
Automated Generation of Accessibility Test Reports
from Recorded User Transcripts

Syed Fatiul Huq
University of California, Irvine

Irvine, California, USA
fsyedhuq@uci.edu

Mahan Tafreshipour
University of California, Irvine

Irvine, California, USA
mtafresh@uci.edu

Kate Kalcevich
Fable Inc.

Toronto, Ontario, Canada
kate@makeitfable.com

Sam Malek
University of California, Irvine

Irvine, California, USA
malek@uci.edu

Abstract—Testing for accessibility is a significant step when
developing software, as it ensures that all users, including those
with disabilities, can effectively engage with web and mobile
applications. While automated tools exist to detect accessibility
issues in software, none are as comprehensive and effective as
the process of user testing, where testers with various disabilities
evaluate the application for accessibility and usability issues.
However, user testing is not popular with software developers
as it requires conducting lengthy interviews with users and
later parsing through large recordings to derive the issues
to fix. In this paper, we explore how large language models
(LLMs) like GPT 4.0, which have shown promising results
in context comprehension and semantic text generation, can
mitigate this issue and streamline the user testing process.
Our solution, called Reca11, takes in auto-generated transcripts
from user testing video recordings and extracts the accessibility
and usability issues mentioned by the tester. Our systematic
prompt engineering determines the optimal configuration of
input, instruction, context and demonstrations for best results.
We evaluate Reca11’s effectiveness on 36 user testing sessions
across three applications. Based on the findings, we investigate
the strengths and weaknesses of using LLMs in this space.

Index Terms—software accessibility, large language models,
crowd-sourced software testing

I. INTRODUCTION

The World Health Organization has reported in 2023 that
16% of the world population, around 1.3 billion people, live
with some form of disability [1]. However, recent reports [2]–
[5] have indicated that software, both web and mobile, are
predominantly inaccessible, containing issues that prove to be
nuisances and roadblocks for users with different disabilities.
For instance, non-textual UI elements like images that do
not have alternative text are inaccessible to visually impaired
users who rely on screen readers to announce elements. For
users with a motor disability, UI elements that cannot be
reached with keyboard navigation means they cannot access
those information or features. In a modern world that heavily
relies on online applications for everyday tasks, from work and
living to health and entertainment, it is imperative to develop
applications accessible to all.

With the advent of standardized guidelines [6], government
policies [7], and developer activism [8], the initiative to
develop accessible software has bolstered in recent times.
There are three ways of testing software for accessibility. First,
automated testing, where tools can conduct static analysis on
web or mobile applications and check for guideline viola-
tions [3], [9]–[13], or dynamically assess whether assistive

technologies (ATs) like screen readers, switch systems and
more are functioning properly on the deployed app [14]–[19].
The second option is manual testing, where developers and
in-house testers manually test the app with ATs to check for
accessibility issues. While both of these are typically manage-
able by a development team and streamline the accessibility
testing process, they come with their limitations, especially
compared to the third option: user testing.

Accessibility user testing [20], [21] involves end users with
disabilities evaluating the accessibility of an application using
their preferred AT. User testing accommodates the insight from
people with varying disabilities, varying states from the same
disability, and varying ways they use ATs and experience
software. In automated and manual tests, these nuances are
usually overlooked. Automated tools, that primarily depend on
static rules, have been shown to report 20-40% fewer issues
than evaluations with actual disabled people [22]. Manual
testing by developers relies on their understanding of the
various forms of disability, which is reported to be severely
lacking in several prior studies [2], [23]–[28].

Despite the advantages of user testing, it is not widely
adopted in the software industry for multiple practical rea-
sons, ranging from recruitment challenges [29] to the cost of
human and technical resources [22]. One such challenge comes
from the test report generation and validation processes [30].
These processes involve revisiting test sessions through the
recordings, deriving and compiling the barriers found by the
tester, and validating the derived issues with the software team.
Introducing LLMs into report generation can streamline these
processes and make it easier for software teams to employ
accessibility user testing.

In this paper, we automate report generation from accessi-
bility user tests by analyzing test transcripts through a large
language model (LLM) and producing a list of accessibility
issues reported. LLMs have proved their aptitude in analyzing
and synthesizing natural language, and their usefulness in
fields ranging from software development [31] to health-
care [32]. Our study poses three research questions (RQs)
and aims to understand how well LLMs can automate the
test report generation process. We explore their performance
with different prompts (RQ1), assess their effectiveness on real
world user tests (RQ2), and analyze where their strengths and
weaknesses lie (RQ3).

To run our experiments, we conduct user tests run on three

1



different mobile and web applications, executed by users with
different disabilities — full blindness, partial blindness, and
motor disabilities — using different ATs. We use a total of
36 test sessions that range from 10 minutes to 70 minutes.
For RQ1, we take a sample of 7 sessions and feed them to
the LLM using different prompts, configuring the instructions,
contextual information and input transcript. Using the few shot
learning approach, we also provide the prompt with input-
output demonstrations. As our LLM, we use GPT-4.0, the
state-of-the-art model. From our prompt engineering, we find
that adding contextual information and demonstrations inform
the model how to describe issues. But the biggest factor in
determining the model’s effectiveness is the input size. We see
that feeding the model smaller chunks of the original transcript
helps identify more issues.

