
Automated Accessibility Analysis of Dynamic
Content Changes on Mobile Apps

Forough Mehralian
University of California, Irvine

fmehrali@uci.edu

Ziyao He
University of California, Irvine

ziyaoh5@uci.edu

Sam Malek
University of California, Irvine

malek@uci.edu

Abstract—With mobile apps playing an increasingly vital role
in our daily lives, the importance of ensuring their accessibility
for users with disabilities is also growing. Despite this, app
developers often overlook the accessibility challenges encountered
by users of assistive technologies, such as screen readers. Screen
reader users typically navigate content sequentially, focusing on
one element at a time, unaware of changes occurring elsewhere
in the app. While dynamic changes to content displayed on an
app’s user interface may be apparent to sighted users, they pose
significant accessibility obstacles for screen reader users. Existing
accessibility testing tools are unable to identify challenges faced
by blind users resulting from dynamic content changes. In this
work, we first conduct a formative user study on dynamic
changes in Android apps and their accessibility barriers for
screen reader users. We then present TIMESTUMP, an automated
framework that leverages our findings in the formative study to
detect accessibility issues regarding dynamic changes. Finally, we
empirically evaluate TIMESTUMP on real-world apps to assess its
effectiveness and efficiency in detecting such accessibility issues.

Index Terms—Android, Accessibility, Screen Reader, Dynamic
Content Changes

I. INTRODUCTION

Dynamically changing visual content of screen (e.g.,
through animation) is a commonly used technique for en-
hancing the visual aesthetics of an app and to guide users’
attention to specific parts of the app. However, these visually
appealing techniques should not come at the cost of making
apps inaccessible. In adherence to legal frameworks [1], [2],
established guidelines [3]–[5], and ethical principles, the dig-
ital realm should be inclusive and accessible to all. This is
especially crucial for the approximately 15% of the global
population with some form of disability, including more than
300 million users that are blind or visually impaired [6].

Visually impaired users rely on assistive technologies like
screen readers to interact with mobile apps. These tools
enable users to navigate to a specific element on the screen
and listen to the content in focus. However, the tunnel-like
focus provided by screen readers may lead to unawareness
of dynamic changes occurring elsewhere on the screen. A
known example of such dynamic content is error notifications.
When an app assesses user inputs and provides feedback,
such as an error message through a notification, these changes
may go unnoticed by screen reader users. Mobile platforms

let developers designate these dynamically changing parts
of a screen as “live regions”, assisting screen readers to
detect and announce such changes to users. Unfortunately,
developers often neglect using proper accessibility attributes,
posing significant accessibility challenges for the blind.

Earlier studies and guidelines addressing software accessi-
bility have only scratched the surface of this critical issue.
The related accessibility guidelines on this matter primarily
center on designating live regions for screen reader announce-
ments. Specifically, in scenarios involving error messages,
Web Content Accessibility Guidelines (WCAG) success cri-
terion 3.3.1 emphasizes the crucial need for users to be
informed about errors and comprehend what went wrong and
recommends techniques such as annotating error notifications
as live regions [7]. However, the challenge extends beyond
these scenarios. Dynamic changes have been neglected from
prior studies and tools that rely on screen captures from an
app to detect accessibility issues [8]–[10]. GUI crawlers and
app explorers typically capture screenshots of an app under test
after it is in stable conditions by waiting for certain amount of
time [11], [12]. Unfortunately, these approaches fail to capture
app states during the entire rendering process, overlooking
changes that occur over time on the screen. Consequently,
they are not capable of detecting accessibility issues caused
by dynamic contents.

To bridge this gap, we initiated a formative study aimed at
identifying various types of dynamic changes and assessing
their impact on screen reader users. This study revealed char-
acteristics of accessibility issues related to dynamic content
changes that negatively impact blind users. Building on these
insights, we developed TIMESTUMP, an automated framework
designed to detect such issues in Android apps. TIMESTUMP

comprises an automated crawler, randomly exploring diverse
app states and capturing data before, during, and after each
action. Subsequently, this data undergoes processing using the
identified patterns from our initial study to pinpoint problem-
atic dynamic changes for screen reader users. The identified
issues are then reported and visualized for developers.

This paper makes the following contributions:

• The first study on accessibility issues arising from dy-

1



User double 
taps

Events:

(a) (b) (c) (d) (e)

TYPE_VIEW _CLICKED TYPE_WINDOWS_CHANGED TYPE_WINDOW_CONTENT_CHANGED

time

(f)

Fig. 1. Evolution of content loading on the screen across various states over time: (a) represents the initial screen state before the user initiates an action,
(b) captures the moment when the user interacts with the app by clicking on a button, and (c) to (f) illustrate the gradual appearance of new screen content
over time. Notably, in (f), the close button, indicated by a dashed red circle, appears above the accessibility focus. Since it is not tagged with liveRegion
attribute, it is also not announced, and a screen reader user does not notice it.

namic content changes in Android apps.
• The introduction of the first automated crawler capable of

capturing dynamic content changes, complemented by the
creation of the initial dataset cataloging such behaviors.

• The development and public release of the first automated
tool, named TIMESTUMP, designed for localizing and
detecting accessibility issues related to dynamic content
changes in Android apps [13].

• An empirical evaluation on real-world apps, corroborating
the effectiveness of TIMESTUMP in detecting accessibil-
ity issues induced by dynamic screen changes.

• A user study involving blind participants to assess the
impacts of dynamic screen change on app accessibility.

The remainder of this paper is organized as follows.
Section II provides the background information. Section III
describes our formative user study that motivated this work.
Section IV presents TIMESTUMP, an automated approach for
detection of problematic dynamic content changes. Section V
details the evaluation of TIMESTUMP on real-world apps and
in collaboration with blind participants. The paper concludes
with a discussion of threats to validity, related research, and
future work.

II. BACKGROUND

Mobile platforms offer the possibility of dynamic content
changes, allowing developers to alter the screen content in
real-time. Figure 1 displays an Android app called “I Am” [14]
that provides daily affirmations for users and has more than

5 million downloads. When the screen reader focuses on
the continue button as shown in Figure 1(b), the user can
double-tap to perform the click gesture. Soon after clicking
the button, the window changes, and some promotional content
appears gradually, such as text, buttons, and other elements.
For example, the “already a member” button, dotted in blue
in Figure 1(e), and the close button, dashed red circle in
Figure 1(f), appear after the bullet points are displayed.

This kind of screen rendering can pose severe challenges
to screen reader users. Blind users utilize screen readers to
interact with apps, and when encountering an unfamiliar app,
they navigate through the on-screen elements sequentially to
understand the app’s layout. The swipe right and left gestures
allow the screen reader to move to the next or previous
element, respectively, highlighting it with a green box as
shown in Figure 1(b). When an element is focused, the screen
reader vocalizes its textual description, enabling blind users to
gauge its functionality in a manner analogous to how sighted
users depend on the visual cues of an element. Should the
textual description align with their expectations, blind users
execute a double-tap, mirroring the single-tap action typical of
sighted users. The following example illustrates the challenges
blind users can face when dealing with dynamic changes. In
Figure 1, as the user navigates to screen (c), the top element,
which is the text view component, receives the accessibility
focus. Screen reader users explore the screen by moving
through the elements sequentially from top to bottom using
a swipe-right gesture. However, the close button annotated in

2



dashed red is not recognizable as it appears on top of the screen
and users are less likely to traverse backward, to the area
they already visited. Such barriers can lead to unintentional
interactions with ads or difficulties navigating away from them.

