of Meta-MapReduce is given below:

Chunk1
Meta-

data
Original input

data

Step 4: Call Function: Data

request and data transmission

Step 2:

Meta-data

transmission

Split1

Split2

Splitm

Input

meta-data

split1

Mapper for 1st split

split2

Mapper for 2nd split

Mapper for mth split

splitm

Reducer

for k1

Reducer

for k2

Reducer

for kr

k2, split2

Output 1

Output 2

Output r

Master process
Step 1: MapReduce job assignment

Step 3:

Read and Map tasks’ execution

Step 4:

Read and Reduce tasks’

execution

Figure 6.2: Meta-MapReduce algorithmic approach.

STEP 1 Users create a master process that creates map tasks and reduce tasks at different
compute nodes. A compute node that processes the map task is called a map worker,
and a compute node that processes the reducer task is called a reduce worker.

STEP 2 Users send metadata, which varies according to an assigned MapReduce job, to the
site of mappers. Also, the user creates an index, which varies according to the assigned
job, on the entire database.
For example, in the case of equijoin (see Figure 6.1), a user sends metadata for each
of the tuples of the relations X(A,B) and Y (B,C) to the site of mappers. In this
example, metadata for a tuple i (〈ai, bi〉, where ai and bi are values of the attributes A
and B, respectively) of the relation X includes the size of all non-joining values (i.e.,
|ai|5) and the value of bi. Similarly, metadata for a tuple i (〈bi, ci〉, where bi and ci are
values of the attributes B and C, respectively) of the relation Y includes the size of all
non-joining values (i.e., |ci|) with bi (remember that the size of bi is much smaller than
the size of ai or ci). In addition, the user creates an index on the attribute B of both the
relations X and Y .

STEP 3 In the map phase, a mapper processes an assigned input and provides some number
of 〈key , value〉 pairs, which are known as intermediate outputs, a value is the total size

of the corresponding input data (which is included in metadata). The master process

is then informed of the location of intermediate outputs.
For example, in case of equijoin, a mapper takes a single tuple i (e.g., 〈|ai|, bi〉) and
generates some 〈bi, value〉 pairs, where bi is a key and a value is the size of tuple i (i.e.,
|ai|). Note that in the original equijoin example, a value is the whole data associated

5The notation |ai| refers to the size of an input ai.

53

with the tuple i (i.e., ai).
STEP 4 The master process assigns reduce tasks (by following a mapping schema) and

provides information of intermediate outputs, which serve as inputs to reduce tasks. A
reducer is then assigned all the 〈key , value〉 pairs having an identical key by following
a mapping schema for an assigned job. Now, reducers perform the computation and
call6 only required data if there is only one iteration of a MapReduce job. On the
other hand, if a MapReduce job involves more than one iteration, then reducers call
original required data at required iterations of the job (we will discuss multi-rounds
MapReduce jobs using Meta-MapReduce in Section 6.3.3).
For example, in case of equijoin, a reducer receives all the 〈bi , value〉 pairs from both
the relations X and Y , where a value is the size of tuple associated with key bi. Inputs
(i.e., intermediate outputs of the map phase) are assigned to reducers by following
a mapping schema for equijoin such that a reducer does not assign more original
inputs than its capacity, and after that reducers invoke the call operation. Note that
a reducer that receives at least one tuple with key bi from both the relations X and Y
produces outputs and requires original input data from the user’s site. However, if the
reducer receives tuples with key bi from a single relation only, the reducer does not
request for the original input tuple, since these tuples do not participate in the final
output.

Following Meta-MapReduce, we now compute the communication cost involved in
equijoin example (see Figure 6.1). Recall that without using Meta-MapReduce, a solution
to equijoin problem (in Figure 6.1) requires 12 units communication cost. However, using
Meta-MapReduce for performing equijoin, there is no need to send the tuple 〈a3, b2〉 of
the relation X and the tuples 〈b3, c3〉 of the relation Y to the location of computation.
Moreover, we send metadata of all the tuples to the site of mappers, and intermediate
outputs containing metadata are transferred to the reduce phase, where reducers call
only desired tuples having b1 value from the user’s site. Consequently, a solution to the
problem of equijoin has only 4 units cost plus a constant cost for moving metadata using
Meta-MapReduce, instead of 12 units communication cost.

Theorem 6.1 (The communication cost for join of two relations) Using

Meta-MapReduce, the communication cost for the problem of join of two relations

is at most 2nc + h(c + w) bits, where n is the number of tuples in each relation, c is the

maximum size of a value of the joining attribute, h is the number of tuples that actually

join, and w is the maximum required memory for a tuple.

The proof of the theorem is given in Appendix D.
6The call operation will be explained in Section 6.2.1.

54

Problems Section Theorem
Communication cost

using Meta-MapReduce using MapReduce

Join of two relations 6.2 6.1 2nc+ h(c+ w) 4nw

Skewed Values of the Joining Attribute 6.2.2 6.2 2nc+ rh(c+ w) 2nw(1 + r)

Join of two relations by hashing the joining attribute 6.3.2 6.3 6n · log m+ h(c+ w) 4nw

Join of k relations by hashing the joining attributes 6.3.3 6.4 3knp · log m+ h(c+ w) 2knw

n: the number of tuples in each relation, c: the maximum size of a value of the joining attribute, r: the replication rate, h: the number of
tuples that actually join, w is the maximum required memory for a tuple, p: the maximum number of dominating attributes in a relation,
and m: the maximal number of tuples in all given relations.

Table 6.1: The communication cost for joining of relations using Meta-MapReduce.

6.2.1 The Call function

In this section, we will describe the call function that is invoked by reducers to have the
original required inputs from the user’s site to produce outputs.

All the reducers that produce outputs require the original inputs from the site of users.
Reducers can know whether they produce outputs or not, after receiving intermediate
outputs from the map phase, and then, inform the corresponding mappers from where they
have fetched these intermediate outputs (for simplicity, we can say all reducers that will
produce outputs send 1 to all the corresponding mappers to request the original inputs,
otherwise send 0). Mappers collect requests for the original inputs from all the reducers
and fetch the original inputs, if required, from the user’s site by accessing the index file.
Remember that in Meta-MapReduce, the user creates an index on the entire database
according to an assigned job, refer to STEP 2 in Section 6.2. This index helps to access
required data that reducers want without doing a scan operation. Note that the call

function can be easily implemented on recent implementations of MapReduce, e.g., Pregel
and Spark.

For example, we can consider our running example of equijoin. In case of equijoin,
a reducer that receives at least one tuple with key bi from both the relations X(A,B) and
Y (B,C) requires the original input from the user’s site, and hence, the reducer sends 1
to the corresponding mappers. However, if the reducer receives tuples with key bi from a
single relation only, the reducer sends 0. Consider that the reducer receives 〈bi, |ai|〉 of the
relation X and 〈bi, |ci|〉 of the relation Y . The reducer sends 1 to corresponding mappers
that produced 〈bi, |ai|〉 and 〈bi, |ci|〉 pairs. On receiving requests for the original inputs from
the reducer, the mappers access the index file to fetch ai, bi, and ci, and then, the mapper
provides ai, bi, and ci to the reducer.

55

6.2.2 Meta-MapReduce for skewed values of the joining attribute

Consider two relations X(A,B) and Y (B,C), where the joining attribute is B and the size
of all the B values is very small as compared to the size of values of the attributes A and C.
One or both of the relations X and Y may have a large number of tuples with an identical
B-value. A value of the joining attribute B that occurs many times is known as a heavy

hitter. In skew join of X(A,B) and Y (B,C), all the tuples of both the relations with an
identical heavy hitter should appear together to provide the output tuples.

A B

a1 b1

a2 b1

a3 b1

a4 b1

.

.

.

an b1

B C

b1 c1

b1 c2

b1 c3

b1 c4

.

.

.

b1 cp



B

A B C

a1 b1 c1

a1 b1 c2

.

.

.

an b1 cp

=

X Y Z

Figure 6.3: Skew join example for a heavy hitter, b1.

In Figure 6.3, b1 is a heavy hitter; hence, it is required that all the tuples of X(A,B)

and Y (B,C) with the heavy hitter, b1, should appear together to provide the output tuples,
〈a, b1, c〉 (a ∈ A, b1 ∈ B, c ∈ C), which depend on exactly two inputs. However, due to a
single reducer — for joining all tuples with a heavy hitter — there is no parallelism at the
reduce phase, and a single reducer takes a long time to produce all the output tuples of the
heavy hitter.

We can restrict reducers in a way that they can hold many tuples, but not all the tuples
with the heavy-hitter-value. In this case, we can reduce the time and use more reducers,
which results in a higher level of parallelism at the reduce phase. But, there is a higher
communication cost, since each tuple with the heavy hitter must be sent to more than one
reducer. We can solve the problem of skew join using Meta-MapReduce.

Theorem 6.2 (The communication cost for skew join) Using Meta-MapReduce, the

communication cost for the problem of skew join of two relations is at most 2nc+rh(c+w)

bits, where n is the number of tuples in each relation, c is the maximum size of a value

of the joining attribute, r is the replication rate, h is the number of distinct tuples that

actually join, and w is the maximum required memory for a tuple.

The proof of the theorem is given in Appendix D.

56

6.3 Extensions of Meta-MapReduce

We have presented Meta-MapReduce framework for different locations of data and
mappers-reducers. However, some extensions are required to use Meta-MapReduce for
geo-distributed data processing, for handling large size of values of joining attributes, and
for handling multi-rounds computations. In this section, we will provide three extensions
of Meta-MapReduce.

6.3.1 Incorporating Meta-MapReduce in geo-distributed MapReduce

There are some extensions of the standard MapReduce for processing geo-distributed
data at their locations. Details about geo-distributed MapReduce-based data processing
frameworks are given in [44]. G-MR [69], G-Hadoop [108], and Hierarchical
MapReduce (HMR) [82] are three implementations for geo-distributed data processing
using MapReduce. These implementations assume that a cluster processes data using
MapReduce and provides its outputs to one of the clusters that provides final outputs (by
executing a MapReduce job on the received outputs of all the clusters). However, the
transmission of outputs of all the clusters to a single cluster for producing the final output
is not efficient, if all the outputs of a cluster do not participate in the final output.

We can apply Meta-MapReduce idea to systems such as G-MR, G-Hadoop, and HMR.
Note that we do not change basic functionality of these implementations. We take our
running example of equijoin (see Figure 6.4, where we have three clusters, possibly on
three continents, the first cluster has two relations U(A,B) and V (B,C), the second cluster
has two relations W (D,B) and X(B,E), and the third cluster has two relations Y (F,B)

and Z(B,G)) and assume that data exist at the site of mappers in each cluster. In the
final output, reducers perform the join operation over all the six relations, which share an
identical B-value.

The following three steps are required for obtaining final outputs using an execution of
Meta-MapReduce over G-MR, G-Hadoop, and HMR.
STEP 1 Mappers at each cluster process input data according to an assigned job and provide

〈key , value〉 pairs, where a value is the size of an assigned input.
For example, in Figure 6.4, a mapper at Cluster 1 provides outputs of the form of
〈bi , |ai |〉 or 〈bi , |ci |〉.

STEP 2 Reducers at each cluster provide partial outputs by following an assigned mapping
schema, and partial outputs, which contain only metadata, are transferred to one of the
clusters, which will provide final outputs.
For example, in case of equijoin, reducers at each cluster provide partial output tuples

57

as 〈|ai |, bi , |ci |〉 at Cluster 1, 〈|di |, bi , |ei |〉 at Cluster 2, and 〈|fi |, bi , |gi |〉 at Cluster 3
(by following a mapping schema for equijoin). Partial outputs of Cluster 1 and Cluster
3 have to be transferred to one of the clusters, say Cluster 2, for obtaining the final
output.

STEP 3 A designated cluster for providing the final output processes all the outputs of the
clusters by implementing the assigned job using Meta-MapReduce. Reducers that
provide the final output call the original input data from all the clusters.
For example, in equijoin, after receiving outputs of Cluster 1 and Cluster 3, Cluster
2 implements two iterations for joining tuples. In the first iteration, outputs of
Clusters 1 and 2 are joined (by following a mapping schema for equijoin), and in
the second iteration, outputs of Clusters 3 and the output of the previous iteration
are joined at reducers. A reducer in the second iteration provides the final output as
〈|ai |, b1 , |ci |, |di |, |ei |, |fi |, |gi |〉 and calls all the original values of |ai|, |ci|, |di|, |ei|,
|fi|, and |gi| for providing the desired output, as suggested in Section 6.2.1.

U V

A B

a1 b1

a2 b1

a3 b2

a4 b2

B C

b1 c1

b2 c2

W X

D B

d1 b1

d2 b2

d3 b3

B E

b1 e1

b1 e2

b2 e3

b4 e4

Y Z

F B

f1 b1

f2 b5

f3 b6

B G

b1 g1

b1 g2

b7 g3

Cluster 1 Cluster 2 Cluster 3
Possibly on continent 1 Possibly on continent 2 Possibly on continent 3

Figure 6.4: Three clusters, each with two relations.

Communication cost analysis. In Figure 6.4, we are performing equijoin in three clusters,
and assuming that data is available at the site of mappers in each cluster. In addition, we
consider that each value takes two units size; hence, any tuple, for example, 〈ai, bi〉, has
size 4 units.

First, each of the clusters performs an equijoin within the cluster using
Meta-MapReduce. Note that using Meta-MapReduce, there is no need to send any tuple
from the map phase to the reduce phase within the cluster, while G-MR, G-Hadoop, and
HMR do data transfer from the map phase to the reduce phase, and hence, results in 76
units of communication cost. Moreover, in GMR, G-Hadoop, and HMR, the transmission
of two tuples (〈a3, b2〉, 〈a4, b2〉) of U , one tuple (〈b2, c2〉) of V , two tuples (〈d2, b2〉, 〈d3, b3〉)
of W , two tuples (〈b2, e3〉, 〈b4, e4〉) of X , two tuples (〈f2, b5〉, 〈f3, b6〉) of Y , and one
tuple (〈b7, g3〉) of Z from the map phase to the reduce phase is useless, since they do not
participate in the final output.

After computing outputs within the cluster, metadata of outputs (i.e., size of tuples
associated with key b1 and key b2) is transmitted to Cluster 2. Here, it is important to note

58

that tuples with value b1 provide final outputs. Using Meta-MapReduce, we will not send
the complete tuples with value b2, hence, we also decrease the communication cost; while
G-MR, G-Hadoop, and HMR send all the outputs of the first and third clusters to the second
cluster. After receiving outputs from the first and the third clusters, the second cluster
performs two iterations as mentioned previously, and in the second iteration, a reducer for
key b1 provides the final output. Following that the communication cost is only 36 units.

On the other hand, transmission of outputs with data from the first cluster and
the third cluster to the second cluster and performing two iterations result in 132
units communication cost. Therefore, G-MR, G-Hadoop, and HMR require 208 units
communication cost, while Meta-MapReduce provides the final results using 36 units
communication cost.

6.3.2 Large size of joining values

We have considered that sizes of joining values are very small as compared to sizes of
all the other non-joining values. For example, in Figure 6.1, sizes of all the values of the
attributeB are very small as compared to all the values of the attributesA and C. However,
considering very small size of values of the joining attribute is not realistic. All the values
of the joining attribute may also require a considerable amount of memory, which may be
equal or greater than the sizes of non-joining values. In this case, it is not useful to send
all the values of the joining attribute with metadata of non-joining attributes. Thus, we
enhance Meta-MapReduce for handling a case of large size of joining values.

We consider our running example of join of two relationsX(A,B) and Y (B,C), where
the size of each of bi is large enough such that the value of bi cannot be used as metadata.
We use hash function to gain a short identifier (that is unique with high probability) for each
bi. We denoteH(bi) to be the hash value of the original value of bi. Here, Meta-MapReduce
works as follows:
STEP 1 For all the values of the joining attribute (B), use a hash function such that an

identical bi in both of the relations has a unique hash value with a high probability, and
bi and bj , i 6= j, receive two different hash values with a high probability.

STEP 2 For all the other non-joining attributes’ values (values corresponding to the
attributes A and C), find metadata that includes size of each of the values.

STEP 3 Perform the task using Meta-MapReduce, as follows: (i) Users send hash values
of joining attributes and metadata of the non-joining attributes. For example, a user
sends hash value of bi (H(bi)) and the corresponding metadata (i.e., size) of values ai
or ci to the site of mappers. (ii) A mapper processes an assigned tuples and provides
intermediate outputs, where a key is H(bi) and a value is |ai| or |ci|. (iii) Reducers

59

call all the values corresponding to a key (hash value), and if a reducer receives
metadata of ai and ci, then the reducer calls the original input data and provides the
final output.
Note that there may be a possibility that two different values of the joining attribute
have an identical hash value; hence, these two values are assigned to a reducer.
However, the reducer will know these two different values, when it will call the
corresponding data. The reducer notifies the master process, and a new hash function
is used.

Theorem 6.3 (The communication cost when joining attributes are large) Using

Meta-MapReduce for the problem of join where values of joining attributes are large, the

communication cost for the problem of join of two relations is at most 6n · log m+h(c+w)

bits, where n is the number of tuples in each relation, m is the maximal number of tuples in

two relations, h is the number of tuples that actually join, and w is the maximum required

memory for a tuple.

The proof of the theorem is given in Appendix D.

6.3.3 Multi-rounds computations

We show how Meta-MapReduce can be incorporated in a multi-rounds MapReduce job,
where values of joining attributes are also large as the value of non-joining attributes. In
order to explain, the working of Meta-MapReduce in a multi-iterative MapReduce job, we
consider an example of join of four relations U(A,B,C,D), V (A,B,D,E), W (D,E, F),
and X(F,G,H), and perform the join operation using a cascade of two-way joins..
STEP 1 Find dominating attributes in all the relations. An attribute that occurs in more than

one relation is called a dominating attribute [17].
For example, in our running example, attributes A, B, D, E, and F are dominating
attributes.

STEP 2 Implement a hash function over all the values of dominating attributes so that all
the identical values of dominating attributes receive an identical hash value with a
high probability, and all the different values of dominating attributes receive different
hash values with a high probability.
For example, identical values of ai, bi, di, ei, and fi receive an identical hash value,
and any two values ai and aj , such that i 6= j, probably receive different hash values
(a similar case exists for different values of attributes B, D, E, F).

STEP 3 For all the other non-dominating joining attributes’ (an attribute that occurs in only
one of the relations) values, we find metadata that includes size of each of the values.

60

STEP 4 Now perform 2-way cascade join using Meta-MapReduce and follow a mapping
schema according to a problem for assigning inputs (i.e., outputs of the map phase) to
reducers.
For example, in equijoin example, we may join relations as follows: first, join relations
U and V , and then join the relation W to the outputs of the join of relations U and V .
Finally, we join the relation X to outputs of the join of relations U , V , and W . Thus,
we join the four relations using three iterations of Meta-MapReduce, and in the final
iteration, reducers call the original required data.

Example: Following our running example, in the first iteration, a mapper
produces 〈H(ai), [H(bi), |ci|, H(di)]〉 after processing a tuple of the relation U and
〈H(ai), [H(bi), H(di), H(ei)]〉 after processing a tuple of the relation V (where H(ai) is
a key). A reducer corresponding to H(ai) provides 〈H(ai), H(bj), |ck|, H(dl), H(ez)〉 as
outputs.

In the second iteration, a mapper produces 〈H(di), [H(ai), H(bj), |ck|, H(ez)]〉 and
〈H(di), [H(ei), H(fi)]〉 after processing outputs of the first iteration and the relation
W , respectively. Reducers in the second iteration provide output tuples by joining
tuples that have an identical H(di). In the third iterations, a mapper produces
〈H(fi), [H(ai), H(bi), |ci|, H(di), H(ei)]〉 or 〈H(fi), [|gi|, |hi|]〉, and reducers perform the
final join operations. A reducer, for key H(fi), receives |gi| and |hi| from the relation X
and output tuples of the second iteration, provides the final output by calling original input
data from the location of user.

Theorem 6.4 (The communication cost for k relations and when joining attributes are
large) Using Meta-MapReduce for the problem of join where values of joining attributes

are large, the communication cost for the problem of join of k relations, each of the

relations with n tuples, is at most 3knp · log m + h(c + w) bits, where n is the number of

tuples in each relation, m is the maximal number of tuples in k relations, p is the maximum

number of dominating attributes in a relation, h is the number of tuples that actually join,

and w is the maximum required memory for a tuple.

The proof of the theorem is given in Appendix D.

61

Chapter 7

Interval Join

In the previous Chapters 4, 5, and 6, we focused on inputs having different sizes, and
accordingly, put a constraint in terms of the reducer capacity. Now, we will focus on
identical-sized inputs. Thereby, all the reducers may hold an identical number of inputs.
A model to investigate the communication cost in the case of identical-sized inputs is
proposed by Afrati et al. [15]. In this model, the term reducer size is defined as the
maximum number of inputs that can be assigned to a reducer.

In this chapter, we will use the model proposed by Afrati et al. [15] and focus on
the problem of interval join of overlapping intervals that is a type of the X2Y mapping

schema problem. We will study three cases, where we consider three types of intervals:
(i) unit-length and equally spaced, (ii) variable-length and equally spaced, and (iii)
equally-spaced with specific distribution of the various lengths.

MapReduce-based 2-way and multiway interval join algorithms of overlapping
intervals without regarding the reducer size are presented in [31]. However, the analysis of
a lower bound on replication of individual intervals is not presented; neither is an analysis
of the replication rate of the algorithms offered therein.

7.1 Preliminaries

7.1.1 An example

Employees involved in the phases of a project. We show an example to illustrate
temporal relations (a relation that stores data involving timestamps), intervals, and the
need for interval join of overlapping intervals. Consider two (temporal) relations (i)
Project(Phase,Duration) that includes several phases of a project with their durations,
and (ii) Employee(EmpId ,Name,Duration) that shows data of employees according to
their involvement in the project’s phases and their durations; see Figure 7.1. Here, the

62

duration of a phase or the duration of an employee’s involvement in a phase is given by an
interval.

𝐸𝑚𝑝𝐼𝑑 𝑁𝑎𝑚𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑒1 U 1-Apr –

1-June

𝑒2 V 1-June –

1-Aug

𝑒3 W 1-Apr –

1-July

𝑒4 X 1-Mar –

1-June

𝑒5 Y 1-Mar –

1-Aug

𝑃ℎ𝑎𝑠𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

Requirement

Analysis

(RA)

1-Mar –

1-May

Design (D) 1-Apr –

1-June

Coding (C) 1-May –

1-Aug

1-Mar 1-Apr 1-May 1-June 1-July 1-Aug

RA

D

C

𝑒1
𝑒2
𝑒3
𝑒4
𝑒5

𝑃𝑟𝑜𝑗𝑒𝑐𝑡

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒

𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒

Figure 7.1: Two temporal relations (Project(Phase,Duration) and
Employee(EmpId ,Name,Duration)) and their representation on a time diagram.

It is interesting to find all the employees that worked in more than one phase of the
project. Formally, a query: find the name of all employees who worked in more than one
phase of the project; requires us to join the relations to find all overlapping intervals of the
relations. The answer to this query for our example will be a list of four employees such as
employees U, W, X, and Y.

7.1.2 Formal problem statement

We consider the problem of interval join of overlapping intervals, where two relations X
and Y are given. Each relation contains binary tuples that represent intervals, i.e., each
tuple corresponds to an interval and contains the starting-point and ending-point of this
interval. Each pair of intervals 〈xi, yj〉, where xi ∈ X and yj ∈ Y , ∀i, j, such that intervals
xi and yj share at least one common time, corresponds to an output.

7.1.3 The setting

A (time) interval, i, is represented by a pair of times [T is , T
i
e], T

i
s < T ie , where T is is the

starting-point of the interval i and T ie is the ending-point of the interval i. The duration
from T is to T ie is the length of the interval i. Two intervals, say interval i with [T is , T

i
e]

and interval j with [T js , T
j
e], may be related based on several operations between them,

e.g., after (T is < T ie < T js < T je), before (T js < T je < T is < T ie), and overlap

(T is ≤ T js < T ie ≤ T je , T js ≤ T is < T je ≤ T ie , T
i
s < T ie = T js < T je , or T is = T js < T ie = T je).

Interested readers can refer to Figure 1 of [31].

63

We are interested in the overlap operation among intervals. Two intervals are called
overlapping intervals if the intersection of the intervals is nonempty, one interval contains
the other, or intervals are superimposed.
Mapping Schema. A MapReduce job can be described by a mapping schema [15]. A
mapping schema assigns each input (i.e., an interval in this problem) to a number of
reducers (via the formation of key-value pairs) so that
1. No reducer is assigned more than q inputs (intervals in this case).
2. For each output (i.e., pair of overlapping intervals, in this problem), there must exist a

reducer that receives the corresponding pair of inputs (i.e., overlapping intervals) that
participate in the computation of this output,

Here, the point (i) puts a constraint on each reducer, defined as the reducer size. The
point (ii) provides a mapping between inputs and outputs so that the algorithm produces
the desired results. The replication rate of a mapping schema is the average number
of key-value pairs for each interval and is a significant performance parameter in a
MapReduce job. We analyze here lower and upper bounds on the replication rate for the
problem of overlapping intervals.
Parameters for bound analysis. We now define two parameters to analyze the problem of
interval join of overlapping intervals, as follows:
1. Replication rate. Intervals are needed to be replicated at different numbers of reducers.

We therefore need to consider the number of reducers to which each individual input
is sent, and the replication rate [15] is a parameter that finds the average replication of
intervals. Formally, the replication rate is the average number of key-value pairs created
for an interval.

2. The communication cost. The communication cost is the sum of all the bits that are
required to transfer from the map phase to the reduce phase.
Table 7.1 summarizes all the results in this chapter.

Cases Solutions Theorems Replication rate

The lower bounds

Unit-length and equally spaced intervals 7.1 2n
qk

Variable-length and equally spaced intervals 7.6 2lmin

qs

The upper bounds

Unit-length and equally spaced intervals Algorithm 10 7.13 4n
(q−n/k)k

Variable length and equally spaced (big-small) intervals Algorithm 10(a) 7.13 4lmin

(q−lmin/s)s

Table 7.1: The bounds for interval joins of overlapping intervals.

64

7.2 Unit-Length and Equally Spaced Intervals

We start with a special case of unit-length and equally spaced intervals. In reality, we are
not expecting the data to be so regular, but looking at this case help us to derive a lower
bound on the replication rate for any general algorithm that handles arbitrary collections of
intervals.

Two relations X and Y , each of n unit-length intervals are given. We assume that all
the intervals have their starting-points in [0, k), i.e., there is no interval that starts before 0
or at k. Thus, the space between every two successive intervals is k

n
< 1 � k. In other

words, the first interval starts at time 0, the second interval starts at time k
n

, the third interval
starts at time 2k

n
, and the last nth interval starts at time k − k

n
; see Figure 7.2.

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2 2.25

X

Y

Figure 7.2: An example of unit-length and equally spaced intervals, where n = 9 and k =
2.25.

The output we want to produce is the set of all pairs of intervals such that one interval
overlaps with the other interval in the pair. The problem is not really interesting if all these
intervals exist on the input. The real assumption is that some fraction of them exist, and
the reducer size q is selected so that the expected number of inputs that actually arrive at a
given reducer is within the desired limit, e.g., no more than what can be processed in main
memory.

Recall that a solution to the problem of interval join of overlapping unit-length and
equally spaced intervals is a mapping schema that assigns each pair of overlapping
intervals, one from X and one from Y , to at least one reducer in common, without
exceeding q inputs at any one reduce.

Since every two consecutive intervals have an equal space (k
n

), an interval xi ∈ X ,
which is not at one of the ends,1 overlaps with at least 2b1/ k

n
c+ 1 = 2bn

k
c+ 1 intervals of

Y , because:
1.
⌊
n
k

⌋
intervals of the relation Y have their ending-points between the starting-point and

the ending-point of xi.
2.
⌊
n
k

⌋
intervals of the relation Y have their starting-points between the starting-point and

the ending-point of xi.

1Specifically, xi does not have starting-point before 1 and after k − 1.

65

3. There is an interval yi ∈ Y that has the same end-points as xi.
In this section, we will show a lower bound on the replication rate and the

communication cost for interval join of overlapping unit-length and equally spaced
intervals. Then, we provide an algorithm, its correctness, and an upper bound on the
replication rate obtained by the algorithm.
Assumption. Now for the remaining chapter, we assume for simplicity that k divides n
evenly.

Theorem 7.1 (Minimum replication rate) Let there be two relations: X and Y , each of

them containing n unit-length and equally spaced intervals in the range [0, k), and let q be

the reducer size. The replication rate for joining each interval of the relation X with all its

overlapping intervals of the relation Y , is at least 2n
qk

.

The proof of the above theorem appears in Appendix E.1.

Theorem 7.2 (Minimum communication cost) Let there be two relations: X and Y ,

each of them containing n unit-length and equally spaced intervals in the range [0, k),

and let q be the reducer size. The communication cost for joining of each interval of the

relation X with all its overlapping intervals of the relation Y is at least 4n2

qk
.

The proof of the above theorem appears in Appendix E.1.
Algorithm 10. An algorithm for 2-way interval join is given in [31], without regarding
the reducer size and any analysis of bounds on replication of an interval. We include the
concept of the reducer size and modify the algorithm, given in [31], for real scenarios. Two
relations X and Y , each of them containing n unit-length and equally spaced intervals,
are the inputs to the algorithm. Recall that it is expected that not all possible intervals are
present.

We divide the time-range from 0 to k into equal-sized blocks of length w = q−c
4c

, where
c = n

k
. Consider that we have P blocks by partitioning of the time-range. We now arrange

P reducers, one for each block. We consider a block pi, 1 ≤ i ≤ P , and assign all the
intervals of the relation X that exist in the block pi to the ith reducer. In addition, we assign
all the intervals of the relation Y that have their starting or ending-point in the block pi to
the ith reducer.

Theorem 7.3 (Algorithm correctness) Let there be two relations: X and Y , each of them

containing n unit-length and equally spaced intervals in the range [0, k). Let w be the

length of a block, and let q = 4wc + c is the reducer size, where c = n
k

. Algorithm 10

assigns each pair of overlapping intervals to at least one reducer in common.

The proof of the above theorem appears in Appendix E.1.

66

From Algorithm 10, it is clear that an interval of the relation X is assigned to reducers
corresponding to blocks that the interval i crosses, and an interval of the relation Y is
assigned to at most two reducers. Now, we will present an upper bound on the replication
rate and the communication cost for interval join of overlapping unit-length and equally
spaced intervals.

Theorem 7.4 (Maximum replication rate) Let there be two relations: X and Y , each of

them containing n unit-length and equally spaced intervals in the range [0, k). Let w be

the length of a block, and let q = 4wc + c < 2n is the reducer size, where c = n
k

. The

replication of an interval, for joining each interval of the relationX with all its overlapping

intervals of the relation Y , is (i) at most 2 for w ≥ 1 and (ii) at most 4c
q−c for w < 1.

The proof of the above theorem appears in Appendix E.1.

Theorem 7.5 (Maximum communication cost) Let there be two relations: X and Y ,

each of them containing n unit-length and equally spaced intervals in the range [0, k).

Let w be the length of a block, and let q = 4wc + c < 2n is the reducer size, where

c = n
k

. The communication cost for joining of each interval of the relation X with all its

overlapping intervals of the relation Y is (i) at most 4n for w ≥ 1 and (ii) at most 8nc
q−c for

w < 1.

The proof of the above theorem appears in Appendix E.1.

7.3 Variable-Length and Equally Spaced Intervals

Now, we focus on a realistic scenario where two relationsX and Y , each of them containing
n intervals, are given such that all intervals can have non-identical length but adjacent
intervals have equal spacing. We assume that the first interval starts at time 0, and the
space (s < 1) between the beginnings of intervals is the same, but their endpoints will
have quite different spacing (see Figure 7.3), where a relation X has 6 intervals, and a
relation Y has also 6 intervals. A solution to the problem of interval join of overlapping
variable-length and equally spaced intervals is a mapping schema such that each pair of
overlapping intervals is sent to at least one reducer in common without exceeding q inputs
at any one reducer.