Based on these insights, for RQ2, we run the final tool on
all 36 transcripts. The tool generates a near perfect recall of
98%, attributed to 6 missed issues from a total of 319. The high
recall indicates the tool’s effectiveness in detecting all possible
accessibility barriers reported by users. On the other hand, with
a precision of 85%, the tool identifies some issues that are
not accurate. For RQ3, we manually inspect these inaccurate
issues to understand LLM’s shortcomings. We observe that
LLM is susceptible to language from contextual information,
repeated announcements related to assistive technologies and
ambiguity in speech. With these insights, we discuss how best
to employ LLMs for test report generation, and how to po-
tentially improve its performance with specific configurations
and contextual information.

In summary, this paper makes the following contributions,
• An automated tool, Reca111, that takes in accessibility

user test recording transcripts and generates a test report.
• A technical analysis of prompt engineering for automated

test report generation using LLMs.
• A demonstration and qualitative analysis of LLM’s per-

formance in detecting software accessibility issues.
• An assessment of LLM’s application in the accessibility

user testing process.
The remainder of this paper is structured as follows: Section

II provides an overview of accessibility user testing, test report
generation and large language models. Section III describes
the study design to answer our research questions. Section IV
reports the results, the implications therein are delved into in
Section V. The paper concludes with Section VII.

II. BACKGROUND AND RELATED WORK

A. The Accessibility User Testing Process

Accessibility user testing is the process of testing the
accessibility and usability of a web or mobile application by
having a user with disability interact with it. Prior studies
have looked into accessibility user tests from an empirical
perspective. Aizpurua et al. [21] evaluated the accuracy of
user tests, and found that disabled users’ experience of a
software can differ vastly from the expected interactions with

1The name Reca11 is inspired by the term “a11y”, a popular shorthand for
accessibility, and our tool’s goal to recall the issues from the transcript.

categorical accessibility issues. Brajnik et al. [33] explored
how expertise on accessibility can impact user tests, and found
that non-experts derive significantly less number of issues
than experts. Mateus et al. [34] also looked into the effect of
expertise and observed that HCI specialists tend to outperform
software developers on reporting accessibility issues. Brajnik
et al. [35] also found that collaborative testing, where testers
pair up to assess the accessibility of a page, can report more
accurately [35]. In an effort to mitigate the dependence on
expertise, Song et al. [36] introduce truth inference techniques
in crowd-sourced accessibility evaluations.

To understand the contemporary practice of software acces-
sibility testing, we collaborate with Fable [37], an accessibility
user testing platform that connects software stakeholders to
testers with disabilities. We interview one of their analysts and
personally use two of the engagements they provide through
their Engage product: User Interviews and Self-Guided Tasks.
In these engagements, a disabled tester is provided with an
application to test for accessibility and usability. The core dif-
ference between Interviews and Self-Guided Tasks is that the
former accommodates one or more interviewers in the testing
session while in the latter, the tester goes through a task by
themselves and provides feedback based on their experience.
In Fig. 1, we illustrate the process of these services.

The process begins with a software company or team
opening a new request to test their product. These teams can
consist of product managers, developers, user researchers, or
UI and UX designers. For this research study, an analyst is
assigned to the project, who acts as an extension to the team,
consulting on accessibility. She helps the team realize the
specific test goals for their application or feature, and create
a list of tasks. These tasks are what the testers are prompted
to complete during the testing session.

A set of testers is selected based on the technical expertise
required. Expertise ranges from the assistive technologies used
(e.g., screen readers, alternative navigation, screen magnifiers
and more) to the platform that hosts the application (e.g.,
browser, desktop or smartphone).

During a user test session, the tester navigates the applica-
tion to complete the assigned tasks. The tester maintains the
Think Aloud protocol [38], vocalizing their thought process
as they make decisions to navigate between pages or enter
information, and encounter challenges. Thinking aloud is an
important step as it helps teams understand how the tester
encounters a problem and why they deem it as an issue.

In user interviews, the analyst can guide the tester during
navigation, answer the tester’s queries and probe for further
explanations. During the session, the analyst takes notes,
which she would refer to later for compiling a report. These
two steps, depicted with dashed borders in Fig. 1, are exclusive
to user interviews and skipped in self-guided tasks.

Once the recording of the test session is published, an
analyst goes through it and compiles a test report. The report
contains accessibility and usability issues encountered by the
tester. The final report is submitted to the software team with
suggestions for mitigation.

We observe a similar process in the domain of crowd-

2



Fig. 1. Software testing process for this study using Fable

sourced software testing (CST) [39], where non-experts eval-
uate usability, functionality and compatibility of software
systems. Instead of an analyst, a project manager coordinates
with the testers, and compiles and validates the reported issues.
Similar to Self-Guided Tasks, no interviewers are present in
these testing sessions.

B. Test Report Generation

Our work focuses on the report generation phase, as high-
lighted in Fig. 1. A report ideally contains all the issues of
the application, where in the app they occur, quotes from the
recording transcript for context and corresponding mitigation
strategies. It is a manual process with two categories of
challenges centered around effort and expertise.