In Android, the guidelines suggest using an attribute called
liveRegion to help screen readers recognize the appeared
content. When an element is annotated as liveRegion, it
is announced by the screen reader. Android system utilizes an
event-based model to inform screen readers of changes in live
regions. A GUI element emits an AccessibilityEvent
when there are changes to its state, which is received by assis-
tive technologies such as a screen reader. Figure 1 illustrates
several different types of events that can be triggered during
the loading of app content, with each color representing a
distinct event. For example, TYPE_VIEW_CLICKED events
occur after a view is clicked, TYPE_WINDOWS_CHANGED
events happen when the app transitions to a different window,
and TYPE_WINDOW_CONTENT_CHANGED events take place
after the content inside a window changes.

Assistive technologies can also identify the element that is
the source of events. In Android, GUI elements are represented
by a tree of AccessibilityNodeInfo objects that mirror
the XML hierarchy of elements and their attributes.
AccessibilityNodeInfo tree can be likened to the

Document Object Model (DOM) tree in the case of web pages,
offering a hierarchical representation of rendered elements on
a web page. Prior studies on exploring various states of web
apps for testing purposes have characterized dynamic content
changes as modifications to the DOM that occur without
reloading the page [15], [16]. These changes include updating
or disappearing content [17], reordering elements [18], and
inserting specific elements [19], as outlined in the WCAG
guidelines. Similar to WCAG guidelines, Android suggests
using accessibility attributes to notify screen reader users of
such changes [20].

However, these guidelines only scratch the surface of the
issues that may arise as a result of dynamic contents. For
instance, when a temporary button, like an undo button, pops
up on the bottom of the screen, users may struggle to locate
it within the brief time frame of its visibility. This challenge
intensifies when content disappears before users become aware
of its existence. Merely relying on accessibility attributes does
not fully resolve this issue.

III. FORMATIVE STUDY

We conducted a formative study to investigate the impact
of various dynamic content changes on screen reader users.

A. Study Design

Prior studies and guidelines on Web defined dynamic con-
tent changes as modifications to the DOM that occur without
reloading the page [15], [16]. Consequently, in Android apps,
dynamic content changes encompasses any modifications to

the hierarchical representation of elements, i.e., a tree of
AccessibilityNodeInfos, in a rendered window. These
modifications include adding, removing, or changing attributes
of elements. To have a better understanding of different types
of dynamic content changes in Android, two authors conducted
an empirical analysis of 50 Android apps. These apps were
randomly chosen from the Google Play Store, representing
various app categories. Additionally, to ensure the significance
and popularity of the apps studied, each app selected had a
minimum of 1 million downloads. For each app, two authors
manually explored the app screen using a combination of
actions, such as clicking, scrolling, and typing, to observe if
that would trigger dynamic content changes. If so, a recording
from the screen is taken with a brief description of the
dynamic content change. Following this, two authors engaged
in an iterative open-coding process to categorize the types of
dynamic content changes identified.

Through our empirical analysis, we identified 5 types of
dynamic content changes.

Appearing Content. This content change type is character-
ized by an element that initially is not present on a loaded
window, but appears a few moments later and remains on the
screen. For example, in Figure 1(f), the close button, marked
by a red circle, appears after a few seconds.
Disappearing Content. This content change type describes
an element that disappears either after a set period or as a
result of user interaction. For example, in Figure 2(i), the
navigation bar at the bottom including element a as well as
the more button on top, element b, disappear when users
navigate through the list of items.
Short-Lived Content. This content change type relates to an
element that initially is not present on the screen but appears
and remains on the screen only for a brief duration. Due to
its transient nature, we refer to this as short-lived content.
For example, as illustrated in Figure 2(iii), when users save
a restaurant, a notification message annotated as e appears
to notify them that they have successfully saved the store
and to offer an option to view all saved stores. This message
disappears after a few seconds.
Moving Content. This content change type refers to an
element that is initially visible on the screen but subsequently
gets relocated to a different part of the screen. For instance,
in Figure 2(ii), the app-related information, marked as c, is
shifted to the bottom of the screen and goes out of screen
bounds after user presses the install button. Users must locate
that information at a different position within the sequence
of elements on the screen, as perceived by screen readers.
Content Modification. This content change type pertains
to an element that remains on the screen but its attributes
change. For example, in Figure 2(ii), the TextView an-
notated as d, continuously refreshes its text to display the
progress of the app installation process.

3



e

d

c

(i) (ii) (iii)

a

b

Fig. 2. Examples of dynamic content changes: (i) the add button (annotated as a) and the more button (annotated as b) disappear when users continue exploring
the screen, (ii) the app information (marked as c) moves to the bottom of the screen after hitting the Install button; the text (annotated as d) constantly changes
to indicate installation progress, (iii) the short-lived notification (annotated as e at the bottom) after saving a restaurant.

Having identified different types of dynamic content
changes in Android, our objective was to understand their
impacts on screen reader users. To this end, we selected 4 apps
that collectively represented all identified types of dynamic
content changes. We then designed 5 specific tasks that would
involve interactions with these dynamic changes. Our objective
was to understand whether the users can perform the tasks,
whether they can perceive the dynamic changes in the apps,
and to generally develop a better understanding of how the dy-
namic changes impact app accessibility. To recruit participants,
we leveraged the Fable platform [21], which connects tech
companies with disabled users for accessibility testing. Each
user interview session was conducted over a one-hour period.
During these sessions, we requested participants to share their
phone screens and perform our designed tasks while vocalizing
their thoughts and actions, aka think aloud [22]. This think-
aloud method, combined with in situ questioning, enabled us
to observe their understanding of the dynamic content changes
and assess their ability to complete the tasks successfully. Our
3 blind participants included one female and two males, all of
whom demonstrated a high proficiency in using the TalkBack.

B. Results

The user interviews focused on all the apps depicted in
Figures 1 and 2. To generate a comprehensive list of accessi-
bility issues related to dynamic content changes, two authors
thoroughly examined each interview session. Initially, they
independently identified areas where screen reader users faced
confusion and attempted to ascertain the underlying reasons.
Then, they engaged in discussions to reach a consensus. The
following list outlines the dynamic content changes that proved
challenging for screen reader users in our study.

Latent Appearing Content. When content appears without
being annotated as a live region and is situated in an area
previously explored by the user, it remains latent or unknown.
For instance, the close button on an app’s promotional page,
as shown in Figure 1(f), emerges after a few seconds without
alerting blind users. During the interview, blind users had
already navigated past it, possibly interacting with elements
located lower on the screen. This led to confusion when
attempting to exit the promotional page, requiring users to
employ various strategies such as using the TalkBack back
gesture or re-navigating the screen.
Latent Disappearing Content. Content that vanishes before
the user explores that region of the app stays undiscovered.
In Figure 2(i), annotated buttons b and a disappear as users
swipe through the list of items. The disappearance of the
add button (element a) presented specific challenges for blind
participants, as the button disappears in an unexplored area.
As a result, they were unable to locate the element to add
a new cost entry to the list. Conversely, the more button
(element b) remains accessible, as users had already visited
that element before its disappearance and when navigating
backward, the more button becomes visible again.
Latent Short-Lived Content. When an element appears
temporarily, it may be inaccessible to the user, especially
if the element is actionable. The time it takes for the user to
navigate to that element and perform the action might exceed
the visibility period of short-lived content, leading to acces-
sibility issues. In Figure 2(iii), we observe a brief notification
annotated as e that emerges after users save a restaurant. Our
user interviews revealed that participants were aware of this
notification, understanding that they had successfully saved
the restaurant and that the app offered an option to view all
saved stores. However, this notification disappeared within a