We consider two types of intervals, as follows:
1. Big and small intervals: one of the relation, say X , is holding intervals of length l and

the other relation, say Y , is holding intervals of length l′ � l; we call intervals of the
relations X and Y as small intervals and big intervals, respectively.

2. Different-length intervals: all the intervals of both the relations are of different-length.

67

0 0.7 1.4 2.1 2.8 3.5 4.2

X

Y

Figure 7.3: An example of big and small length but equally spaced intervals, where n = 6
and s = 0.7.

Throughout this section, we will use the following notations: lmax : the maximum length of
an interval, lmin : the minimum length of an interval, and w: length of a block.

7.3.1 Big and small intervals

In this section, we consider a special case of variable-length and equally spaced intervals,
where all the intervals of two relations X and Y have length lmin and lmax , respectively,
such that lmin � lmax ; see Figure 7.3. We call the intervals of the relations X and Y as
small intervals and big intervals, respectively.

Since every two successive intervals have an equal space, s, an interval xi ∈ X of
length lmin can overlap with at least 2

⌊
lmin

s

⌋
+ 1 intervals of the relation Y , because

1.
⌊
lmin

s

⌋
intervals of the relation Y have their ending-points between the starting and the

ending-points of xi.
2.
⌊
lmin

s

⌋
intervals of the relation Y have their starting-points between the starting and the

ending-points of xi.
3. There is an interval yi ∈ Y has an identical starting-point as xi.
Now, we provide a lower bound on the replication rate for interval join of overlapping big-
and small-length but equally spaced intervals.
Assumption. Now for the remaining chapter, we assume for simplicity that s divides lmin

evenly.

Theorem 7.6 (Minimum replication rate) Let there be two relations: X containing n

small and equally spaced intervals and Y containing n big and equally spaced intervals,

and let q be the reducer size. Let s be the spacing between every two successive intervals,

and let lmin be the length of the smallest interval. The replication rate for joining of each

interval of the relationX with all its overlapping intervals of the relation Y is at least 2lmin

qs
.

The proof of the above theorem appears in Appendix E.2.

Theorem 7.7 (Minimum communication cost) Let there be two relations: X containing

n small and equally spaced intervals and Y containing n big and equally spaced intervals,

and let q be the reducer size. Let s be the spacing between every two successive intervals,

68

and let lmin be the length of the smallest interval. The communication cost for joining of

each interval of the relation X with all its overlapping intervals of the relation Y is at least
4nlmin

qs
.

The proof of the above theorem appears in Appendix E.2.
Algorithm 10(a). Algorithm 10(a) for interval join of overlapping intervals of a relation X
of small and equally spaced intervals and a relation Y of big and equally spaced intervals
works in a way similar to Algorithm 10. However, Algorithm 10(a) creates P blocks of the
time-range (from 0 to ns), each of length w = q−c

4c
, where c = lmin

s
. After that, we follow

the same procedure as followed in Algorithm 10.
Note that in Algorithm 10(a), small intervals are assigned to several reducers

corresponding to their blocks that they cross, and large intervals are assigned to only two
reducers corresponding to their stating- and ending-points’ blocks.

Theorem 7.8 (Algorithm correctness) Let there be two relations: X containing n small

and equally spaced intervals and Y containing n big and equally spaced intervals. Let w

be the length of a block, let s be the spacing between every two successive intervals, and

let lmin be the length of the smallest interval. Let q = 4wc + c is the reducer size, where

c = lmin

s
. Algorithm 10(a) assigns each pair of overlapping intervals to at least one reducer

in common.

We can prove the above theorem in a way similar to Theorem 7.3.

Theorem 7.9 (Maximum replication rate) Let there be two relations: X containing n

small and equally spaced intervals and Y containing n big and equally spaced intervals.

Let s be the spacing between every two successive intervals, let w be the length of a block,

and let lmin be the length of the smallest interval. Let q = 4wc + c is the reducer size,

where c = lmin

s
. The replication rate for joining of each interval of the relation X with all

its overlapping intervals of the relation Y is (i) at most 2 for w ≥ lmin and (ii) at most 4c
q−c

for w < lmin .

The proof of the above theorem appears in Appendix E.2.

Theorem 7.10 (Maximum communication cost) Let there be two relations: X

containing n small and equally spaced intervals and Y containing n big and equally spaced

intervals. Let s be the spacing between every two successive intervals, let w be the length

of a block, and let lmin be the length of the smallest interval. Let q = 4wc+ c is the reducer

size, where c = lmin

s
. The communication cost for joining of each interval of the relation X

with all its overlapping intervals of the relation Y is (i) at most 4n for w ≥ lmin and (ii) at

most 8nc
q−c for w < lmin .

69

The proof of the above theorem appears in Appendix E.2.

7.3.2 Different-length intervals

We consider a case of different-length and equally spaced intervals. Let there be two
relations: X and Y , each of them containing n different-length intervals, and s be the
spacing between every two successive intervals; see Figure 7.4. For this case, the lower
bound on the replication rate for joining of each interval of the relation X with all its
overlapping intervals of the relation Y is same as given in Theorem 7.6.

0 0.7 1.4 2.1 2.8 3.5 4.2

𝑋

𝑌

Figure 7.4: An example of different-length but equally spaced intervals, where n = 6 and
s = 0.7.

Algorithm 10(b). Algorithm 10(b) for interval join of overlapping different-length and
equally spaced intervals, which belong to two relations X and Y , each of them containing
n intervals, works identically to Algorithms 10 and 10(a). Let lmax be the length of the
largest interval. Algorithm 10(b) divides the time-range from 0 to ns into P blocks, each
of length w = q−c

4c
, where c =

⌈
lmax

s

⌉
. After that, we follow the same procedure as followed

in Algorithm 10.

Theorem 7.11 (Algorithm correctness) Let there be two relations: X and Y , each of

them containing n different-length and equally spaced intervals. Let w be the length of

a block, let s be the spacing between every two successive intervals, and let lmax be the

length of the largest interval. Let q = 4wc + c is the reducer size, where c =
⌈
lmax

s

⌉
.

Algorithm 10(b) assigns each pair of overlapping intervals to at least one reducer in

common.

We can prove the above theorem in a way similar to Theorem 7.3.

7.3.3 An upper bound for the general case

In this section, we show an algorithm and an upper bound on the replication rate for
the problem of interval join of variable-length but equally spaced intervals. We use the
following notations:
1. T : the length of time in which all intervals exist, i.e., all intervals begin at some time

greater than or equal to 0 and end by time T .

70

2. n: the number of intervals in each of the two relations, X and Y .
3. S: the total length of all the intervals in one relation.
4. w: the length of time corresponding to one reducer, i.e., we divide T into T

w
equal-length

segments, each of length w.
Algorithm 10(c). Algorithm 10(c) works in a manner similar to Algorithms 10, 10(a),
and 10(b) do. But this algorithm does more than Algorithms 10, 10(a), and 10(b). It finds
all intervals that intersect, regardless of whether they overlap, are superimposed, or any
other relation. We divide the time-range into T

w
equal-sized blocks and arrange T

w
reducers,

one for each block. After that, we follow the same procedure as followed in Algorithm 10.

Theorem 7.12 (Algorithm correctness) Let there be two relations: X and Y , each of

them containing n intervals. Let S be the total length of all the intervals in one relation,

let w be the length of a block, let T be the length of time in which all intervals exist, and let

q = 3nw+S
T

is the reducer size. Algorithm10(c) assigns each pair of overlapping intervals

to at least one reducer in common.

The proof of the above theorem appears in Appendix E.2.1.

Theorem 7.13 (Replication rate) Let there be two relations: X and Y , each of them

containing n intervals. Let S be the total length of all the intervals in one relation, let

w be the length of a block, let T be the length of time in which all intervals exist, and let

q = 3nw+S
T

is the reducer size. The replication rate for joining each interval of the relation

X with all its overlapping intervals of the relation Y is at most 3
qT−S

S
2

.

The proof of the above theorem appears in Appendix E.2.1.

71

Chapter 8

Computing Marginals of a Data Cube

In this chapter, we continue to explore the communication cost in the case of identical-sized
inputs, as we did in Chapter 7, and focus on the problem of computing marginals of a data
cube. A data cube is a tool for analyzing high dimensional data. For example, consider
Figure 8.1 of a 3-dimensional data cube having dimensions such as Time, User , and City .
This cube stores the total number of users accessing social media at a particular time across
different cities. The number of dimensions can be increased by adding dimensions such
as Day , Month, Year , and Site_name. A user may easily solve a query such as the total
number of users from New York and London accessing the Website at 8am, 9am, and 10am.
Related work on data cube is presented in Appendix F.1.1

8.1 Preliminaries

8.1.1 Marginals

Consider an n-dimensional data cube and the computation of its marginals by MapReduce.
A marginal of a data cube is the aggregation of the data in all those tuples that have fixed
values in a subset of the dimensions of the cube. We assume this aggregation is the sum,
but the exact nature of the aggregation is unimportant in what follows. If the value in
a dimension is fixed, then the fixed value represents the dimension. If the dimension is
aggregated, then there is a * for that dimension. The number of dimensions over which we
aggregate is the order of the marginal.

Example 8.1 Suppose n = 5, and the data cube is a relation

DataCube(D1,D2,D3,D4,D5,V). Here, D1 through D5 are the dimensions, and V is

1I am thankful to Prof. Foto Afrati, Prof. Jeffrey Ullman, and Prof. Jonathan Ullman who helped me a lot
to write the content of this chapter.

72

5M 2M 1M

10M 3M 2.5M

1M 2M 4M

2M 5M 3M

Users

Time

City
New York

London

Tel Aviv

Figure 8.1: An example of a 3-dimensional data cube.

the value that is aggregated.

SELECT SUM(V)

FROM DataCube

WHERE D1 = 10 AND D3 = 20 AND D4 = 30;

will sum the data values in all those tuples that have value 10 in the first dimension, 20

in the third dimension, 30 in the fourth dimension, and any values in the second and fifth

dimension of a five-dimensional data cube. We can represent this marginal by the list

[10, ∗, 20, 30, ∗], and it is a second-order marginal.

We make the simplifying assumption that in each dimension there are d different values.
In practice, we do not expect to find that each dimension really has the same number of
values. For example, if one dimension represents Amazon customers, there would be
millions of values in this dimension. If another dimension represents the date on which
a purchase was made, there would “only” be thousands of different values.

8.1.2 Mapping schema

We define a mapping schema in order to compute all the kth-order marginals, as follows:
A mapping schema assigns a set of inputs (the tuples or points of the data cube, here)

to a number of reducers so that
1. No reducer is associated with more than q inputs, and
2. For every output (the values of the marginals), there is some reducer that is associated

with all the inputs that output needs for its computation.
Here, the point (1) puts a constraint on each reducer, defined as the reducer size. The
point (2) provides a mapping between inputs and outputs so that the algorithm produces
the desired results.

73

8.1.3 Naïve solution: computing one marginal per reducer

Consider the problem of computing all the marginals of a data cube in the above model.
If we are not careful, the problem becomes trivial. The marginal that aggregates over all
dimensions is an output that requires all dn inputs of the data cube. Thus, q = dn is
necessary to compute all the marginals. But that means we need a single reducer as large
as the entire data cube, if we are to compute all marginals in one round. As a result, it only
makes sense to consider the problem of computing a limited set of marginals in one round.

The kth-order marginals are those that fix n − k dimensions and aggregate over the
remaining k dimensions. To compute a kth-order marginal, we need q ≥ dk, since
such a marginal aggregates over dk tuples of the cube. Thus, we could compute all the
kth-order marginals with q = dk, using one reducer for each marginal. We can represent
the problem in terms of a mapping schema such that there are dn inputs, dn−k

(
n
k

)
outputs,

each representing one of the marginals, and q = dk. Each output is connected to the dk

inputs over which it aggregates. Each input contributes to
(
n
k

)
marginals – those marginals

that fix n− k out of the n dimensions in a way that agrees with the tuple in question. That
is, for q = dk, we can compute all the kth-order marginals with a replication rate r equal to(
n
k

)
.
For q = dk, there is nothing better we can do. However, when q is larger, we have a

number of options, and the purpose of this chapter is to explore these options.

8.2 Computing Many Marginals at One Reducer

We study the tradeoff between reducer size and the replication rate for computing the
kth-order marginals.

8.2.1 Covering marginals

We want to compute all kth-order marginals, but we are willing to use reducers of size
q = dm for some m > k. If we fix any n−m of the n dimensions of the data cube, we can
send to one reducer the dm tuples of the cube that agree with those fixed values. We then
can compute all the marginals that have n − k fixed values, as long as those values agree
with the n−m fixed values that we chose originally.

Example 8.2 Let n = 7, k = 2, and m = 3. Suppose we fix the first n − m = 4

dimensions, say using values a1, a2, a3, and a4. Then we can cover the d marginals

a1a2a3a4x ∗ ∗ for any of the values x that may appear in the fifth dimension. We can also

cover all marginals a1a2a3a4∗y∗ and a1a2a3a4∗∗z, where y and z are any of the possible

74

values for the sixth and seventh dimensions, respectively. Thus, we can cover a total of

3d second-order marginals at this one reducer. That turns out to be the largest number of

marginals we can cover with one reducer of size q = d3.

8.2.2 From marginals to sets of dimensions

To understand why the problem is more complex than it might appear at first glance, let us
continue thinking about the simple case of Example 8.2. We need to cover all second-order
marginals, not just those that fix the first four dimensions. If we had one team of d4 reducers
to cover each four of the seven dimensions, then we would surely cover all second-order
marginals. But we do not need all

(
7
2

)
= 21 such teams. Rather, it is sufficient to pick a

collection of sets of four of the seven dimensions, such that every set of five of the seven
dimensions contains one of those sets of size four.

In what follows, we find it easier to think about the sets of dimensions that are
aggregated, rather than those that are fixed. So we can express the situation above as
follows. Collections of second-order marginals are represented by pairs of dimensions –
the two dimensions such that each marginal in the collection aggregates over those two
dimensions. These pairs of dimensions must be covered by sets of three dimensions – the
three dimensions aggregated over by one third-order marginal. Our goal, which we will
realize in Example 8.3 below, is to find a smallest set of tripletons such that every pair
chosen from seven elements is contained in one of those tripletons.

In general, we are faced with the problem of covering all sets of k out of n elements
by the smallest possible number of sets of size m > k. Such a solution leads to a way
to compute all kth-order marginals using as few reducers of size dm as possible. We will
refer to the sets of k dimensions as marginals, even though they really represent teams of
reducers that compute large collections of marginals with the same fixed dimensions. We
will call the larger sets of size m handles. The implied MapReduce algorithm takes each
handle and creates from it a team of reducers that are associated, in all possible ways, with
fixed values in all dimensions except for those dimensions in the handle. Each created
reducer receives all inputs that match its associated values in the fixed dimensions.

Example 8.3 Call the seven dimensions ABCDEFG. Then here is a set of seven handles

(sets of size three), such that every marginal of size two is contained in one of them:

ABC, ADE, AFG, BDF, BEG, CDG, CEF

To see why these seven handles suffice, consider three cases, depending on how many of A,

B, and C are in the pair of dimensions to be covered.

75

Case 0: If none of A, B or C is in the marginal, then the marginal consists of two of D, E,

F , and G. Note that all six such pairs are contained in one of the last six of the handles.

Case 1: If one of A, B, or C is present, then the other member of the marginal is one of D,

E, F , or G. If A is present, then the second and third handles, ADE and AFG together

pair A with each of the latter four dimensions, so the marginal is covered. If B is present,

a similar argument involving the fourth and fifth of the handles suffices, and if C is present,

we argue from the last two handles.

Case 2: If the marginal has two of A, B, and C, then the first handle covers the marginal.

Incidentally, we cannot do better than Example 8.3. Since no handle of size three can cover
more than three marginals of size two, and there are

(
7
2

)
= 21 marginals, clearly seven

handles are needed.
As a strategy for evaluating all second-order marginals of a seven-dimensional cube,

let us see how the reducer size and replication rate compare with the baseline of using one
reducer per marginal. Recall that if we use one reducer per marginal, we have q = d2 and
r =

(
7
5

)
= 21. For the present method, we have q = d3 and r = 7. That is, each tuple is

sent to the seven reducers that have the matching values in dimensions DEFG, BCFG,
and so on, each set of attributes on which we match corresponding to the complement of
one of the seven handles mentioned in Example 8.3.

8.2.3 Covering numbers

We define C(n,m, k) to be the minimum number of sets of size m out of n elements such
that every set of k out of the same n elements is contained in one of the sets of size m.
For instance, Example 8.3 showed that C(7, 3, 2) = 7. C(n,m, k) is called the covering

number in [22]. The numbers C(n,m, k) guide our design of algorithms to compute
kth-order marginals. There is an important relationship between covering numbers and
replication rate, that justifies our focus on constructive upper bounds for C(n,m, k).

Theorem 8.4 If q = dm, then we can solve the problem of computing all kth-order

marginals of an n-dimensional data cube with r = C(n,m, k).

The proof of the theorem is given in Appendix F.2.

8.2.4 First-order marginals

The case k = 1 is quite easy to analyze. We are asking how many sets of size m are needed
to cover each singleton set, where the elements are chosen from a set of size n. It is easy to
see that we can group the n elements into dn/me sets so that each of the n elements is in

76

at least one of the sets, and there is no way to cover all the singletons with fewer than this
number of sets of size m. That is, C(n,m, 1) = dn/me. For example, If n = 7 and m = 2,
then the seven dimensions ABCDEFG can be covered by four sets of size 2, such as AB,
CD, EF , and FG.

8.2.5 2nd-order marginals covered by 3rd-order handles

The next simplest case is C(n, 3, 2), i.e., covering second-order marginals by third-order
marginals. First we will look at the lower bound on the number of handles that are required
to cover all the second-order marginals.

Theorem 8.5 (Lower bound on the number of handles) For an n-dimensional data

cube, where the marginals are of size two, the minimum number of handles is
⌊n(n−1)

6

⌋
.

The proof of the theorem is given in Appendix F.2.
We now present an algorithm for constructing 3rd-order handles so that all the

2nd-order marginals of a data cube of n = 3i, i > 0, dimensions are covered. We will
show that the upper bound on the number of handles obtained by the algorithm meets the
lower bound on the number of handles to cover all the marginals.

Algorithm 1: A data cube of n = 3i, i > 0, dimensions in an input to Algorithm 1.
Algorithm 1 constructs a set of handles of size three that can cover all the marginals of size
two. Algorithm 1 uses the following recurrence:

C(n, 3, 2) ≤ (n/3)2 + 3× C(n/3, 3, 2)

〈D1, D4, D7〉 〈D1, D5, D9〉
〈D1, D6, D8〉

〈D2, D4, D9〉 〈D2, D5, D8〉
〈D2, D6, D7〉

〈D3, D4, D8〉 〈D3, D5, D7〉
〈D3, D6, D9〉

(a)

〈D1, D2, D3〉 〈D4, D5, D6〉
〈D7, D8, D9〉

(b)

Figure 8.2: The handles of size three for a 9-dimensional data cube.

Theorem 8.6 (Upper bound on the number of handles) For an n-dimensional data

cube, where n = 3i, i > 0, and the marginals are of size two, the number of handles

is bounded above by

C(n, 3, 2) ≤ n2

6
, n = 3i, i > 0.

77

Algorithm 1: Constructing handles for C(3i, 3, 2), i > 0

Input: A data cube of n = 3i, i > 0, dimensions
Output: A set of handles of size three so that all the marginals of size two are covered

1 Divide the n = 3i, i > 0, dimensions into three groups, where each group holds
p = 3i−1 dimensions. In particular, the first group holds the first p dimensions
(D1, D2, . . . , Dp), the second group holds the next p dimensions
(Dp+1, Dp+2, . . . , D2p), and the last group holds the remaining p dimensions
(D2p+1, D2p+2, . . . , D3p).

For example, for n = 9, we have three groups as follows: 〈D1, D2, D3〉 are in the first
group, 〈D4, D5, D6〉 are in the second group, and 〈D4, D5, D6〉 are in the third group.

2 Find three dimensions out of the n dimensions. Select one dimension from each group
using the following rule: (i+ j + k) = 0 mod p, where the ith dimension belongs to
the first group, the jth dimension belongs to the second group, and the kth dimension
belongs to the third group. By this step, we construct p2 handles.

See Figure 8.2a, where we selected three dimensions, one from each group, in the case
of a 9-dimensional data cube.

3 Apply the algorithm to each group.
See Figure 8.2b, where we apply Algorithm 1 in each group.

The proof of the theorem is given in Appendix F.2. The result of the above theorem is a
known result in block design [20]. Note that all optimal values of C(n, 3, 2) up to n = 13

are given in [22].

Corollary 8.7 If q = d3 and n is a power of 3, then we can compute all second-order

marginals with a replication rate of n2/6− n/6.

8.2.6 A slower recursion for 2nd-order marginals

There is an alternative recursion for constructing handles that offers solutions forC(n, 3, 2).
This recursion is not as good asymptotically as that of Section 8.2.5; it uses approximately
n2/4 rather than n2/6 handles. However, this recursion gives solutions for any n, not just
those that are powers of 3. Algorithm 2 provides a solution to any value of n and uses the
following recurrence:

C(n, 3, 2) ≤ n− 2 + C(n− 2, 3, 2)

Theorem 8.8 (Upper bound on the number of handles) For an n-dimensional data

cube, where the marginals are of size two, the number of handles is bounded above by

C(n, 3, 2) ≤ (n− 1)2

4

78

Algorithm 2: Constructing handles for C(n, 3, 2)

Input: A data cube of n dimensions
Output: A set of handles of size three so that all the marginals of size two are covered

1 Create n− 2 handles such that each of these handles has the last two dimensions and
one of the first n− 2 dimensions.

For example, for n = 7, we construct 5 handles by following this step; see Figure 8.3a.
2 Recursively create handles for the first n− 2 dimensions.

For example, for n = 7, we recursively construct 4 handles; see Figure 8.3b.

〈D1, D6, D7〉
〈D2, D6, D7〉
〈D3, D6, D7〉
〈D4, D6, D7〉
〈D5, D6, D7〉

(a)

〈D1, D4, D5〉
〈D2, D4, D5〉
〈D3, D4, D5〉
〈D1, D2, D3〉

(b)

Figure 8.3: Constructing handles of size 3 for a 7-dimensional data cube.

where n ≥ 5 and n is odd2.

The proof of the theorem is given in Appendix F.2.

8.2.7 Covering 2nd-order marginals with larger handles

We want to cover dimensions by sets of size larger than three; i.e., we wish to cover
second-order marginals by handles of size m ≥ 4. We can generalize the technique of
Section 8.2.6. Algorithm 3 provides a solution to any value of m and uses the following
recurrence:

C(n,m, 2) ≤ n− (m− 1) + C(n− (m− 1),m, 2)

Algorithm 3: Constructing handles for C(n,m, 2), m ≥ 4

Input: A data cube of n dimensions
Output: A set of handles of size m so that all the marginals of size two are covered

1 Create n− (m− 1) handles such that each of these handles has the last m− 1
dimensions and one of the first n− (m− 1) dimensions.

For example, for n = 8, we construct 5 handles by following this step; see Figure 8.4a.
2 Recursively create handles for the first n− (m− 1) dimensions.

For example, for n = 8, we recursively construct 3 handles; see Figure 8.4b.

2When n is even, the number of handles is bounded above by C(n, 3, 2) ≤
⌈ (n−1)2

4

⌉
, where n ≥ 8.

79

〈D1, D6, D7, D8〉
〈D2, D6, D7, D8〉
〈D3, D6, D7, D8〉
〈D4, D6, D7, D8〉
〈D5, D6, D7, D8〉

(a)

〈D1, D3, D4, D5〉
〈D2, D3, D4, D5〉
〈D1, D2, D3, D4〉

(b)

Figure 8.4: Constructing handles of size 4 for a 8-dimensional data cube.

Theorem 8.9 (Upper bound on the number of handles) For an n-dimensional data

cube, where the marginals are of size two, the number of handles is bounded above by

C(n,m, 2) ≤ n2

2(m− 1)

where n ≥ 5.

The proof sketch of the above theorem appears in Appendix F.2.

8.3 The General Case

Finally, we present Algorithm 4 for C(n,m, k) that works for all n and for all m > k.
However, it does not approach the lower bound, but it is significantly better than using one
handle per marginal. This method generalizes Algorithm 2. Algorithm 4 uses the following
recurrence:

C(n) ≤
(
n−m+ k − 1

k − 1

)
+ C(n−m+ k − 1,m, k)

Algorithm 4: Constructing handles for C(n,m, k)

Input: A data cube of n dimensions
Output: A set of handles of size m so that all the marginals of size k < m are covered

1 Create
(
n−m+k−1

k−1
)

handles such that each of these handles has the last m− k + 1
dimensions and any k − 1 dimensions out of the first n− (m− k + 1) dimensions.

2 Recursively create handles for the first n− (m− k + 1) dimensions.

We claim that every marginal of size k is covered by one of these handles. If the
marginal has at least one dimension out of the last m − k + 1 dimensions, then it has at
most k− 1 dimensions out of the first n− (m−k+ 1) dimensions. Therefore, it is covered
by the handles from step (1). And if the marginal has no last dimensions, then it is surely
covered by a handle from step (2).

Theorem 8.10 (Upper bound on the number of handles) C(n) ≤
(
n
k

)
/(m − k + 1) for

n equal to 1 plus an integer multiple of m− k + 1.

80

Proof. The proof is by induction on n.
Basis case. We know C(m) = 1, and

(
m
k

)
/(m− k + 1) ≥ 1 for any 1 ≤ k < m.

Inductive step. By the recurrence relation,

C(n) ≤
(
n−m+ k − 1

k − 1

)
+ C(n−m+ k − 1,m, k)

We know that (
n−m+ k − 1

k − 1

)
+

(
n−m+k−1

k

)
(m− k + 1)

is an upper bound on C(n,m, k). We therefore need to show that(
n
k

)
m− k + 1

≥
(
n−m+ k − 1

k − 1

)
+

(
n−m+k−1

k

)
m− k + 1

Equivalently, (
n

k

)
≥ (m− k + 1)

(
n−m+ k − 1

k − 1

)
+

(
n−m+ k − 1

k

)
(8.1)

The left side of the above Equation 8.1 is all ways to pick k things out of n. The right side
counts a subset of these ways, specifically those ways that pick either:
1. Exactly one of the first m− k + 1 elements and k − 1 of the remaining elements, or
2. None of the first m− k + 1 elements and k from the remaining elements.
Thus, Equation 8.1 holds, and C(n,m, k) ≤

(
n
k

)
/(m− k + 1) is proved. �

The bound of Theorems 8.10 and 8.4 gives us an upper bound on the replication rate:

Corollary 8.11 We can compute all kth-order marginals using reducers of size q = dm,

for m > k, with a replication rate of r ≤
(
n
k

)
/(m− k + 1).

We also demonstrate that for a given reducer size q, the largest number of marginals of
a given order k that we can cover with a single reducer occurs when the reducer gets all
tuples needed for a marginal of some higher order m. The proof extends the ideas found in
[28, 68] regarding isoperimetric inequalities for the hypercube. This part may be found in
our paper [16], and we acknowledge Prof. Jonathan Ullman for this work.

81

Part III

Replication Aspects in Secure and
Privacy-Preserving MapReduce

82

Chapter 9

Security and Privacy Aspects in
MapReduce

Security and privacy of data and MapReduce computations are essential concerns when
a MapReduce computation is executed in public clouds or in hybrid clouds. In
order to execute a MapReduce job on public and hybrid clouds, authentication of
mappers-reducers, confidentiality of data-computations, integrity of data-computations,
and correctness-freshness of the outputs are required. Satisfying these requirements shield
the operation from several types of attacks on data and MapReduce computations.

Security of MapReduce ensures a legitimate functionality of the framework. A
secure MapReduce framework deals with the following attacks: attacks on authentication
(impersonation and replay attacks), attacks on confidentiality (eavesdropping and
man-in-the-middle attacks), data tampering (modification of input data, intermediate
outputs, and the final outputs), hardware tampering, software tampering (modification
of mappers and reducers), denial-of-service, interception-release of data as well as
computations, and communication analysis.

Privacy aspects assume legitimate functionality of the framework, and thus, are built
on top of security. On top the correctly functioning framework, privacy in the context
of MapReduce is an ability of each participating party (data providers, cloud providers,
and users) to prevent other, possibly adversarial parties from observing data, codes,
computations, and outputs. In order to ensure privacy, a MapReduce algorithm in public
clouds hides data storage as well as computation to public clouds and adversarial users.
Most of the security and privacy requirements and corresponding cloud layers are depicted
in Figure 9.1, the figure shows a complete picture of the considered cloud structure, with
different participating parties: data providers on the left, cloud provider in the middle and
users on the right, and their specific security requirements. The figure also depicts various

83

cloud levels and their relation to the security and privacy mechanisms, while assuming the
cloud provides privacy-preserving computations.

In this chapter and in the next chapter, our focus is on the privacy-preserving
computations using MapReduce in the clouds. Thus, we do not provide details of
security in MapReduce, which may be found in our review paper [39], and details of
security-privacy aspects in the cloud, which may be found in [21, 102, 118].

Storage

Distributed File Systems (DFS)

Hadoop DFS, Google File System

(GFS), Gfarm, Amazon S3

Machine

Google Compute Engine, Amazon

Web Services, Window Azure,

Rackspace OpenCloud, and etc.

N
et

w
o

rk

YARN

MapReduce

Pig, Hive, Sawzall,

Dremel, F1, Scope BigTable,

Hbase,

Cassandra,

ZooKeeper

Scientific simulation analysis, database

operations, e.g., join and clustering,

machine learning, image processing

Authentication

Authorization

Access control

Confidentiality

Privacy policies

enforcement

Accounting

Auditing

Confidentiality

Integrity

Availability

Privacy policies

enforcement

Authentication

Authorization

Access control

Confidentiality

Privacy

Integrity

Verification

Ia
a

S
P

a
a

S
S

a
a
S

Data providers The cloud Cloud users

Figure 9.1: Security and privacy requirements in MapReduce environment in the cloud.

9.1 Security and Privacy Challenges in MapReduce

Massive parallel processing style of MapReduce is substantially different from the classical
computation in the cloud leading to distinct design challenges for security and privacy,
which we highlight here, as: size of input data and its storage, highly distributed nature
of MapReduce computations, dataflow (between data storage and computing nodes, and
between public clouds), the black-box nature of public clouds, hybrid clouds, scalability,
fault tolerance, transparency, and untrusted data access. In addition, cloud computing and
the deployment of MapReduce on public clouds present a new set of challenges in privacy
of data such as data privacy protection from adversarial cloud providers, protection of data
from adversarial users, and multiusers on a single public cloud.

84

9.2 Privacy Requirements in MapReduce

MapReduce inherently decouples data providers, cloud providers, and users that execute
queries over data. Referring to the cloud structure depicted in Figure 9.1, data providers
upload data to the cloud provider, and cloud users perform queries on data. However,
despite separation between different entities, ensuring privacy in those settings is still
challenging. Here, we provide requirements of privacy in MapReduce framework,
deployed on the hybrid cloud or the public cloud.
Protection of data providers. In a setting where data is uploaded to the cloud by various
data providers, each data provider might have a different privacy requirements. The cloud
provider has to ensure that those privacy requirements are met even in the presence of
adversarial users. Moreover, different data providers might require a different privacy level
for various data sets. The privacy framework should allow adaptation of privacy levels for
those requirements.
Untrusted cloud providers. As an adversarial cloud provider can perform any
computation on data for revealing data, modifying data, and producing wrong outputs,
data has to be protected from cloud providers. In addition to protect the data from cloud
providers, privacy framework has to be able to protect the performed computations as well.
As an example, consider a user querying for specific information. Even if the data results
are not released to the cloud provider, it is possible to learn the intent of the user from
observing performed computations.
Utilization and privacy tradeoff. A data provider can encode/encrypt/secret-shared her
data in a way that no information can be learnt from it. However, this will also prevent
the user from performing any computation on the data, and thus, decreases utilization of
MapReduce. As such, MapReduce privacy framework has to provide maximum possible
utilization, while still preserving data privacy according to data providers’ requirements.
Efficiency. In most of the public clouds, users are tariffed for usage and storage. Hence,
the privacy framework has to be efficient in terms of CPU and memory consumption, and
in the amount of storage required. If the privacy framework provides high overhead, it
could be more cost-effective to perform computations on the private cloud, where physical
security solves privacy issues.