Significant manual effort has to be expended to parse
through test recordings and derive issues. A recording can
span from 10 minutes to more than an hour, each possibly
requiring multiple revisions for better synthesis of information.
This effort is multiplied by the number of sessions required
for a single project and the variation of assistive technologies,
based on target demographics of disability. According to our
interviewed analyst, after parsing through the recordings, it can
take around 20 minutes to synthesize and write the report, even
with notes taken during the interview. To minimize the manual
effort, multiple research work have looked into different forms
of automation, generating reports from recurrent crash patterns
[40], screenshots in test reports [41], relevant metadata from
duplicate reports [42], and summarizing existing reports [43].
However, none of these studies regarded accessibility testing
or generated reports directly from recordings.

Other than effort, expertise is a necessary component in
the effective interpretation of test recordings, to understand
the cause and category of tester complaints. Report writing
is easier with knowledge of assistive technologies, which
is no small feat given the use of a variety of techs for
different disabilities on different platforms. We can take screen
readers as an example, which are used by people with partial

or full blindness. There are four variants of screen readers
which are popular: JAWS [44] and NVDA [45] for Windows,
VoiceOver [46] for Apple devices and TalkBack [47] for
Android phones, each with their distinct characteristics and
configurations. Expertise with guidelines like WCAG [6], used
as an internationally accepted standard for accessibility is
also beneficial. WCAG 2.2, the latest iteration, comes with
13 guidelines under four principles, containing a total of 78
success criteria that elaborates on how to meet the guidelines.
Knowing the guidelines helps in explaining the cause of a
reported issue and possible ways to fix it.

Fig. 2. An excerpt from a transcript to demonstrate noise in the text

LLM, therefore, provides an obvious solution to these
challenges. It holds the promise of reducing the manual effort
by automatically parsing the test sessions and generating
informative test reports for developers. Taeb et al. [48] ob-
served that LLMs can effectively interpret accessibility test

3



instructions written in natural language. However, automatic
report generation presents its own challenges. The transcripts
lack systematic formatting and contains a substantial amount
of noise for instance, multiple speakers and audio interference
from assistive technologies. As illustrated in Fig. 2, not
only are the actual statements from the tester inaccurately
punctuated and sometimes misspelled, they are interrupted by
screen reader announcements. Furthermore, testers may not
know what specifically has gone wrong in an interaction and
cannot precisely articulate the details of the issue they face,
and instead verbalize their frustration caused by the barrier.

C. Large Language Models

With the advent of ChatGPT [49], Large Language Models
(LLMs) are becoming an integral part of natural language
processing both in the public domain and research space [50].
These models, trained on large-scale corpora and tuned with
billions of parameters, are able to generate human-equivalent
text. To work with LLMs, the key is to prompt them with
the appropriate instructions and contexts that aid them with
generating the expected output.

For prompting, LLMs contain four key components. Instruc-
tion is the task we want the LLM to conduct. Instructions
can specify the persona or perspective from which the LLM
should view the task, and the format of the output. Input is
the resource on which the LLM has to conduct the specified
task. Context is any information that can help the LLM narrow
its scope and enhance its lexicon on the specific knowledge
space. LLMs have shown to perform better if the prompt lists
out demonstrations [51]. Termed as few-shot or in-context
learning, this process adds input-output pairs to the prompt,
usually in the form of {(x1, y1), (x2, y2), ..., (xn, yn)}, where
xi is an example input and yi is the associated output.

III. STUDY DESIGN

The primary goal of our work is to assess the applicability of
LLMs in the space of accessibility user testing, specifically to
automate the report generation process. We build an automated
tool, Reca11, as illustrated in Fig. 3. The tool is deployed once
the tester conducts her assigned test. Using the transcript from
the test recording and other contextual information related
to the session, our tool prompts an LLM to generate the
test report. The resulting report is a list of accessibility and
usability issues mentioned by the disabled tester.

We aim to understand how to prompt an LLM to generate
the best results and whether those results are effective enough
to automate the report generation phase of accessibility user
testing. We pose three research questions.

RQ1. Prompt engineering: How does configuring differ-
ent prompts affect performance? The performance of LLMs
is dictated by the prompt fed to it. We determine the best
performing prompt by configuring the input and instructions.

RQ2. Statistical effectiveness: How effective is LLM
in producing accurate accessibility issues? Based on the
optimal prompt, we statistically assess how accurate and
consistent the model is in deriving the issues reported.

RQ3. Strengths and weaknesses: Where does LLM
perform consistently and where does it underperform, and
why? We manually assess the results to understand the factors
in the transcript that determine the LLM’s performance.

A. Datasets
Our primary data point is the transcript automatically gen-

erated from a video recording of a user test session. A test is
done on a single application, on all or some of its features. For
our paper, we collect test session transcripts for three different
apps, accumulating a total of 36 transcripts. These tests are
conducted by testers with disabilities, through Fable’s user
testing services. The tests are recorded, generating a video
recording along with a transcript file. The transcript file is in
a .vtt format, consisting of a list of “captions”, where each
caption contains a start and end timestamp, speaker name, and
the text being spoken.

1) Money Manager (Dmm): Money Manager [52] is an
open source Android application with features to add and mon-
itor personal budgetary information. We choose this finance
application because of its familiar use case, uncomplicated
design and our ability to modify the code. We modify different
features and UI elements of the app to inject accessibility
issues, as categorized by previous work [2], [15], [19].