4



few seconds. For this type of dynamic content, participants
only partially grasped the situation. While they recognized
the appearance of the notification, thanks to the live region
annotation, they did not fully understood its transient nature
and were unable to click on the View Saved Stores button.
One interviewee expressed, “It was a flash or pop up, and
it went away. I would expect to be able to navigate to that
button, but when I move back and forth, it is gone.”
Latent Moving Content. When the location of a previ-
ously visited element changes, it can cause confusion for
blind users. As illustrated in Figure 2(ii), the app-related
information, including app rating and download number,
relocates to the bottom of the screen after pressing the
install button. In our study, blind users were assigned the
task of installing an app and finding its download number.
After installation, they navigated backward, relying on the
previous announcement by TalkBack about the download
number during their journey to the install button. However,
to their surprise, upon navigating back, the information they
sought was no longer present, resulting in confusion and a
period of being stuck on the page. None of the participants
completed the task, with one participant believed that he
could eventually locate the download number by navigating
further down, acknowledging it would take more time.
Latent Content Modification. Changes in attributes of ele-
ments that are noticeable by sighted users may go unnoticed
by users relying on screen readers. During the formative
study, the TextView (element d) in Figure 2(ii) contin-
uously updated its text to reflect the progress of the app
installation. The proper implementation of the liveRegion
feature ensured that changes in the TextView content were
effectively announced to blind participants, enabling them to
accurately comprehend the status of the installation process.
Conversely, this suggests that if the liveRegion feature is
not correctly implemented, it becomes challenging for screen
reader users to understand content modification, such as the
installation status. In addition. changes in attributes such as
size and color, which are not perceptible by screen readers,
do not impact their perception of the app.

IV. APPROACH

Relying on the insights gained from formative interviews
with screen reader users, we developed an automated frame-
work called TIMESTUMP, designed to identify accessibility
issues associated with dynamic content changes. Figure 3
provides an overview of TIMESTUMP, highlighting the three
distinct phases of its operation. In the initial phase, we install
an Android app on a Virtual Machine (VM) and utilize a
GUI crawler to automatically explore the app, generating
a diverse set of states in an app. The Snapshot Recorder
tracks app states and records snapshots of distinct screens.
In the second phase, we extract the list of actionable elements

APK App Crawler

Interaction Automator

Accessibility
Report

Captured 
Data

Snapshot 
Recorder

screen 
Analyzer

Ph
as

e 
1

Ph
as

e 
2

Ph
as

e 
3

Localizer

Fig. 3. TIMESTUMP’s approach overview.

in each recorded snapshot. Then, the Interaction Automator
systematically executes each action, capturing information
before, during, and after the action. This rich dataset is passed
to the third phase, where the Localizer component assesses the
gathered information, precisely flagging accessibility issues
stemming from dynamic content changes.

We now describe the details of each phase.

A. Phase 1: Capturing Unique App Screens

The main goal of this phase is to navigate through an app
and explore its different states for subsequent examination.
Interacting with the app leads to various state changes, ranging
from subtle modifications in attributes, such as selecting a
checkbox on the screen, to more significant changes like tran-
sitioning to an entirely new screen, resulting in a completely
different hierarchical structure of elements. In this phase, our
focus is on identifying a diverse set of screens from each app
that have undergone significant changes. Detailed assessment
of minor changes is reserved for subsequent phases.

To facilitate the testing of GUI apps, a variety of tools, such
as STOAT [23], Monkey [24], Spaienze [25], and APE [26],
have been specifically designed to traverse the expansive
domain of an app’s different states. TIMESTUMP seamlessly
integrates with any existing app exploration tool, providing
the flexibility to traverse various app states. Additionally,
TIMESTUMP allows manual testers to explore the app with
diverse scenarios in mind or leverage existing GUI test cases.

The Snapshot Recorder plays a pivotal role in tracking
alterations. As the crawler interacts with the app, Snapshot
Recorder keeps track of the screen structure and Activities,
i.e., an Android component representing a single screen. It
then captures VM snapshots from app states involving changes
to activity names or the hash value of hierarchical structure of

5



elements. Similar to previous studies [11], the hash function
excludes nodes that are not important for accessibility, i.e.,
those not notified by screen readers, as well as attributes
such as checked or enabled that do not contribute to
recognizing a different screen in an app. VM Snapshots
enable us to load the app from the exact state and perform
further analysis without concerns about the impacts of prior
interactions.

B. Phase 2: Monitoring Apps in Action

During this phase, each potential interaction within a given
app snapshot is automatically executed, all while monitoring
the app for dynamic content changes.

To achieve this, we first load a VM snapshot. The Screen
Analyzer employs an accessibility service to extract and dump
the hierarchical structure of elements on the screen. The
outcome is a tree structure wherein each node represents an
element, accompanied by various attributes such as clickabil-
ity. Parsing this node tree, the Screen Analyzer identifies all
interactable elements and enumerates the types of actions they
support, such as click, type, or swipe.

Every element is uniquely identified by its resource-id and
a set of other attributes such as text, content description, and
class name. The resource-id serves as a distinctive marker for
locating each element. In instances where developers have not
assigned a resource-id, the combination of other attributes can
help in locating the element.

The Interaction Automator receives the comprehensive list
of actions identified by the Screen Analyzer and executes them
on the app while collecting certain data before, during, and
after each action. The Interaction Automator consists of two
main components: Controller and Accessibility Service.

The Controller functions as a server, sending commands
to the client—the Accessibility Service, which operates in
the background. The Accessibility Service is responsible for
interacting with elements on the device. The client captures
two frames of the app: first frame and last frame. The first
frame corresponds to the initial state of the window, while the
last frame corresponds to the app’s state once all the content
has finished rendering. The first frame primarily reflects the
state of the app before any action takes place. However, if
an action triggers a window change, this first frame then
denotes the app’s status immediately following the action.
To accomplish this, TIMESTUMP tracks accessibility events
that signal either the loading of a new window or shifts in
accessibility focus. When a window change occurs, the first
frame is recorded immediately after detecting the event that
indicates a change in the window. For example, in Figure 1, the
TYPE WINDOWS CHANGED event, highlighted in purple,
signifies a window transition. Consequently, Figure 1(c) is
identified as the first frame. In the absence of such events,
the first frame defaults to the state of the app before executing
the action.

For the last frame, TIMESTUMP listens for accessibility
events indicating window content changes and, if none occur
for more than 5 seconds, it captures that final state. For
instance, Figure 1(f) is designated as the last frame, indicating
that all changes on the app screen have been finalized. This
practice is common in prior studies [11] and automation
tools [27], ensuring app stability before data capture. The
waiting time can be configured to be as long as necessary, or
even adaptive to the specific app to optimize efficiency [12].
In instances of continual changes, such as animations or ads,
a timeout period is implemented to bypass waiting.

The Controller stores these frames, as well as real-time logs
of accessibility events generated by the Accessibility Service
throughout the entire action execution period. Leveraging
this extensive dataset empowers the Localizer to pinpoint
accessibility issues arising from dynamic content changes.

C. Phase 3: Localizing Problematic Dynamic Changes

TIMESTUMP analyzes the collected data to identify various
categories of latent content changes for screen reader users.
This analysis is conducted across captured frames of the
app, as well as the accessibility events captured during the
execution of each action on the screen.