9.3 Adversarial Models for MapReduce Privacy

We explain adversarial models that are applied in privacy settings in the context of
MapReduce deployment in the clouds.
Honest-but-Curious adversary. This type of adversary mostly applies to cloud providers.

85

Curious cloud providers can breach the privacy of data and MapReduce computations very
easily, since the whole cluster is under the control of cloud providers, which have all
types of privileged access to data and computing nodes. It is important to note that in
reality curious cloud providers are not necessarily adversaries by choice, but rather might
be compliant by court law, regulations, and governmental requests.1

Malicious adversary. This type of adversary applies to a user that tries to learn, modify, or
delete information from the data by issuing various queries. In general, cloud providers are
not assumed to be malicious, as assuring privacy with malicious cloud providers requires a
high level of privacy measures that considerably reduce the utilization of the framework.
Knowledgeable adversary. A knowledgeable adversary applies to both a cloud provider
and a user, who is trying to learn, modify, or delete information. Knowledgeable adversary
is assumed to have a complete knowledge of MapReduce framework, the cloud structure,
and is able to use any algorithm or cryptography drawback.
Network and node adversary. A cloud provider working as a network and node adversary
has all the privileged access to computing nodes and the entire cloud infrastructure. A
real-world example of such adversary is a cloud provider employee that breaches sensitive
information most clearly shown by Edward Snowden case. It is impossible to hide any
MapReduce computation or data from this type of adversary [99].

1http://www.zdnet.com/article/microsoft-admits-patriot-act-can-access-eu-based-cloud-data/

86

Chapter 10

Privacy-Preserving Computations using
MapReduce

Data outsourcing allows data owners to keep their data in the public clouds. However,
as we saw in the previous chapter, a public cloud does not ensure the privacy of data or
computations. Hence, in this chapter, we investigate and present techniques for executing
MapReduce computations in the public cloud, while preserving the privacy.

Specifically, we propose a technique to outsource a database based on replication of
information of the form of secret-shares, (created using Shamir’s secret-sharing [101]
(SSS) scheme) to the public clouds, and then, provide privacy-preserving algorithms for
performing count, search and fetch, equijoin, and range queries using MapReduce. A user
can execute her queries using accumulating-automata (AA) [46]1 on these secret-shares
without revealing queries/data to the cloud. Consequently, in our proposed algorithms, the
public cloud cannot learn the database or computations.

All the proposed algorithms eliminate the role of the database owner, which only creates
and distributes secret-shares only once, as compared to the existing solutions [55, 56,
81, 77, 32]. In addition, the proposed algorithms minimize the role of the user, which
has to perform a simple operation (especially, polynomial interpolation using Lagrange
polynomials [35]) for reconstructing the result, for query processing.

10.1 Motivating Examples

We present two examples (search and equijoin) to show the need for security and privacy
of data and query execution using MapReduce in the public cloud.

1Our MapReduce-based count operation (Section 10.4) adapts the basic working of AA; hence, we provide
the basic working of AA in that section. The remaining advanced operations of AA are detailed in [46].

87

Secure and privacy-preserving search. Problem statement: Consider a hospital database
that can have different users, e.g., doctors, nurses, insurance companies, and database
administrators. As there are different users that may search in the database, on one hand,
it is required that only an authenticated and authorized user will find the desired result. On
the other hand, maintaining a database in the hospital is not a trivial and cheap task. Hence,
it is beneficial to outsource the database to the public clouds.

The public clouds, however, do not ensure the privacy of data and computations; any
user or the cloud can breach the privacy of data and computations. Therefore, it is necessary
to keep a database in the cloud in a privacy-preserving manner so that only authenticated
and authorized users can access and know the database.
Secure and privacy-preserving equijoin of two relations X(A,B) and Y (B,C).
Problem statement: The join of relationsX(A,B) and Y (B,C), where the joining attribute
is B, provides output tuples 〈a, b, c〉, where (a, b) is in X and (b, c) is in Y . In the equijoin
of X(A,B) and Y (B,C), all tuples of both the relations with an identical value of the
attribute B should appear together for providing the final output tuples.

Consider that the relations X and Y belong to two organizations, e.g., a company and a
hospital, while a third user wants to perform the equijoin. However, both the organizations
want to provide results, while maintaining the privacy of their databases, i.e., without
revealing the whole database to the other organization and the user. Hence, it is required to
perform the equijoin in a secure and privacy-preserving manner.

10.2 System Settings

We consider, for the first time, data and MapReduce-based computation outsourcing of the
form of secret-shares to c non-communicating clouds. The meaning of non-communicating
clouds is that they do not exchange data with each other, only exchange data with the user
or the database owner.
The system architecture. The architecture is simple but powerful and assumes the
following:
STEP 1. A data owner outsources her databases of the form of secret-shares to c

(non-communicating) clouds only once; see STEP 1 in Figure 10.1. We use c clouds to
provide privacy-preserving computations using SSS. Note that a single non-trustworthy

cloud cannot provide privacy-preserving computations using secret-sharing.
STEP 2. A preliminary step is carried out at the user-side wishing to perform a MapReduce
computation. The user sends a query of the form of secret-shares to all c clouds to find the
desired result of the form of secret-shares; see STEP 2 in Figure 10.1. The query must be
sent to at least c′ < c number of clouds, where c′ is the threshold of SSS.

88

STEP 3. The clouds deploy a master process that executes the computation by assigning the
map tasks and the reduce tasks; see STEP 3 in Figure 10.1. The user interacts only with the
master process in the cloud, and the master process provides the addresses of the outputs
to the user. It must be noted that the communication between the user and the clouds is
presumed to be the same as the communication between the user and the master process.

STEP 4:

Interpolation

(with the help

of reducers)

and obtain the

final results

Database

STEP3: Master

Process

Secret-

shares of the

database

Data owner User-side

M

M

M

R

R

STEP3: Master

Process

Secret-

shares of the

database

M

M

M

R

R

STEP3: Master

Process

Secret-

shares of the

database

M

M

M

R

R

Notations:

M: Mapper

R: Reducer

Figure 10.1: The system architecture.

STEP 4. The user fetches the outputs from the clouds and performs the interpolation (with
the help of reducers) for obtaining the secret-values; see STEP 4 in Figure 10.1.

In this system setting, users wish to execute their MapReduce computations without
revealing the computation to the clouds, while the database owner wishes to store its
database and perform queries’ execution in public clouds without compromising the
privacy.

Note. Physical machines of a single cloud provider can be compromised as well,
possibly leaking information (through the network) they received when participating in the
MapReduce; thus, secret sharing will make the leaked information meaningless, as long as
the number of leaked machines is less than the threshold or the compromised machines are
controlled by different (non-collaborating) adversaries.

Adversarial settings. We assume, on one hand, that an adversary cannot launch any
attack against the data owner, who is trustworthy. Also, the adversary cannot access the
secret-sharing algorithm and machines at the database owner side.

On the other hand, an adversary can access public clouds and data stored therein.
Hence, the adversary can also access input, intermediate, and output data of a MapReduce
job. A user who wants to perform a computation on the data stored in public clouds may
also behave as an adversary. Moreover, the cloud itself can behave as an adversary, since

89

it has complete privileges to all the machines and storage. Both the user and the cloud can
launch any attack to compromise the privacy of data or computations.

We consider an honest-but-curious adversary, which is considered in the standard
settings for security in the public cloud [112, 30, 93]. The honest-but curious adversary
performs assigned computations correctly, but tries to breach the privacy of data or
MapReduce computations, by analyzing data, computations, or data flow. However, such
an adversary does not modify or delete information from the data.

We assume that an adversary can know less than c′ < c clouds locations that store
databases and execute queries. Recall that c′ is the threshold of SSS. In addition, the
adversary cannot eavesdrop all the c′ or c channels (between the database owner and
the clouds, and between the user and the clouds). Hence, we do not impose private
communication channels.

Under such an adversarial setting, we provide a guaranteed solution so that an adversary
cannot learn the data or computations. It is important to mention that an adversary can
break our protocols by colluding c′ clouds, which is the threshold for which the secret
sharing scheme is designed for.
Parameters for analysis. We analyze our privacy-preserving algorithms on the following
parameters:
Communication cost: is the sum of all the bits that are required to transfer between a user
and a cloud.
Computational cost: is the sum of all the bits over which a cloud or a user works.
Number of rounds: shows how many times a user communicates with a cloud for obtaining
the results.

Table 10.1 summarizes all the results of this chapter and a comparison with the existing
algorithms.

10.3 Creation and Distribution of Secret-Shares of a
Relation

We consider an example of a relation, Employee, see Figure 10.2. A data owner creates
secret-shares of this relation and sends to c clouds. In this section, we show how to create
secret-shares of a value, following an approach given in [46].
A secure way for creating secret-shares. Assume that a database only contains English
words. Since the English alphabet consists of 26 letters, each letter can be represented
by a unary vector with 26 bits. Hence, the letter ‘A’ is represented as (11, 02, 03, . . . , 026),
where the subscript represents the position of the letter; since ‘A’ is the first letter, the

90

Algorithms Communication
cost

Computational cost # rounds Matching Based
on

User Cloud

Count operation
EPiC [26] O(1) O(1) O(n) 1 Online E

Our solution 10.4 O(1) O(1) nw 1 Online SS

Search and single tuple fetch operation
Niv [32] O(nmw) O(1) O(nmw) log2n Online SS

PRISM [27] O((nm)
1
2w) O((nm)

1
2w) O(nmw) q E

Our solution 10.5.1 O(mw) O(mw) O(mw) 1 Online SS

Search and multi-tuples fetch operation
rPIR [77] O(nm) O(1) O(nmw) 1 No SS

PIRMAP [88] O(nmw) O(mw) O(nmw) 1 No E

Goldberg [81] O(n+m) O(m) O(nm) 2 Offline SS

Emekci et al. [56] O(`m) O(`m) O(n) 2 Offline vSS

Our solution:
knowing
addresses 10.5.2

O
(
(log`n +

log2`)`
) O

(
(log`n+

log2`)`
) O

(
(log`n+

log2`)`nw
) blog`nc +blog2`c +

1

Online SS

Our solution:
fetching
tuples 10.5.2

O((n+m)`w) O((n +
`m)w)

O(`nmw) 1 Online SS

Equijoin
Our solution 10.6 2nwk +

2k`2mw
2nw +
2k`2mw

2`2kmw 2k Online SS

Notations: Online: perform string matching in the cloud. Offline: perform string matching at the
user-side. E: encryption-decryption based. SS: Secret-sharing based. vSS: a variant of SS. n: #
tuples, m: # attributes, `: # occurrences of a pattern (` ≤ n), w: bit-length of a pattern.

Table 10.1: Comparison of different algorithms with our algorithms.

Employee Id First name Last name Date of birth Salary Department
E101 Adam Smith 12/07/1975 1000 Sale
E102 John Boro 10/30/1985 2000 Design
E103 Eve Smith 05/07/1985 500 Sale
E104 John Williams 04/04/1990 5000 Sale

Figure 10.2: A relation: Employee.

first value in the vector is one and others are zero. Similarly, ‘B’ is (01, 12, 03, . . . , 026),
‘J’ is (01, . . . , 09, 110, 011, . . . , 026), and so on. The reason of using unary representation
here is that it is very easy for verifying two identical letters. The expression S =∑r

i=0 ui × vi, compares two letters, where (u0, u1, · · ·ur) and (v0, v1, · · · , vr) are two
unary representations. It is clear that whenever any two letters are identical, S is equal
to one; otherwise, S is equal to zero. Binary representation can also be accepted, but the

91

comparison function is different from that used in the unary representation [49].
Now, when outsources a vector to the clouds, we use SSS and make secret-shares

of every bit by selecting different polynomials of an identical degree; see Algorithm 11
in Appendix G.1. For example, we create secret-shares of the vector of ‘A’
((11, 02, 03, . . . , 026)) by using 26 polynomials of an identical degree to create secret-shares
of each bit, since the length of the vector is 26. Following that, we can create secret-shares
for all the other letters and distribute them to different clouds.

Since we use SSS, a cloud cannot infer a secret. Moreover, it is important to emphasize
that we use different polynomials for creating secret-shares of each letter; thereby multiple
occurrences of a word in a database have different secret-shares. Therefore, a cloud is
also unable to know the total number of occurrences of a word in the whole database.
Following that, the two occurrences of the word John in our example, see Figure 10.2,
have two different secret-shares.

Secret-shares of numeral values. We follow the similar approach for creating
secret-shares of numeral values as used for alphabets. In particular, we create a unary vector
of length 10 and put all the values 0 except only 1 according to the position of a number.
For example, ‘1’ becomes (11, 02, . . . , 010). Then, we use SSS to make secret-shares of
every bit in each vector by selecting different polynomials of an identical degree for each
number, and send them to multiple clouds.

Aside. There is a challenge for creating secret-shares of a database; but once we did it,
the rest of operations are relatively easier. Moreover, creating secret-shares of a database
and its storage is less expensive than encrypting a database and its storage [97]. Also,
it should be noted that standard techniques based on Berlekamp-Welch algorithm [110],
where additional secret shares are used to encode the data can be directly applied here,
enabling us to cope with a malicious adversary, with no change in the communication
pattern.

In the next section, we will present four privacy-preserving algorithms for performing
four fundamental operations on a database of the form of secret-share, as: count the
occurrences of a pattern, fetch all the tuples containing a pattern, equijoin of two relations,
and execution of range queries. All these algorithms are based on string matching of
a value of a relation with a pattern, where the value and the pattern are of the form of
secret-shares. The string matching operation on secret-shares will be done with the help of
accumulating-automata (AA) [46]. All these algorithms execute operations obliviously in
the cloud so that the cloud can never know which operations are executing on which tuples
of a relation, while the user has to perform a simple operation to reconstruct the result.
Throughout the section, we denote a pattern by p.

92

10.4 Count Query

We present a privacy-preserving algorithm for counting the number of occurrences of p
in the cloud; see Algorithm 12 in Appendix G.2. We use our running example to count
the number of people who have their first name as John in the relation Employee, see
Figure 10.2. The algorithm is divided into two phases, as:
PHASE 1: Privacy-preserving counting in the clouds, Section 10.4.1
PHASE 2: Result reconstruction at the user-side, Section 10.4.2

In short, we apply a string matching algorithm, which is done using AA that compares
each value of a relation with p. If a value and p match, it will result in 1; otherwise, we
have 0. We apply the same algorithm on each value and collect the outputs. The sum of all
the outputs provide the number of occurrences of p. Note that all the values of a relation, a
pattern, and the result, i.e., 0 or 1, are of the form of secret-share.

10.4.1 Counting a pattern

Counting a pattern, John, in secret-shares in different clouds. We explain how to
count the occurrences of John in a relation of the form of secret-shares; see Algorithm 12
in Appendix.
Working at the user-side. Recall that the user creates unary vectors for each letter of p.
In order to hide the vectors of p, the user creates secret-shares of each vector of p, as
suggested in Section 10.3, sends them to the clouds. In our running example, a user creates
four unary vectors for each letter of John, and then, creates secret-shares of each unary
vector. In addition, the user writes a code of mappers for each cloud and also creates node
values of the form of secret-shares.
Working in the cloud. Now, a cloud has three things, as: (i) a relation of the form
secret-shares, (ii) a searching pattern of the form of secret-shares, and (iii) code of mappers
with node values of the form of secret-shares.

The mapper creates an automaton, which performs a string matching operation, with
x+ 1 nodes2 where x is the length of p and initializes values of these nodes. The first node
is assigned a value one (N1 = 1, Ni shows the value of node i), and all the other nodes are
assigned values zero (Ni = 0, i 6= 1). The mapper reads each encoded word one-by-one
and executes x + 1 steps for each word for finding new values of the nodes. At the end of
the computation, the value of the node Nx+1 shows the occurrences of p.

Example. In our running example, since we are searching a pattern of length four, a
mapper creates an automaton of five nodes, assigns a node value one to the first node, and

2Note that x+ 1 nodes are not machine nodes. These are parts of an automaton.

93

zero to the other nodes. The mapper reads the first name of employees one-by-one and
executes five steps, given in Table 10.2 for each word.

STEP 1: N1 = 1, N0
5 = 0

STEP 2: N (i)
2 = N1 × v1

STEP 3: N (i)
3 = N

(i)
2 × v2

STEP 4: N (i)
4 = N

(i)
3 × v3

STEP 5: N (i)
5 = N

(i−1)
5 +N

(i)
4 × v4

The notation N
(i)
j shows that the node j is executing a step in iteration i.

The final value of the node N5, which is sent to the user, is the number of
occurrences of the pattern.
In our example, there are four tuples so that these five steps will be executed
exactly four times.

Table 10.2: The steps executed by a mapper for counting John.

Explanation of the steps for counting John in non-secret-shared data. For the purpose of
simplicity and understanding, we first show how to perform a string matching operation on
the unary vectors, and then, we explain for the database of the form of secret-shares.

In the first iteration i = 1, the mapper reads the word ‘Adam,’ executes STEPs 1 and 2,
and obtains the value of v1 by multiplying the vector of ‘A’ with the vector of ‘J,’ which
results in v1 = 0 and N (1)

2 = 0. After that, the mapper executes STEP 3 and obtains the
value of v2 by multiplying the vector of ‘d’ with the vector of ‘o,’ which results in v2 = 0,
and hence, using the value of N (1)

2 = 0, N (1)
3 will be 0. Then, the mapper executes STEPs

4 and 5 and obtains values of v3 and v4 by multiplying the vector of ‘a’ with the vector of
‘h,’ which results in v3 = 0 and N (1)

4 = 0, and respectively, by multiplying the vector of
‘m’ with the vector of ‘n,’ which results in v4 = 0 and N (1)

5 = 0. The value of N (1)
5 = 0 in

the first iteration shows that ‘Adam’ and John are not identical.
Next, the mapper reads the word ‘John’ and executes the second iteration, i = 2. In

STEP 2, multiplication of the vector of ‘J’ with the vector of ‘J’ results in v1 = 1 and
N

(2)
2 = 1. Similarly, the mapper executes STEPS 3, 4, and 5, and obtains, the values as:

v2 = 1 and N (2)
3 = 1, v3 = 1 and N (2)

4 = 1, and v4 = 1 and N (2)
5 = 1. Next, the mapper

reads the word ‘Eve,’ executes all the STEPs, and results in v1 = 0 and N (3)
2 = 0, v2 = 0

and N (3)
3 = 0, v3 = 0 and N (3)

4 = 0, v4 = 0, and the value of N (3)
5 will be 1, which shows

that until now only one employee has John as a first name. The mapper reads the word
‘John,’ executes all the STEPs and eventually results in N (4)

5 = 2, which shows that two
employees have John as their first names.
Explanation of the steps for counting John in secret-shared data. In order to count the
number of occurrences of p, the mapper performs five steps, as mentioned above, for
comparing John with each first name. At this time, the mapper is unable to know the

94

value of the node N5 in each iteration and sends the final value of N5 to the user of form
of a 〈key , value〉 pair, where a key is an identity of an input split over which the operation
has performed, and the corresponding value is the final value of the node N5 of the form of
secret-shares. The user collects 〈key , value〉 pairs from all the clouds or a sufficient number
of clouds such that the secret can be generated using those shares.

10.4.2 Result reconstruction at the user-side

When we count the occurrences of p in the unary vectors, there is no need for result
reconstruction at the user-side. The final value of the node Nx+1 shows the number of
occurrences of p, where x is the length of p. In our example, the final value of the node N5

shows the total number of occurrences of John in the relation.
In case of secret-shares, however, we need to reconstruct the final value of the node

Nx+1. The user has 〈key , value〉 pairs from all the clouds. All the values corresponding to
a key are assigned to a reducer that performs the interpolation and provides the final value
of the node Nx+1. If there are more than one reducer, then after the interpolation the sum
of the final values shows the total number of occurrences of p.

Aside. If a user searches John in a database containing names like ‘John’ and ‘Johnson,’
then our algorithm will show two occurrences of John. However, it is a problem associated
with string matching. In order to search a pattern precisely, we may use the terminating
symbol for indicating the end of the pattern. In the above example, we can use “John ”,
which is the searching pattern ending with a space, for obtaining the correct answer.

Theorem 10.1 (Cost for count operation) The communication cost, the computational

cost at a cloud, and the computational cost at the user-side for counting the occurrences

of a pattern is at most O(1), at most nw, and at most O(1), respectively, where n is the

number of tuples in a relation and w is the maximum bit length.

The proof is given in Appendix G.2.

10.5 Search and Fetch Queries

In this section, we provide a privacy-preserving algorithm for fetching all the tuples
containing p. The proposed algorithms first execute Algorithm 12 for counting the number
of tuples containing p, and then, fetch all the tuples after obtaining their addresses.
Specifically, we provide 2-phased algorithms, where:
PHASE 1: Finding addresses of tuples containing p
PHASE 2: Fetching all the tuples containing p

95

We will present Algorithm 13 for fetching a tuple when a relation has only one tuple
containing p, in Section 10.5.1, and Algorithm 14 for fetching ` > 1 tuples when a relation
has ` tuples containing p, in Section 10.5.2. In both the algorithms, the user follows the
similar approach for creating secret-shares and counting the occurrences of p, as described
in Sections 10.3 and 10.4, respectively.

10.5.1 Unary occurrence of a pattern

When only one tuple contains p, there is no need to obtain the address of the tuple, and
Algorithm 13 fetches the whole tuple in a privacy-preserving manner. Here, we explain
how to fetch a single tuple containing p. Algorithm 13 works as follows:

Fetching the tuple. The user sends secret-shares of p. The cloud executes a map function
on a specific attribute, and the map function matches p with ith value of the attribute,
as we did for the count operation; however, we do not add the output of the all tuple.
Consequently, the map function results in either 0 or 1 of the form of secret-shares. Note
that if p matches the ith value of the attribute, then the result is 1. After that the map
function multiplies the result (0 or 1) by all the m values of the ith tuple. In this manner,
the output of the map phase is a relation of n tuples and m attributes.

When the map function finishes over all the n tuples, it adds and sends all the
secret-shares of each attribute, as: S1||S2|| . . . ||Sm to the user, where Si is the sum of
the secret-shares of ith attribute (since after multiplication all the tuples contain zero of
the form of secret-shares except one, addition operation over each attribute results in the
desired row of the form of secret-shares). The user on receiving shares from all the clouds
executes a reduce function that performs the interpolation and provides the desired tuple
containing p.

Theorem 10.2 The communication cost, the computational cost at a cloud, and the

computational cost at the user-side for fetching a single tuple containing a pattern is at

most O(mw), at most O(nmw), and at most O(mw), respectively, where a relation has n

tuples and m attributes and w is the maximum bit length.

The proof of the theorem is given in Appendix G.3.

10.5.2 Multiple occurrences of a pattern

When multiple tuples contain p, we cannot fetch all those tuples obliviously without
obtaining their addresses. Therefore, we first need to perform a pattern search algorithm
to obtain the addresses of all the tuples containing p, and then, fetch the tuples in a
privacy-preserving manner. Throughout this section, we consider that ` tuples contain p.

96

In this section, we provide two algorithms for obtaining the addresses of tuples containing
p. Both the algorithms have 2-phases, as:
PHASE 1: Finding the addresses of the desired ` tuples
PHASE 2: Fetching all the ` tuples

Tradeoff. When fetching multiple tuples containing p, there is a tradeoff between the
number of communication rounds and the computational cost at the user-side, and this
tradeoff will be clear after the description of the first and the second algorithm. In particular,
the user performs a lot of computation when she wants to know the addresses of all the
tuples containing p in one round. On the other hand, obtaining the addresses in multiple
rounds requires that the cloud has to perform a heavy computation, while the user has to
perform the interpolation.
Naive algorithm. A simple and naive algorithm requires only two rounds of
communication between a user and the cloud for executing the two-phases, one round for
each phase. However, the algorithm requires more workload at the user-side.

Finding addresses. The user sends p of the form of secret-shares to the clouds, and the
cloud executes a map function that performs a string matching algorithm on secret-shares
of each tuple, as we did to count the occurrences of John in Section 10.4.1. However,
we do not accumulate occurrences, and hence, sends n values corresponding to each tuple.
The user implements a reduce function that performs the interpolation and creates a vector,
v, of length n, where ith entity has value either 0 or 1, depending on the occurrence of p in
the ith tuple of the relation. As a disadvantage, the user has to work on all the tuples, but
the user knows addresses of all the desired tuples in a single round.

Fetching tuples. The user creates a ` × n matrix, M , and creates secret-shares of it, by
following the approach suggested in Section 10.3. All the n columns of a row of the matrix
M has 0 but 1 that is dependent on the addresses of the tuples containing p. For example,
in the vector v, if the second position is 1, then we create a row of the matrix M where all
the n columns have 0 but the second column has 1. After that, we use n polynomials of
identical degree for making secret-shares of all the values and send them to clouds.

Recall that the cloud has a relation of n tuples and m attributes. A mapper in the cloud
performs matrix multiplication by multiplying the matrixM with the relation and sends the
results to the user. Recall that the matrix M has 0 and 1 of the form of secret-shares, so that
the multiplication results in only the desired tuple and all the other tuples are eliminated.
The user finally executes a reduce function that performs the interpolation and provides the
desired ` tuples. A similar approach is also presented in [81].

Theorem 10.3 After obtaining the addresses of the desired tuples containing a pattern, p,

the communication cost, the computational cost at a cloud, and the computational cost at

97

the user-side for fetching the desired tuples is at most O((n + m)`w), O(`nmw), and at

most O((n+m`)w), respectively, where a relation has n tuples and m attributes, w is the

maximum bit length, and ` is the number of tuples containing p.

The proof of the theorem is given in Appendix G.4.
Tree-based algorithm. In order to decrease the computational load at the user-side, we
propose a search-tree-based keyword search algorithm (Algorithm 14, pseudocode is given
in Appendix G.4) that consists of two phases, as: finding the address of the desired ` tuples
in multiple rounds, and then, fetching all the ` tuples in one more round.

Taking inspiration form Algorithm 13, we can also obtain the addresses (or line
numbers) in a privacy-preserving manner, if only a single tuple contains p. Thus, for the
case of finding addresses of ` tuples containing p, we divide the whole relation into certain
blocks such that each block belongs to one of the following cases:
1. A block contains no occurrence of p, and hence, no fetch operation is needed.
2. A block contains one/multiple tuples but only a single tuple contains p.
3. A block contains h tuples, and all the h tuples contain p.
4. A block contains multiple tuples but fewer tuples contain p.

Finding addresses. We follow an idea of partitioning the database and counting the
occurrences of p in the partitions, until each partition satisfies one of the above mentioned
cases. Specifically, we initiate a sequence of Query & Answer (Q&A) rounds. In the first
round of Q&A, we count occurrences of p in the whole database (or in an assigned input
split to a mapper) and then partition the database into ` blocks, since we assumed that `
tuples contain p. In the second round, we again count occurrences of p in each block and
focus on the blocks satisfying Case 4. There is no need to consider the blocks satisfying
Case 2 or 3, since we can apply Algorithm 13 in both the cases. However, if the multiple
tuples of a block in the second round contain p, i.e., Case 4, we again partition such a block
until it satisfies either Case 1, 2 or 3. After that, we can obtain the addresses of the related
tuples using the method similar to Algorithm 13.

Fetching tuples. We use the approach described in the naive algorithm for fetching
multiple tuples after obtaining the addresses of the tuples.

Example. Here, we give an example to illustrate the above approach. Let an input
split consists of 9 tuples, see Figure 10.3, and the number of occurrence of p is two.
When the user knows the number of occurrences, she starts Q&A rounds. In each Q&A
round, a mapper partitions specific parts of the input split into two blocks, performs AA
in each blocks, and sends results, which are occurrences of p in each block, of the form of
secret-shares back to the user.

In this example, the user initiates the first Q&A round, and a mapper divides the input

98

Tuple 1

Tuple 2

Tuple 3

Tuple 4

Tuple 5

Tuple 6

Tuple 7

Tuple 8

Tuple 9

Occurrences = 2

Occurrences = 2

Tuple 1

Tuple 2

Tuple 3

Q&A Round 1 Q&A Round 2

Tuple 4

Tuple 5

Database

Tuple 1

Tuple 2

Tuple 3

Tuple 4

Tuple 5

Tuple 6

Tuple 7

Tuple 8

Tuple 9

Occurrence = 0

Occurrences = 2

Occurrence = 0

Tuple 1

Tuple 2

Tuple 3

Occurrence = 1

Occurrence = 1

Q&A Round 3

Figure 10.3: Example of Q&A rounds.

split into two parts. In each block, it counts the occurrences of p and sends the results to
the user. The user executes a reducer that performs the interpolation. The user knows that
the first and the second blocks contain two and zero tuples having p, respectively. The
user divides the first block into two parts again in the second Q&A round. The mapper
performs an identical operation as it does in the first round, and after three Q&A rounds,
the user have all the two tuples having p.

Theorem 10.4 The maximum number of rounds for obtaining addresses of tuples

containing a pattern, p, using Algorithm 14 is blog`nc+blog2`c+1, and the communication

cost for obtaining such addresses is at mostO
(
(log`n+log2`)`

)
. The computational cost at

a cloud and the computational cost at the user-side is at most O
(
(log`n+ log2`)`nw

)
and

at most O
(
(log`n + log2`)`

)
, respectively, where a relation has n tuples and m attributes,

` is the number of tuples containing p, and w is the maximum bit length.

The proof of the theorem is given in Appendix G.4.
Example. In figure 10.3, in order to fetch tuples containing p, the user needs three

rounds, which are less than blog2 9c+ blog2 2c+ 1 = 5.

10.6 Equijoin

In this section, we show how to perform the equijoin in a privacy-preserving manner using
MapReduce. Throughout this section, we consider two relations X(A,B) and Y (B,C)

containing n tuples in each, where the joining attribute is B. A trivial way for performing
the equijoin in a privacy-preserving manner, as follows: (i) fetch all the secret-shares

99

of B-values from all the clouds and perform the interpolation, (ii) find tuples of both
the relations that have an identical B-value and fetch all those tuples, (iii) perform the
interpolation on the tuples, and (iv) perform a MapReduce job for joining the tuples at
the user-side. However, in this approach the user has to perform the interpolation and
MapReduce-based join.

In order to decrease the workload at the user-side, we propose two approaches so that
the user has to perform only the interpolation on the output tuples of the join. The first
approach assumes that the relations X and Y have at most one occurrence of B values in
each, and the second approach does not hold any restriction on the occurrences ofB-values,
i.e., a B-value can occur in multiple tuples of the relations.

10.6.1 A unique occurrence of the joining value

We use string matching operations (a variant of Algorithm 13) on secret-shares for
performing the equijoin. The following steps are executed for performing the equijoin
when a joining value occurs in at most one tuple of a relation, as:
1. In a cloud:

a. A mapper reads ith tuple 〈ai, bi〉 of the relation X and provides a pair of 〈key , value〉,
where a key is an identity i and a value is secret-shares of 〈ai, bi〉.

b. A mapper reads jth tuple 〈bj, cj〉 of the relation Y and provides n pairs of 〈key , value〉,
where a key is an identity from 1 to n and a value is secret-shares of 〈bj, cj〉.

c. A reducer i is assigned 〈i, [ai, bi]〉, where ai, bi ∈ X , and all the tuples of the relation
Y . The reducer performs string matching operations on the B values that result in 0
or 1 of the form of secret-share. Specifically, the reducer matches bi ∈ X with each
bj ∈ Y , and the resultant of the string matching operation (bi and bj) is multiplied by
the tuple 〈bj, cj〉. After performing the string matching operation on all the B-values
of the relation Y , the reducer adds all the secret-shares of the attributes B and C. The
sum of the B-values is multiplied by the tuple 〈ai, bi〉 and the sum of the C-values is
appended to this tuple. Thus, a new tuple is obtained as 〈a′, b′, c′〉.