We conduct two preliminary tests with screen reader users to
assess the effectiveness of injected issues. For the final dataset,
we use 5 user interviews and 5 self-guided tasks, with blind
testers who use Talkback on Android.

2) Record a Goose Sighting (Dgs): Record a Goose Sight-
ing [53] is an educational website used for training people
on accessibility testing. Similar to Dmm, this website has
been injected with accessibility issues [54] by its creators,
who are not the authors of this paper. For this dataset, we
conduct a total of 10 self-guided tasks, covering every assistive
technologies (ATs) offered in Fable, under three AT types:

• Screen readers (for blind users): NVDA [45], JAWS [44],
VoiceOver [46], and TalkBack [47]

• Alternative navigation (for users with limited mobility):
Dragon NaturallySpeaking [55], On-screen keyboard,
Voice Control [56], and Switch system [57]

• Screen magnifiers (for users with low vision): OS Mag-
nification and ZoomText [58]

3) Fable (Dfb): Dfb contains archival test sessions from
Fable where testers are assigned to test different features of
Fable’s digital products. There are a total of 16 sessions,
with 14 self-guided tasks and 2 user interviews. The testers’
demographic of these sessions includes 6 blind users, 4 users
with low vision and 6 users with limited mobility.

B. Contextual Information
As mentioned in Section II-C, contextual information en-

hances GPT’s performance. Since the knowledge space our
prompt is trying to target is software accessibility, we incor-
porate two relevant guidelines as context:

• WCAG: The Web Content Accessibility Guidelines
(WCAG) [6] has been developed to establish an inter-
national standard for software accessibility on web and

4



Fig. 3. Overview of Reca11, our automated tool for generating test reports from accessibility user tests

mobile. We insert the website for WCAG guidelines to
our prompt as context. It contains 13 guidelines with
multiple success criteria that specify how to test whether
a guideline is satisfied. For instance, the guideline “2.1
Keyboard Accessible” is related to the operability of web
content with keyboard alone, containing three success
criteria detailing different ways to test it. Including these
guidelines as context can help the LLM map tester state-
ments to guidelines and success criteria, and determine
whether it can constitute an accessibility issue.

• Internal Guidelines: The accessibility user testing process
has overlap with crowd-sourced software testing, which
depends on an intermediary platform to connect software
stakeholders with testers. Platforms can include their own
guidelines for analyzing test reports. Hence, we include
internal guidelines as a contextual information, adopting
Fable’s “Research Directory”. This document lists take-
aways and best practices for different concerns (e.g., color
contrast) and assistive technologies (e.g., screen reader),
and explains how to resolve them. While WCAG caters to
designers and developers about best accessible practices,
this document is intended to train Fable’s analysts on
tester behavior and issue categorization.

While the two guidelines are used for enhancing the LLM’s
knowledge about software accessibility in general, we also
use the following two sources of data to elaborate on the test
session being analyzed.

• Task description: For a test session, the tester is prompted
to follow a set of tasks. These tasks are determined by the
analyst and software team. Task descriptions can include
names of elements and pages on the screen that the LLM
can potentially map to the information contained in the
transcripts. For our study, we use task descriptions only
for Dmm and Dgs, as we do not have access to the
archival test requests from Dfb.

• Technical parameters: Test sessions also contain technol-
ogy specifications like AT type (e.g., alternative naviga-
tion), the specific AT used (e.g., Dragon NaturallySpeak-

ing), and the platform the application under test is de-
ployed on (e.g., Desktop browser). This can further help
LLM focus on relevant issues.

C. Output
The expected output from the LLM is a list of issues,

making up the test report. Each issue will contain three items:
issue title, description and timestamps. The first two are used
to describe the reported barrier, the UI elements involved and
how the tester encountered the issue. Timestamps are one or
more locations in the recording where an issue was mentioned.
As per our preliminary study, we know that analysts would
include clips from the recording in their report, so that the
software team can refer to the recording for validation or
explanation. Timestamps serve the same purpose.

Because of the non-deterministic nature of LLM outputs,
we run the model multiple times for each test session. The
goal is to observe the varied responses LLM can produce, and
select the most appropriate issues. We test with two different
selection processes: ‘all’ and ‘common’. In Fig. 4, we illustrate
our selection function. Given we run the model five times on
a transcript, we would generate five test reports Tr1−5, where
each test report can detect a different set of issues I1 to In.

In ‘all’ and ‘common’, we aim to incorporate all and the
most common unique issues reported, respectively. To find and
list issues that are unique, we semantically match the issues
between different reports. If an issue found in the current run
matches an issue found in a prior run, we consider it to be a
duplicate, e.g., I7 matches I1 in Fig. 4. All contains a list of
all the unique issues. From All, Common takes in the subset
that occurred in all the reports, e.g., I1 and I5.

For semantic matching, we calculate the cosine similarity
between the vector embeddings of two issues. From the issues,
we concatenate the issue title and description, and encode the
resulting text. For encoding, we use a sentence transformer,
all-mpnet-base-v2 [59]. Trained on 1 billion sentence
pairs, this model is built for finding semantic similarity be-
tween sentences and short paragraphs, and is reportedly the
best performing model [60].