When a screen element undergoes a change, it triggers an
event of type Window_Content_Changed. TIMESTUMP

identifies sources of such events within the captured frames of
the app, forming the initial set of candidate elements within
a window that undergo a problematic change. The Localizer
then compares elements in the final frame against those in the
first frame to pinpoint the problematic changes.

As explained in Section IV-B, if the execution of an
action results in a window transition, the first frame is the
newly loaded window, i.e., the frame captured immediately
after performing the action, similar to Figure 1(c). To detect
window transitions, Localizer examines accessibility events of
type Windows_Changed and Window_State_Changed,
which are also used in the Android source code to detect
the appearance of a new window [28]. Subsequently, we
elaborate on the logic employed for detecting various types
of problematic changes.

Due to space limits, we provide an intuitive explanation of
how TIMESTUMP localizes each issue here, and provide the
detailed algorithms on the companion website [13].
Latent Appearing Content: As explained in Section II and
Section III, if certain content appears in previously explored
areas (i.e., above the accessibility focus in default navigation
order) and is not designated as a live region, it remains
unknown to the screen reader user. The Localizer classifies
elements in the final frame that trigger a content change event
as latent appearing content if (1) they do not appear in the
first frame, (2) are not designated as live regions, and (3) are
positioned before the current accessibility focus.

6



Latent Disappearing Content: When an element disappears
from the screen, a change event is triggered, similar to the
case of appearing content. However, in this scenario, the
event’s source is the container of the vanishing element. For
example, if a button within a linear layout disappears, the event
source will be the linear layout, potentially covering the entire
screen. Consequently, the Localizer evaluates all the children
of an event publisher node in the first frame to verify their
presence in the final frame. A child node is categorized as
latent disappearing content if (1) it is not observed in the last
frame, (2) it is not designated as a live region, and (3) it is
positioned after the current accessibility focus.
Latent Short-lived Content: Elements that appear and dis-
appear have a brief visibility period. Even if this content is
announced, navigating to them and interacting with them using
screen readers is challenging. The Localizer identifies these
elements by searching for pairs of change events and localizing
their sources denoted as <S1, S2> in two consecutive frames,
checking whether S2 is the container of S1. For any such found
pair, an element S1 is categorized as latent short-lived content
if (1) S1 is not present in the first frame, (2) its container S2
is observed in the second frame, and (3) S1 is not designated
as a live region or is actionable.
Latent Moving Content: The Localizer examines elements
displaying a shift in their position on the screen across dif-
ferent frames while maintaining consistent identifiers such as
resource-id, and content description. Elements are flagged as
problematic if their changed position is above the accessibility
focus or if they move beyond the screen boundaries.
Latent Content Modification: The change of attributes in an
element refers to any modification in the properties that define
an element’s behavior, or metadata within a UI. Localizer uses
a hash function to detect such modifications across different
frames. The hash function encodes the element attributes that
are important in exploring the app with screen readers. A
discrepancy in the hash values of an element between any two
frames signifies a modification in the element’s content. When
the liveRegion attribute is absent, the change remains
unknown to screen reader users.

V. EVALUATION

We evaluated TIMESTUMP on real-world apps and with the
help of several blind users to answer the following questions:

RQ1. How accurate is TIMESTUMP in detecting dynamic
content changes and different categories of accessi-
bility issues?

RQ2. How do the issues reported by TIMESTUMP impact
the screen reader users?

RQ3. What is the performance of TIMESTUMP?

A. RQ1. Accuracy of TIMESTUMP

1) Experimental Setup: For this experiment, we utilized
STOAT [23] as the app exploration tool. We evaluated our

approach on 30 real-world Android apps. Our test set consists
of two groups of apps: (group1) 10 apps with manually verified
dynamic content changes from different categories of Google
play store, (group2) 20 randomly selected apps with known
accessibility issues from a prior study [11]. For apps in group1,
the authors installed top rated apps in different categories of
Google play store and manually explored each app, looking
for dynamic content. They captured a VM snapshot of each
app at that state, with the accessibility focus set on the target
element such that performing the action on the target element
results in the dynamic change. For apps in group2, we set the
crawler to automatically get VM snapshots from two random
unique states of the app. The tool then explores the actionable
elements in each state to get the real-time data.

The precision of the captured data directly impacts the
ability of TIMESTUMP to detect changes in dynamic content.
Before evaluating TIMESTUMP’s effectiveness, we manually
reviewed the captured data from a test set to confirm alignment
with our definitions of the first and last frames, and encoun-
tered no issues. For this experiment, we chose 15 unique app
states from 5 random apps from a prior study [12], encom-
passing a range of app transitions such as implicit loading,
explicit loading, and transitions. Additional information about
this study can be found on the companion website [13].

All experiments were conducted on a typical computer
setup for development (MacBook Pro, Apple M1 Max, 32
GB memory). We used the most recent distributed Android
OS (SDK34), and the latest versions of Android screen reader.

2) Results: To answer this question, the authors manually
examined the issues reported by TIMESTUMP and tagged them
as False Positive (FP) if the reported issue is not correct,
and True Positive (TP) if the reported issue correctly detects
and categorizes problematic dynamic content changes. The
authors used an emulator to load the captured snapshot and
manually interacted with the app using TalkBack. This process
allowed for the identification of legitimate dynamic elements
in exploring the app with screen readers. We then report
precision as the ratio of the number of TPs to the number of
all detected issues. As shown in Table I, the overall precision
over all the elements in 130 actions of apps is 0.94. To
compute recall, we manually reviewed apps in both group
1 and group 2 to identify dynamic changes and establish
the ground truth. In group 1, snapshots were captured during
manual exploration of the app, revealing states with dynamic
content changes. In contrast, for group 2 apps, we manually
inspected automatically captured snapshots of random app
states for dynamic content changes. Dynamic elements missed
by TIMESTUMP were identified and manually labeled as False
Negatives (FN). The overall recall across 130 actions is 0.92,
as depicted in Table I.

Figure 4 presents examples of problematic dynamic el-
ements detected by TIMESTUMP. In Figure 4(a), the four

7



elements highlighted by orange boxes emerge above the ac-
cessibility focus after tapping on the plus button. Figure 4(b)
illustrates short-lived elements, including a button, indicated
by blue boxes, appearing after adding a song to favorites. As
all of those elements are actionable, TIMESTUMP reports them
as problematic. In Figure 4(c), a TextView, annotated by the
black box, is updated following the tap on the CALCULATE
button. Since this element is not tagged as live region, it re-
mained unannounced while exploring the app with TalkBack.
Thus, TIMESTUMP reports it as problematic.

We analyzed the failures of TIMESTUMP and identified
issues falling into two main themes, resulting in both false
positives and false negatives.

The first pattern relates to inadequate identifiers assigned
by developers to elements. For instance, in the Fuelio app,
a FrameLayout serves as a container for its child ele-
ments, lacking essential identifiers such as resource_id,
text, and content_description. As a result, its unique
identification relies solely on its screen bounds. However,
when an action triggers a layout modification, the element’s
screen bounds also change, leading TIMESTUMP to mistakenly
interpret this as an appearing element, thus generating a false
positive. Moreover, the absence of sufficient identifiers can
result in false negatives. In the ESPN app, certain elements
possess identifiers that are neither empty nor unique. TIMES-
TUMP primarily depends on these identifiers to match an
element, but since they are not distinctive, TIMESTUMP fails
to differentiate between elements on the screen, consequently
failing to report associated issues.