2. The user fetches all the outputs of reducers from all the clouds, performs the
interpolation, and obtains the outputs of the equijoin.

Example. We consider two relations X and Y , see Figure 10.4. Consider that all values
are of the form of secret-shares. Mappers in the cloud read the tuples 〈a1, b1〉, 〈a2, b2〉,
and 〈a3, b3〉 and provide 〈1, [a1, b1]〉, 〈2, [a2, b2]〉, and 〈3, [a3, b3]〉, respectively. The mapper
reads the tuple 〈b1, c1〉 and provides 〈1, [b1, c1]〉, 〈2, [b1, c1]〉, and 〈3, [b1, c1]〉. A similar
operation is also carried out on the tuples 〈b2, c2〉 and 〈b4, c4〉.

A reducer corresponding to key 1 matches b1 of X with b1 of Y that results in 1, then b1

100

A B
a1 b1
a2 b2
a3 b3

B C
b1 c1
b2 c2
b4 c4

Figure 10.4: Two relations X(A,B) and
Y (B,C).

A B
a1 b1
a2 b1
a3 b2

B C
b1 c1
b1 c2
b3 c3

Figure 10.5: Two relations X(A,B) and
Y (B,C) with multi occurrences of a
B-value.

of X with b2 of Y that results in 0, and b1 of X with b4 of Y that results in 0. Remember 0
and 1 are of the form of secret-shares. Now, the reducer multiplies the three values (1,0,0)
of the form of secret-shares by the tuples 〈b1, c1〉, 〈b2, c2〉, and 〈b4, c4〉, respectively. After
that the reducer adds all the B-values and the C-values. Note that we will obtain now only
the desired tuple, i.e., 〈b1, c1〉. The reducer multiplies the sum of all the B-values by the
tuple 〈a1, b1〉 appended with the sum of all the C-values. The same operation is carried
out on other B-values of the relation X . When the user performs the interpolation on the
outputs of all the clouds, only the desired output tuples of the equijoin are obtained, and all
the other tuples, for example 〈a3, b3〉, hold value zero. In this manner, the user performs
the equijoin in a privacy-preserving manner without knowing undesired tuples.
Aside. We assume that the all the A, B, and C values of the relations do not contain zero.

Theorem 10.5 The communication cost, the computational cost at a cloud, and the

computational cost at the user-side for performing the equijoin of two relations X and

Y , where a joining value can occur at most one time in a relation, is at most O(nmw), at

most O(n2mw), and at most O(nmw), respectively, where a relation has n tuples and m

attributes and w is the maximum bit length.

The proof of the theorem is given in Appendix G.5.

10.6.2 Multiple occurrences of the joining value

We present an algorithm for performing the equijoin when many tuples of a relation have
an identical joining value. Consider two relations X(A,B) and Y (B,C), see Figure 10.5.

Note that if we follow the previous approach, Section 10.6.1, then we take b1 of X ,
multiply b1 by all three B-values of Y , and add all secret-shares. However, after addition,
we cannot distinguish two occurrences of b1 in Y . Hence, we present a new algorithm and
system settings for this type of the equijoin.
New System Setting. We need a new system setting only for the equijoin when a joining
value occurs many times in a relation, see Figure 10.6. Recall that in the system setting
mentioned in Section 10.2, we use c non-communicating clouds to store secret-shares of a

101

User-site

Relation X

Relation Y

Secret-shares

of Relation X

Secret-shares

of Relation Y

STEP 3: A

MapReduce

computation

for searching,

fetching, and

moving the

desired tuple

Secret-shares

of Relation X

Secret-shares

of Relation Y

STEP 3: A

MapReduce

computation

for searching,

fetching, and

moving the

desired tuple

Secret-shares of

a relation X

Secret-shares of

a relation Y

STEP 5: A

MapReduce

computation

for the

equijoin

Secret-shares of

a relation X

Secret-shares of

a relation Y

STEP 5: A

MapReduce

computation

for the

equijoin

STEP 1: Distribute

secret-shares

STEP 2: send queries to send the

desired tuple to the cloud of the

second layer

STEP 4:

moving

the

desired

tuples

STEP 6:

Interpolation

and obtain the

final results

Data owner The first layer of the clouds The second layer of the clouds

Figure 10.6: The new system architecture for the equijoin.

relation. Here, we introduce one more layer of the clouds. The clouds within a layer are
not allowed to communicate; however, the clouds of the first layer and the second layer can
communicate, see STEP 4 of Figure 10.6.

A data owner outsources her databases, i.e., the relations X and Y , of the form of
secret-shares to c (non-communicating) clouds of the first layer only once; see STEP 1 in
Figure 10.6. The user sends a query of the form of secret-shares to all c clouds of the
first layer to find the desired tuples and send them to the clouds of the second layer; see
STEP 2 in Figure 10.6. The clouds of the first layer execute the multi-tuple fetch algorithm
(presented in Section 10.5.2) and send the desired tuples to the clouds of the second layer;
see STEPs 3 and 4 in Figure 10.6. The cloud of the second layer creates two relations from
the selected tuples of X and Y , and performs the join operation on secret-shares; see STEP

5 in Figure 10.6. Finally, the user fetches the outputs from the clouds of the second layer
and performs the interpolation for obtaining secret-values; see STEP 6 in Figure 10.1. We
will explain all these steps with the help of an example shortly.
The Approach. The approach consists of the following three steps, where the second step
that perform the equijoin is executed in the clouds, as follows:
1. The user fetches all theB-values of the relationsX and Y and performs the interpolation.
After the interpolation, the user knows which B-values are identical in both relations and
in which tuples they are.
2. For each B-value (say, bi) that is in both relations:

a. The user requests the clouds of the first layer to send all the tuples containing bi to a

102

cloud of the second layer. This operation is done using the naive algorithm for fetching
multiple tuples, refer to Section 10.5.2.

b. On receiving tuples containing the joining value bi from the clouds of the first layer,
the clouds in the second layer create two new relations corresponding to the tuples
of X and Y . Then, the clouds in the second layer execute a MapReduce job that
concatenates a tuple of the first relation to all the tuples of the second relation and
provides the output of the equijoin, since the two new relations have only one identical
B-value.

3. The user fetches all the outputs tuples from the second layer of the clouds and performs
the interpolation.

Example. For the relations X and Y , see Figure 10.5, the user fetches all the B-values
of both the relations and performs the interpolation. After the interpolation, the user knows
that the joining value b1 appears in the first tuple and second tuple of both the relations.
The user follows the naive algorithm for fetching multiple tuples containing b1 (refer to
Section 10.5.2) and asks the clouds of the first layer to send these four tuples to the clouds
of the second layer.

The cloud of the second layer creates two new relations X ′ containing 〈a1, b1〉 and
〈a2, b1〉, and Y ′ containing 〈b1, c1〉 and 〈b1, c2〉. A mapper reads a tuple and provides
〈key , value〉 pairs, where a key is an identity and a value is the tuple. A reducer holds
all the tuples of both the relations X ′ and Y ′ and joins (or concatenates) the first and the
second tuples ofX ′ to both the tuples of Y ′. Finally, the user fetches the output and executes
the interpolation.

Theorem 10.6 The number of rounds, the communication cost, the computational cost at

a cloud, and the computational cost at the user-side for performing the equijoin of two

relations X and Y , where a joining value can occur in multiple tuples of a relation, is

at most O(2k), at most O(2nwk + 2k`2mw), at most O(`2kmw), and at most O(2nw +

2k`2mw), respectively, where a relation has n tuples and m attributes, k is the number

of identical values of the joining attribute in the relations, ` is the maximum number of

occurrences of a joining value, and w is the maximum bit length.

The proof of the theorem is given in Appendix G.5.

10.7 Range Query

A range query finds, for example, all the employees whose salaries are between $1000 and
$2000. We propose an approach for performing privacy-preserving range queries based on
2’s complement subtraction. A number, say x, belongs in a range, say [a, b], if sign(x−a) =

103

0 and sign(x − b) = 0, where sign(x − a) and sign(b − x) denote the sign bits of x − a
and x− b, respectively, after 2’s complement based subtraction.

Recall that in Section 10.3, we proposed an approach for creating secret-shares of a
number, x, using unary representation that provides a vector, where all the values are 0
except only 1 according to the position of the number. The approach works well to count
the occurrences of x and fetch all the tuples having x. However, on this vector, we cannot
perform subtraction operation. Hence, in order to execute range queries, we represent a
number using binary-representation, which results in a vector of length, say l. Then, we
use SSS to make secret-shares of every bit in the vector by selecting l different polynomials
of an identical degree for each bit position.
The approach. The idea of finding whether a number, x, belongs to the range, [a, b],
is based on 2’s complement subtraction. In [49], the authors provided an algorithm for
subtracting secret-shares using 2’s complement. However, we will provide a simple 2’s
complement based subtraction algorithm for secret-shares, see Algorithm 15. A mapper
checks the sign bits after subtraction for deciding the number whether it is in the range or
not, as follows:

If x ∈ [a, b], sign(x− a) = 0, sign(b− x) = 0

If x < a, sign(x− a) = 1, sign(b− x) = 0

If x > b, sign(x− a) = 0, sign(b− x) = 1

(10.1)

After checking each number, we can use one of the following approaches:
1. A simple solution. The mapper sends the sign bit’s values of the form of secret-shares

to the user for each tuple. The user then implements a reduce function that performs the
interpolation and creates an array of length n. If the number x in ith tuples belongs in
the range [a, b], then the ith position in the array is one. Otherwise, the ith position in the
array is zero. Finally, the user fetches all the tuples having value 1 in the array using the
naive algorithm for fetching multiple tuples, see Section 10.5.2.

2. It keeps the count of all the numbers that belong in the range and sends the count to the
user that interpolates them. After knowing how many numbers are in the range, the user
can implement Algorithm 13 or 14 for fetching the desired tuples; see Algorithm 16.
However, in this manner, we have to check the numbers whether they are in the range or
not at the time of fetching the tuple. In this approach, we use many rounds for fetching
the desired tuples; however, at the user-side, the computational cost decreases.
Pseudocodes of 2’s complement based subtraction of secret-sharing (Algorithm 15) and

of privacy-preserving range query (Algorithm 16) are given in Appendix G.6.

104

Chapter 11

Conclusion and Future Work

The replication of data and computing protocols provides a way to deal with faulty behavior
of the system. However, replication comes with an extra cost of communication and
computations. In this thesis, we figured out how the replication of data and computing
protocols dominates the system design. Specifically, we investigated the impact of
replications in (i) a self-stabilizing end-to-end communication algorithm, (ii) the model
design for MapReduce, (iii) an evaluation of MapReduce algorithms for interval join of
overlapping intervals and computing marginals of a data cube, and (iv) privacy-preserving
MapReduce computations.

In Chapter 3, we proposed self-stabilizing end-to-end data communication algorithms
for bounded capacity and duplicating dynamic networks. The proposed algorithm
inculcates error correction methods for the delivery of messages to their destinations
without omission, duplication, or reordering. We considered two nodes, one as the Sender
and the other as the Receiver. In many cases, however, two communicating nodes may
act both as senders and receivers simultaneously. In such situations, acknowledgment
piggybacking may reduce the overhead needed to cope with the capacity irrelevant packets
that exist in each direction, from the Sender to the Receiver and the reverse.

In Chapter 4, two new important practical aspects in the context of MapReduce, namely
different-sized inputs and the reducer capacity, were introduced. The capacity of a reducer
is defined in terms of the reducer’s memory size. All reducers have an identical capacity,
and any reducer cannot hold inputs whose sizes are more than the reducer capacity. We
demonstrated the importance of the reducer capacity by considering two common mapping
schema problems of MapReduce: A2A mapping schema problem, where every two inputs
are required to be assigned to at least one common reducer, and X2Y mapping schema

problem, where every two inputs, the first input from a set X and the second input from a
set Y are required to be assigned to at least one common reducer. Unfortunately, it turned
out that finding solutions to the A2A and the X2Y mapping schema problems using the

105

minimum number of reducers is not possible in polynomial time. Chapter 5 provides near
optimal approximation algorithms for the A2A and the X2Y mapping schema problems.
The algorithms are based on a bin-packing algorithm, a pseudo-polynomial bin-packing
algorithm, and the selection of a prime number.

In Chapter 6, we investigated impacts of different localities of data and
mappers-reducers on a MapReduce computation. We found that it is not necessary to send
the whole data to the location of computation if all the inputs do not participate in the final
output. Thus, we proposed a new algorithmic technique for MapReduce algorithms, called
Meta-MapReduce. Meta-MapReduce decreases a large amount of data to be transferred
across clouds by transferring metadata, which is exponentially smaller, for a data field
rather than the field itself. Meta-MapReduce processes metadata at the map phase and
the reduce phase. We demonstrated the impact of Meta-MapReduce for solving problems
of equijoin, skewjoin, and multi-rounds jobs. Also, we suggested a way to incorporate
Meta-MapReduce to process geographically distributed data.

In Chapter 7, we focused on the problem of finding pairs of overlapping intervals. In
the general case, we want to take the approach where we partition intervals with respect to
their length in “large,” “medium,” and “small.” Then, we observed that a preferred way to
assign “large” intervals to only their starting- and ending-points overlapping partitions, and
small intervals to all overlapping partitions. However, quantifying “large,” “medium,” and
“small” is rather complicated. Thus, we considered simpler cases and analyzed them first,
such as when all intervals have an identical length and when one set of intervals has mostly
“large” intervals and the other set has mostly “small” intervals.

In Chapter 8, we studied the problem of computing marginals of a data cube in a
single-round MapReduce job. We provided lower bounds and several algorithms for
assigning inputs to reducers so that each reducer can compute many marginals of a fixed
order. In the scope, this was considered to be the problem of “covering” sets of a fixed size
(“marginals”) by a small number of larger sets that contain them (“handles”).

In Chapter 9, we discussed the security and privacy challenges and requirements in
MapReduce. We considered four types of adversarial models, namely honest-but-curious,
malicious, knowledgeable, and network and nodes access adversaries, and showed how
they can impact a MapReduce computation.

In Chapter 10, we provided a privacy-preserving data and computation outsourcing
technique for MapReduce computations. Specifically, we proposed a new
information-theoretically secure data and computation outsourcing technique. By
the proposed techniques, users can execute computations in the public cloud without the
need of the database owner, and the cloud cannot learn the database and the computations.
We demonstrated the usefulness of the technique with the help of count, search and fetch,

106

equijoin, and range quires. We also compared our technique with existing algorithms
and found that our algorithms provide perfect privacy protection without introducing
computation and communication overhead.
Future directions. This thesis work is composed of theoretical models in distributed
systems and MapReduce. The future plan is to enhance these models and algorithms for a
variety of applications. Specifically, most intuitive future directions are listed as below:
• Data streaming. Several applications produce a huge amount of data at a time, while

several other applications produce a small amount of data continuously; for example,
data obtained from sensors or Twitter. In this work, we did not deal with the reception
of continuous data at the computation site. Thus, we will attempt to enhance our
approximation algorithms, Meta-MapReduce, and interval joins’ algoritms, thereby the
algorithms will be able to handle data streaming.
• A model for executing dynamic programming on MapReduce. Until now there are

systems, e.g., Spark, modern Hadoop, that perform well in many aspects. However,
the execution of dynamic programming is still untouched in MapReduce. We aim to
implement dynamic programming on MapReduce as well. In this case, some natural
questions have to be answered, as: (i) how to store temporary data; (ii) where to store
temporary data; (iii) for how many iterations to retain temporary data; and (iv) what types
of operations can be performed on temporary data.
• Security and privacy models. Though MapReduce provides efficient large-scale data

processing in the public cloud and we have provided a privacy-preserving technique for
MapReduce-based computations, the security and privacy issues in MapReduce must
be explored further. The future direction in this field has several milestones, as: (i)
incorporating advanced authorization policies (e.g., role-based or attribute-based access
control policy) in MapReduce frameworks; (ii) including a trust infrastructure, e.g., trust
in the hardware, codes, cloud providers, virtual machines, and file systems (security of
MapReduce); and (iii) execute a MapReduce computation in geo-distributed locations,
while preserving the privacy of data and computations.
• Replication aspects in the future generation of mobile cellular systems. We developed

a self-stabilizing end-to-end communication algorithm; however, the number of data
packets is considerably large in order to achieve the goal. Hence, the algorithm may
not perform well in a real-time and life-critical system. We have reviewed some
existing solutions to the fifth generation (5G) mobile cellular networks [95] that are
supposed to meet an extremely low latency. In future, we will attempt to investigate
the role of replication in 5G networks, especially in cloud-based radio access networks
and software-defined networks, and the integration of self-stabilizing communication
algorithms in 5G networks.

107

Bibliography

[1] Apache Hadoop. Available at: http://hadoop.apache.org/.
[2] Apache YARN. Available at: https://hadoop.apache.org/docs/

current/hadoop-yarn/hadoop-yarn-site/index.html.
[3] A. Abelló, J. Ferrarons, and O. Romero. Building cubes with MapReduce. In DOLAP

2011, ACM 14th International Workshop on Data Warehousing and OLAP, Glasgow,

United Kingdom, October 28, 2011, Proceedings, pages 17–24, 2011.
[4] Y. Afek and G. M. Brown. Self-stabilization over unreliable communication media.

Distributed Computing, 7(1):27–34, 1993.
[5] F. Afrati, S. Dolev, E. Korach, S. Sharma, and J. D. Ullman. Brief announcement:

Assignment of different-sized inputs in MapReduce. In Distributed Computing -

28th International Symposium, DISC 2014, Austin, TX, USA, October 12-15, 2014.

Proceedings, pages 536–537, 2014.
[6] F. Afrati, S. Dolev, S. Sharma, and J. D. Ullman. Brief-announcement:

Meta-MapReduce: A technique for reducing communication in MapReduce
computations. In Stabilization, Safety, and Security of Distributed Systems - 17th

International Symposium, SSS 2015, Edmonton, AB, Canada, August 18-21, 2015,

Proceedings, pages 272–275, 2015.
[7] F. Afrati and et al. Assignment problems of different-sized inputs in MapReduce.

Technical Report 14-05, Department of Computer Science, Ben-Gurion University of
the Negev, 2014.

[8] F. N. Afrati, S. Dolev, E. Korach, S. Sharma, and J. D. Ullman. Assignment
of different-sized inputs in MapReduce. In Proceedings of the Workshops of the

EDBT/ICDT 2015 Joint Conference (EDBT/ICDT), Brussels, Belgium, March 27th,

2015., pages 28–37, 2015.
[9] F. N. Afrati, S. Dolev, E. Korach, S. Sharma, and J. D. Ullman. Assignment problems

of different-sized inputs in MapReduce. ACM Transactions on Knowledge Discovery

from Data, 2016. Accepted.
[10] F. N. Afrati, S. Dolev, S. Sharma, and J. D. Ullman. Bounds for overlapping interval

join on MapReduce. In Proceedings of the Workshops of the EDBT/ICDT 2015 Joint

108

http://hadoop.apache.org/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/index.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/index.html

Conference (EDBT/ICDT), Brussels, Belgium, March 27th, 2015., pages 3–6, 2015.
[11] F. N. Afrati, D. Fotakis, and J. D. Ullman. Enumerating subgraph instances using

Map-Reduce. In 29th IEEE International Conference on Data Engineering, ICDE

2013, Brisbane, Australia, April 8-12, 2013, pages 62–73, 2013.
[12] F. N. Afrati, P. Koutris, D. Suciu, and J. D. Ullman. Parallel skyline queries. In 15th

International Conference on Database Theory, ICDT ’12, Berlin, Germany, March

26-29, 2012, pages 274–284, 2012.
[13] F. N. Afrati, A. D. Sarma, D. Menestrina, A. G. Parameswaran, and J. D. Ullman.

Fuzzy joins using MapReduce. In IEEE 28th International Conference on Data

Engineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1-5 April,

2012, pages 498–509, 2012.
[14] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman. Vision paper: Towards

an understanding of the limits of Map-Reduce computation. CoRR, abs/1204.1754,
2012.

[15] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman. Upper and lower bounds
on the cost of a Map-Reduce computation. PVLDB, 6(4):277–288, 2013.

[16] F. N. Afrati, S. Sharma, J. D. Ullman, and J. R. Ullman. Computing marginals using
MapReduce. CoRR, abs/1509.08855, 2015.

[17] F. N. Afrati and J. D. Ullman. Optimizing multiway joins in a Map-Reduce
environment. IEEE Trans. Knowl. Data Eng., 23(9):1282–1298, 2011.

[18] F. N. Afrati and J. D. Ullman. Matching bounds for the all-pairs MapReduce problem.
In 17th International Database Engineering & Applications Symposium, IDEAS ’13,

Barcelona, Spain - October 09 - 11, 2013, pages 3–4, 2013.
[19] A. V. Aho and J. D. Ullman. Foundations of Computer Science: C Edition. W. H.

Freeman, 1995.
[20] I. Anderson. Combinatorial designs and tournaments. Number 6. Oxford University

Press, 1997.
[21] G. Anthes. Security in the cloud. Commun. ACM, 53(11):16–18, 2010.
[22] D. Applegate, E. M. Rains, and N. J. A. Sloane. On Asymmetric Coverings and

Covering Numbers. Journal on Combinatorial Designs, 11:2003, 2003.
[23] B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking

and correction (extended abstract). In 32nd Annual Symposium on Foundations of

Computer Science, San Juan, Puerto Rico, 1-4 October 1991, pages 268–277, 1991.
[24] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity search. In

Proceedings of the 16th international conference on World Wide Web, WWW ’07,
pages 131–140, New York, NY, USA, 2007. ACM.

[25] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian. A

109

comparison of join algorithms for log processing in mapreduce. In Proceedings of the

ACM SIGMOD International Conference on Management of Data, SIGMOD 2010,

Indianapolis, Indiana, USA, June 6-10, 2010, pages 975–986, 2010.
[26] E. Blass, G. Noubir, and T. V. Huu. EPiC: efficient privacy-preserving counting for

MapReduce, 2012.
[27] E. Blass, R. D. Pietro, R. Molva, and M. Önen. PRISM - privacy-preserving search

in MapReduce. In Privacy Enhancing Technologies - 12th International Symposium,

PETS 2012, Vigo, Spain, July 11-13, 2012. Proceedings, pages 180–200, 2012.
[28] B. Bollabas. Combinatorics: set systems, hypergraphs, families of vectors, and

combinatorial probability. Cambridge University Press, 1986.
[29] A. Bui, A. K. Datta, F. Petit, and V. Villain. State-optimal snap-stabilizing PIF in tree

networks. In 1999 ICDCS Workshop on Self-stabilizing Systems, Austin, Texas, June

5, 1999, Proceedings, pages 78–85, 1999.
[30] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-preserving multi-keyword

ranked search over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst.,
25(1):222–233, 2014.

[31] B. Chawda, H. Gupta, S. Negi, T. A. Faruquie, L. V. Subramaniam, and M. K.
Mohania. Processing interval joins on Map-Reduce. In Proceedings of the 17th

International Conference on Extending Database Technology, EDBT 2014, Athens,

Greece, March 24-28, 2014., pages 463–474, 2014.
[32] B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords. IACR

Cryptology ePrint Archive, 1998:3, 1998.
[33] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms for

NP-hard problems. chapter Approximation algorithms for bin packing: a survey,
pages 46–93. PWS Publishing Co., Boston, MA, USA, 1997.

[34] J. N. Cooper, R. B. Ellis, and A. B. Kahng. Asymmetric Binary Covering Codes.
Journal on Combinatorial Theory, Series A, 100(2):232–249, 2002.

[35] R. M. Corless and N. Fillion. A graduate introduction to numerical methods. AMC,
10:12, 2013.

[36] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and

Design (International Computer Science). Addison-Wesley Longman, Amsterdam,
4th rev. ed. edition, 2005.

[37] A. Cournier, S. Dubois, and V. Villain. A snap-stabilizing point-to-point
communication protocol in message-switched networks. In 23rd IEEE International

Symposium on Parallel and Distributed Processing, IPDPS 2009, Rome, Italy, May

23-29, 2009, pages 1–11, 2009.
[38] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.

110

In 6th Symposium on Operating System Design and Implementation (OSDI 2004), San

Francisco, California, USA, December 6-8, 2004, pages 137–150, 2004.
[39] P. Derbeko, S. Dolev, E. Gudes, and S. Sharma. Security and privacy aspects in

MapReduce on clouds: A survey. Computer Science Review, 20:1–28, 2016.
[40] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,

17(11):643–644, 1974.
[41] L. Ding, G. Wang, J. Xin, X. Wang, S. Huang, and R. Zhang. ComMapReduce: an

improvement of MapReduce with lightweight communication mechanisms. Data &

Knowledge Engineering, 88:224–247, 2013.
[42] S. Dolev. Self-Stabilization. MIT Press, 2000.
[43] S. Dolev, S. Dubois, M. Potop-Butucaru, and S. Tixeuil. Stabilizing data-link over

non-fifo channels with optimal fault-resilience. Inf. Process. Lett., 111(18):912–920,
2011.

[44] S. Dolev, P. Florissi, E. Gudes, S. Sharma, and I. Singer. A survey on
geographically distributed data processing using MapReduce. Dept. of Computer
Science, Ben-Gurion University, Israel.

[45] S. Dolev, J. A. Garay, N. Gilboa, and V. Kolesnikov. Brief announcement: swarming
secrets. In Proceedings of the 29th Annual ACM Symposium on Principles of

Distributed Computing, PODC 2010, Zurich, Switzerland, July 25-28, 2010, pages
231–232, 2010.

[46] S. Dolev, N. Gilboa, and X. Li. Accumulating automata and cascaded equations
automata for communicationless information theoretically secure multi-party
computation: Extended abstract. In Proceedings of the 3rd International Workshop

on Security in Cloud Computing, pages 21–29, 2015.
[47] S. Dolev, A. Hanemann, E. M. Schiller, and S. Sharma. Self-stabilizing end-to-end

communication in (bounded capacity, omitting, duplicating and non-fifo) dynamic
networks - (extended abstract). In Stabilization, Safety, and Security of Distributed

Systems - 14th International Symposium, SSS 2012, Toronto, Canada, October 1-4,

2012. Proceedings, pages 133–147, 2012.
[48] S. Dolev, A. Israeli, and S. Moran. Resource bounds for self-stabilizing

message-driven protocols. SIAM J. Comput., 26(1):273–290, 1997.
[49] S. Dolev and Y. Li. Secret shared random access machine. In Algorithmic Aspects

of Cloud Computing - First International Workshop, ALGOCLOUD 2015, Patras,

Greece, September 14-15, 2015. Revised Selected Papers, pages 19–34, 2015.
[50] S. Dolev, Y. Li, and S. Sharma. Private and secure secret shared MapReduce -

(extended abstract). In Data and Applications Security and Privacy XXX - 30th Annual

IFIP WG 11.3 Conference, DBSec 2016, Trento, Italy, July 18-20, 2016. Proceedings,

111

pages 151–160, 2016.
[51] S. Dolev, E. Schiller, and J. L. Welch. Random walk for self-stabilitzing group

communication in ad hoc networks. In Proceedings of the Twenty-First Annual

ACM Symposium on Principles of Distributed Computing, PODC 2002, Monterey,

California, USA, July 21-24, 2002, page 259, 2002.
[52] S. Dolev, E. Schiller, and J. L. Welch. Random walk for self-stabilizing group

communication in ad-hoc networks. In 21st Symposium on Reliable Distributed

Systems (SRDS 2002), 13-16 October 2002, Osaka, Japan, pages 70–79, 2002.
[53] S. Dolev, E. Schiller, and J. L. Welch. Random walk for self-stabilizing group

communication in ad hoc networks. IEEE Trans. Mob. Comput., 5(7):893–905, 2006.
[54] S. Dolev and J. L. Welch. Crash resilient communication in dynamic networks. IEEE

Trans. Computers, 46(1):14–26, 1997.
[55] F. Emekçi, D. Agrawal, A. El Abbadi, and A. Gulbeden. Privacy preserving query

processing using third parties. In Proceedings of the 22nd International Conference

on Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA, page 27, 2006.
[56] F. Emekçi, A. Metwally, D. Agrawal, and A. El Abbadi. Dividing secrets to secure

data outsourcing. Inf. Sci., 263:198–210, 2014.
[57] B. Fish, J. Kun, Á. D. Lelkes, L. Reyzin, and G. Turán. On the computational

complexity of MapReduce. In Distributed Computing - 29th International

Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, pages 1–15,
2015.

[58] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, 1979.
[59] S. Ghosh. Distributed Systems: An Algorithmic Approach. Chapman & Hall/CRC

Computer & Information Science Series. Taylor & Francis, 2010.
[60] A. Goel and K. Munagala. Complexity measures for Map-Reduce, and comparison to

parallel computing. CoRR, abs/1211.6526, 2012.
[61] M. T. Goodrich. Simulating parallel algorithms in the MapReduce framework with

applications to parallel computational geometry. CoRR, abs/1004.4708, 2010.
[62] M. G. Gouda and N. J. Multari. Stabilizing communication protocols. IEEE Trans.

Computers, 40(4):448–458, 1991.
[63] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational

aggregation operator generalizing group-by, cross-tab, and sub-total. In Proceedings

of the Twelfth International Conference on Data Engineering, February 26 - March 1,

1996, New Orleans, Louisiana, pages 152–159, 1996.
[64] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow,

and H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by,

112

cross-tab, and sub-totals. Data Mining and Knowledge Discovery, 1(1):29–53, 1997.
[65] H. Gupta and B. Chawda. ε-controlled-replicate: An improvedcontrolled-replicate

algorithm for multi-way spatial join processing on Map-Reduce. In Web Information

Systems Engineering - WISE 2014 - 15th International Conference, Thessaloniki,

Greece, October 12-14, 2014, Proceedings, Part II, pages 278–293, 2014.
[66] H. Gupta, B. Chawda, S. Negi, T. A. Faruquie, L. V. Subramaniam, and M. K.

Mohania. Processing multi-way spatial joins on Map-Reduce. In Joint 2013

EDBT/ICDT Conferences, EDBT ’13 Proceedings, Genoa, Italy, March 18-22, 2013,
pages 113–124, 2013.

[67] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently.
In Proceedings of the 1996 ACM SIGMOD International Conference on Management

of Data, Montreal, Quebec, Canada, June 4-6, 1996., pages 205–216, 1996.
[68] S. Hoory, N. Linial, and A. Widgerson. Expander graphs and their applications.

Bulletin (New Series) of the AMS, 43(4):439–561, 2006.
[69] C. Jayalath, J. J. Stephen, and P. Eugster. From the cloud to the atmosphere: Running

MapReduce across data centers. IEEE Trans. Computers, 63(1):74–87, 2014.
[70] D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis, Massachusetts

Institute of Technology, 1973.
[71] D. R. Karger and J. Scott. Efficient algorithms for fixed-precision instances of bin

packing and euclidean TSP. In Approximation, Randomization and Combinatorial

Optimization. Algorithms and Techniques, 11th International Workshop, APPROX

2008, and 12th International Workshop, RANDOM 2008, Boston, MA, USA, August

25-27, 2008. Proceedings, pages 104–117, 2008.
[72] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for MapReduce.

In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 938–948,
2010.

[73] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. Filtering: a method for solving
graph problems in MapReduce. In SPAA 2011: Proceedings of the 23rd Annual ACM

Symposium on Parallelism in Algorithms and Architectures, San Jose, CA, USA, June

4-6, 2011 (Co-located with FCRC 2011), pages 85–94, 2011.
[74] S. Lee, J. Kim, Y. Moon, and W. Lee. Efficient distributed parallel top-down

computation of ROLAP data cube using MapReduce. In Data Warehousing and

Knowledge Discovery - 14th International Conference, DaWaK 2012, Vienna, Austria,

September 3-6, 2012. Proceedings, pages 168–179. 2012.
[75] T. Lee, K. Kim, and H. Kim. Join processing using bloom filter in MapReduce.

In Research in Applied Computation Symposium, RACS ’12, San Antonio, TX, USA,

113

October 23-26, 2012, pages 100–105, 2012.
[76] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets, 2nd Ed.