5



Fig. 4. Output selection process

D. Evaluation Metrics
We evaluate the accuracy of issues reported by the model

by manually comparing with all the issues mentioned in the
test recording. We categorize each reported issue in one of
three groups: confirmed, mentioned, and non-issue.

We consider a reported issue to be ‘confirmed’ if the issue
is included in the ground truth (GT). We create three GTs for
the three datasets, as explained in Table I.

TABLE I
GROUND TRUTHS FOR EVALUATION

Label Dataset Source
GTmm Money Manager The accessibility issues we injected,

based on prior work [2], [15], [19].
GTgs Report a Goose

Sighting
The accessibility issues injected by
the creators of the website [54].

GTfb Fable Accessibility Issues reported by Fa-
ble’s analysts on Dfb.

However, not every issue in the GT is reported by the
tester during the test, because either the tester did not realize
the issue taking place or did not consider it to be an issue.
Conversely, not all issues reported by the tester is in the GT.
For the latter case, we include the category ‘mentioned’ issues.
For each issue not categorized as ‘confirmed’, we manually
check the recording, on the timestamp reported with the issue.
If the tester mentioned the reported issue, then we label it as
‘mentioned’. Otherwise, we label it as a ‘non-issue’.

We consider ‘confirmed’ (Ic) and ‘mentioned’ (Im) issues
as True Positive, and ‘non-issues’ (In) as False Positive. If
an issue is mentioned by the tester but not reported by our
model, that is considered a False Negative (FN ). Therefore,
the formulas for precision and recall are:

Precision =

∑
Ic +

∑
Im∑

Ic +
∑

Im +
∑

In
(1)

Recall =

∑
Ic +

∑
Im∑

Ic +
∑

Im +
∑

FN
(2)

E. GPT

For our LLM, we employ GPT-4 [61], the latest of the GPT
models. We use this model because it outperforms contempo-
rary ones in natural language processing tasks [62], and its
Turbo update provides a larger input length of 128K tokens,
necessary for accommodating large input such as transcripts.
Since our work requires deterministic output, we run the
model on 0 temperature, which reduces LLM’s creativity and
increases, if not ensures, determinism [63], [64].

IV. RESULTS

A. RQ1: Prompt engineering

The goal of this research question is to configure the
different components of the prompt — instruction, contextual
information, input and demonstrations — to derive the optimal
prompt that generates the most accurate results. To do so, we
take a sample of 7 transcripts from our dataset of 36, and
analyze the results from prompt engineering.

We semi-randomly select the sample dataset so that tran-
scripts of different characteristics are represented. From Dmm,
we randomly select one self-guided task and one user inter-
view. Since Dmm are all screen reader tests, from Dgs we
randomly pick two transcripts that use alternative navigation
and screen magnification. Lastly, from Dfb, we choose three
transcripts of the largest, average and smallest sizes.

For each variant, we run our tool Reca11, as illustrated
in Fig. 3. As input, we provide the transcript and the cor-
responding contextual information when needed. As output,
the tool generates the test report, a list of issues. For analysis,
we manually inspect each issue, comparing it with the GT
and the original recording. Labeling the issues as ‘confirmed’,
‘mentioned’ or ‘non-issue’, we calculate the precision and
recall. We also assess the qualitative characteristic of the title
and description, and the accuracy of the timestamps. We report
the quantitative and qualitative findings, and compare with
previous variants to choose the better prompt. Once we derive
the optimal variant of a component, we employ that as the

6



baseline for analyzing the next component. We add prompts
for the new variants onto the existing one.

1) RQ1.1 Instruction: Inspired by previous study [65], we
write instructions of variant levels of detail: simple instruction,
with scenario, with persona and with warning against forced
results. We list the variants in Fig. 5. We add one variant at a
time to check their effect on the prompt.

TABLE II
COMPARING SAMPLE RESULTS FOR DIFFERENT INSTRUCTIONS (RQ1.1)

∑
Ic

∑
Im

∑
In FN

D
′1
mm

Simple 3 0 0 7
With scenario 4 0 0 6
With persona 4 0 0 6
With warning 4 0 0 6

D
′2
mm

Simple 2 1 0 14
With scenario 3 0 0 14
With persona 3 1 0 13
With warning 3 1 0 13

After executing the prompts with subsequent instructions
on all 7 samples, we find that there is no distinguishable
differences in the performance of the model. In Table II
we show the results for two D

′

mm sessions as examples,
employing the all selection criteria. We see that the results
remain nearly stagnant for all the variants. While adding
scenario helped in D

′1
mm, it did the opposite for D

′2
mm.

Descriptively, the issue specifications remain similar across
variants. The corresponding timestamps were mostly accurate.
However, longer transcripts suffered from what we call clus-
tered targeting. The tool extracted issues from the end of the
transcript, missing issues mentioned in earlier parts.

2) RQ1.2 Contextual information: The number of False
Negatives from the previous prompt indicates that the tool
is failing to understand statements as issues. Therefore, we
look to improve the results by adding contextual information,
informing our model more about software accessibility. As
described in Section III-B, we incorporate four contextual
information in our prompt: WCAG guidelines, internal guide-
lines from Fable, task description for specific test sessions,
and technological parameters the session was conducted on.
Additionally, we filter the internal guidelines using the techno-
logical parameters to automatically select relevant guidelines.
As shown in Fig. 5, we include some preamble text before
introducing each context to better differentiate the information.