Another category of failures occurs when the screen dis-
plays multiple windows, such as step-by-step guidelines
overlaid on the main app. ADB allows us to capture the
AccessibilityNodeTree of the foremost window only,
thereby missing content in other windows. This limitation
contributes to both false positives and false negatives.

B. RQ2. Qualitative Study

To assess the impact of the issues detected by TIMESTUMP

on screen reader users, we conducted 15 user studies. We
randomly selected three apps from RQ1, representing various
types of dynamic content changes, corresponding to IDs P8,
G1, and G7, as listed in Table I. Our qualitative study consisted
of 10 self-guided tasks and 5 user interviews with blind
testers, recruited through the Fable platform [21]. In the self-
guided tasks, testers were given concise task descriptions to
execute offline on apps while recording their screens and
articulating their thoughts aloud. This approach, without a
moderator present during sessions, helped mitigate interviewer
bias. Additionally, user interviews were conducted to explore
incidents in different states of one app, G7, and ask follow-up
questions. Due to the limited size of the tester pool on the
platform, some tasks involving different apps were assigned

to the same tester. However, no tester evaluated the same app
multiple times. In total, 8 distinct testers participated in this
study: 6 males, 2 females, with 7 identifying as White and 1
as Asian. Participant ages ranged from 20 to 45. Below, we
first outline the issues that users confirmed. We then discuss
the observed shortcomings and insights gained.

1) User Confirmed Issues: Of the 30 issues identified, users
directly confirmed 25, yielding a confirmation rate of 0.83.

Appearing elements in explored areas. Figure 4(a) depicts
an instance from this category. Blind testers were tasked
with locating the Gas entry button, which appears after
tapping the Plus button. The target button, along with three
other elements highlighted with orange boxes on Figure 4(a),
emerged in areas previously explored by users, without
any notification. Consequently, users felt as if nothing had
changed after tapping the Plus button. One participant
expressed, “It’s very confusing and disorienting when the
screen changes without any audio feedback from the screen
readers” Another noted, “Usually, new elements appear
below [the current TalkBack focus], but in this case, they
appeared above.” The appearance of elements in previously
explored areas caused confusion for screen reader users, re-
sulting in longer times to locate the desired element. Two out
of five interviewees were unable to find the targeted button
and complete the task, while others had to explore the screen
multiple times to do so. A similar issue in self-guided tasks
resulted in confusion for all the participants. For elements
that appear dynamically, blind testers recommended setting
the liveRegion attribute appropriately. They suggested
moving the TalkBack focus to the first new element on the
screen in cases of significant window changes. For minor
window changes, introduce dynamic elements in unexplored
screen areas.
Disappearing elements in unexplored areas. In one of
the test apps, activating a switch at the top caused some
form entries to disappear. Testers interacting with the switch
were not informed of the changes and were confused as to
why they could not find certain elements. Four out of five
interviewees were unable to complete the task, concluding
that the required element was not present on the screen.
Conversely, one interviewee managed to find the desired ele-
ment by turning off a switch, leveraging his prior experience
with such controls. Among the interviewees who failed to
perform the task, one person remarked, “[I] Thought the
Recurrence section was either not on the screen or not visible
to TalkBack. I just couldn’t find it.” The tester expressed a
preference for receiving a notification indicating that “new
controls are available or shown” once the checkbox is ticked.
This would enable them to recognize that the layout of the
app has changed on the same screen and understand how to
revert the layout to its original configuration.
Short-lived buttons. As depicted in Figure 4(b), when users

8



TABLE I
THE ACCURACY OF TIMESTUMP ON SUBJECT APPS.

ID App Category #Installs # Issues TP FP FN Precision Recall
P1 Autozone Auto & Vehicles >5M 5 5 1 0 0.83 1
P2 Duolingo Education >500M 19 18 1 1 0.94 0.94
P3 Forest Productivity >10M 7 5 0 2 1 0.71
P4 Gratitude LifeStyle >1M 8 8 0 0 1 1
P5 Motivation Health & Fitness >5M 3 3 0 0 1 1
P6 Starbucks Food & Drink >10M 4 4 1 0 0.8 1
P7 TicketMaster Events >10M 1 1 0 0 1 1
P8 Spotify Music & Audio >1B 5 4 0 1 1 0.8
P9 H&M Lifestyle >50M 1 1 0 0 1 1
P10 File Manager Tools >1B 20 11 0 9 1 0.55
G1 Booking.com Travel & Local >500M 39 36 0 3 1 0.92
G2 Easy Bills Reminder Finance >100K 2 2 0 0 1 1
G3 Burn Education NA 6 2 0 4 1 0.66
G4 Dictionary.com Books & Reference >10M 4 4 0 0 1 1
G5 ESPN Sports >50M 3 2 0 1 1 0.66
G6 Calorie Counter by FatSecret Health & Fitness >50M 58 58 5 0 0.92 1
G7 Fuelio Auto & Vehicle >1M 101 92 5 9 0.94 0.91
G8 Life360 Lifestyle >100M 4 4 0 0 1 1
G9 Master Lock Vault Enterprise Lifestyle >100K 4 1 0 3 1 0.25
G10 Nike Shopping >50M 25 24 0 1 1 0.96
G11 Weee! Asian Grocery Delivery Food & Drink >1M 8 8 0 0 1 1
G12 Norton Secure VPN Tools >10M 2 2 0 0 1 1
G13 TripIt Travel & Local >5M 7 7 1 0 0.87 1
G14 ToonMe photo cartoon maker Photography >50M 2 2 0 0 1 1
G15 Vimeo Entertainment >10M 6 6 0 0 1 1
G16 Yelp Food & Drink >50M 1 1 0 0 1 1
G17 The Clock Productivity >10M 56 55 11 1 0.83 0.98
G18 King James Bible Books& Reference >50M 23 21 2 2 0.91 0.91
G19 Lyft Maps & Navigation >50M 11 11 0 0 1 1
G20 To-Do List - Schedule Planner Productivity >10M 50 47 2 3 0.95 0.94
Overall 485 445 29 40 0.94 0.92

add a song to their favorites, a notification pops up and let
them revert the action by tapping on the Change button.
Three of the users became aware that they could potentially
use this element. Two participants missed the button be-
cause TalkBack simultaneously announced three short-lived
elements, which overwhelmed them. Moreover, during self-
guided tasks, none of the participants could interact with the
Change button as it disappeared quickly. As a result, three
participants could not accomplish the task for removing a
song from the favorites. Two participants were able to remove
the song through an alternative method, using the ticked
button, annotated by a green box in Figure 4(b). Therefore,
short-lived elements should not overwhelm blind users with
excessive information. Additionally, it is recommended to
avoid including clickable elements in a short-lived manner,
as blind users navigating sequentially with a screen reader
are likely to miss them before they vanish.
Unannounced Short-lived Elements. In the Spotify app,
when users removed a song from their favorites, a short-
lived notification, with the text Removed from Liked Songs,
appeared signaling this change, providing immediate feed-
back to sighted users. However, TalkBack did not announce
the change to the screen reader user, leading to confusion.