Cambridge University Press, 2014.
[77] L. Li, M. Militzer, and A. Datta. rPIR: Ramp secret sharing based communication

efficient private information retrieval. IACR Cryptology ePrint Archive, 2014:44,
2014.

[78] J. Lin and C. Dyer. Data-intensive text processing with MapReduce. Synthesis

Lectures on Human Language Technologies, 3(1):1–177, 2010.
[79] Y. Liu, X. Jiang, H. Chen, J. Ma, and X. Zhang. MapReduce-based pattern finding

algorithm applied in motif detection for prescription compatibility network. In
Advanced Parallel Processing Technologies, 8th International Symposium, APPT

2009, Rapperswil, Switzerland, August 24-25, 2009, Proceedings, pages 341–355,
2009.

[80] W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient processing of k nearest neighbor
joins using MapReduce. PVLDB, 5(10):1016–1027, 2012.

[81] W. Lueks and I. Goldberg. Sublinear scaling for multi-client private information
retrieval. In Financial Cryptography and Data Security - 19th International

Conference, FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Selected

Papers, pages 168–186, 2015.
[82] Y. Luo and B. Plale. Hierarchical MapReduce programming model and scheduling

algorithms. In 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing, CCGrid 2012, Ottawa, Canada, May 13-16, 2012, pages 769–774, 2012.
[83] L. F. Mackert and G. M. Lohman. R* optimizer validation and performance evaluation

for distributed queries. In VLDB’86 Twelfth International Conference on Very Large

Data Bases, August 25-28, 1986, Kyoto, Japan, Proceedings., pages 149–159, 1986.
[84] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and

G. Czajkowski. Pregel: a system for large-scale graph processing. In Proceedings

of the ACM SIGMOD International Conference on Management of Data, SIGMOD

2010, Indianapolis, Indiana, USA, June 6-10, 2010, pages 135–146, 2010.
[85] P. Malhotra, P. Agarwal, and G. Shroff. Graph-parallel entity resolution using LSH

& IMM. In Proceedings of the Workshops of the EDBT/ICDT 2014 Joint Conference

(EDBT/ICDT 2014), Athens, Greece, March 28, 2014., pages 41–49, 2014.
[86] P. Malhotra, P. Agarwal, and G. Shroff. Graph-parallel entity resolution using LSH

& IMM. In Proceedings of the Workshops of the EDBT/ICDT 2014 Joint Conference

(EDBT/ICDT 2014), Athens, Greece, March 28, 2014., pages 41–49, 2014.
[87] G. S. Manku, A. Jain, and A. D. Sarma. Detecting near-duplicates for web crawling.

In Proceedings of the 16th International Conference on World Wide Web, WWW 2007,

114

Banff, Alberta, Canada, May 8-12, 2007, pages 141–150, 2007.
[88] T. Mayberry, E. Blass, and A. H. Chan. PIRMAP: efficient private information

retrieval for mapreduce. In Financial Cryptography and Data Security - 17th

International Conference, FC 2013, Okinawa, Japan, April 1-5, 2013, Revised

Selected Papers, pages 371–385, 2013.
[89] T. K. Moon. Error correction coding. Mathematical Methods and Algorithms. Jhon

Wiley and Son, 2005.
[90] A. C. Murthy, V. K. Vavilapalli, D. Eadline, J. Niemiec, and J. Markham. Apache

Hadoop YARN: Moving Beyond MapReduce and Batch Processing with Apache

Hadoop 2. Pearson Education, 2013.
[91] A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan. Data cube materialization and

mining over MapReduce. IEEE Trans. Knowl. Data Eng., 24(10):1747–1759, 2012.
[92] A. Okcan and M. Riedewald. Processing theta-joins using MapReduce. In

Proceedings of the ACM SIGMOD International Conference on Management of Data,

SIGMOD 2011, Athens, Greece, June 12-16, 2011, pages 949–960, 2011.
[93] F. G. Olumofin and I. Goldberg. Privacy-preserving queries over relational databases.

In Privacy Enhancing Technologies, 10th International Symposium, PETS 2010,

Berlin, Germany, July 21-23, 2010. Proceedings, pages 75–92, 2010.
[94] B. Palanisamy, A. Singh, L. Liu, and B. Jain. Purlieus: Locality-aware resource

allocation for MapReduce in a cloud. In Proceedings of International Conference for

High Performance Computing, Networking, Storage and Analysis, pages 58:1–58:11,
2011.

[95] N. Panwar, S. Sharma, and A. K. Singh. A survey on 5G: The next generation of
mobile communication. Physical Communication, 18:64–84, 2016.

[96] J. Park, D. Lee, B. Kim, J. Huh, and S. Maeng. Locality-aware dynamic VM
reconfiguration on MapReduce clouds. In The 21st International Symposium

on High-Performance Parallel and Distributed Computing, HPDC’12, Delft,

Netherlands - June 18 - 22, 2012, pages 27–36, 2012.
[97] T. B. Pedersen, Y. Saygın, and E. Savaş. Secret charing vs. encryption-based

techniques for privacy preserving data mining. 2007.
[98] A. Pietracaprina, G. Pucci, M. Riondato, F. Silvestri, and E. Upfal. Space-round

tradeoffs for MapReduce computations. In International Conference on

Supercomputing, ICS’12, Venice, Italy, June 25-29, 2012, pages 235–244, 2012.
[99] M. R. Randazzo, M. Keeney, E. Kowalski, D. Cappelli, and A. Moore. Insider threat

study: Illicit cyber activity in the banking and finance sector, 2005.
[100] K. Rohitkumar and S. Patil. Data cube materialization using MapReduce.

International Journal of Innovative Research in Computer and Communication

115

Engineering, 11(2):6506–6511, 2014.
[101] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
[102] H. Takabi, J. B. D. Joshi, and G. Ahn. Security and privacy challenges in cloud

computing environments. IEEE Security & Privacy, 8(6):24–31, 2010.
[103] A. S. Tanenbaum. Computer networks (4. ed.). Prentice Hall, 2002.
[104] F. Tauheed, T. Heinis, and A. Ailamaki. THERMAL-JOIN: A scalable spatial join

for dynamic workloads. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June

4, 2015, pages 939–950, 2015.
[105] J. D. Ullman. Designing good MapReduce algorithms. ACM Crossroads,

19(1):30–34, 2012.
[106] R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity joins using

MapReduce. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010,
pages 495–506, 2010.

[107] B. Wang, H. Gui, M. Roantree, and M. F. O’Connor. Data cube computational model
with Hadoop MapReduce. In WEBIST 2014 - Proceedings of the 10th International

Conference on Web Information Systems and Technologies, Volume 1, Barcelona,

Spain, 3-5 April, 2014, pages 193–199, 2014.
[108] L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen, and D. Chen. G-Hadoop:

MapReduce across distributed data centers for data-intensive computing. Future

Generation Comp. Syst., 29(3):739–750, 2013.
[109] Z. Wang, Y. Chu, K. Tan, D. Agrawal, A. El Abbadi, and X. Xu. Scalable data cube

analysis over big data. CoRR, abs/1311.5663, 2013.
[110] L. R. Welch and E. R. Berlekamp. Error correction for algebraic block codes, Dec. 30

1986. US Patent 4,633,470.
[111] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity joins for near duplicate

detection. In Proceedings of the 17th International Conference on World Wide Web,

WWW 2008, Beijing, China, April 21-25, 2008, pages 131–140, 2008.
[112] S. Yu, C. Wang, K. Ren, and W. Lou. Achieving secure, scalable, and fine-grained

data access control in cloud computing. In INFOCOM 2010. 29th IEEE International

Conference on Computer Communications, Joint Conference of the IEEE Computer

and Communications Societies, 15-19 March 2010, San Diego, CA, USA, pages
534–542, 2010.

[113] Z. Yu, C. Wang, C. D. Thomborson, J. Wang, S. Lian, and A. V. Vasilakos. Multimedia
applications and security in MapReduce: Opportunities and challenges. Concurrency

and Computation: Practice and Experience, 24(17):2083–2101, 2012.

116

[114] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster
computing with working sets. In 2nd USENIX Workshop on Hot Topics in Cloud

Computing, HotCloud’10, Boston, MA, USA, June 22, 2010, 2010.
[115] C. Zhang, F. Li, and J. Jestes. Efficient parallel kNN joins for large data in

MapReduce. In 15th International Conference on Extending Database Technology,

EDBT ’12, Berlin, Germany, March 27-30, 2012, Proceedings, pages 38–49, 2012.
[116] X. Zhang, L. Chen, and M. Wang. Efficient multi-way theta-join processing using

MapReduce. PVLDB, 5(11):1184–1195, 2012.
[117] G. Zhou, Y. Zhu, and G. Wang. Cache conscious star-join in MapReduce

environments. In 2nd International Workshop on Cloud Intelligence (colocated with

VLDB 2013), Cloud-I ’13, Riva del Garda, Trento, Italy, August 26, 2013, pages
1:1–1:7, 2013.

[118] D. Zissis and D. Lekkas. Addressing cloud computing security issues. Future

Generation Comp. Syst., 28(3):583–592, 2012.

117

Appendix A

Pseudocodes of the Self-Stabilizing
End-to-End Communication Algorithm

Algorithm 5: Self-Stabilizing End-to-End Algorithm (Sender ps)
Local variables:
AltIndex ∈ [0, 2] : state the current alternating index value
ACK_set: at most (capacity + 1) acknowledgment set, where items contain labels
and last delivered alternating indexes, 〈ldai, lbl〉

Interfaces:
Fetch(NumOfMessages) Fetches NumOfMessages messages from the
application and returns them in an array of size NumOfMessages according to
their original order
Encode(Messages[]) receives an array of messages of length ml each, M , and
returns a message array of identical size M ′, where message M ′[i] is the encoded
original M [i], the final length of the returned M ′[i] is n and the code can bare
capacity mistakes

1 Function packet_set() begin
2 foreach (i, j) ∈ [1, n]× [1, pl] do let data[i].bit[j] = messages[j].bit[i];
3 return {〈AltIndex, i, data[i]〉}i∈[1,n]
4 Do forever begin
5 if ({AltIndex} × [1, capacity + 1]) ⊆ ACK_set then

(AltIndex,ACK_set,messages)←
((AltIndex+ 1) mod 3, ∅, Encode(Fetch(pl)))

6 foreach pckt ∈ packet_set() do send pckt;
7 Upon receiving ACK = 〈ldai, lbl〉 begin
8 if ldai = AltIndex ∧ lbl ∈ [1, capacity + 1] then
9 ACK_set← ACK_set ∪ {ACK}

118

Algorithm 6: Self-Stabilizing End-to-End Algorithm (Receiver pr)
Local variables:
LastDeliveredIndex ∈ [0, 2]: the alternating index value of the last delivered packets
packet_set: packets, 〈ai, lbl, dat〉, received, where lbl ∈ [1, n] and dat is data of size
pl bits

Interfaces:
Decode(Messages[]) receives an array of encoded messages, M ′, of length n each,
and returns an array of decoded messages of length ml, M , where M [i] is the
decoded M ′[i]. The code is the same error correction coded by the Sender and can
correct up to capacity mistakes
Deliver(messages[]) receives an array of messages and delivers them to the
application by the order in the array

Macro:
index(ind) = {〈ind, ∗, ∗〉 ∈ packet_set}

1 Do forever begin
2 if {〈ai, lbl〉 : 〈ai, lbl, ∗〉 ∈ packet_set} 6⊆

{[0, 2] \ {LastDeliveredIndex}} × [1, n]× {∗}∨
(∃〈ai, lbl, dat〉 ∈ packet_set : 〈ai, lbl, ∗〉 ∈ packet_set \ {〈ai, lbl, dat〉})∨
(∃pckt = 〈∗, ∗, data〉 ∈ packet_set : |pckt.data| 6= pl)∨ 1 < |{ AltIndex : n ≤
|{ 〈AltIndex, ∗, ∗〉 ∈ packet_set}|}| then packet_set← ∅;

3 if ∃ ! ind : ind 6= LastDeliveredIndex ∧ n ≤ |index(ind)| then
4 foreach (i, j) ∈ [1, pl]× [1, n] do
5 let messages[i].bit[j] = data.bit[i] : 〈ind, j, data〉 ∈ index(ind)

6 (packet_set, LastDeliveredIndex)← (∅, ind)
7 Deliver(Decode(messages))

8 foreach i ∈ [1, capacity + 1] do send 〈LastDeliveredIndex, i〉;
9 Upon receiving pckt = 〈ai, lbl, dat〉 begin

10 if 〈ai, lbl, ∗〉 6∈ packet_set ∧ 〈ai, lbl〉 ∈ ({[0, 2] \ {LastDeliveredIndex}} ×
[1, n]) ∧ |dat| = pl then

11 packet_set← packet_set ∪ {pckt}

A.1 Detailed Description of Algorithms 5 and 6

The pseudo-code in Algorithms 5 and 6 implements the proposed S2E2C algorithm from
the sender-side, and respectively, receiver-side. The two nodes, ps and pr, are the Sender
and the Receiver nodes respectively. The Sender algorithm consists of a do forever loop
statement (lines 4 to 5 of the Sender algorithm), where the Sender, ps, assures that all the
data structures comprises only valid contents. Namely, ps checks that the ACK_sets holds

119

packets with alternating index equal to the Sender’s current AltIndexs and the labels are
between 1 and (capacity + 1).

In case any of these conditions is unfulfilled, the Sender resets its data structures (line 5
of the Sender algorithm). Subsequently, ps triggers the Fetch and the Encode interfaces
(line 5 of the Sender algorithm). Before sending the packets, ps executes the packet_set()
function (line 6 of the Sender algorithm).

The Sender algorithm, also, handles the reception of acknowledgments ACKs =

〈ldai, lbl〉 (line 7 of the Sender algorithm). Each packet has a distinct label with respect
m’s message batch. If ACKs = 〈ldai, lbl〉 has the value of ldai (last delivered alternating
index) equals to AltIndex (line 8 of the Sender algorithm), the Sender ps stores ACKs in
ACK_sets (line 9 of the Sender algorithm). When ps gets such (distinctly labeled) packets
(capacity + 1) times, ps changes AltIndexs, resets ACK_sets, and calls Fetch() and
Encode() interfaces (line 5 of the Sender algorithm).

The Receiver algorithm executes at the Receiver side, pr. The Receiver pr repeatedly
tests packet_setr (line 2 of the Receiver algorithm), and assures that: (i) packet_setr
holds packets with alternating index, ai ∈ [0, 2], except LastDeliveredIndexr, labels
(lbl) between 1 and n and data of size pl, and (ii) packet_setr holds at most one group of
ai that has (distinctly labeled) n packets. When any of the aforementioned conditions do
not hold, pr assigns the empty set to packet_setr.

When pr discovers that it has n distinct label packets of identical ai (line 3 of the
Receiver algorithm), pr decodes the payloads of the arriving packets (line 5 of the
Receiver algorithm). Subsequent steps include the reset of packet_setr and change
of LastDeliveredIndexr to ai (line 6 of the Receiver algorithm). Next, pr delivers
the decoded message (line 7 of the Receiver algorithm). In addition, pr repeatedly
acknowledges ps by (capacity + 1) packets (line 8 of the Receiver algorithm).

Node pr receives a packet pcktr = 〈ai, lbl, dat〉, see line 9 (the Receiver algorithm). If
pcktr has data (dat) of size pl bits, an alternating index (ai) in the range of 0 to 2, excluding
the LastDeliveredIndex, and a label (lbl) in the range of 1 to n (line 10 of the Receiver
algorithm), pr puts pcktr in packet_setr (line 11 of the Receiver algorithm).

A.2 Correctness of Algorithms 5 and 6

We define the set of legal executions, and how they implement the S2E2C task (Chapter 2),
before demonstrating that the Sender and the Receiver algorithms implement that task
(Theorems A.5 and A.6).

Given a system execution, R, and a pair, ps and pr, of sending and receiving nodes, the
S2E2C task associates ps’s sending message sequence sR = im0, im1, im2, . . . , im`, . . .,

120

with pr delivered message sequence rR = om0, om1, om2, . . . , om`′ , . . .; see Chapter 2.
The Sender algorithm encodes batch of messages, im`, using an error correction method
(Figure 3.2) into a packet sequence, I , that tolerates up to capacity wrong packets (the
Sender algorithm, line 5). The Receiver decodes messages, om`′ , from a packet sequence,
O (Receiver algorithm, line 7), where every n consecutive packets may have up to capacity
packets that were received due to channel faults rather than ps transmissions. Therefore,
our definition of legal execution considers an unbounded suffix of input packets queue,
I = (imx, imx+1, . . .), which ps sends to pr, and a k, such that the packet output suffix
starts following the first k − 1 packets, O = (omk, omk+1, . . .), is always a prefix of I .
Furthermore, a new packet is included in O infinitely often.

A.2.1 Basic facts

Throughout this section, we refer to R as an execution of the Sender and the Receiver
algorithms, where ps executes the Sender algorithm and pr executes the Receiver algorithm.
Let asα be the αth time that the Sender is fetching a new message batch, i.e., executes line 5
(the Sender algorithm). Let arβ be the βth time that the Receiver is delivering a message
batch, i.e., executing line 7 (the Receiver algorithm). Theorem A.1 shows that R includes,
infinitely often, the steps asα and arβ .

Recall that an adversarial execution can prevent packet exchange between the Sender
and receiver via (selective) packet omissions. Thus, demonstrate the liveness property for
nice executions that do not include any omission step.

Theorem A.1 (Liveness) For every nice execution R, there exists an R’s prefix, R′, that

hasO(n) asynchronous rounds, and it includes at least one asα step and least one arβ step,

where n is the packet word length.

Proof. By line 6 (the Sender algorithm) and line 8 (the Receiver algorithm), node pi
sends packets infinitely often to node pj , where i ∈ {s, r} and j ∈ {s, r} \ {i}. Our
system settings assume that when node pi sends a packet infinitely often to pj through
the communication channel, node pj receives that packet infinitely often. This implies
that within O(n) asynchronous rounds, the Receiver, pr, receives all the n packets in
packet_sets() and stores them all in packet_setr, cf. line 11, and thus the condition
in line 3 (the Receiver algorithm) is satisfied. Therefore, R′ includes at least one arβ
step. Moreover, the same argument implies that within O(n) asynchronous rounds, the
Sender, ps, receives (capacity + 1) acknowledgments from pr and stores them in the set
ACK_sets, cf. line 9, and thus the condition in line 5 (the Sender algorithm) is satisfied,
where capacity < n. Therefore, R′ includes at least one asα step. �

121

Lemmas A.2, A.3 and A.4 are needed for the proof of Theorem A.5, and Theorem A.6.

Lemma A.2 Let csα(x) be the xth configuration between asα and asα+1 and ACKα =

{ackα(`)}`∈[1,capacity+1] be a set of acknowledgment packets, where ackα(`) =

〈s_indexα, `〉.
1. For any given α > 0, there is a single index value, s_indexα ∈ [0, 2], such that for any

x > 0, it holds that AltIndexs = s_indexα in csα(x).

2. Between asα and asα+1 there is at least one configuration crβ , in which

LastDeliveredIndexr = s_indexα.

3. Between asα and asα+1 , the Sender, ps, receives from the channel from pr to ps, the entire

set, ACKα, of acknowledgment packets (each packet at least once), and between (the

first) crβ and asα+1 the Receiver must send at least one ackα(`) ∈ ACKα packet, which

ps receives, where crβ is defined in 2.

Proof. We start by showing that s_indexα exists before showing that crβ exists and that ps
receives ackα from pr between asα and asα+1 .

The value of AltIndexs = s_indexα is only changed in line 5 (the Sender algorithm).
By the definition of asα , line 5 is not executed by any step between asα and asα+1 . Therefore,
for any given α, there is a single index value, s_indexα ∈ [0, 2], such that for any x > 0, it
holds that AltIndexs = s_indexα in csα(x).

We show that crβ exists by showing that, between asα and asα+1 , there is at least one
acknowledge packet, 〈ldai, lbl〉, that pr sends and ps receives, where ldai = s_indexα.
This proves the claim because pr’s acknowledgments are always sent with ldai =

LastDeliveredIndexr, see line 8 (the Receiver algorithm).
We show that, between asα and asα+1 , the Receiver pr sends at least one of the ackα(`) ∈

ACKα packets that ps receives. We do that by showing that ps receives, from the channel
from pr to ps, more than capacity packets, i.e., the set ACKα. Since capacity bounds the
number of packets that, at any time, can be in the channel from pr to ps, at least one of the
ACKα packets, say ackα(`′), must be sent by pr and received by ps between asα and asα+1 .
This in fact proves that pr sends ackα(`′) after crβ .

In order to demonstrate that ps receives the set ACKα, we note that ACK_set = ∅ in
configuration csα(1), which immediately follows asα , see line 5 (the Sender algorithm). The
Sender tests the arriving acknowledgment packet, ackα, in line 8 (the Sender algorithm).
It tests ackα’s label to be in the range of [1, capacity + 1], and that they are of ackα’s
form. Moreover, it counts that (capacity + 1) different packets are added to ACK_set by
adding them to ACK_set, and not executing line 5 (the Sender algorithm) before at least
(capacity + 1) distinct packets are in ACK_set. �

122

Lemma A.3 Let crβ(y) be the yth configuration between arβ and arβ+1
, and

PACKETβ(r_index′β) = {packetβ(`, r_index′β)}`∈[1,n] be a packet set, which could be

a subset of the Receiver’s packet_setr, where packetβ(`, r_index′β) = 〈r_index′β, `, ∗〉.
1. For any given β > 0, there is a single index value, r_indexβ ∈ [0, 2], such that for any

y > 0, it holds that LastDeliveredIndexr = r_indexβ in configuration crβ(y).

2. Between arβ and arβ+1
there is at least one configuration, csα , such that AltIndexs 6=

r_indexβ .

3. There exists a single r_index′β ∈ [0, 2] \ {r_indexβ}, such that the Receiver, pr, receives

all the packets in PACKETβ(r_index′β) at least once between csα and arβ+1
, where csα

is defined in 2, and at least (n− capacity > 0) of them are sent by the Sender ps between

arβ and arβ+1
.

Proof. We begin the proof of claim by showing that r_indexβ exists before showing that
csα exists and that pr receives the packets packetβ,r_index′β(`) from ps.

The value of LastDeliveredIndexr = r_indexβ is only changed in line 6 (the Receiver
algorithm). By the definition of arβ , line 6 is not executed by any step between arβ and
arβ+1

. Therefore, for any given β, there is a single index value, r_indexβ ∈ [0, 2], such that
for any y > 0, it holds that LastDeliveredIndexr = r_indexβ in csβ(y).

We show that csα exists by showing that the Receiver, pr, receives all the packets in
PACKETβ(r_index′β) from the channel from ps to pr, (each at least once) between arβ
and arβ+1

. Since capacity bounds the number of packets that can be in the channel from ps

to pr, at any time. Hence, a subset, Sβ(r_index′β) ⊆ PACKETβ(r_index′β), of at least
((n− capacity) > 0) packets must be sent by ps between arβ and arβ+1

. This in fact proves
that ps sends Sβ(r_index′β) after (the first) csα , because ps uses r_index′′β as the alternating
index for all the packets in Sβ(r_index′β), see line 6 (the Sender algorithm) and the function
packet_set(), as well as by the previous argument we have r_index′′β = r_index′β .

Now, we show that, between arβ and arβ+1
, the Receiver pr receives packets,

packetβ,r_index′β(`) ∈ PACKETβ(r_index′β), with n distinct labels from the channel from
ps to pr . We note that packet_setr = ∅ in the configuration crβ(1), which immediately
follows arβ , see line 6 (the Receiver algorithm). The Receiver tests the arriving packets,
packetβ,r_index′β(`), in line 10 (the Receiver algorithm). It tests packetβ,r_index′β(`)’s
label to be in the range of [1, n], packetβ,r_index′β(`)’s index to be different from
LastDeliveredIndexr and that they are of packetβ,r_index′β(`)’s form. Moreover, it counts
that n packets with alternating index different from LastDeliveredIndexr and n distinct
labels are added to packet_setr by not executing lines 4 to 7 (the Receiver algorithm)
before at least n distinct labels are in packet_setr. �

Lemma A.4 borrows notation from lemmas A.2 and A.3.

123

Lemma A.4 Suppose that α, β > 2. Between asα and asα+1 , the Receiver takes at least one

arβ step, and that between arβ , and arβ+1
, the Sender takes at least one asα step. Moreover,

equations (A.1) to (A.4) hold.

s_indexα+1 = s_indexα + 1 mod 3 (A.1)

r_indexβ+1 = r_indexβ + 1 mod 3 (A.2)

r_indexβ = s_indexα (A.3)

s_indexα+1 = r_indexβ + 1 mod 3 (A.4)

Proof.
Between asα and asα+1 , there is at least one arβ step. By Lemma A.2 and line 5 (the

Sender algorithm), in any configuration, cs1(x), that is between as1 and as2 , the Sender
is using a single alternating index, s_index1, and in any configuration, cs2(x), that is
between as2 and as3 , the Sender is using a single alternating index, s_index2, such that
s_index2 = s_index1 + 1 mod 3. In a similar manner, we consider configuration, csα(x),
that is between asα and asα+1 and conclude equations (A.1) and (A.3), cf. items (1), and
respectively, (2) of Lemma A.2.

Lemma A.2 also shows that for α ∈ {1, 2, . . .}, there are configurations, crβ , in which
LastDeliveredIndexr = s_indexα. This implies that between asα and asα+1 , the Receiver
changes the value of LastDeliveredIndexr at least once, where α ∈ (1, 2, . . .). Thus, by
arβ ’s definition and line 6 (the Receiver algorithm), there is at least one arβ step between
asα and asα+1 .

Between arβ and arβ+1
, there is at least one asα step. By Lemma A.3 and line 6 (the

Receiver algorithm), in any configuration, cr1(y), that is between ar1 and ar2 , the Receiver
is using a single LastDeliveredIndexr, r_index1, and in any configuration, cr2(y), that is
between ar2 and ar3 , the Receiver is using a single LastDeliveredIndexr, r_index2, such
that r_index2 = r_index1 + 1 mod 3. In a similar manner, we consider configuration,
crβ(y), that is between arβ and arβ+1

and conclude equations (A.2) and (A.4), cf. items
(1), and respectively, (2) of Lemma A.3.

Lemma A.3 also shows that for β ∈ {1, 2, . . .}, there are configurations, csα , in which
AltIndexs 6= r_indexβ . This implies that between arβ and arβ+1

, the Sender changes the
value of AltIndexs at least once. Thus, by asα’s definition, there is at least one asα step
between arβ and arβ+1

.
�

124

A.2.2 Closure

The closure property proof considers all the alternating indices that are in a
given configuration, c, such as the packet set indices, 〈ind, lbl〉 ∈ packet_set =

{〈AltIndex, lbl, dat〉}, and the indices of the acknowledgment packet set, 〈ind, lbl〉 ∈
ACK_set = {〈AltIndex, lbl〉}. Given X ∈ {packet_set, ACK_set}, we
define index(ind,X) = {〈ind, lbl〉 : 〈ind, lbl〉 ∈ X ∨ 〈ind, lbl, ∗〉 ∈ X}.
We denote by {0κ0 , 1κ1 , 2κ2}X the fact that in configuration c, it holds ∀i ∈
[0, 2] : κi = |index(i,X)|. We consider the alternating index sequence,
ais, stored in AltIndexs, {0κ0 , 1κ1 , 2κ2}channels,r , {0κ0 , 1κ1 , 2κ2}packet_setr , LDIr, {0κ0 ,
1κ1 , 2κ2}channelr,s , and {0κ0 , 1κ1 , 2κ2}ACK_sets in this order, where LDRr =

LastDeliveredIndexr as well as channels,r and channelr,s are the communication
channel sets from the Sender to the Receiver, and respectively, from the Receiver to the
Sender. We show that a configuration, c, in which ais = y, {∗∗}, {zκz}z∈[0,2]\{y}, y, {∗∗},
{ycapacity+1} is a safe configuration (Theorem A.5), where y ∈ [0, 2] and capacity ≥
(
∑

z∈[0,2]\{y} κz). Namely, c starts an execution that is in LES2E2C .

Theorem A.5 (S2E2C closure) Suppose that in R’s first configuration, c, it holds that

ais = y, {∗∗}, {zκz}z∈[0,2]\{y}, y, {∗∗}, {ycapacity+1} is a safe configuration, where y ∈
[0, 2] and capacity ≥ (

∑
z∈[0,2]\{y} κz). Then, c is safe.

Proof. The correctness proof shows after configuration c, the system reaches
configurations in which: (1) the Sender, ps, increments its alternating index and starts
transmitting a new message batch, m, (2) pr, receives between (n−capacity) and n of m’s
packets (with that new alternating index), and (3) ps receives at least one acknowledgment
(with an alternating index) in which the pr acknowledges m’s packets. The proof shows
that this is how ps and pr exchange messages and alternative indices. Therefore, c starts a
legal execution. For the sake of presentation simplicity, we assume that y = 0.

In c, ps’s state satisfies the condition (ACK_set = {AltIndex} × [1, capacity +1])

of line 5 (the Sender algorithm). Therefore, ps increments AltIndex (mod 3), empties
ACK_sets and fetches a new batch of pl messages, m, that it needs to sent to pr. Thus, the
system reaches configuration c′ in which ais = 1, {∗∗}, {∗∗}, 0, {∗∗}, {}.

Note that by lines 5 to 6 (the Sender algorithm), ps does not stop sending m’s
packets with alternating indices 1 until ACK_sets has (capacity + 1) packets with the
alternating index that is equal to AltIndexs = 1. Until that happens, lines 8 and 9 (the
Sender algorithm) implies that ps accepts acknowledgments that their alternating index is
AltIndexs = 1, i.e., ais = 1, {1∗, ∗∗}, {∗∗}, 0, {∗∗}, {1∗}.

By line 3, as well as lines 9 and 11 (the Receiver algorithm), pr does not stop accepting

125

m’s packets, which have alternating indices 1, until packet_setr has n packets with an
alternating index that is different from LastDeliveredIndexr = 0 6= 1. Recall that the
communication channel set, channels,r, from the Sender to the Receiver contains at most
capacity packets. Therefore, once pr has n packets in packet_set (with alternating index
ai 6= 0), pr must have received at least (n− capacity) of these packets from ps. Thus, the
system reaches configuration c′′ in which ais = 1, {1∗, ∗∗}, {1n, 2κ2}, 0, {∗∗}, {1∗}, where
capacity ≥ κ2.

By lines 3 to 7 (the Receiver algorithm), pr empties packet_setr, updates
LastDeliveredIndexr with the alternating index, 1, of m’s packets, before decoding
and delivering the messages encoded by packet_setr, as well as starting to send
acknowledgements with the alternating index LastDeliveredIndexr = 1, see line 8 (the
Receiver algorithm). Thus, the system reaches configuration c′′′ in which ais= 1, {1∗, ∗∗},
{}, 1, {1∗, ∗∗}, {1∗}.

By line 8 (the Receiver algorithm) and lines 8 and 9 (the Sender algorithm), pr keeps on
acknowledging m’s packets until ps receives (capacity + 1) packets of acknowledgement
from pr. Thus, the system reaches configuration c′′′′ in which ais = 1, {1∗, ∗∗}, {0∗, 2∗},
1, {1∗, ∗∗}, {1(capacity+1)}.

Note that, for y = 1, this lemma claims that c′′′′ is safe. Moreover, since we started in
a configuration in which the communication channel sets from the Sender to the Receiver,
and the Receiver to the Sender had no n > capacity, and respectively, (capacity + 1)

packets with the alternating index 1 exist, the Sender must have received at least one
acknowledgment form’s packet with the alternating index 1 only after the Receiver receives
at least one of for m’s packet with alternating index 1, which happened after ps had fetched
the batch messages of m and incremented its alternating index to 1. Therefore, c starts a
legal execution. �

A.2.3 Convergence

Lemma A.4 facilitates the proof of Theorem A.6.

Theorem A.6 (S2E2C convergence) Within O(n) asynchronous rounds of any nice

execution, the system reaches a safe configuration (from which a legal execution starts),

where n is the packet word length.