The results, however, do not demonstrate any improvements
numerically. As exemplified in Table III, adding each contex-
tual information did not significantly improve the results.

In analyzing the issues descriptively, we find that they are
more verbose and use guideline-specific language. Generic
wordings are replaced by more technical terms like “head-
ing structures”, “error messages”, “notifications” and more.
However, the reports still suffer from clustered targeting. The
increased prompt size, attributed to the inclusion of contextual
information, amplifies this challenge.

3) RQ1.3 Input: In analyzing the reports so far, we noticed
that the reported issues originated from the last sections of

Fig. 5. An example prompt from our experiments

the transcript, especially for longer transcripts. In general,
the model’s performance degraded as transcripts got larger.
Therefore, we decide to create multiple chunks from a single
transcript, injecting smaller sized subsets of the transcript into
the prompt and combining the resulting reports.

7



TABLE III
COMPARING SAMPLE RESULTS FOR DIFFERENT CONTEXTS (RQ1.2)

∑
Ic

∑
Im

∑
In FN

D
′1
mm

No context 4 0 0 6
Task description 4 0 0 6
Tech params 4 0 0 6
WCAG 4 0 0 6
Internal guidelines 4 1 0 5
All contexts 4 0 0 6

D
′2
mm

No context 4 2 0 11
Task description 5 2 3 10
Tech params 4 2 0 11
WCAG 3 2 0 12
Internal guidelines 4 1 1 12
All contexts 5 1 0 10

We split a transcript by the number of captions. In our
sample dataset, the number of captions ranged from 77 to
566. The larger transcripts, D

′1
mm, D

′2
mm and D

′3
fb contain 566,

359 and 503 transcripts respectively, all of which suffer from
clustered targeting. We choose to divide transcripts by 250
captions, since that halves these transcripts. We also choose
chunk sizes of 100 captions, as the smallest transcript, D

′1
fb,

has 77 captions. From our experiments so far, the results for
D

′1
fb have generated perfect scores.
During the chunking process, we include one extra caption

from the previous chunk, to provide context to the current
chunk and mitigate an issue being ignored. We observe from
prior variants that the reported issues contain an average of 2
captions. Hence we choose one caption as our padding.

We find that the results improve significantly. We illustrate
our findings in Table IV. The number of reported issues
increases significantly with chunked transcripts, with 100
caption chunks resulting in zero false negatives. We observe
that the number of non-issues also increased. However, we
deem it an acceptable trade-off as missing issues are more
critical for reports.

TABLE IV
COMPARING SAMPLE RESULTS FOR DIFFERENT INPUTS (RQ1.3)

∑
Ic

∑
Im

∑
In FN

D
′1
mm

Full transcript 4 0 0 8
250 captions 7 1 1 4
100 captions 10 2 3 0

D
′2
mm

Full transcript 6 0 0 10
250 captions 7 5 1 4
100 captions 7 9 4 0

D
′3
fb

Full transcript 6 1 1 9
250 captions 1 4 4 4
100 captions 1 8 3 0

4) RQ1.4 Demonstrations: Lastly, we introduce demonstra-
tions into the prompt as a form of in-context or one/few-shot
learning [51]. As shown in Fig. 5, we structure a demonstration
in two parts: first, an excerpt of a transcript and second, the
example issues reported from that excerpt. To create demon-

strations, we take excerpts from Dfb. These reports, compiled
by Fable analysts, represent how issues are interpreted and
written by industry experts.

We experiment with two types of demonstrations:
• Single example: Following one-shot learning, we include

only one transcript excerpt and one resulting issue as a
demonstration.

• Multiple examples: Following few-shot learning, we in-
clude multiple excerpts with multiple resulting issues.

In both cases, we select demonstrations so that they match
the input transcript’s technological parameters. From the set of
demonstrations, we only choose ones with similar type of AT
used. AT types represent the tester’s disability (e.g., screen
reader users have full or partial blindness while alternative
navigation users have motor disability), and therefore can
provide similar language when conveying issues faced.

TABLE V
COMPARING SAMPLE RESULTS FOR DEMONSTRATIONS (RQ1.4)

∑
Ic

∑
Im

∑
In FN

D
′1
gs

No examples 1 7 0 0
Single example 1 7 0 0
Multiple examples 1 7 0 0

D
′2
gs

No examples 1 2 1 2
Single example 1 3 1 1
Multiple examples 1 3 1 1

To exemplify, we take two sessions from D
′

gs: the first
uses screen magnification and second alternative navigation.
Table V shows that the results do not indicate any significant
improvement from using no examples. Specifically, in D

′1
gs,

all the variants performed similarly. For D
′1
gs, the examples

detected an extra issue each. Qualitatively, the reported issues
show clear influence in terms of verbosity. The demonstration
issues were very on point and concise, compared to the
model’s descriptions. However, in terms of accuracy, descrip-
tions for all three performed similarly.