Only two participants advanced to the step of removing a
song from the favorites in our self-guided tasks. For those
screen reader users, they were uncertain if the song had
been successfully removed and felt compelled to navigate
through the entire screen to verify that. When a song has
not been added to favorites, the Plus button is labeled with
the content description Add Item. Conversely, when the song
is in the favorites, its description changes to Item Added.
As a result, the blind users need to navigate the screen to
check if the content description has reverted to Add Item.
in order to confirm that their action was successful. Their
experience suggested that the liveRegion attribute should
be appropriately configured for short-lived notifications.
Unannounced Content Modification In Figure 4(c), tapping
the CALCULATE button triggers an update of the result,
indicated by the black box, appearing above the button.
However, this change is not communicated to screen reader
users, forcing them to navigate back to check the calculation
result. Although all participants in our self-guided tasks
managed to find the calculation result by navigating back
and forth, they reported it as confusing and inconvenient.
Additionally, if users press the CALCULATE button without
providing any input for prior entries, they receive an error

9



message advising them to input values before proceeding.
One participant noted, ”For the sake of consistency, having
the calculation result announced just like the error mes-
sage would not disappoint me.” Proper utilization of the
liveRegion attribute would alleviate such issues.

2) Observed Shortcomings: The user study also shed light
on TIMESTUMP’s shortcomings and enhancement opportuni-
ties.

Reverting Changes. TIMESTUMP evaluates the changes
resulting from each action. However, a series of actions may
have counteractive impacts. For instance, For example, in the
Spotify app, top views move up as users navigate toward the
bottom. As soon as they attempt to navigate back to those top
elements, the views are restored to their original position, and
users do not perceive any problem. Our manual exploration of
our test set reveals 8 elements with similar issues that may
not be problematic for users. However, for users who rely
on alternative interaction modes, such as explore by touch
where TalkBack shifts its focus to the coordinates of the
touch gesture, these cases can still be confusing.
Severity of Issues. The dynamic elements identified as
problematic exhibit varying degrees of severity and impact
on blind users, with TIMESTUMP unable to prioritize them
by severity. Factors such as the frequency of the issue
among different apps and users’ familiarity with it contribute
to its severity. For instance, during interactions with the
Booking.com app, switching tabs changes the content of
the window without altering the screen reader focus or
providing any notification. While this issue caused confusion
for participants, they relied on their intuition and manually
adjusted the TalkBack focus to the top of the screen to access
the new content. However, all participants expressed that it
would be helpful if the focus were automatically moved to
the newly appeared content. Another factor influencing the
severity of the issues is the distance of the changed element
from the accessibility focus. In Figure 4 (c), navigating one
element back and forth could help users find the results, while
if the appearance of the result is far from the current focus,
it may become impossible for users to locate it.
Navigation Order. TIMESTUMP relies on the default nav-
igation order of elements for TalkBack to determine if a
dynamic change is problematic. However, users may have
their own interaction preferences when using screen readers.
In our study, some users rely on their prior knowledge and tap
on specific parts of the app to find the requested element. One
interviewee mentioned that it would be helpful if the change
was announced, but he could still locate the dynamically
updated TextView. Additionally, although customization
of the navigation order of elements was not observed in
the apps used in our experiments, it is important to note
that developers can override the default TalkBack navigation
order, e.g., allowing the topmost element to be designated as

Fig. 4. Examples of detected issues by TIMESTUMP: (a) Appearing Content,
(b) Short-Lived Content, and (c) Content Modification

the last element focused by TalkBack on a screen. If so, the
button in Figure 1(e), circled in red, would not trouble blind
users as it would be in an unexplored area.

C. RQ3. Performance

The performance evaluation of our tool, TIMESTUMP, is
structured into three phases: app screen capturing (Phase 1),
monitoring apps in action (Phase 2), and localizing problem-
atic dynamic changes (Phase 3). In RQ1, Phase 1 involves
automated capturing of two distinct app states from group2
apps, requiring an average of 167 seconds using STOAT [23].
Phase 2’s analysis of each state for the number of actions
is rapid; however, executing each action, capturing data, and
transferring it to the server consumes about 66 seconds per
action on average. The bulk of this time, approximately
20 seconds, is dedicated to dumping and transferring data,
especially the captured video for each action. Developers can
opt to disable video capturing in the tool, relying instead on
screenshots, to significantly improve the tool’s performance. In
Phase 3, the post-analysis of the technique includes analysis of
collected frames as well as the accessibility events, completing
in approximately 7.5 seconds for each action.

10



VI. THREATS TO VALIDITY

External Validity. In this study, we examined dynamic content
changes following action execution or screen transition. How-
ever, ad-related pop-ups or random rating requests may appear
without user actions. Investigating these requires analyzing the
source code and library calls to find them. Future research
could focus on identifying and understanding these instances.

Another concern is the completeness of our work, both
in terms of the types of dynamic content changes and the
challenges they pose. We carefully selected and manually
explored a diverse range of apps to identify the types of
dynamic change, ensuring these aligned with web testing defi-
nitions related to element structure and attribute modifications.
Moreover, we utilized interviews to pinpoint scenarios where
different types of dynamic content change might pose issues
for screen reader users. Although our initial findings were
extracted from three interviews, the subsequent user study in
RQ2 reaffirms the validity of our conclusions.

Similarly, a concern related to RQ1 is the complete-
ness of the identified accessibility issues. The ground
truth was manually created due to the lack of preexist-
ing datasets. To validate the manual construction of the
ground truth, two authors independently reviewed the snap-
shots, including the AccessibilityNodeInfo tree and
AccessibilityEvents, to identify problematic dynamic
changes. Subsequently, they engaged in discussions to ensure
agreement in their evaluations.
Internal Validity. TIMESTUMP integrates various libraries
and tools, including Stoat, ADB, AVD, and AccessibilitySer-
vice, raising potential risks of defects. Additionally, there is
a possibility of defects in our prototype’s implementation.
To counteract, we utilized the latest version of third-party
tools, conducted Github code reviews, and tested on varied
apps. We also assessed data capture accuracy on apps with
different transitions, detailed on our website [13]. For rigorous
testing, we used different sets of apps for our formative studies,
accuracy evaluations, and tool assessments.

VII. RELATED WORKS

Automated accessibility testing includes various tools and
studies for both web and mobile app accessibility analysis.
Web Pages: Web accessibility testing primarily relies on
the WCAG guidelines [3]. These guidelines have led to the
development of tools assessing web page accessibility com-
pliance [29]–[34]. However, the guidelines overlook various
accessibility challenges encountered by assistive technology
users, especially in the context of dynamic changes. While
a few criteria mandate developers to ensure dynamically
displayed error/success messages are accessible to all, they fail
to address other issues arising from dynamic content changes.
Existing tools [29]–[34] cover only a fraction of the standards,
thus inadequately detecting these issues on web pages.

To address limitations of guidelines, dynamic techniques
have been proposed to assess apps while interacting with
them. They resulted in studies that detect accessibility issues
during interactions with web pages [35]–[37] or evaluate and
infer correct accessibility attributes, like ARIA labels [38], for
web content [39], [40]. In the evaluation of interaction issues,
recent studies have attempted to utilize assistive technologies,
similar to how an end user explores the app. They also
account for changes introduced by JavaScript by evaluating
multiple states that a single web page can take [41]–[47].
These studies focus on interaction failures which are only a
subset of the challenges posed by dynamic changes. While ex-
ploring the app dynamically, they overlook real-time changes,
like unnannounced buttons appearing in previously explored
areas. Furthermore, these studies miss changes like content
modification that does not involve altering the DOM structure.
Mobile Apps: Similar to web accessibility testing, various
automated tools are designed for mobile apps to assess specific
app states and report their adherence to accessibility guide-
lines [48]–[57]. Recognizing the limitations of accessibility
guidelines and the unique interaction modes of assistive tech-
nologies, recent studies have focused on identifying inacces-
sible content by utilizing assistive technologies to navigate
various app states and comparing it with exploring the app
without assistive technologies [11], [58]–[63]. However, no
technique tackles the challenges of dynamic content changes.