Proof. Theorem A.1 shows that R includes, infinitely often, the steps asα and arβ . In fact,
they appear within O(n) asynchronous rounds. We show that within a constant number of
their appearance in R, the system reaches a safe configuration.

The proof of this theorem borrows notation from lemmas A.2 and A.3. Let csα(1)

126

and crβ(1) be the first configurations between asα and asα+1 , and respectively, between
arβ and arβ+1

. Moreover, s_indexα and r_indexβ are AltIndexs’s value in csα(1),
and respectively, LastDeliveredIndexr’s value in crβ(1). Suppose that in csα(1), it
holds that ais = s_indexα, {∗∗}, {∗∗}, r_indexβ , {∗∗}, {∗∗}. Let capacity ≥
(
∑

z∈[0,2]\{r_indexβ+1} κz). We show that, within O(n) asynchronous rounds, there is a
configuration in which ais = r_indexβ+1, {∗∗}, {zκz}z∈[0,2]\{r_indexβ+1}, r_indexβ+1,
{∗∗}, {r_indexcapacity+1

β+1 }.
By Lemma A.4, ∀α, β > 2 it holds that between csα(1) and csα+1(1) the system

execution includes crβ(1) in which Equation (A.3) holds. Namely, ∀α, β > 3, it holds
that r_indexβ+1 = s_indexα, and thus, in crβ(1) it holds that ais = r_indexβ+1, {∗∗},
{zκz}z∈[0,2]\{r_indexβ+1}, r_indexβ+1, {∗∗}, {r_indexκr_indexβ+1

β+1 }. The rest of the proof
shows that capacity ≥ (

∑
z∈[0,2]\{r_indexβ+1} κz) and capacity + 1 = κr_indexβ+1

, and it
follows by arguments similar to the ones in the proof of Theorem A.5. �

127

Appendix B

Proof of NP-Hardness of Mapping
Schema Problems (Chapter 4)

Theorem 4.5 The problem of finding whether a mapping schema of m inputs of different

input sizes exists, where every two inputs are assigned to at least one of z ≥ 3

identical-capacity reducers, is NP-hard.

Proof. The proof is by a reduction from the partition problem [58] that is a known
NP-complete problem. The partition problem is defined as follows: given a set I =

{i1, i2, . . . , im} of m positive integer numbers, it is required to find two disjoint subsets,
S1 ⊂ I and S2 ⊂ I , so that the sum of numbers in S1 is equal to the sum of numbers in S2,
S1 ∩ S2 = ∅, and S1 ∪ S2 = I .

w1, w2, . . . , wn ai1, ai2, . . . , aiz−3

ai1 ai′

Subset 1 of W ai′

Subset 2 of W ai′

ai2 ai′

aiz−3 ai′

1

Figure B.1: Proof of NP-hardness of the
A2A mapping schema problem for z > 2
identical-capacity reducers, Theorem 4.5.

We are given m inputs whose input size list
is W = {w1, w2, . . . , wm}, and the sum of the
sizes is s = Σ1≤i≤mwi. We add z−3 additional
inputs, ai1, ai2, . . . , aiz−3, each of size s

2
. We

call these new z−3 (ai1, ai2, . . . , aiz−3) inputs
the medium inputs. In addition, we add one
more additional input, ai′, of size (z−2)s

2
that

we call the big input. Further, we assume that
the reducer capacity is (z−1)s

2
.

The proof proceeds in two steps: (i) we
prove that in case the m original inputs can be
partitioned, then all the inputs can be assigned
to the z reducers such that every two inputs are assigned to at least one reducer, (ii) we prove
that in case the mapping schema for all the inputs over the z reducers is successful, then
there are two disjoint subsets S1 and S2 of the m original inputs that satisfy the partition

128

requirements. We can assume that if the sum is not divisible by 2, then the answer to
the partition problem is surely “no,” so the reduction of the partition problem to the A2A

mapping schema problem is trivial.
We first show that if there are two disjoint subsets S1 and S2 of equal size of the m

original inputs, then there must exist a solution to the A2A mapping schema problem. Recall
that any of the reducers can hold a set of inputs whose sum of the sizes is at most (z−1)s

2
,

and the sum of the sizes of the new z − 3 medium inputs is exactly (z−3)s
2

. Hence, all the
m original inputs (i1, i2, . . . , im) and a list of the z − 3 medium inputs can be assigned to a
single reducer (out of the z reducers), and this assignment uses s + (z−3)s

2
capacity, which

is exactly the capacity of any reducer. Further, the big input, ai′, of size (z−2)s
2

can share
the same reducer with only one medium input aii (it could also share with original inputs).
Thus, the big input, ai′, and all the medium inputs are assigned to z − 3 reducers (out of
the remaining z − 1 reducers). In addition, the remaining two reducers can be used for the
following assignment: the first reducer is assigned the set S1 and the big input, ai′, and
the second reducer is assigned the set S2 and the big input, ai′. The above assignment is
a solution to the A2A mapping schema problem for the given m original inputs, the z − 3

medium inputs, and the big input using z reducers, see Figure B.1.
Now, we show that a solution to the A2A mapping schema problem — for all the inputs

over the z reducers — results in a partition of the m original inputs into two equal-sized
blocks. We also show that in a solution to the A2A mapping schema problem, each of them
original inputs and every medium input, aii, are assigned to exactly two reducers, and the
big input, ai′, is assigned to exactly z − 1 reducers. Recall that the total sum of the sizes is
s+ (z−3)s

2
+ (z−2)s

2
= (2z−3)s

2
.

Due to the reducer capacity of a single reducer, all the inputs cannot be assigned to a
single reducer; only a sublist of the inputs, whose sum of the sizes is at most (z−1)s

2
, can be

assigned to one reducer. Thus, each input is assigned to at least two reducers in order to be
coupled with all the other inputs.

Moreover, the big input, ai′, can share the same single reducer with only a sublist, S ′,
whose sum of the sizes is at most s

2
. Hence, the big input, ai′, is required to be assigned to

at least z − 3 reducers in order to be paired with the medium inputs aii. Furthermore, the
big input, ai′, can share the same reducer with a sublist of the m original inputs whose sum
of the sizes is at most s

2
. This fact means that the big input, ai′, must be assigned to two

more reducers. On the other hand, all the medium inputs can share the same reducer with
the original m inputs. Thus, here, the total reducer capacity occupied by all the inputs is
2×Σ1≤i≤mwi+2× (z−3)s

2
+(z−1)× (z−2)s

2
= 2s+(z−3)s+ (z−1)(z−2)s

2
= (z−1)zs

2
, which

is exactly the total capacity of all the z reducers. Thus, each of the m original inputs and
each medium input aii cannot be assigned more than twice, and hence, each is assigned

129

exactly twice. In addition, the big input, ai′, is assigned to exactly z− 1 reducers. This fact
also shows that all the reducers are entirely filled with distinct inputs. Thus, a solution to
the A2A mapping schema problem yields partitions of the m original inputs to S1 and S2

blocks, where the sum of the input sizes of any block is exactly s
2
. Therefore, if there is a

polynomial-time algorithm to construct the mapping schema, where every input is required
to be paired with every other input, then the mapping schema finds the partitions of the m
original inputs in polynomial time. �

Theorem 4.6 The problem of finding whether a mapping schema of m and n inputs of

different input sizes that belongs to list X and list Y , respectively, exists, where every two

inputs, the first from X and the second from Y , are assigned to at least one of z ≥ 2

identical-capacity reducers, is NP-hard.

Proof. The proof is by a reduction from the partition problem [58] that is a known
NP-complete problem. We are given a list of inputs I = {i1, i2, . . . , im} whose input
size list is W = {w1, w2, . . . , wm}, and the sum of the sizes is s = Σ1≤i≤mwi. We
add z − 2 additional inputs, ai1, ai2, . . . , aiz−2, each of size s

2
. We call these new z − 2

(ai1, ai2, . . . , aiz−2) inputs the big inputs. In addition, we add one more additional input,
ai′, of size 1 that we call the small input. Further, we assume that the reducer capacity is
1 + s

2
. Now, the list I holds m+ z − 1 inputs.

For the X2Y mapping schema problem, we consider m original inputs and the z − 2 big
inputs as a list X , and the small input as a list Y . A solution to the X2Y mapping schema

problem assigns each of the m original inputs and each big input (of the list X) with the
small input of the list Y .

Y ai1

Y ai2

Y aiz−2

Y Subset 1 of X

Y Subset 2 of X

1

Figure B.2: Proof of
NP-hardness of the X2Y
mapping schema problem
for z > 1 identical-capacity
reducers, Theorem 4.6.

The proof proceeds in two steps: (i) we prove that in
case them original inputs can be partitioned, then all them
original inputs, the z−2 big inputs, and the small input can
be assigned to the z reducers such that they satisfy the X2Y

mapping schema problem, (ii) in case the X2Y mapping

schema problem is successful, then there are two disjoint
subsets, S1 and S2, of the m original inputs that satisfy the
partition requirements.

We first show that if there are two disjoint subsets S1

and S2 of equal size of the m original inputs, then there
must exist a solution to the X2Y mapping schema problem.
Recall that any of the reducers can hold a set of inputs
whose sum of sizes is at most 1 + s

2
, and the sum of the sizes of the new z − 2 big inputs

is exactly s
2
. Hence, the small input, ai′, of size 1 and each big input, aii, can be assigned

130

to z − 2 reducers (out of the z reducers), and this assignment uses 1 + s
2

capacity, which is
exactly the capacity of any reducer. In addition, the remaining two reducers can be used for
the following assignment: the first remaining reducer is assigned the set S1 and the small
input, ai′, and the second remaining reducer is assigned the remaining original inputs, S2,
and the small input, ai′. The above assignment is a solution to the X2Y mapping schema

problem (for the given m + z − 2 inputs of the list X and the one input of the list Y using
z reducers, see Figure B.2).

Now, we prove the second claim that a solution to the X2Y mapping schema problem

results in a partition of the m original inputs into two equal-sized blocks. Recall that the
total sum of the sizes is s+ (z−2)s

2
+ 1 = z×s

2
+ 1.

Due to the reducer capacity of a single reducer, all the inputs cannot be assigned to a
single reducer; only a sublist of the inputs, whose sum of the sizes is at most 1 + s

2
, can be

assigned to a single reducer. We show that the small input, ai′, must be assigned to all the
z reducers. The small input, ai′, of size one can share the same single reducer with only a
subset, S ′, whose sum of the sizes is at most s

2
. Hence, the small input, ai′, is required to be

assigned to z−2 reducers (out of z reducers) in order to be paired with all the big inputs aii.
and the remaining two reducers in order to be paired with all the m original inputs. This
fact results in that a solution to the X2Y mapping schema problem yields partitions of the m
original inputs to S1 and S2 blocks, where the sum of the input sizes of any block is exactly
s
2
. Therefore, if there is a polynomial-time algorithm to construct the mapping schema,

where every input of one list is required to be paired with every other input of another list,
then the mapping schema finds the partitions of the m original inputs in polynomial time.
�

131

Appendix C

Pseudocodes of Approximation
Algorithms for Mapping Schema
Problems and their Proofs (Chapter 5)

C.1 Preliminary Proofs of Theorems on Lower and Upper
Bounds

Theorem 5.1 (Lower bounds on the communication cost and number of reducers) For

a list of inputs and a given reducer capacity q, the communication cost and the number of

reducers, for the A2A mapping schema problem, are at least s
2

q
and s2

q2
, respectively, where

s is the sum of all the input sizes.

Proof. Since an input i is replicated to at least
⌊
s−wi
q−wi

⌋
reducers, the communication cost

for the input i is wi × b s−wiq−wi
⌋
. Hence, the communication cost for all the inputs will be at

least
∑m

i=1wi
s−wi
q−wi . Since s ≥ q, we can conclude s−wi

q−wi ≥
s
q
. Thus, the communication cost

is at least
∑m

i=1wi
s
q

= s2

q
.

Since the communication cost, the total number of bits to be assigned to reducers, is at
least s2

q
, and a reducer can hold inputs whose sum of the sizes is at most q, the number of

reducers must be at least s
2

q2
. �

Theorem 5.2 (Lower bound on the communication cost) Let q > 1 be the reducer

capacity, and let q
k
, k > 1, is the bin size. Let the sum of the given inputs is s. The

communication cost, for the A2A mapping schema problem, is at least s
⌊ sk

q
−1

k−1
⌋
.

Proof. A bin can hold inputs whose sum of the sizes is at most q
k
. Since the total sum of

the sizes is s, it is required to divide the inputs into at least x = sk
q

bins. Now, each bin can

132

be considered as an identical sized input.
Since a bin i is required to be sent to at least

⌊
x−1
k−1
⌋

reducers (to be paired with all the
other bins), the sum of the number of copies of (x) bins sent to reducers is at least x

⌊
x−1
k−1
⌋
.

We need to multiply this by q
k

(the size of each bin) to find the communication cost. Thus,
we have at least

x
⌊x− 1

k − 1

⌋ q
k

=

sk

q

⌊ sk
q
− 1

k − 1

⌋ q
k

= s
⌊ sk
q
− 1

k − 1

⌋
≈ s2

q
· k

k − 1

communication cost. �

Theorem 5.3 (Upper bounds on communication cost and number of reducers for k =

2 using bin-packing) The bin-packing-based approximation algorithm using a bin size

b = q
2

where q is the reducer capacity achieves the following upper bounds: the number of

reducers, and the communication cost, for the A2A mapping schema problem, are at most
8s2

q2
, and at most 4 s

2

q
, respectively, where s is the sum of all the input sizes.

Proof. A bin i can hold inputs whose sum of the sizes is at most b. Since the total sum
of the sizes is s, it is required to divide the inputs into at least s

b
bins. Since the FFD

or BFD bin-packing algorithm ensures that all the bins (except only one bin) are at least
half-full, each bin of size q

2
has at least inputs whose sum of the sizes is at least q

4
. Thus,

all the inputs can be placed in at most s
q/4

bins of size q
2
. Since each bin is considered as a

single input, we can assign every two bins to a reducer, and hence, we require at most 8s2

q2

reducers. Since each bin is replicated to at most 4 s
q

reducers, the communication cost is at
most

∑
1≤i≤mwi × 4 s

q
= 4 s

2

q
. �

C.2 Lower Bounds for Equal-Sized Inputs

Theorem 5.4 (Lower bounds on the communication cost and number of reducers) For

a given reducer capacity q > 1 and a list of m inputs of size one, the communication cost

and the number of reducers (r(m, q)), for the A2A mapping schema problem, are at least

m
⌊
m−1
q−1
⌋

and at least
⌊
m
q

⌋⌊
m−1
q−1
⌋
, respectively.

Proof. Since an input i is required to be sent to at least
⌊
m−1
q−1
⌋

reducers, the sum of the
number of copies of (m) inputs sent to reducers is at least m

⌊
m−1
q−1
⌋
, which result in at least

m
⌊
m−1
q−1
⌋

communication cost.
There are at least m

⌊
m−1
q−1
⌋

total number of copies of (m) inputs to be sent to reducers
and a reducer can hold at most q inputs; hence, r(m, q) ≥

⌊
m
q

⌋⌊
m−1
q−1
⌋
. �

133

C.3 Algorithm for an Odd Value of the Reducer Capacity
(Algorithm 7A)

Algorithm 7: Part A
Inputs: m: the number of bins obtained after placing all the given m′ inputs (of size
≤ q

k
, k > 3 is an odd number) to bins each of size q

k
,

q: the reducer capacity.
Variables:
A: A set A, where the total inputs in the set A is y =

⌊
q
2

⌋
(
⌊

2m
q+1

⌋
+ 1)

B: A set B, where the total inputs in the B is x = m− y
Team[i, j] : represents teams of reducers, where index i indicates ith team and index j
indicates jth reducer in ith team. Consider u =

⌈
y

q−dq/2e
⌉
. There are u− 1 teams of

v =
⌈
u
2

⌉
reducers in each team.

groupA[] : represents disjoint groups of inputs of the set A, where groupA[i] indicates
ith group of

⌈
q−1
2

⌉
inputs of the set A.

1 Function create_group(y) begin
2 for i← 1 to u do groupA[i]← 〈i, i+ 1 . . . , i+ q−1

2
− 1〉, i← i+ q−1

2
;

3 2_step_odd_q(1, u), Last_Team(groupA[]), Assign_input_from_B(Team[])

4 Function 2_step_odd_q(lower, upper) begin
5 if

⌊
upper−lower

2

⌋
< 1 then return;

6 else
7 mid←

⌈
upper−lower

2

⌉
, Assignment(lower ,mid , upper)

8 2_step_odd_q(lower,mid), 2_step_odd_q(mid+ 1, upper)

9 Function Assignment(lower ,mid , upper) begin
10 while mid > 1 do
11 foreach (a, t) ∈ [lower, lower +mid− 1]× [0,mid− 1] do

Team
[
(u− 2 ·mid+ 1) + t, a−

⌊
a−1
mid

⌋
· mid

2

]
←

〈groupA[a], groupA[value_b(a, t,mid, upper)]〉 ;

12 Function value_b(a, t,mid, upper) begin
13 if a+ t+mid < upper + 1 then return (a+ t+mid) ;
14 else if a+ t+mid > upper then return (a+ t) ;

15 Function Last_Team(lower ,mid , upper) begin
16 foreach i ∈ [1, v] do Team[u− 1, i]← groupA[2× i− 1], groupA[2× i] ;

17 Function Assign_input_from_B(Team[]) begin
18 foreach (i, j) ∈ [1, u− 1]× [1, v] do Team[i, j]← B[i] ;

Algorithm description. First, we divide m inputs (that are actually bins of size q
k
, k > 3,

after placing all the given m inputs to m′ bins, each of size q
k
) into two sets A and B. Then,

we make u =
⌈

y
q−dq/2e

⌉
disjoint groups of y inputs of the set A such that each group holds

q−1
2

inputs, lines 1, 2. (Now, each of the groups is considered as a single input that we call

134

the derived input.) We do not show the addition of dummy inputs and assume that u is a
power of 2. Function 2_step_odd_q(lower, upper) recursively divides the derived inputs
into two halves, line 10. Function Assignment(lower ,mid , upper) (line 9) pairs every two
derived inputs and assigns them to the respective reducers (line 7). Each reducer of the last
team is assigned using function Last_Team(groupA[]), lines 15, 16.

Note that functions 2_step_odd_q(lower, upper), Assignment(lower ,mid , upper),
and value_b(lower, t,mid, upper) take two common parameters, namely lower and upper
where lower is the first derived input and upper is the last derived input (i.e., uth group)
at the time of the first call to functions, line 3. Once all-pairs of the derived inputs are
assigned to reducers, line 7, function Assign_input_from_B(Team[]) assigns ith input
of the set B to all the

⌈
u
2

⌉
reducers of ith team, lines 17, 18. After that, Algorithm 7A is

invoked over inputs of the set B to assign each pair of the remaining inputs of the set B to
reducers until every pair to the remaining inputs is assigned to reducers.

C.4 Algorithm for an Even Value of the Reducer Capacity
(Algorithm 7B)

Algorithm 7: Part B
Inputs: m: the number of bins obtained after placing all the given m′ inputs (of size
≤ q

k
, k ≥ 4 is an even number) to bins each of size q

k
,

q: the reducer capacity.
Variables:
Team[i, j] : represents teams of reducers, where index i indicates ith team and index j
indicates jth reducer in ith team. Consider u = 2m

q
. There are u− 1 teams of

⌈
u
2

⌉
reducers in each team.
groupA[] : represents disjoint groups of inputs of the set A, where groupA[i] indicates
ith group of

⌈
q
2

⌉
inputs of the set A.

1 Function create_group(m) begin
2 for i← 1 to u do groupA[i]← 〈i, i+ 1 . . . , i+ q

2
− 1〉, i← i+ q

2
;

3 2_step_even_q(1, u), Last_Team(1 ,
⌈
u−1
2

⌉
, u)

4 Function 2_step_even_q(lower, upper) begin
5 if

⌊
upper−lower

2

⌋
< 1 then return;

6 else
7 mid←

⌈
upper−lower

2

⌉
, Assignment(lower ,mid , upper)

8 2_step_even_q(lower,mid), 2_step_even_q(mid+ 1, upper)

135

C.5 Proof of Lemmas and Theorems related to
Algorithms 7A and 7B

Lemma 5.10 Let q be the reducer capacity. Let the size of an input is
⌈
q−1
2

⌉
. Each pair of

u = 2i, i > 0, inputs can be assigned to 2i − 1 teams of 2i−1 reducers in each team.

Proof. The proof is by induction on i.
Basis case. For i = 1, we have u = 2 inputs, and we can assign them to a team of one
reducer of capacity q. Hence, Lemma 5.11 holds for (i = 1) two inputs.
Inductive step. Assume that the inductive hypothesis — there is a solution for u = 2i−1

inputs, where all-pairs of u = 2i−1 inputs are assigned to 2i−1−1 teams of 2i−2 reducers in
each team and have the team property (each team has one occurrence of each input, which
we will prove in algorithm correctness) — is true. Now, we can build a solution for u = 2i

inputs, as follows:
(a) Divide u = 2i inputs into two groups of 2i−1 inputs in each group,
(b) Recursively create teams for each of the two groups,
(c) Create some of the teams for the 2i inputs by combining the jth team from the first group

with the jth team from the second group. Since by the inductive hypothesis we have a
solution for u = 2i−1 inputs, we can assign inputs of these two groups to 2 · (2i−1 − 1)

teams of 2i−2 reducers in each team. And, by combining jth, where j = 1, 2, . . . , (2i−1−
1), teams of each group, there are 2i−1−1 teams of 2i−1 reducers in each team; see Teams
5-7 for 8 inputs in Figure 5.3.

(d) Create 2i−1 additional teams that pair the inputs from the first group with inputs from
the second group. In each team, the jth input from the first group is assigned to the jth

reducer. In the first team, the jth input from the second group is also assigned to the jth

reducer. In subsequent teams, the assignments from the second group rotate, so in the
tth team, the jth input from the second group is assigned to reducer k + j − (2i−1 −
1)(modulo2i−1); see Teams 1-4 for 8 inputs in Figure 5.3.

By steps (c) and (d), there are total 2i−1− 1 + 2i−1 = 2i− 1 teams of 2i−1 reducers in each
team, and these teams holds each pair of the u = 2i inputs. �

Theorem 5.11 (The communication cost obtained using Algorithm 7A or 7B) For

a given reducer capacity q > 1, k > 3, and a list of m inputs whose sum of

sizes is s, the communication cost, for the A2A mapping schema problem, is at most
q
2k

⌈
sk

q(k−1)
⌉
(
⌈

sk
q(k−1)

⌉
− 1).

Proof. Since the FFD or BFD bin-packing algorithm ensures that all the bins (except only
one bin) are at least half-full, each bin of size q

k
has at least inputs whose sum of the sizes

136

is at least q
k/2

. Thus, all the inputs can be placed in at most x = s/(q/(k/2)) = sk
2q

bins of
size q

k
. Now, each bin can be considered as an identical sized input.

According to the construction given in Algorithm 7A, there are at most g =
⌈

2x
k−1
⌉

groups (derived inputs) of the given x bins. In order to assign each pair of the derived
inputs, each derived input is required to assign to at most g − 1 reducers. In addition, the
size of each input (bin) is q

k
, therefore we have at most

q

k
× g(g − 1)/2 =

q

k
×
⌈ 2x

k − 1

⌉(⌈ 2x

k − 1

⌉
− 1
)
/2

=
q

2k
×
⌈ sk

q(k − 1)

⌉(⌈ sk/q
k − 1

⌉
− 1
)
>

4s2

q

communication cost. �

C.5.1 Correctness of Algorithm 7A

The algorithm correctness proves that every pair of inputs is assigned to reducers.
Specifically, we prove that all those pairs of inputs, 〈i, j〉 and 〈i′, j′〉, of the set A are
assigned to a team whose i 6= i′ and j 6= j′ (Claim C.1). Then that all the inputs of the
set A appear exactly once in each team (Claim C.2). We then prove that the set B holds
x ≤ y − 1 inputs, when q = 3 (Claim C.3). At last we conclude in Theorem C.4 that
Algorithm 7A assigns each pair of inputs to reducers.

Note that we are proving all the above mentioned claims for q = 3; the cases for q > 3

can be generalized trivially where we make u =
⌈

y
q−dq/2e

⌉
derived inputs from y inputs

of the set A (and assign in a manner that all the inputs of the A are paired with all the
remaining m− 1 inputs).

Claim C.1 Pairs of inputs 〈i, j〉 and 〈i′, j′〉, where i = i′ or j = j′, of the set A are

assigned to different teams.

Proof. First, consider i = i′ and j 6= j′, where 〈i, j〉 and 〈i′, j′〉 must be assigned to two
different teams. If j 6= j′, then both the j values may have an identical value of lower

and mid but they must have two different values of t (see lines 13, 14 of Algorithm 7A),
where j = lower + t + mid or j = lower + t. Thus, for two different values of j , we
use two different values of t, say t1 and t2, that results in an assignment of 〈i, j〉 and 〈i′, j′〉
to two different teams t1 and t2, (note that teams are also selected based on the value of t,
(y−2 ·mid+1)+t, see line 7 of Algorithm 7A, where for q = 3, we have u = y). Suppose
now that i 6= i′ and j = j′, where 〈i, j〉 and 〈i′, j′〉 must be assigned to two different teams.
In this case, we also have two different values of t, and hence, two different t values assign

137

〈i, j〉 and 〈i′, j′〉 to two different teams ((y − 2 ·mid+ 1) + t, line 7 of Algorithm 7A).
Hence, it is clear that pairs 〈i, j〉 and 〈i′, j′〉, where i 6= i′ and j 6= j′, are assigned to a

team. �

Claim C.2 All the inputs of the set A appear exactly once in each team.

Proof. There are the same number of pairs of inputs of the set A and the number of
reducers ((y − 1)

⌈
y
2

⌉
) that can provide a solution to the A2A mapping schema problem for

the y inputs of the setA. Recall that (y−1)
⌈
y
2

⌉
reducers are arranged in the form of (y−1)

teams of
⌈
y
2

⌉
reducers in each team, when q = 3. Note that if there is an input pair 〈i, j〉 in

team t, then the team t cannot hold any pair that has either i or j in the remaining
⌈
y
2

⌉
− 1

reducers. For the given y inputs of the set A, there are at most
⌈
y
2

⌉
disjoint pairs 〈i1, j1〉,

〈i2, j2〉, . . ., 〈idy/2e, jdy/2e〉 such that i1 6= i2 6= . . . 6= idy/2e 6= j1 6= j2 6= . . . 6= jdy/2e.
Hence, all y inputs of the set A are assigned to a team, where no input is assigned twice in
a team. �

Claim C.3 When the reducer capacity q = 3, the set B holds at most x ≤ y − 1 inputs.

Proof. Since a pair of inputs of the set A requires at most q − 1 capacity of a reducer and
each team holds all the inputs of the set A, an input from the set B can be assigned to all
the reducers of the team. In this manner, all the inputs of the set A are also paired with an
input of the set B. Since there are y− 1 teams and each team is assigned an input of the set
B, the set B can hold at most x ≤ y − 1 inputs. �

Theorem C.4 Algorithm 7A assigns each pair of the givenm inputs to at least one reducer

in common.

Proof. We have (y−1)
⌈
y
2

⌉
pairs of inputs of the set A of size q−1, and there are the same

number of reducers; hence, each reducer can hold one input pair. Further, the remaining
capacity of all the reducers of each team can be used to assign an input of B. Hence, all
the inputs of A are paired with every other input and every input of B (as we proved in
Claims C.2 and C.3). Following the fact that the inputs of the set A are paired with all
the m inputs, the inputs of the set B is also paired by following a similar procedure on
them. Thus, Algorithm 7A assigns each pair of the given m inputs to at least one reducer
in common. �

138

C.5.2 Correctness of Algorithm 7B

We show that every pair of inputs is assigned to reducers. Specifically, Algorithm 7B
satisfies two claims, as follows:

Claim C.5 Pairs of derived inputs 〈i, j〉 and 〈i′, j′〉, where i 6= i′ or j 6= j′, are assigned

to a team.

Claim C.6 All the given m inputs appear exactly once in each team.

We do not prove Claims C.5 and C.6. Note that Claim C.5 follows Claims C.1, where
Claims C.1 shows that all the pairs of inputs of the set A (in case q = 3) and all the pairs
of derived inputs of the set A (in case q > 3) 〈i, j〉 and 〈i′, j′〉, where i 6= i′ or j 6= j′ are
assigned to a team. Also, Claim C.6 follows Claim C.2, where Claim C.2 shows that all the
inputs of the set A appear in each team only once, while in case of Algorithm 7B the set A
is considered as a set of m inputs.

Theorem C.7 Algorithm 7B assigns each pair of the givenm inputs to at least one reducer

in common.

Proof. Since there are the same number of pairs of the derived inputs and the number of
reducers, it is possible to assign one pair to each reducer that results in all-pairs of the m
inputs. �

C.6 The First Extension to the AU method (Algorithm 8)

Theorem 5.12 (The communication cost obtained using Algorithm 8) Algorithm 8

requires at most p(p + 1) + z reducers, where z = 2l2(p+1)2

q2
, and results in at most qp(p +

1) + z′ communication cost, where z′ = 2l2(p+1)2

q
, q is the reducer capacity, and p is the

nearest prime number to q.

When l = q − p equals to one, we have provided an extension of the AU method in
Section 5.2.3, and in this case, we have an optimum mapping schema for q and m =

q2 + q + 1 inputs.

Proof. In case of l > 1, a single reducer cannot be used to assign all the inputs of the
set B. Since Algorithm 2 is based on the AU method, Algorithm 7A, and Algorithm 7B,
we always use at most p(p + 1) + z reducers, where z (= 2l2(p+1)2

q2
) reducers are used to

assign each pair of inputs of the set B based on Algorithms 7A or 7B (for the value of z,
the reader may refer to Theorem 11 of the technical report [7]). Thus, the communication

139

Algorithm 8: The first extension to the AU method.
Inputs: m: total number of unit-sized inputs, q: the reducer capacity.
Variables:
A: A set A, where the total inputs in the set A is y = p2, where p is a near most prime
number to q such that p+ l = q
B: A set B, where the total inputs in the B is x ≤ m− y
Bin[i, j] : represents teams of bin, where index i indicates ith bin and index j indicates
jth reducer in ith team. There are p+ 1 teams of p bins (each of size p), in each team.

Team[i, j] : represents teams of reducers, where index i indicates ith team and index j
indicates jth reducer in ith team. There are p+ 1 teams of p reducers (each of
capacity q) in each team.
groupB[] : represents disjoint groups of inputs of the set B, where groupB[i]
indicates ith group of

⌈
x
q−p
⌉

inputs of the set B.
1 Function Assignment(A,B) begin
2 Bin[]← The AU method(y, p)
3 foreach (i, j) ∈ [1, p+ 1]× [1, p] do Team[i, j]← Bin[i, j] ;
4 for i← 1 to x do groupB[i]← 〈i, i+ 1 . . . , i+ x

q−p〉, i← i+ x
q−p ;

5 foreach (i, j) ∈ [1, p+ 1]× [1, p] do Team[i, j]← groupB[i] ;
6 if q is an odd number then Algorithm 7A(x, q) ;
7 else if q is an even number then Algorithm 7B(x, q) ;

cost is at most qp(p + 1) + z′, where z′ (= 2l2(p+1)2

q
) is the maximum communication cost

required by Algorithm 7A or 7B for assigning (p+ 1)l inputs of the set B. �

C.6.1 Correctness of Algorithm 8

The correctness shows that all-pairs of inputs are assigned to reducers. Specifically, we
show that each pair of inputs of the set A is assigned to p(p + 1) reducers that use only
p capacity of each reducer (Claims C.8 and C.9). Then, we prove that the set B holds
x ≤ m − p2 inputs. At last, we conclude that Algorithm 8 assigns each pair of inputs to
reducers.

Claim C.8 All the inputs of the setA are assigned to p(p+1) reducers, and the assignment

of the inputs of the set A uses only p capacity of each reducer.

Claim C.9 All the inputs of the set A appear in each team exactly once.