B. RQ2: Statistical effectiveness

Based on the results of RQ1, we decide to use the following
configuration for our tool’s final prompt:

• Instruction: We include a detailed instruction with sce-
nario, persona, and a warning to mitigate false positives.

• Contextual information: We include all the sources for
contextual information — task description, technological
parameters, WCAG and internal guidelines. As men-
tioned in Section III-B, we do not include task description
for Dfb in the absence of validated information.

• Input: We use transcript chunks with 100 caption size as
that produced the highest amount of correct issues.

• Demonstrations: While adding demonstrations did not
hamper the results, we found the improvement not sig-
nificant enough to include demonstrations in the final
prompt. Especially because these require a significant
amount of tokens and we found that increasing token
size can be detrimental to report quality.

8



We run this final prompt on all 36 transcripts. For each
transcript, we run the model five times and create the final
report using all and common methods, as described in Section
III-C. For each issue in the final report, we manually assess
its validity by parsing the recording and ground truth answers
for each of the datasets.

The results are listed in Table VI, grouped by datasets, AT
types and category of user test. In the final column, we show
the cumulative results. When considering all issues, our tool
generated a precision of 85% and a near perfect recall of
98%. The precision indicates that most of the issues reported
are correct, as in these have been mentioned by the tester,
as opposed to false interpretation. The high recall indicates
that almost all the issues mentioned by the tester have been
reported by the model, missing only 6 out of 319. For common
issues, precision slightly increases, but recall drops to 85%.
In filtering out issues mentioned less frequently, valid issues
were skipped. The slight increase in precision indicates that
the filtering process helped remove some false interpretations.

Looking into the different datasets, we see that the model
underperforms for Dfb compared to the other two. The recall
suffers from 4 False Negative issues, which can be attributed to
cases where Fable analysts derived issues from the recording
that was not apparent in the transcript. We look into the False
Positives in the next section.

In terms of recall, reports from the three different AT types
perform near equally. However, precision falls for sessions
conducted with alternative navigation technology, with screen
reader sessions also accumulating comparatively more False
Positives. We detail in the next section how the nature of these
two technologies can cause the model to misinterpret text in
the transcript as an issue where none exists.

Lastly, in comparing the difference of performance between
self-guided tasks and user interviews, we see that they scored
similar precision and recall. This indicates that the model
works well for both types of user tests, despite the transcripts
for the latter containing extra speech from the interviewer in
the transcripts.

C. RQ3: Strengths and weaknesses

For this Research Question, we manually inspect the reports
to understand where the model succeeded and underperformed,
and why that might have happened.

With a recall of 98%, the quantitative results showed that the
model is able to grasp reported issues from a noisy transcript.
From manual observation, we also see that the issues reported
are described accurately and in detail. It interprets the tester’s
complaint and relates it to common accessibility issues, aided
by the guidelines used as contextual information.

In Fig. 6, we illustrate a reported issue, specifically one
derived from the excerpt in Fig. 2. This demonstrates how the
model can parse through the noise and understand the tester’s
speech, and place that issue within the context of the larger
transcript and elaborate on the issue.

However, we also observed that the guidelines can lead
to generic descriptions. For instance, we observed the pre-
dominance of terms related to “error messages” and “focus

Fig. 6. Example of a reported issue with title, description and timestamps

management”. As shown in Fig. 7, while not incorrect, these
often convoluted straight-forward descriptions, when compar-
ing with ground truth. Looking into the internal guidelines,
we found that there were multiple entries with these terms
and hypothesize its influence on the model.

Fig. 7. Example of reports being affected by guideline language

For the model’s output, we instructed it to generate the
timestamps where the issues originated. In most cases, the
model has been able to make accurate mapping of reported
issues with the corresponding timestamps, helpful for revisit-
ing issues in the recording.

In some rare cases, as shown in Fig. 8, the issues would span
long stretches of timestamps and generate vague descriptions.
While not always inaccurate, these are redundant and may lead
to extra effort to understand an issue.

Fig. 8. Example of a report with vague description and too many timestamps

9



TABLE VI
RESULTS FOR RQ2

Dmm Dgs Dfb Screen Reader Alternative
Navigation

Magnification Self-guided Interview Total

No. of sessions 10 10 16 20 10 6 29 7 36
A

ll

TP 177 30 108 240 29 46 198 117 315
FP 25 4 26 37 13 5 36 19 55
FN 0 2 4 3 3 0 3 1 4
Precision 88% 88% 81% 87% 69% 90% 85% 86% 85%
Recall 100% 93% 96% 99% 91% 100% 98% 99% 98%

C
om

m
on

TP 140 25 84 188 24 37 156 93 249
FP 18 1 20 25 10 4 24 15 39
FN 21 5 18 32 4 8 29 15 44
Precision 89% 96% 81% 88% 71% 90% 87% 86% 86%
Recall 87% 83% 82% 85% 86% 82% 84% 86% 85%

We observed that the model is very thorough in analyzing
issues. It was able to generate a total of 374 issues from 36
transcripts. A strength of being thorough is that it can extract
issues from minute details that may be missed by an analyst.
In Dfb, where the ‘confirmed’ issues were issues derived by
analysts, the ‘mentioned’ issues can represent issues they have
missed. Of the total unique True Positives detected in Dfb,
almost 60% are ‘mentioned’ issues. This indicates that our
model is able to detect issues that human analysis may miss.