VIII. CONCLUSION

The broad impacts of dynamic content changes on acces-
sibility issues have not been thoroughly examined in prior
research. We presented TIMESTUMP, an automated framework
identifying accessibility issues due to dynamic screen changes.
TIMESTUMP navigates through app states, collects data be-
fore, during and after each action, and applies a set of rules to
detect dynamic screen changes that may lead to accessibility
problems for the blind. An empirical study on real-world apps
and a user study with blind participants prove its efficacy.

Future directions involve extending our work to ad-related
pop-ups and unexpected rating requests that may appear with-
out user actions, and expanding our implementation to other
platforms, such as Web and iOS.

Our research artifacts are available publicly [13].

ACKNOWLEDGMENT

This work has been supported, in part, by award numbers
2211790, 1823262, and 2106306 from the National Science
Foundation. We thank Fable for their collaboration in making
this research possible. We are grateful for the detailed feedback
from the anonymous reviewers of this paper, which helped
improve this work.

11



REFERENCES

[1] U. D. of Justice, “Americans with disabilities act,” https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=CELEX

[2] ——, “A guide to disability rights laws,”
https://www.ada.gov/cguide.htm, U.S. Department of Justice, 2020,
Last Accessed: February 12, 2024.

[3] W3C, “Wcag 2 overview,” https://www.w3.org/WAI/standards-
guidelines/wcag/, W3C, 2023, last Accessed: December 5, 2023.

[4] Apple, “Accessibility on ios,” https://developer.apple.com/accessibility/
ios/, Apple, 2022, last Accessed: May 6, 2021.

[5] Android, “Build more accessible apps,” https://developer.android.com/
guide/topics/ui/accessibility, Google, 2022, last Accessed: May 6, 2022.

[6] WHO, “World report on disability,” https://www.who.int/news-
room/fact-sheets/detail/disability-and-health, WHO, 2023, Last
Accessed: July 18, 2024.

[7] WAI, “Understanding sc 3.3.1: Error identification (level a),”
https://www.w3.org/WAI/WCAG21/Understanding/error-identification.
html#:∼:text=Providing%20information%20about%20input%20errors,
icons%20and%20other%20visual%20cues., W3C, 2024, last Accessed:
March 5, 2024.

[8] T. F. Liu, M. Craft, J. Situ, E. Yumer, R. Mech, and R. Kumar, “Learning
design semantics for mobile apps,” in Proceedings of the 31st Annual
ACM Symposium on User Interface Software and Technology, 2018, pp.
569–579.

[9] A. Mathur, G. Acar, M. J. Friedman, E. Lucherini, J. Mayer, M. Chetty,
and A. Narayanan, “Dark patterns at scale: Findings from a crawl of
11k shopping websites,” Proceedings of the ACM on Human-Computer
Interaction, vol. 3, no. CSCW, pp. 1–32, 2019.

[10] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li,
J. Nichols, and R. Kumar, “Rico: A mobile app dataset for building
data-driven design applications,” in Proceedings of the 30th annual ACM
symposium on user interface software and technology, 2017, pp. 845–
854.

[11] N. Salehnamadi, F. Mehralian, and S. Malek, “Groundhog: An auto-
mated accessibility crawler for mobile apps,” in 2022 37th IEEE/ACM
International Conference on Automated Software Engineering, IEEE.
Rochester, Michigan, USA: ACM New York, NY, USA, 2022.

[12] S. Feng, M. Xie, and C. Chen, “Efficiency matters: Speeding up
automated testing with gui rendering inference,” in 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE,
2023, pp. 906–918.

[13] F. Mehralian and Z. He, “Timestump companion website,”
https://github.com/seal-hub/Timestump, SEAL, 2024, Last Accessed:
Aug 16, 2024.

[14] Monkey Taps LLC, “I am - Daily Affirmations,” https://play.google.
com/store/apps/details?id=com.hrd.iam&hl=en\ US&gl=US, 2024, ac-
cessed: 2024-02-12.

[15] N. F. Malik, A. Nadeem, and M. A. Sindhu, “Achieving state space
reduction in generated ajax web application state machine.” Intelligent
Automation & Soft Computing, vol. 33, no. 1, 2022.

[16] K. J. Koswara and Y. D. W. Asnar, “Improving vulnerability scanner
performance in detecting ajax application vulnerabilities,” in 2019
International Conference on Data and Software Engineering (ICoDSE).
IEEE, 2019, pp. 1–5.

[17] W3C, “Understanding success criterion 2.2.2 — understanding wcag
2.0,” https://www.w3.org/TR/UNDERSTANDING-WCAG20/time-
limits-pause.html, W3C, 2023, Last Accessed: December 7, 2023.

[18] ——, “Reordering page sections using the document object
model,” https://www.w3.org/WAI/WCAG22/Techniques/client-side-
script/SCR27.html, W3C, 2023, Last Accessed: December 7, 2023.

[19] ——, “Inserting dynamic content into the document
object model immediately following its trigger element,”
https://www.w3.org/WAI/WCAG22/Techniques/client-side-
script/SCR26.html/, W3C, 2023, Last Accessed: December 7,
2023.

[20] WAI, “Using aria role=alert or live regions to identify errors,” https://
www.w3.org/WAI/WCAG21/Techniques/aria/ARIA19, W3C, 2024, last
Accessed: March 5, 2024.

[21] F. T. Labs, “Fable — digital accessibility, powered by people with
disabilities,” https://makeitfable.com/, Fable Tech Labs, 2023, Last Ac-
cessed: December 7, 2023.

[22] M. Van Someren, Y. F. Barnard, and J. Sandberg, “The think aloud
method: a practical approach to modelling cognitive,” London: Aca-
demicPress, vol. 11, pp. 29–41, 1994.

[23] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based gui testing of android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. Paderborn, Germany: ACM New York, NY, USA, 2017,
pp. 245–256.

[24] Google, “Ui/application exerciser monkey,”
https://developer.android.com/studio/test/monkey, Google, 2022,
Last Accessed: May 6, 2022.

[25] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis. Saarbrücken, Germany:
ACM New York, NY, USA, 2016, pp. 94–105.

[26] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and
Z. Su, “Practical gui testing of android applications via model abstraction
and refinement,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), IEEE. Montreal, Canada: IEEE, 2019,
pp. 269–280.

[27] Google, “Dumpcommand,” https://android.googlesource.com/platform/
frameworks/testing/+/jb-mr2-release/uiautomator/cmds/uiautomator/src/
com/android/commands/uiautomator/DumpCommand.java#87, Google,
2024, Last Accessed: Feb 18, 2024.

[28] ——, “clickandwaitfornewwindow,” https://android.googlesource.com/
platform/frameworks/base/+/refs/heads/main/cmds/uiautomator/library/
core-src/com/android/uiautomator/core/InteractionController.java#252,
Google, 2024, Last ACCESSED: Feb 18, 2024.

[29] G. Broccia, M. Manca, F. Paternò, and F. Pulina, “Flexible automatic
support for web accessibility validation,” Proceedings of the ACM on
Human-Computer Interaction, vol. 4, no. EICS, pp. 1–24, 2020.

[30] G. Gay and C. Q. Li, “Achecker: open, interactive, customizable, web
accessibility checking,” in Proceedings of the 2010 International Cross
Disciplinary Conference on Web Accessibility (W4A). Raleigh, USA:
Association for Computing Machinery, 2010, pp. 1–2.