We are not proving Claims C.8 and C.9 here. Claims C.8 and C.9 follow the correctness of
the AU method; hence, all the inputs of the set A are placed to p + 1 teams of p bins (each
of size q) in each team, and the assignment of each such bin only uses p capacity of each

140

reducer. Further two bins cannot be assigned to a reducer because 2 × p > q. Claim C.9
also follows the correctness of the AU method, and hence, all the inputs of the set A appear
only once in each team.

Claim C.10 When the reducer capacity is q, the set B holds x ≤ m − p2 inputs, where p

is the nearest prime number to q.

Proof. There are p+ 1 teams of p reducers in each team, and inputs of the set A use q − p
capacity of each of the reducers. Hence, each reducer can hold q − p additional unit-sized
(almost identical-sized) inputs. Since inputs of the set A appear in each team (Claim C.9),
an assignment of q − p additional unit-sized inputs to all the reducers of a team provides
pairs of all the inputs of the set A with additional inputs. In this manner, p+1 teams, which
hold p2 inputs of the set A, can hold at most (p + 1) × (q − p) additional inputs. Since
p2 < m ≤ p2 + (p+ 1)× (q − p), the set B can hold x ≤ m− p2 inputs. �

Theorem C.11 Algorithm 8 assigns each pair of inputs to reducers.

We are not proving Theorem C.11 here. The proof of Theorem C.11 considers the fact that
all the inputs of the set A are paired with each other using the AU method, and they are also
paired with all the remaining inputs of the set B. Further, inputs of the set B will be paired
with each other by using Algorithm 7A or 7B (Theorems C.4 or C.7).

C.7 The Second Extension to the AU method (Algorithm 9)

Algorithm 9: The second extension to the AU method.
Inputs: m: total number of unit-sized inputs.
q: the reducer capacity.

1 Function Assignment(m) begin
2 bottom-up_tree(m), assignment_tree(root_node_of _bottom-up_tree)

Theorem 5.16 (The communication cost obtained using Algorithm 9) Algorithm 9

requires at most q × (q(q + 1))l−1 reducers and results in at most q2 × (q(q + 1))l−1

communication cost.

Proof. For a given m = ql, l > 2, the assignment tree has height l (Lemma 5.17),
and (according to Algorithm 10(c)) lth level has q × (q(q + 1))l−1 reducers providing an
assignment of each pairs of inputs. Hence, Algorithm 10(c) uses q(q(q + 1))l−1 reducers,
and the communication cost is at most q2 × (q(q + 1))l−1. �

141

C.8 A Theorem related to A Big Input

Theorem 5.17 (Upper bounds from algorithms) For a list of m inputs where a big input,

i, of size q
2
< wi < q and for a given reducer capacity q, q < s′ < s, an input is replicated

to at mostm−1 reducers for the A2A mapping schema problem, and the number of reducers

and the communication cost are at mostm−1+ 8s2

q2
and (m−1)q+ 4s2

q
, respectively, where

s′ is the sum of all the input sizes except the size of the big input and s is the sum of all the

input sizes.

Proof. The big input i can share a reducer with inputs whose sum of the sizes is at most
q−wi. In order to assign the input i with all the remainingm−1 small inputs, it is required
to assign a sublist of m− 1 inputs whose sum of the sizes is at most q−wi. If all the small
inputs are of size almost q − wi, then a reducer can hold the big input and one of the small
inputs. Hence, the big input is required to be sent to at most m− 1 reducers that results in
at most (m− 1)q communication cost.

Also, each pair of all the small inputs is assigned to reducers (by first placing them to
bins of size q

2
using FFD or BFD bin-packing algorithm). The assignment of all the small

inputs results in at most 8s′2

q2
< 8s2

q2
reducers and at most 4s′2

q
< 4s2

q
communication cost

(Theorem 5.3). Thus, the number of reducers is at mostm−1+ 8s2

q2
and the communication

cost is at most (m− 1)q + 4s2

q
. �

C.9 Theorems related to the X2Y Mapping Schema
Problem

Theorem 5.18 (Lower bounds on the communication cost and number of reducers)
For a list X of m inputs, a list Y of n inputs, and a given reducer capacity q, the

communication cost and the number of reducers, for the X2Y mapping schema problem,

are at least 2·sumx·sumy
q

and 2·sumx·sumy
q2

, respectively.

Proof. Since an input i of the list X and an input j of the list Y are replicated to at least
sumy
q

and sumx
q

reducers, respectively, the communication cost for the inputs i and j are
wi × sumy

q
and wj × sumx

q
, respectively. Hence, the communication cost will be at least∑m

i=1wi
sumy
q

+
∑n

j=1wj
sumx
q

= 2·sumx·sumy
q

.
Since the total number of bits to be assigned to reducers is at least 2·sumx·sumy

q
and a

reducer can hold inputs whose sum of the sizes is at most q, the number of reducers must
be at least 2·sumx·sumy

q2
. �

Theorem 5.19 (Upper bounds from the algorithm) For a bin size b, a given reducer

142

capacity q = 2b, and with each input of lists X and Y being of size at most b, the number

of reducers and the communication cost, for the X2Y mapping schema problem, are at most
4·sumx·sumy

b2
, and at most 4·sumx·sumy

b
, respectively, where sumx is the sum of input sizes of

the list X , and sumy is the sum of input sizes of the list Y .

Proof. A bin i can hold inputs whose sum of the sizes is at most b. Hence, it is required
to divide inputs of the lists X and Y into at least sumx

b
and sumy

b
bins, respectively. Since

the FFD or BFD bin-packing algorithm ensures that all the bins (except only one bin) are
at least half-full, each bin of size b has at least inputs whose sum of the sizes is at least b

2
.

Thus, all the inputs of the lists X and Y can be placed in at most sumx
b/2

and sumy
b/2

bins of
size b, respectively.

Let x (=2·sumx
b

) and y (=2·sumy
b

) bins are used to place inputs of the lists X and Y ,
respectively. Since each bin is considered as a single input, we can assign each of the x
bins with each of the y bins at reducers, and hence, we require at most 4·sumx·sumy

b2
reducers.

Since each bin that is containing inputs of the list X (resp. Y) is replicated to at most
2·sumy

b
(resp. at most 2·sumx

b
) reducers, the replication of individual inputs of the list X

(resp. Y) is at most 2·sumy
b

(resp. at most 2·sumx
b

) and the communication cost is at most∑
1≤i≤mwi ×

2·sumy
b

+
∑

1≤j≤nwj × 2·sumx
b

= 4·sumx·sumy
b

. �

143

Appendix D

Proofs of Theorems related to
Meta-MapReduce (Chapter 6)

Theorem 6.1 (The communication cost for join of two relations) Using

Meta-MapReduce, the communication cost for the problem of join of two relations is at

most 2nc+h(c+w) bits, where n is the number of tuples in each relation, c is the maximum

size of a value of the joining attribute, h is the number of tuples that actually join, and w is

the maximum required memory for a tuple.

Proof. Since the maximum size of a value of the joining attribute, which works as a
metadata in the problem of join, is c and there are n tuples in each relation, users have to
send at most 2nc bits to the site of mappers-reducers. Further, tuples that join at the reduce
phase have to be transferred from the map phase to the reduce phase and then from the
user’s site to the reduce phase. Since there are at most h tuples join and the maximum size
of a tuple is w, we need to transfer at most hc and at most hw bits from the map phase to
the reduce phase and from the user’s site to the reduce phase, respectively. Hence, the total
communication cost is at most 2nc+ h(c+ w) bits. �

Theorem 6.2 (The communication cost for skew join) Using Meta-MapReduce, the

communication cost for the problem of skew join of two relations is at most 2nc+rh(c+w)

bits, where n is the number of tuples in each relation, c is the maximum size of a value of

the joining attribute, r is the replication rate, h is the number of distinct tuples that actually

join, and w is the maximum required memory for a tuple.

Proof. From the user’s site to the site of mappers-reducers, at most 2nc bits are required
to move (according to Theorem 6.1). Since at most h distinct tuples join and these tuples
are replicated to r reducers, at most rhc bits are required to transfer from the map phase to
the reduce phase. Further, h tuples of size at most w to be transferred from the map phase

144

to the reduce phase, and hence, at most rhw bits are assigned to reducers. Thus, the total
communication cost is at most 2nc+ rh(c+ w) bits. �

Theorem 6.3 (The communication cost when joining attributes are large) Using

Meta-MapReduce for the problem of join where values of joining attributes are large, the

communication cost for the problem of join of two relations is at most 6n · log m+h(c+w)

bits, where n is the number of tuples in each relation, m is the maximal number of tuples in

two relations, h is the number of tuples that actually join, and w is the maximum required

memory for a tuple.

Proof. The maximal number of tuples having different values of a joining attribute in all
relations is m, which is upper bounded by 2n; hence, a mapping of hash function of m
values into m3 values will result in a unique hash value for every of the m keys with a
high probability. Thus, we use at most 3 · log m bits for metadata of a single value, and
hence, at most 6n · log m bits are required to move metadata from the user’s site to the
site of mappers-reducers. Since there are at most h tuples join and the maximum size of a
tuple is w, we need to transfer at most hc and at most hw bits from the map phase to the
reduce phase and from the user’s site to the reduce phase, respectively. Hence, the total
communication cost is at most 6n · log m+ h(c+ w) bits. �

Theorem 6.4 (The communication cost for k relations and when joining attributes are
large) Using Meta-MapReduce for the problem of join where values of joining attributes

are large, the communication cost for the problem of join of k relations, each of the

relations with n tuples, is at most 3knp · log m + h(c + w) bits, where n is the number of

tuples in each relation, m is the maximal number of tuples in k relations, p is the maximum

number of dominating attributes in a relation, h is the number of tuples that actually join,

and w is the maximum required memory for a tuple.

Proof. According to Theorem 6.3, at most 3 · log m bits for metadata are required for
a single value; hence, at most 3knp · log m bits are required to move metadata from the
user’s site to the site of mappers-reducers. Since at most h tuples join and the maximum
size of a tuple is w, at most hc and at most hw bits from the map phase to the reduce phase
and from the user’s site to the reduce phase, respectively, are transferred. Hence, the total
communication cost is at most 3knp · log m+ h(c+ w) bits. �

145

Appendix E

Proof of Theorems related to Interval
Join (Chapter 7)

E.1 Proof of Theorems and Algorithm related to
Unit-Length and Equally Spaced Intervals

Theorem 7.1 (Minimum replication rate) Let there be two relations: X and Y , each of

them containing n unit-length and equally spaced intervals in the range [0, k), and let q be

the reducer size. The replication rate for joining each interval of the relation X with all its

overlapping intervals of the relation Y , is at least 2n
qk

.

Proof. A reducer i can have qi ≤ q intervals, and it can cover at most
(
qi
2

)2 pairs of
intervals, one interval from X and the other from Y . Since an interval that does not have
starting-point before 1 and after k − 1 has at least 2n

k
+ 1 overlapping intervals, there are

at least
(
n − 2n

k

)(
2n
k

+ 1
)

pairs of overlapping intervals. In addition, there are at least 2n2

k2

pairs of overlapping intervals, where at least one member of the pair starts before 1 or after
k − 1. Thus, we have at least(

n− 2n

k

)(2n

k
+ 1
)

+
2n2

k2
=

2n

k

(
n− n

k
+
k

2
− 1
)

pairs of overlapping intervals.
Consider that there are z reducers, and we can set the following equation

∑
1≤i≤z

q2i
4
≥ 2n

k

(
n− n

k
+
k

2
− 1
)

In order to bound the replication rate, we divide both the sides of the above equation by

146

the total number of inputs, i.e., 2n,

∑
1≤i≤z

q2i
4

2n
≥ 1

k

(
n− n

k
+
k

2
− 1
)

∑
1≤i≤z

q2i
8n
≥ n

2k

Now, we manipulate the above equation to have a lower bound on the replication rate
by arranging the terms of the above equation so that the left side becomes the replication
rate. We separate a factor qi from q2i , and one qi can be replaced by the upper bound on the
reducer size, q. Note that the equation still holds.∑

1≤i≤z
q
qi
8n
≥ n

2k

By moving some terms from the left side of the above equation, we can get a lower
bound on the replication rate, r =

∑
1≤i≤z

qi
2n

, as follows:

∑
1≤i≤z

qi
2n
≥ 2n

qk
.

�

Theorem 7.2 (Minimum communication cost) Let there be two relations: X and Y , each

of them containing n unit-length and equally spaced intervals in the range [0, k), and let q

be the reducer size. The communication cost for joining of each interval of the relation X

with all its overlapping intervals of the relation Y is at least 4n2

qk
.

Proof. Since an interval, say i, of unit-length is replicated to at least 2n
qk

reducers, the
communication cost for the interval i is at least 2n

qk
. Hence, the total communication cost

for all 2n intervals will be at least 2n
qk
· 2n. �

Explaining pseudocode of Algorithm 10. A mapper takes an interval xi ∈ X (line 2) and
produces 〈key , value〉 pairs (line 5). The function find_blocks(xi) finds a set, Z, of blocks
where an interval xi crosses (line 4), and for each member of the set, Z, the map function
generates a 〈key , xi〉 pair (line 5). Note that the key represents a block where the interval
xi exists, and the number of 〈key , value〉 pairs for the interval xi equals to the cardinality
of the set Z.

Also, a mapper processes an interval yi ∈ Y (line 6) and produces two 〈key , value〉
pairs (line 9), where the first pair and the second pair are corresponding to a block where yi

147

Algorithm 10: 2-way interval join algorithm for overlapping intervals.
Inputs: X and Y : two relations, each with n intervals.
Variables: w: The length of a block w = q−c

4c
, where c = n

k
;

P : The number of blocks and reducers;
Z: A set.

1 Partition the time-range into P blocks, each of length w
2 Function Map_for_X (xi ∈ X) begin
3 Z ← ∅
4 Z ← find_blocks(xi)
5 For each member, u, of the set Z emit〈u, xi〉
6 Function Map_for_Y (yi ∈ Y) begin
7 sp← starting_point(yi)
8 ep← ending_point(yi)
9 emit〈sp, yi〉, emit〈ep, yi〉

10 Function reduce(〈key , list_of _values []〉) begin
11 for j ← 1 to P do
12 Reducer i receives 〈i, list_of _values [xa, xb, . . . , ya, yb, . . .]〉
13 Perform interval join over overlapping intervals

has the starting-point and the ending-point, respectively (line 8). The value represents the
interval yi itself. In the reduce phase, a reducer i fetches all the intervals of the relations X
and Y that have a key i (line 12) and provides the final outputs, line 13.

Now, we show the correctness of Algorithm 10. Before that we provide two definitions,
as follows:

Definition 1 Post-intervals of an interval of i ∈ X: Consider that an interval i ∈ X is in

a block p. An interval j of the relation X that has its starting-point after the starting-point

of the interval i in the block p, is called a post-interval of the interval i.

Definition 2 Pre-intervals of an interval of i ∈ X: Consider that an interval i ∈ X is in a

block p. An interval j of the relation X that has started before the interval i and has either

its ending-points in the block p or crosses the block p, is called a pre-interval of the interval

i.

Theorem 7.3 (Algorithm correctness) Let there be two relations: X and Y , each of them

containing n unit-length and equally spaced intervals in the range [0, k). Let w be the

length of a block, and let q = 4wc + c is the reducer size, where c = n
k

. Algorithm 10

assigns each pair of overlapping intervals to at least one reducer in common.

Proof. We consider two cases such as w ≥ 1 and w < 1 and prove two arguments for both
the cases, as follows:

148

1. A reducer is big enough to hold all the intervals of a block.
2. Each pair of overlapping intervals is assigned to at least one reducer.

Case 1: w ≥ 1. First we count the number of intervals that exist in a block. Since the
spacing between adjacent intervals is k

n
and the length of a block is w, there are at most

w
k/n

points where an interval can start or end. Since at a single point an interval can start as
well as an interval can end, there are at most 4wn

k
intervals of both the relations in a block.

Hence, the reducer can hold all the intervals of a block.
Case 2: w < 1. First, we show that a reducer is big enough to hold all the intervals of

a block. Since the spacing between adjacent intervals is k
n

and the length of a block is w, a
block can have at most 2wn

k
intervals of the relation Y . The assignment of all the intervals

of the relation Y that exist in a block occupies 2wn
k

space of a reducer. Note that in a block
of length w, there are at most wn

k
post-intervals of the interval i and at most n

k
pre-intervals

of the interval i. Thus, we can fill the remaining space of the reducer, i.e., 2wn
k

+ c, by the
interval i, post-intervals of i that lie in the block p, and pre-intervals of i that lie in block p
to a single reducer. Thus, the reducer can hold all the intervals of a block.

Now, we show how a pair of overlapping intervals, say xi and yi, is assigned to a reducer.
The analysis is same as given in [31]. Consider an interval yi ∈ Y having its starting-point
or ending-point in a block pi. This interval is assigned to a reducer corresponding to the
block pi. The interval xi is replicated to all the reducers corresponding to the blocks in
which xi exists. Since xi overlaps with yi, the interval xi is also assigned to the same
reducer where yi has already assigned. The reducer corresponding to the block pi (where
xi and yi exist) will provide the desired results. �

Theorem 7.4 (Maximum replication rate) Let there be two relations: X and Y , each of

them containing n unit-length and equally spaced intervals in the range [0, k). Let w be

the length of a block, and let q = 4wc + c < 2n is the reducer size, where c = n
k

. The

replication of an interval, for joining each interval of the relationX with all its overlapping

intervals of the relation Y , is (i) at most 2 for w ≥ 1 and (ii) at most 4c
q−c for w < 1.

Proof. First, we consider the case of k > w ≥ 1. Here, an interval of the relationX crosses
at most two blocks, and hence, the interval of X can be replicated to at most 2 reducers,
according to its starting-point and ending-point. However, an interval of the relation Y is
sent to at most two reducers in any case, according to its starting-point and ending-point.
Hence, the replication of an interval is at most 2.

For w < 1, according to Algorithm 10, an interval crosses at most w + 1 blocks, and
hence, an interval of the relationX is required to be sent to at most w+1 reducers. Also, an
interval of the relation Y is replicated to at most two reducers; thus, the average replication
rate is w+3

2
. In this case, we have q = 4wc+c < 2n, and we replace w by 1

r
that provides us

149

r = 4c
q−c . Therefore, an interval is required to be sent to at most 4c

q−c reducers when w < 1

and q = 4wc+ c, where c = n
k

. �

Theorem 7.5 (Maximum communication cost) Let there be two relations: X and Y , each

of them containing n unit-length and equally spaced intervals in the range [0, k). Let w be

the length of a block, and let q = 4wc + c < 2n is the reducer size, where c = n
k

. The

communication cost for joining of each interval of the relation X with all its overlapping

intervals of the relation Y is (i) at most 4n for w ≥ 1 and (ii) at most 8nc
q−c for w < 1.

Proof. In the case of w ≥ 1, since an interval is replicated to at most 2 reducers, the
communication cost for this interval is at most 2. Hence, the total communication cost for
all 2n intervals is at most 4n.

In the case of w < 1, since an interval is replicated to at most 4c
q−c reducers, the

communication cost for this interval is at most 4c
q−c . Hence, the total communication cost

for all 2n intervals is at most 4c
q−c · 2n. �

E.2 Proof of Theorems and Algorithm related to
Variable-Length and Equally Spaced Intervals

Theorem 7.6 (Minimum replication rate) Let there be two relations: X containing n

small and equally spaced intervals and Y containing n big and equally spaced intervals,

and let q be the reducer size. Let s be the spacing between every two successive intervals,

and let lmin be the length of the smallest interval. The replication rate for joining of each

interval of the relationX with all its overlapping intervals of the relation Y is at least 2lmin

qs
.

Proof. A reducer i can have qi ≤ q intervals, and it can cover at most
(
qi
2

)2 pairs of
intervals, one interval from X and the other from Y . Since an interval that starts after lmin

has at least 2lmin

s
+ 1 overlapping intervals, there are at least

(
n − lmin

s

)(
2lmin

s
+ 1
)

pairs
of overlapping intervals. In addition, there are at least l2min

s2
pairs of overlapping intervals,

where at least one member of the pair starts before lmin time. Thus, we have at least

(
n− lmin

s

)(2lmin

s
+ 1
)

+
l2min

s2
=

2n

s

(
lmin −

l2min

2ns
+

s

2lmin

− lmin

2n

)
pairs of overlapping intervals.

150

Consider that there are z reducers, and we can set the following equation

∑
1≤i≤z

q2i
4
≥ 2n

s

(
lmin −

l2min

2ns
+

s

2lmin

− lmin

2n

)
In order to bound the replication rate, we divide both the sides of the above equation by

the total number of inputs, i.e., 2n,

∑
1≤i≤z

q2i
4

2n
≥ 1

s

(
lmin −

l2min

2ns
+

s

2lmin

− lmin

2n

)
∑
1≤i≤z

q2i
8n
≥ lmin

2s

Now, we manipulate the above equation to have a lower bound on the replication rate
by arranging the terms of the above equation so that the left side becomes the replication
rate. We separate a factor qi from q2i , and one qi can be replaced by the upper bound on the
reducer size, q. Note that the equation still holds to be true.

∑
1≤i≤z

q
qi
8n
≥ lmin

2s

By moving some terms from the left side of the above equation, we can get a lower
bound on the replication rate, r =

∑
1≤i≤z

qi
2n

, as follows:

∑
1≤i≤z

qi
2n
≥ 2lmin

qs
.

�

Theorem 7.7 (Minimum communication cost) Let there be two relations: X containing

n small and equally spaced intervals and Y containing n big and equally spaced intervals,

and let q be the reducer size. Let s be the spacing between every two successive intervals,

and let lmin be the length of the smallest interval. The communication cost for joining of

each interval of the relation X with all its overlapping intervals of the relation Y is at least
4nlmin

qs
.

Proof. Since an interval, say i, is replicated to at least 2lmin

qs
reducers, the communication

cost for the interval i is at least 2lmin

qs
. Hence, the total communication cost for all 2n

intervals will be at least 2lmin

s
· 2n. �

151

Theorem 7.9 (Maximum replication rate) Let there be two relations: X containing n

small and equally spaced intervals and Y containing n big and equally spaced intervals.

Let s be the spacing between every two successive intervals, let w be the length of a block,

and let lmin be the length of the smallest interval. Let q = 4wc + c is the reducer size,

where c = lmin

s
. The replication rate for joining of each interval of the relation X with all

its overlapping intervals of the relation Y is (i) at most 2 for w ≥ lmin and (ii) at most 4c
q−c

for w < lmin .

Proof. First, we consider the case of k > w ≥ lmin . Here, an interval of the relation X
crosses at most only two blocks, and hence, the interval of X can be replicated to at most
2 reducers, according to its starting-point and ending-point. However, an interval of the
relation Y is sent to at most two reducers in any case, according to its starting-point and
ending-point. Hence, the replication of an interval is at most 2.

For w < lmin , according to Algorithm 10(a), an interval crosses at most w + 1 blocks,
and hence, an interval of the relation X is required to be sent to at most w + 1 reducers.
Also, an interval of the relation Y is replicated to at most two reducers; thus, the average
replication rate is w+3

2
. In this case, we have q = 4wc + c, and we replace w by 1

r
that

provides us r = 4c
q−c . Therefore, an interval is required to be sent to at most 4c

q−c reducers
when w < lmin and q = 4wc+ c, where c = lmin

s
. �

Theorem 7.10 (Maximum communication cost) Let there be two relations: X containing

n small and equally spaced intervals and Y containing n big and equally spaced intervals.

Let s be the spacing between every two successive intervals, let w be the length of a block,

and let lmin be the length of the smallest interval. Let q = 4wc+c is the reducer size, where

c = lmin

s
. The communication cost for joining of each interval of the relation X with all its

overlapping intervals of the relation Y is (i) at most 4n for w ≥ lmin and (ii) at most 8nc
q−c

for w < lmin .

Proof. In the case of w ≥ lmin , since an interval is replicated to at most 2 reducers, the
communication cost for this interval is at most 2. Hence, the total communication cost for
all 2n intervals is at most 4n.

In the case of w < lmin , since an interval is replicated to at most 4c
q−c reducers, the

communication cost for this interval is at most 4c
q−c . Hence, the total communication cost

for all 2n intervals is at most 4c
q−c · 2n. �

E.2.1 Proof of the Theorem related to the General Case

Theorem 7.12 (Algorithm correctness) Let there be two relations: X and Y , each of them

containing n intervals. Let S be the total length of all the intervals in one relation, let w

152

be the length of a block, let T be the length of time in which all intervals exist, and let

q = 3nw+S
T

is the reducer size. Algorithm 10(c) assigns each pair of overlapping intervals

to at least one reducer in common.

Proof. We prove two arguments, as follows:
1. A reducer is big enough to hold all the intervals of a block.
2. Each pair of overlapping intervals is assigned to at least one reducer.

First, we show that a reducer is big enough to hold all the intervals of a block. Following
Algorithm 10(c), each of the n intervals of the relation Y is sent to at most two reducers.
Since there are T

w
reducers, a reducer receives 2nw

T
inputs from Y in average. Since the

length of all the intervals of the relation X is S, the average length of intervals is S
n

.
Following Algorithm 10(c), an interval of X is sent to 1 + S

nw
reducers. Since there are

T
w

reducers, the reducer receives (1 + S
nw

)nw
T

inputs from X in average. Thus, a reducer
receives at most 2nw

T
+ nw

t
(1 + S

nw
) = 3nw+S

T
inputs, which is equal to the given reducer

size.
We can prove the second argument, i.e., each pair of overlapping intervals is assigned

to at least one reducer, in a way similar to Theorem 7.3. �

Theorem 7.13 (Replication rate) Let there be two relations: X and Y , each of them

containing n intervals. Let S be the total length of all the intervals in one relation, let w

be the length of a block, let T be the length of time in which all intervals exist, and let

q = 3nw+S
T

is the reducer size. The replication rate for joining each interval of the relation

X with all its overlapping intervals of the relation Y is at most 3
qT−S

S
2

.

Proof. Since an interval of the relations X and Y is replicated to 1 + S
nw

and 2 reducers,
respectively. Hence, the average replication is 3

2
+ 1

2
S
nw

. We have q = 3nw+S
T

, by replacing
w = qT−S

3n
, we get the average replication rate equals to 3

qT−S
S
2

. �

153

Appendix F

Proof of Theorems related to Computing
Marginals of a Data Cube (Chapter 8)

F.1 Related Work on Data Cube

There have been a number of papers that look at the problem of using MapReduce to
compute marginals. Probably the closest work to what we present in Chapter 8 is in [100].
This paper expresses the goal of minimizing communication, and of partitioning the work
among reducers. It does not, however, present concrete bounds or algorithms that meet or
approach those bounds, as we will do here.

The paper [91] considers constructing a data cube using a nonassociative aggregation
function and also examines how to deal with nonuniformity in the density of tuples in the
cube. Like all the other papers mentioned, it deals with constructing the entire data cube
using multiple rounds of MapReduce. We consider how to compute only the marginals of
one order, using one round. We may assume that locally, at each reducer, higher-order
marginals are computed by aggregating lower-order marginals for efficiency, but this
method does not result in additional MapReduce rounds.

The paper [3] looks at using MapReduce to form a data cube from data stored in
Bigtable. [74] and [107] are implementations of known algorithms in MapReduce. Finally,
[109] talks about extending MapReduce to compute data cubes more efficiently.

F.2 Proof of Theorems

Theorem 8.4 If q = dm, then we can solve the problem of computing all kth-order

marginals of an n-dimensional data cube with r = C(n,m, k).

Proof. Each marginal in the set of C(n,m, k) handles can be turned into a team of

154

reducers, one for each of the dn−m ways to fix the dimensions that are not in the handle.
Each input gets sent to exactly one member of the team for each handle – the reducer that
corresponds to fixed values that agree with the input. Thus, each input is sent to exactly
C(n,m, k) reducers. �

Theorem 8.5 (Lower bound on the number of handles) For an n-dimensional data cube,

where the marginals are of size two, the minimum number of handles is
⌊
n(n−1)

6

⌋
.

Proof. The number of marginals for an n-dimensional data cube where the marginals are
of size two is

(
n
2

)
= n(n−1)

2
. However, a handle of size three cannot cover more than three

marginals, because there are only three subsets of size two contained in a set of size three.
Thus, the minimum number of handles is

⌊n(n−1)
6

⌋
. �

Theorem 8.6 (Upper bound on the number of handles) For an n-dimensional data cube,

where n = 3i, i > 0, and the marginals are of size two, the number of handles is bounded

above by

C(n, 3, 2) ≤ n2

6
, n = 3i, i > 0.

Proof. The proof is by induction on n.
Basis case. For n = 3, we show that C(3, 3, 2) = 1 is true, since we need only one handle
consisting of all three dimensions. In addition, 1 < 32

6
. Hence, Theorem 8.6 holds for

n = 3.
Inductive step. Let p = 3i−1, i > 0. Assume that the inductive hypothesis — C(p, 3, 2) ≤
p2

6
is true. Now, by following steps 1 and 2 of Algorithm 1, we can build a solution for a

data cube of n = 3p dimensions and show that C(3p, 3, 2) ≤ (3p)2

6
. Recall that using step 1

of Algorithm 1, we construct p2 handles. Using step 2 of Algorithm 1, we recursively
construct handles for each group by applying the inductive hypothesis on a group.

We will show that in steps 1 and 2 of Algorithm 1, we constructed a set of handles
for a data cube of n = 3i, i > 0, dimensions so that all the marginals of size two are
covered. It will therefore follow that C(3i, 3, 2) ≤ (3i−1)

2
+ 3 × C(3i−1, 3, 2), i > 0. By

the inductive hypothesis, C(p, 3, 2) ≤ p2

6
, where p = 3i−1. By substituting the value of

C(p, 3, 2) in the inequality C(3i, 3, 2) ≤ (3i−1)
2

+ 3×C(3i−1, 3, 2), we have C(3i, 3, 2) ≤
(3i−1)

2
+ 3× (3i−1)

2

6
= (3i)

2

6
. Hence, we constructed at most n

2

6
handles for a data cube of

n = 3i, i > 0, dimensions, where the marginals are of size two.

Now, we have to show that all the marginals of size two for a data cube of n = 3i, i > 0,
dimensions will be covered by the handles of size three, which were constructed in steps 1
and 2 of Algorithm 1. In order to show that we consider two cases based on the dimensions

155

of the marginals, as follows:
a. Two dimensions of the marginals are in two groups. In this case, whatever two

dimensions we select from two groups, there is a dimension of the third group such
that the sum of the indexes of the three dimensions is 0 mod p, p = 3i−1, i > 0, and we
have created all the handles consisting of those three dimensions in step 1 of Algorithm 1.
Hence, all the marginals having two dimensions in two groups are covered.

b. Two dimensions of the marginals are in a group. In this case, the marginals have any two
dimensions in a group (for example, D1D2 is a marginal of a 9-dimensional data cube).
In order to cover such marginals, we need handles that have any three dimensions of the
same group, and by the inductive hypothesis, we have handles that cover marginals from
a single group, in step 2 of Algorithm 1. Hence, all the marginals having two dimensions
in a group are covered.

Thus, we cover all the marginals of size two of a data cube of n = 3i, i > 0 dimensions,
using C(n, 3, 2) ≤ n2

6
handles of size three. �

Theorem 8.8 (Upper bound on the number of handles) For an n-dimensional data cube,

where the marginals are of size two, the number of handles is bounded above by

C(n, 3, 2) ≤ (n− 1)2

4

where n ≥ 5 and n is odd1.

Proof. The proof is by induction on n.
Basis case. For n = 5, we show that C(n, 3, 2) = C(5, 3, 2) = 4 is true. Let the five
dimensions be D1D2D3D4D5. When n = 10, there are ten marginals of size two. Then,
four handles such as 〈D1, D4, D5〉, 〈D2, D4, D5〉, 〈D3, D4, D5〉, and 〈D1, D2, D3〉 cover all
the 10 marginals. Hence, Theorem 8.9 holds for n = 5.
Inductive step. Assume that the inductive hypothesis — C(n − 2, 3, 2) ≤ (n−3)2

4
is

true. Now, by following steps 1 and 2 of Algorithm 2, we can build a solution to an
n-dimensional data cube and show that C(n, 3, 2) ≤ (n−1)2

4
. In step 1, we created n − 2

handles, and in step 2, we recursively created handles for the first n − 2 dimensions by
applying the inductive hypothesis.