[31] A. M. Agency, “Access monitor plus,”
https://accessmonitor.acessibilidade.gov.pt/, Administrative
Modernization Agency, 2021, Last Accessed: December 5, 2023.

[32] C. Benavidez, “Examinator,” 2015. [Online]. Available: http:
//examinator.net/

[33] WebAIM, “Wave web accessibility evaluation tool,”
https://wave.webaim.org/, WebAIM, 2023, last Accessed: December 5,
2023.

[34] accessiBe, “accessscan - website accessibility checker - free & instant
- accessibe,” https://accessibe.com/accessscan, accessiBe, 2023, last Ac-
cessed: December 5, 2023.

[35] H. Takagi, C. Asakawa, K. Fukuda, and J. Maeda, “Accessibility
designer: visualizing usability for the blind,” ACM SIGACCESS acces-
sibility and computing, no. 77-78, pp. 177–184, 2003.

[36] J. P. Bigham, J. T. Brudvik, and B. Zhang, “Accessibility by demon-
stration: enabling end users to guide developers to web accessibility
solutions,” in Proceedings of the 12th international ACM SIGACCESS
conference on Computers and accessibility. Orlando, USA: Association
for Computing Machinery, 2010, pp. 35–42.

[37] F. Durgam, J. Grigera, and A. Garrido, “Dynamic detection of acces-
sibility smells,” Universal Access in the Information Society, pp. 1–12,
2023.

[38] W3C, “Accessible rich internet applications (wai-aria) 1.2,” World
Wide Web Consortium (W3C), Tech. Rep., 2014. [Online]. Available:
https://www.w3.org/TR/wai-aria/

[39] C. Duarte, A. Salvado, M. E. Akpinar, Y. Yeşilada, and L. Carriço,
“Automatic role detection of visual elements of web pages for
automatic accessibility evaluation,” ser. W4A ’18. New York, NY,
USA: Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3192714.3196827

12



[40] M. Bajammal and A. Mesbah, “Semantic web accessibility testing via
hierarchical visual analysis,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 1610–
1621.

[41] W. M. Watanabe, R. P. Fortes, and A. L. Dias, “Acceptance tests
for validating aria requirements in widgets,” Universal Access in the
Information Society, vol. 16, pp. 3–27, 2017.

[42] N. Fernandes, D. Costa, S. Neves, C. Duarte, and L. Carriço, “Evaluating
the accessibility of rich internet applications,” in Proceedings of the
International Cross-Disciplinary Conference on Web Accessibility, 2012,
pp. 1–4.

[43] N. Fernandes, D. Costa, C. Duarte, and L. Carriço, “Evaluating the
accessibility of web applications,” Procedia Computer Science, vol. 14,
pp. 28–35, 2012.

[44] L. Sensiate, H. Lidio Antonelli, W. Massami Watanabe, and R. Pontin de
Mattos Fortes, “A mechanism for identifying dynamic components
in rich internet applications,” in Proceedings of the 38th ACM
International Conference on Design of Communication, ser. SIGDOC
’20. New York, NY, USA: Association for Computing Machinery,
2020. [Online]. Available: https://doi.org/10.1145/3380851.3416785

[45] P. T. Chiou, A. S. Alotaibi, and W. G. J. Halfond, “Detecting
and localizing keyboard accessibility failures in web applications,”
ser. ESEC/FSE 2021. New York, NY, USA: Association for
Computing Machinery, 2021, p. 855–867. [Online]. Available: https:
//doi.org/10.1145/3468264.3468581

[46] P. T. Chiou, A. S. Alotaibi, and W. G. Halfond, “Bagel: An approach
to automatically detect navigation-based web accessibility barriers for
keyboard users,” in Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, 2023, pp. 1–17.

[47] ——, “Detecting dialog-related keyboard navigation failures in web
applications,” in 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE). IEEE, 2023, pp. 1368–1380.

[48] Android, “Improve your code with lint checks,”
https://developer.android.com/studio/write/lint?hl=en, Google, 2023,
last Accessed: December 7, 2023.

[49] ——, “Accessibility scanner - apps on google play,”
https://play.google.com/store/apps/details?id=com.google.android.
apps.accessibility.auditor\&hl=en\ US, Google, 2023, last Accessed:
December 7, 2023.

[50] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:
programmable ui-automation for large-scale dynamic analysis of mobile
apps,” in Proceedings of the 12th annual international conference on
Mobile systems, applications, and services. Bretton Woods, New
Hampshire, USA: ACM New York, NY, USA, 2014, pp. 204–217.

[51] Android, “Espresso : Android developers,”
https://developer.android.com/training/testing/espresso, Google, 2023,
last Accessed: December 7, 2023.

[52] Robolectric, “Android unit testing framework,”
https://github.com/robolectric/robolectric, Robolectric, 2023, Last
Accessed: December 7, 2023.

[53] M. M. Eler, J. M. Rojas, Y. Ge, and G. Fraser, “Automated accessibility
testing of mobile apps,” in 2018 IEEE 11th International Conference on
Software Testing, Verification and Validation. Västerås, Sweden: ICST,
2018, pp. 116–126.

[54] S. Chen, C. Chen, L. Fan, M. Fan, X. Zhan, and Y. Liu, “Accessible
or not an empirical investigation of android app accessibility,” IEEE
Transactions on Software Engineering, vol. 48, pp. 3954–3968, 2021.

[55] KIF, “Keep it functional - an ios functional testing framework,”
https://github.com/kif-framework/KIF, KIF, 2023, last Accessed: Decem-
ber 7, 2023.

[56] H. N. da Silva, S. R. Vergilio, and A. T. Endo, “Accessibility muta-
tion testing of android applications,” Journal of Software Engineering
Research and Development, vol. 10, pp. 8–1, 2022.

[57] L. Li, R. Wang, X. Zhan, Y. Wang, C. Gao, S. Wang, and Y. Liu, “What
you see is what you get? it is not the case! detecting misleading icons
for mobile applications,” in Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2023, pp.
538–550.

[58] M. Taeb, A. Swearngin, E. School, R. Cheng, Y. Jiang, and J. Nichols,
“Axnav: Replaying accessibility tests from natural language,” arXiv
preprint arXiv:2310.02424, 2023.

[59] F. Mehralian, N. Salehnamadi, S. F. Huq, and S. Malek, “Too much
accessibility is harmful! automated detection and analysis of overly ac-
cessible elements in mobile apps,” in 2022 37th IEEE/ACM International
Conference on Automated Software Engineering, IEEE. Rochester,
Michigan, USA: ACM New York, NY, USA, 2022.

[60] N. Salehnamadi, A. Alshayban, J.-W. Lin, I. Ahmed, S. Branham,
and S. Malek, “Latte: Use-case and assistive-service driven automated
accessibility testing framework for android,” in Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems. Virtual,
Okohama, Japan: ACM New York, NY, USA, 2021, pp. 1–11.

[61] A. S. Alotaibi, P. T. Chiou, and W. G. Halfond, “Automated detection
of talkback interactive accessibility failures in android applications,” in
2022 IEEE Conference on Software Testing, Verification and Validation
(ICST). IEEE, 2022, pp. 232–243.

[62] A. Alshayban and S. Malek, “Accessitext: automated detection of text
accessibility issues in android apps,” in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2022, pp. 984–995.

[63] N. Salehnamadi, Z. He, and S. Malek, “Assistive-technology aided
manual accessibility testing in mobile apps, powered by record-and-
replay,” in Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems, 2023, pp. 1–20.

13