We will show that in steps 1 and 2 of Algorithm 2, we created handles for an
n-dimensional data cube so that all the marginals of size two are covered. It will
therefore follow that C(n, 3, 2) ≤ n − 2 + C(n − 2, 3, 2). By the inductive hypothesis,
C(n − 2, 3, 2) ≤ (n−3)2

4
. By substituting the value of C(n − 2, 3, 2) in the inequality

C(n, 3, 2) ≤ n− 2 +C(n− 2, 3, 2), we have C(n, 3, 2) ≤ n− 2 + (n−3)2
4

= (n−1)2
4

. Hence,

1When n is even, the number of handles is bounded above by C(n, 3, 2) ≤
⌈ (n−1)2

4

⌉
, where n ≥ 8.

156

we create at most (n−1)2
4

handles for an n-dimensional data cube, where the marginals are
of size two.

Now, we have to show that all the marginals of size two will be covered by the handles
of size three that were created in steps 1 and 2. In order to show that we consider three
cases based on the existence of the last two dimensions in the marginals, as follows:
a. Marginals contain the last two dimensions. In this case, we need handles that have each

one of the first n−2 dimensions and the last two dimensions. All such handles are created
in step 1. Hence, all the marginals containing the last two dimensions are covered.

b. Marginals do not contain the last two dimensions. In this case, all the marginals must
have any two of the first n − 2 (an example of such a marginal is 〈D1, D2〉 of a
7-dimensional data cube). In order to cover such marginals, we need handles that have
any three of the first n − 2 dimensions. By the inductive hypothesis, there is a handle,
which has three of the first n − 2 dimensions, chosen in step 2 that covers any marginal
that has any two of the first n−2 dimensions. Hence, all the marginals that do not contain
the last two dimensions are covered.

c. Marginals contain the (n − 1)th or the nth dimensions but not both. In this case, the
marginals have one out of the first n−2 dimensions and either of the last two dimensions.
But whichever one of the first n− 2 dimensions are in the marginals, there is one handle
that has exactly one of the first n− 2 dimensions and the last two dimensions, created in
step 1. Hence, all the marginals with either of the last two dimensions are also covered.

Therefore, we cover all the marginals of an n-dimensional data cube, where the marginals
are of size two, using N(n, n− 2) ≤ (n−1)2

4
handles, where n ≥ 5 and n is odd. �

F.2.1 Aside: solving recurrences

We are going to propose several recurrences that describe inductive constructions of sets
of handles. While we do not want to explain how one discovers the solution to each
recurrence, there is a general pattern that can be used by the reader who wants to see
how the solutions are derived; see [19].

A recurrence like C(n) ≤ n− 2 +C(n− 2) from Section 8.2.6 will have a solution that
is a quadratic polynomial, say C(n) = an2 + bn+ c. It turns out that the constant term c is
needed only to make the basis hold, but we can get the values of a and b by replacing the
inequality by an equality, and then recognizing that the terms depending on n must be 0.
In this case, we get

an2 + bn+ c = n− 2 + a(n− 2)2 + b(n− 2) + c

157

or
an2 + bn+ c = n− 2 + an2 − 4an+ 4a+ bn− 2b+ c

Cancelling terms and bringing the terms with n to the left, we get

n(4a− 1) = 4a− 2b− 2

Since a function of n cannot be a constant unless the coefficient of n is 0, we know that
4a− 1 = 0, or a = 1/4. The right side of the equality must also be 0, so we get 4(1/4)−
2b− 2 = 0, or b = −1/2. We thus know that C(n) = n2/4− n/2 + c for some constant c,
depending on the basis value.

Theorem 8.9 (Upper bound on the number of handles) For an n-dimensional data cube,

where the marginals are of size two, the number of handles is bounded above by

C(n,m, 2) ≤ n2

2(m− 1)

where n ≥ 5.

Using the technique suggested in this Section F.2.1 along with the obvious basis case
C(m,m, 2) = 1, we get the solution:

C(n,m, 2) ≤ n2

2(m− 1)
− n

2
+ 1− m

2(m− 1)

Note that asymptotically, this solution uses n2

2(m−1) handles, while the lower bound is
n(n−1)
m(m−1) .

158

Appendix G

Pseudocodes and Theorems related to
Privacy-Preserving MapReduce-based
Computations (Chapter 10)

G.1 Algorithm for Creating Secret-Shares

Algorithm 11: Algorithm for creating secret-shares
Inputs: R: a relation having n tuples and m attributes, c: the number of clouds
Variables: letter : represents a letter

1 Function create_secret-shares(R) begin
2 for (i, j) ∈ (n,m) do
3 foreach letter [i, j] do Make_shares(letter [i , j])

4 Function Make_shares(letter [i , j]) begin
5 Make unary-vectors, where the position of letter has value 1 and all the other

values are 0
6 Use n polynomials of an identical degree for creating secret-shares of 0 and 1,

where n is length of the vector
7 Send secret-shares to c clouds

G.2 Count Algorithm

Steps in Counting a Pattern p using Algorithm 12
1. The user creates secret-share of p (see line 1) and sends secret-share of p, length (x) of
p, and the attribute (m′) where to count p, to c clouds; see line 2.
2. The cloud executes a map function, line 3, that

159

Algorithm 12: Algorithm for privacy-preserving count operation in the clouds using
MapReduce

Inputs: R: a relation of the form of secret-shares having n tuples and m attributes, p:
a searching pattern, c: the number of clouds, N (i)

j : defined in Table 10.2
Output: `: the number of occurrences of p
Interfaces: length(p): finds length of p
attribute(p): which attribute of the relation has to be searched for p
Variables: int_resulti : the output at ith cloud after executing the map function
SSk [i , j]: shows a letter of the form of secret-share at ith position of kth string in jth

attribute
result []: at the user-side to store outputs of all the clouds
User-side:

1 Compute secret-shares of p: p′ ← Make_shares(p) // Algorithm 11
2 Send p ′, x ← length(p),m ′ ← attribute(p) to c clouds

Cloud i:
3 int_resulti ← MAP_count(p′, x,m′)
4 Send int_result i back to the user

User-side:
5 result [i]← int_result i, ∀i ∈ {1, · · · , c}
6 Compute the final output: `← REDUCE (result [])

7 Function MAP_count(p ′, x ,m ′) begin
8 for i ∈ (1, n) do temp+ = Automata(SSi[∗,m′], p′)
9 return(〈key,Nn

x+1〉)
10 Function Automata(SSi [∗,m ′], p ′) begin

N1 = 1
N i

2 = N1 × (SSi[1,m
′]× p′[1])

N i
3 = N i

2 × (SSi[2,m
′]× p′[2])

...
N i
x+1 = N i

x+1 +N i
x × (SSi[x,m

′]× p′[x])
return(N i

x+1)

11 Function REDUCE (result []) begin
return(Assign result [] to a reducer that performs the interpolation)

a. Reads each value of the form of secret-share of the m′ attribute and executes AA
containing x+ 1 nodes

b. Executes accumulating-automata (AA), line 10, and computes the final output of the
form of 〈key , value〉, where a key is an identity of the input split over which the map
function was executed, and the value of the form of a secret-share is the final output
that shows the total number of occurrence of p; line 9.

c. The final output after executing AA on each tuple is provided to the user, line 4.
3. The user executes a reduce function, for obtaining the final output. The outputs from all

160

the cloud are assigned to reducers based on the keys, and reducers perform the interpolation
to provide the final output `, line 11.

Theorem 10.1 (Cost for count operation) The communication cost, the computational

cost at a cloud, and the computational cost at the user-side for counting the occurrences

of a pattern is at most O(1), at most nw, and at most O(1), respectively, where n is the

number of tuples in a relation and w is the maximum bit length.

Proof. Since a user sends a patterns of bit length w and receives c values from the clouds,
the communication cost is almost constant that is O(1). The cloud works on a specific
attribute containing n values, each of bit length at most w; hence, the computational cost at
a cloud is at most nw. The user only performs the interpolation on the c values; hence, the
computational cost at the user-side is also constant, O(1). �

G.3 Single Tuple Fetch Algorithm

Theorem 10.2 The communication cost, the computational cost at a cloud, and the

computational cost at the user-side for fetching a single tuple containing a pattern is at

most O(mw), at most O(nmw), and at most O(mw), respectively, where a relation has n

tuples and m attributes and w is the maximum bit length.

Proof. The user sends a pattern of bit length w and receives c secret-shares and, eventually,
a tuple containing m attributes of size at most mw. Thus, the communication cost is at
most O(mw) bits. The cloud counts the occurrences of the pattern in a specific attribute
containing n values, and then again, performs a similar operation on the n tuples with
multiplication of the resultant to each m values of bit length at most w. Hence, the
computational cost at the cloud is at mostO(nmw). The user performs the interpolation on
c values to know the occurrences of the pattern, and then, again performs the interpolation
on c tuples containing m attributes. Thus, the computational cost at the user-side is at most
O(mw). �

Steps in Fetching a Single Tuple containing a Pattern p using Algorithm 13
1. The user executes Algorithm 12 for counting occurrences, say `, of p; line 1.
2. If ` is one, the user sends secret-shares of p, length, x, of p, and attribute, m′, where p
occurs, to c clouds; line 3.
3. The cloud executes a map function that

a. Executes AA on ith value of them′ attribute (line 9), and this provides a value, say val ,
either 0 or 1 of form of secret-shares. Multiply val by all the values of m attributes in
the ith tuples; line 10.

161

Algorithm 13: Algorithm for privacy-preserving search operation and fetching a
single tuple from the clouds

Inputs: R, n, m, p, and c are defined in Algorithm 12
Output: A tuple t containing p
Variables: `: the number of occurrences of p
int_result_searchi : the output at a cloud i after executing the fetching a single tuple
in a privacy-preserving manner

result_search[]: an array to store outputs of all the clouds
SSk [i , j]: defined in Algorithm 12
User-side:

1 Compute secret-shares of p: p′ ← Make_shares(p) and execute Algorithm 12 for
obtaining the total number of occurrences (`) of p

2 if ` > 1 then Execute Algorithm 14
3 else Send p′, x← length(p) and m′ ← attribute(p) to c clouds

Cloud i:
4 int_result_search i ← MAP_single_tuple_fetch(p ′, x ,m ′)
5 Send int_result_search i back to the user

User-side:
6 result_search[i]← int_result_search[i], ∀i ∈ {1, · · · , c}
7 Obtain the tuple t ← REDUCE (result_search[])

8 Function MAP_single_tuple_fetch(p ′, x ,m ′) begin
9 for i ∈ (1, n) do

temp+ = Automata(SSi[∗,m′], p′) // Algorithm 12
10 for j ∈ (1,m) do temp × SSi[∗, j]
11 for (j, i) ∈ (m,n) do Sj ← add all the shares of jth attribute
12 return(〈key,Nn

x+1||S1||S2|| . . . ||Sm〉)
13 Function REDUCE (result_search[]) begin

return(Assign result_search[] to a reducer that performs the interpolation)

b. When the execution of AA is completed on all the n secret-shares of the m′ attribute,
add all the secret-shares an attribute; line 11.

c. The cloud sends the final output of AA and sum of each attribute’s secret-shares to the
user; line 12.

4. The user receives c tuples and executes a reduce function that performs the interpolation
and provides the desired tuple; lines 7 and 13.

G.4 Multi-tuple Fetch Algorithm

We first prove the theorem related to multi-tuple fetch using the naive algorithm, given in
Section 10.5.2.

162

Theorem 10.3 After obtaining the addresses of the desired tuples containing a pattern, p,

the communication cost, the computational cost at a cloud, and the computational cost at

the user-side for fetching the desired tuples is at most O((n + m)`w), O(`nmw), and at

most O((n+m`)w), respectively, where a relation has n tuples and m attributes, w is the

maximum bit length, and ` is the number of tuples containing p.

Proof. In the first round of the naive algorithm, the user receives n secret-shares, each of
bit-length at most w, of a particular attribute. In the second round, the user sends a ` × n
matrix and receives ` tuples, each of size at most mw. Thus, the maximum number of bits
flow is O((n + m)`w). A mapper performs string matching operations on n secret-shares
of a particular attribute in the first round and then matrix multiplication on all the n tuples
and m attributes in the second round. Hence, the computational cost at the cloud is at most
O(`nmw). The computational cost at the user-side is at most O((n + m`)w), since the
user works on the n secret-shares of a specific attribute, creates a ` × n matrix in the first
round, and then works on ` tuples containing m values, each of size at most w bits. �

Tree-based Algorithm 14
Algorithm 14’s pseudocode description. A user creates secret-shares of p and obtains
the number of occurrence, `, see line 1. When the occurrences ` = 1, we can perform
Algorithm 13 for fetching the only tuple having p, see line 2. When the occurrences ` > 1,
the user needs to know the addresses of all the ` tuples contain p. Thus, the user requests
to partition the input split/relation to ` blocks, and hence, sends ` and p of the form of
secret-shares to the clouds, see line 3.

The mappers partition the whole relation or input split into ` blocks, perform
privacy-preserving count operation in each blocks, and send all the results back to the user,
see lines 4 - 6. The user again executes a reduce function that performs the interpolation
and provides the number of occurrences of p in each block, see line 8. Based on the number
of occurrences of p in each block, the user decides which block needs further partition, and
there are four cases, as follows:
1. The block contains no occurrence of p: it is not necessary to handle this block.
2. The block contains only one tuple containing p: it is easy to determine its address using

function Address_fetch() that is based on AA; see lines 10 and 14.
3. The block contains h tuples and each h tuple contains p: directly know the addresses,

i.e., all the h tuples are required to fetch; see line 11.
4. The block contains h tuples and more than one, but less than h tuples contain p: we cannot

know the addresses of these tuples. Hence, the user recursively requests to partition that
block and continues the process until the subblocks satisfy the above mentioned Case 2
or Case 3; see lines 9 and 13.

163

Algorithm 14: Algorithm for privacy-preserving search operation and fetching
multiple tuples from the clouds

Inputs: R, n, m, p, and c are defined in Algorithm 12
Outputs: Tuples containing p
Variables: `: the number of occurrences of p
int_result_block_counti [j]: at ith cloud to store the number of occurrences of the
form of secret-shares in jth block

result_block_count []: at the user-side to store the count of occurrences of p of the
form of secret-shares in each block at each cloud

count []: at the user-side to store the count of occurrences of p in each block
Address []: stores the addresses of the desired tuples
User-side:

1 Compute secret-shares of p: p′ ← Make_shares(p) and execute Algorithm 12 for
obtaining the total number of occurrences (`) of p

2 if ` = 1 then Execute Steps 3 to 13 of Algorithm 13
3 else Send p′, x← length(p), m′ ← attribute(p), ` to c clouds

Cloud i:
4 Partition R into ` equal blocks, where each block contains h = n

`
tuples

5 int_result_block_counti [j]← Execute MAP_count(p′, x,m′) jth block,
∀j ∈ {1, · · · , `}

6 Send int_result_block_counti [j] back to the user
User-side:

7 result_block_count [i, j]← int_result_block_counti [j], ∀i ∈ {1, · · · , c},
∀j ∈ {1, · · · , `}

8 Compute count [j]← REDUCE (result_block_count [i , j])
9 if count [j] /∈ {0, 1, h} then

Question the clouds about jth block and send 〈p′, count [j],m′, j〉 to clouds
10 else if count [j] = 1 then

Address ← Address_fetch(p′, x, j)

11 else if count [j] = h then
Address ← (j − 1)h+ 1, (j − 1)h+ 2, · · · , (j − 1)h+ h

12 Fetch the tuples whose addresses are in Address using a method described in the naive
algorithm

Cloud i:
13 if Receive 〈p′, count [j],m′, j〉 then Perform Steps 4 to 6 to jth block recursively

14 Function Address_fetch(p ′, x , j) begin
line_number ← 0

15 for i ∈ ((j − 1)h+ 1, (j − 1)h+ h) do
16 line_number+ = Automata(SSi[∗,m′], p′)× i // Algorithm 12

17 return(line_number)

164

When the user obtains the addresses of all the tuples containing p, she fetches all the tuples
using a method described for the naive algorithm, see line 12.

Theorem 10.4 The maximum number of rounds for obtaining addresses of tuples

containing a pattern, p, using Algorithm 14 is blog`nc+blog2`c+1, and the communication

cost for obtaining such addresses is at mostO
(
(log`n+log2`)`

)
. The computational cost at

a cloud and the computational cost at the user-side is at most O
(
(log`n+ log2`)`nw

)
and

at most O
(
(log`n + log2`)`

)
, respectively, where a relation has n tuples and m attributes,

` is the number of tuples containing p, and w is the maximum bit length.

Proof. According to the description of Algorithm 14, in the current Q&A round, we
partition the blocks that are specified in last round into ` blocks equally. Thus, in ith round
of Q&A, the number of the items contained in each sub-block is at most n

`i
.

After blog` nc rounds of Q&A, the number of the items contained in every block is fewer
than `. At this time, note that there may be some blocks still contain more than one tuple
containing p. Thus, we need at most blog2 `c rounds for determining the addresses of those
tuples. When the user finishes partitioning all the blocks that contains more than two tuples
containing p, it needs at most one more round for obtaining the addresses of related tuples.
Thus, the number of Q&A rounds is at most blog`nc+ blog2`c+ 1.

Notice that for each round, there are at most `
2

blocks containing more than two
tuples containing p that indicates that at most `

2
blocks need further partitioning. So in

every Q&A round (except the first round requires ` answers), each cloud only needs to
perform the count operation for `

2
sub-blocks and send the results back to the user. When

the cloud finishes partitioning, it has to perform Address_fetch() operation to determine
the addresses. It requires at most ` words transition between the user and each cloud.
Therefore, the communication cost is at most O

(
(log`n+ log2`) · `

)
.

A cloud performs the count operation in each round, hence the computational cost at the
cloud is at mostO

(
(log`n+ log2`)`nw

)
. In each round, the user performs the interpolation

for obtaining the occurrences of the pattern in each block; hence the computational cost at
the user-side is at most O

(
(log`n+ log2`)`

)
. �

G.5 Proof of Theorems related to Privacy-Preserving
Equijoin

Theorem 10.5 The communication cost, the computational cost at a cloud, and the

computational cost at the user-side for performing the equijoin of two relations X and

Y , where a joining value can occur at most one time in a relation, is at most O(nmw), at

165

most O(n2mw), and at most O(nmw), respectively, where a relation has n tuples and m

attributes and w is the maximum bit length.

Proof. Since the user receives the whole relation of n tuples and at most 2m−1 attributes,
the communication cost is at most O(nmw), and due to the interpolation on the n tuples,
the computational cost at the user-side is at most O(nmw). A mapper compares each
value of the joining attribute of the relation X to all n values of the joining attribute of the
relation Y , and it results in at most n2 comparisons. Further, the output of the comparison
is multiplied by m − 1 attributes of the corresponding tuple of the relation Y . Hence, the
computational cost at a cloud is at most O(n2mw). �

Theorem 10.6 The number of rounds, the communication cost, the computational cost at

a cloud, and the computational cost at the user-side for performing the equijoin of two

relations X and Y , where a joining value can occur in multiple tuples of a relation, is

at most O(2k), at most O(2nwk + 2k`2mw), at most O(`2kmw), and at most O(2nw +

2k`2mw), respectively, where a relation has n tuples and m attributes, k is the number

of identical values of the joining attribute in the relations, ` is the maximum number of

occurrences of a joining value, and w is the maximum bit length.

Proof. Since there are at most k identical values of the joining attribute in both the relations
and all the k values can have different number of occurrences in the relations, the user has
to send at most 2k matrices (following an approach of the naive algorithm for fetching
multiple tuples) in O(2k) rounds.

The user sends at most 2k matrices, each of n rows and of size at mostw; hence, the user
sends at most O(2knw) bits. Since at most ` tuples have an identical value of the joining
attribute in one relation, the equijoin provides at most `2 tuples. The user receives at most
`2 tuples for each k value having at most 2m−1 attributes; hence, the user receives at most
O(2k`2mw) bits. Therefore, the communication cost is at most O(2nwk + 2k`2mw) bits.

The cloud of the first layer executes the naive algorithm for fetching multiple tuples for
all k values of both relations having 2n tuples; hence the clouds of the first layer performs
at most O(2nkw) computation. In the second layer, a cloud performs the equijoin (or
concatenation) of at most ` tuples for each k value; thus, the computational cost at the
cloud is at most O(`2kmw).

The user first interpolates at most 2n values of bit length w of the joining attribute, and
then, interpolates k`2 tuples containing at most 2m−1 attributes of bit length w. Therefore,
the computational cost at the user-side is at most O(2nw + 2k`2mw). �

166

G.6 Pseudocodes related to Range Query

Algorithm 15: SS -SUB(A,B): 2’s complement based subtraction of secret-sharing
Inputs: A = [at−1at−2 · · · a1a0], B = [bt−1bt−2 · · · b1b0] where ai, bi are secret-shares
of bits of 2’s complement represented number, t: the length of A and B in binary
form

Outputs: rbt−1: the sign bit of B − A
Variable: carry []: to store the carry for each bit addition
rb: to store the result for each bit addition

1 a0 ← 1− a0 // Invert of the LSB of A
2 carry [0]← a0 + b0 − a0 · b0
3 rb0 ← a0 + b0 − 2 · carry [0] // ā0 + b0 + 1
4 for i ∈ (i, t− 1) do

ai ← 1− ai // invert each bit A→ Ā
rbi ← ai + bi − 2aibi
carry [i]← aibi + carry [i− 1] · rbi // The carry bit
rbi+ = carry [i− 1]− 2 · carry [i− 1] · rbi

5 return(rbt−1) // The sign bit of B − A

Algorithm 15’s pseudocode description. Algorithm 15 provides a way to perform
2’s complement based subtraction on secret-shares. We follow the definition of 2’s
complement subtraction to convert B −A into B + Ā+ 1, where Ā+ 1 is 2’s complement
representation of −A. We start at the least significant bit (LSB), invert a0, calculate
ā0+b0+1 and its carry bit, see lines 1- 3. Then, we go through the rest of the bits, calculate
the carry and the result for each bit, see line 4. After finishing all the computations, the
most significant bit (MSB) or the sign bit is returned; see line 5.

Algorithm 15 is similar to the algorithm presented in [49], but simpler, as we only need
the sign bit of the result. After obtaining secret-shares of sign bits of x − a and b − x, we
perform an extra calculation:

1−
(
sign(x− a) + sign(b− x)

)
. (G.1)

According to Equation 10.1, if x ∈ [a, b], the result of Equation G.1 is secret-share of 1;
otherwise, the result is secret-share of 0. Based on Equation G.1, we can obtain the number
of occurrences, which are in the required range in the database.
Algorithm 16’s pseudocode description. Algorithm 16 works in two phases, as: first, it
counts the occurrences of numbers that belong in a range, and second, it fetches all those
corresponding tuples. A user creates secret-shares of the range numbers a, b and sends
them to c clouds, see lines 1 and 2.

167

Algorithm 16: Algorithm for privacy-preserving range query in the clouds using
MapReduce

Inputs: R, n, m, and c: defined in Algorithm 12, [a, b]: a searching range
Output: `: the number of occurrence in [a, b]
Variables: int_resulti : is initialized to 0 and the output at ith cloud after executing
the MAP_range_count function

User-side:
1 Compute secret-shares of a, b: a′ ← Make_shares(a), b′ ← Make_shares(b)
2 Send a ′, b ′,m ′ ← attribute(a) to c clouds

Cloud i:
3 for i ∈ (1, n) do int_resulti ← MAP_range_count(a′, b′,m′)
4 Send int_result i back to the user

User-side:
5 result [i]← int_result i, ∀i ∈ {1, · · · , c}
6 `← REDUCE (result [])
7 Execute Algorithm 13 if ` = 1; otherwise, execute Algorithm 14

8 Function MAP_range_count(a ′, b ′,m ′) begin
9 signx−a′ ← SS -SUB(x, a′) // Algorithm 15

10 signb′−x ← SS -SUB(b′, x) // Algorithm 15

11 return(〈key , 1− signx−a′ − signb′−x〉)
12 Function REDUCE (result []) begin

return(Assign result [] to a reducer that performs the interpolation)

The cloud executes a map function that checks each number in an input split by
implementing Algorithm 15, see lines 3 and 8. The map function, see line 8, provides
1 (of the form of secret-share) if x ∈ [a, b]; otherwise, 0 (of the form of secret-share) if
x /∈ [a, b]. The cloud provides the number of occurrences (of the form of secret-shares) that
belong in the ranges to the user, see line 4. The user receives all the values from c clouds
and execute a reduce function that interpolates them to obtain the count, see lines 5 and 6.
After obtaining the number of occurrences, say `, the user can fetch the corresponding
tuples by following Algorithm 13 or 14.
Degree reduction. Note that in range query, we utilize 2’s complement subtraction and each
secret-shared bit of the operands. However, during the subtraction procedure, the degree of
the polynomial (for secret-sharing) increases. For example, one can check that degree of
MSB doubles when one subtraction completed. In [49], the authors add two more players
for degree reduction, if we do not have enough clouds to recover the secrets, we can follow
the same line as the degree reduction algorithm presented in [49]. For simplicity, we do not
give details of the algorithms for degree reduction, interested readers may refer to [49, 45].

168

Theorem G.1 The communication and the computational costs of the range count

query have the same order of magnitude as Algorithm 12, and the communication and

computational cost of fetching multi-tuples satisfying a range have the same order of

magnitude as Algorithm 13 or 14.

Note that the function MAP_range_count(), see line 8 of Algorithm 16, works on each
value of a specific attribute as we did in the count queries, Section 10.4. Once we know
all the occurrences of tuples satisfying a range, we find their address using Algorithm 13
or 14. Thus, the communication and the computational costs have an identical order of
magnitude as Algorithm 13 or 14.

169

 עבור interval join בעיית פתרון עבור התקשורת עלות על השפעות מעריכים גם אנו השני בחלק

 גם אנו. reducer של הזיכרון מרחב עבור כיווני דו interval join אלגוריתם ומספקים חופפים מרווחים

 של שונים סוגים עבור interval join בעיות מספר עבור תקשורת עלות של תחתונים חסמים חוקרים

. יחיד reducer ידי על נתונים-לקוביית מרובים שוליים חישוב לבעיית מתייחסים אנו, לבסוף. מרווחים

-כמעט אלגוריתמים מספר ומספקים לבעיה התקשורת עלות על התחתון החסם את מוצאים אנו

 .מרובים שולים חישוב עבור אופטמליים

 ופרטיות אבטחה אתגרי מוצאים אנו. MapReduce-ב ופרטיות אבטחה בהיבטי מתמקד השלישי החלק

 מספקים אנו, מכן לאחר. יריבים של יכולות במגוון התחשבות תוך, MapReduce-ה בעולם ודרישות

 סוד-שיתוף בצורת נתונים שכפולי על המבוססת MapReduce חישובי עבור פרטיות-משמרת טכניקה

 מן מונע שיכפול זה ,מוגבר שכפול יוצרת ערך לכל סוד-שיתוף יצירתש למרות כי מראים אנו. שמיר של

 פרטיות שומר אלגוריתם מספקים אנו. החישוב על או הנתונים מסד על ללמוד, סקרן-אך-הכן הענן

 .טווחו שיוון מבוסס join -ו ,שליפה, חיפוש, לספירה MapReduce מבוסס

 תקציר

 יכולת להשגת דרך הוא שכפול, מבוזרות מחשוב במערכות נפוצים ותוכנה בחומרה כשלים בעוד

 של עותקים מספר של ושימור יצירה ידי-על(ואמינות ,עקביות, זמינות) מכישלון מהירה התאוששות

 הקשורות גישות מספר מציעים אנו, זו תזה במסגרת. תקשורת ופרוטוקולי נתוניםתוכנה, , חומרה

-אל-קצה לתקשורת עצמית מתייצבים אלגוריתמים לעיצובגישות בפרט, .(הודעות או) נתונים שכפולל

 .MapReduce החישובי המודל עבורוגישות קצה

 בסדר הודעות מעביר אשר קצה-אל-קצה לתקשורת עצמית-מתייצב אלגוריתם מציג הראשון החלק

FIFO אינו אשר קיבולת-מוגבל, משכפל ערוץ מעל FIFO .אובדן נועדה להתמודד עם ההודעות תהכפל

 זו בעבודה .לקצה-מקצה על התקשורת שליטהב גוררת התמודדות אחת ובעונה בעת אך, הודעות של

 באותומעביר את ההודעות ש הודעות להעברתעצמית המתמודד עם הכפלות -מתייצב אלגוריתם מוצג

 או השמטה ללא אחת פעם הודעה מועברת בדיוק . כלהיעד אל השולח ידי-על נשלחות הן בו הסדר

 .הכפלה

 עבור ועתקמ קלט, MapReduce-ב. MapReduce עבור ואלגוריתמים מודלים בעיצוב עוסק השני החלק

 מדד שמהווה התקשורת בעלות משמעותי גורם הוא קלטה של שיכפולכמות ה .ים-Reducer וכמה כמה

 נלקחים לראשונה בו אשר, כאן מוצג MapReduce עבור חדש מודל. MapReduce עבור ביצועים

 אתגרים עבור הדלת את פותח החדש המודל. בגודלם שונים הקלטים בהן מציאותיות הגדרות בחשבון

 בעיות של מחלקות שתי מציגים אנו, בפרט. בהמשך נפתרים םחלק אשר שימושיים אלגוריתמיים

 מבחינת קשות-NP הם אלו התאמה בעיות כי ומראים, Y-עבור-X-ו לכולם-כולם בשם, התאמה

, מכן לאחר. הבעיות שתי עבור קירוב אלגוריתמי מספר מספקים אנו. התקשורת עלות של אופטימיזציה

 עלות את מקטינה אשר MapReduce אלגוריתמי עבור חדשה אלגוריתמית גישה מספקים אנו

-ו Mappers-ול הנתונים של" מקומיות"-ל מתייחסים אחת ובעונה ובעת, ניכר באופן התקשורת

Reducers .הסופי בפלט משתתפים אינם אשר נתונים של העברה מונעת המוצעת הטכניקה.

 הצהרת תלמיד המחקר עם הגשת עבודת הדוקטור לשיפוט

 ה בזאת:)אנא סמן(:/מצהיר אני החתום מטה

___ חיברתי את חיבורי בעצמי, להוציא עזרת ההדרכה שקיבלתי מאת

 חה/ים.מנ

מתקופת היותי ___ החומר המדעי הנכלל בעבודה זו הינו פרי מחקרי

 .תלמיד/ת מחקר

 _חתימה _ : שנטנו שרמה שם התלמיד/ה 17/02/2016 :תאריך

Shantanu
Sharma

Digitally signed by Shantanu Sharma
DN: cn=Shantanu Sharma, o=UCI,
ou=CS, email=shantnu.sharma@uci.
edu, c=US
Date: 2016.09.04 00:49:09 -07'00'

 העבודה נעשתה בהדרכת

 פרופ' שלומי דולב

 מדעי המחשב במחלקה

 מדעי הטבע בפקולטה

 היבטי שכפול במערכות מבוזרות

 לשם מילוי חלקי של הדרישות לקבלת תואר "דוקטור לפילוסופיה" מחקר

 מאת

 שנטנו שרמה

 הוגש לסינאט אוניברסיטת בן גוריון בנגב

 ____________________ אישור המנחה

 אישור דיקן בית הספר ללימודי מחקר מתקדמים ע"ש קרייטמן ______________

 17/02/2016 ח' באדר א' תשע"ו

 באר שבע

 היבטי שכפול במערכות מבוזרות

 מחקר לשם מילוי חלקי של הדרישות לקבלת תואר "דוקטור לפילוסופיה"

 מאת

 שנטנו שרמה

 הוגש לסינאט אוניברסיטת בן גוריון בנגב

 17/02/2016 ח' באדר א' תשע"ו

 באר שבע

		2016-09-04T01:34:55-0700
	DocuSign, Inc.
	Digitally verifiable PDF exported from www.docusign.com