The downside of being thorough is that the model would
sometimes forcefully interpret statements as issues. There are
three types of such cases. First, when the tester is remembering
past issues experienced with other applications. The model is
not always able to differentiate that with issues on the current
app. Second, when the tester is talking about issues that are
not related to the app, for instance, issues with the keypad or
their AT. The model sometimes interprets them as the app’s
issues. Third, when the tester is complimenting on a certain
feature. The model would still try to reframe the statement as
a possible issue with the app under test. We exemplify the last
case in Fig. 9, where the tester appreciating the inclusion of a
transcript is framed as them complaining about video controls.

Fig. 9. Example of an inaccurate report that misconstrued a compliment

Lastly, as touched on in the last section, a weakness of
the model is related to the nature of screen readers and
alternative navigation tools. The former announces elements
on the screen, while the latter usually works through voice
commands from the user. Both of these audio cues are present
in the transcript. In most cases, the model is able to parse the
noise, and exclude screen reader announcements and voice
commands. However, when the announcement or command
contains repeat phrases, the model interprets it as a problem.

As shown in Fig. 10, the event of a tester using mouse grids
to pinpoint elements and clicking through them is flagged as
an issue because the tester used the “click” voice commands
multiple times in succession.

Fig. 10. Example of an inaccurate report that misinterpreted repeat voice
commands as a possible issue

The points listed in this section are valuable in understand-
ing the limitations of LLMs in this space, but also direct
further investigation to be done to improve this line of work.

V. DISCUSSION

In this study, we look into the applicability of LLMs
for automated report generation in accessibility user testing
processes. We develop an automated tool, called Reca11, that
takes in transcripts from user test sessions and generates a
test report containing the accessibility and usability issues
encountered by the tester with disability. To develop the tool,
we first conduct prompt engineering to configure the most
optimal prompt for the LLM. We observe the performance of
our tool on real world user testing transcripts and investigate
the properties of the reported issues. In this section, we discuss
our findings from these steps and what implications these have
for the relevant communities.

From our prompt engineering runs, we derive two elements
that influence the results the most: input size and the language
of contextual data. We observe that dividing the transcripts,
especially larger ones, into smaller chunks leads to better issue
extraction. Secondly, the model takes significant influence in
writing its output from the contextual information provided

10



to it, e.g., internal guidelines. This can be beneficial when
organizations want to adhere to a predetermined format.

From the quantitative results, the tool performs near per-
fectly, with 98% recall, in deriving all issues mentioned by the
tester. However, the tool suffers from false positives, where
the model labeled as issues instances that were either not
mentioned as an issue originally or not mentioned at all.
Despite that, the precision of the tool is 85%.

Lastly, in analyzing the descriptive properties of the reported
issues, we derive multiple categories of negative cases.

• Unintuitive issues: The overuse of guideline jargon where
it is not necessary can create unintuitive issues.

• Generic issues: The model can merge multiple consecu-
tively mentioned issues together to report a generic issue,
often associated with long timestamps.

• Misinterpreted issues: The model can misunderstand neu-
tral and positive statements or statements that are not
related to the app under test as issues.

• Distracted issues: Due to the interruption in the transcript
from the screen readers, the model is confused by the
transcript and derives an issue from it.

These findings and observations help us understand the
applicability of this tool and LLMs at large in the context
of accessibility user testing.

Implications for Intermediaries: Organizations like Fable
who connect software teams to disabled testers work as
intermediaries in the user testing process. Similarly, in the
CST world, there exist intermediaries like Amazon Mechanical
Turk [66] and others [39]. Our tool is built to streamline their
processes by automatically generating the test report.

Intermediaries have the opportunity to improve the perfor-
mance of the tool by solving its limitations. For instance,
intermediaries can use data from their archival sessions as
demonstrations to the prompt, or to even create a dedicated
fine tuned model. Intermediaries can also update processes for
conducting test sessions to better adopt Reca11. For example,
a separate audio input for screen readers can reduce noise from
the transcript, hence improving the tool’s performance.

Implications for Software Teams: Software practitioners
attribute the disinterest in user testing to its time-consuming
processes and lack of expertise [8]. Reca11 tackles both
of these challenges, by reducing the time to analyze test
recordings, and incorporating timestamps and guideline spec-
ifications for easier understanding.

However, this tool cannot work as a complete replacement
for expertise and awareness on software accessibility. User
tests do not always provide the most accurate feedback [33],
[34] and solving the issues derived still require technical
understanding of accessible programming.

Implications for Researchers: The field of LLM appli-
cations is ever expanding, and newer methods of improv-
ing model performance are being experimented with and
discovered. Based on our prompt engineering results, there
is opportunity to modify and expand on the methods, and
improve upon the reported limitations.

Future work can also look into more advanced outputs.
The generated reports can rank the issues based on severity,

determined by its impact during the user test session or how
negatively the tester talks about it. The reported issues can
include steps for resolution, with the inclusion of interaction
data or the source code as reference.

VI. THREATS TO VALIDITY

Internal Validity: LLMs typically generate non-
deterministic results, causing a potential threat to validity. To
mitigate this, we ran the model five times for each transcript,
combined duplicate issues and reported all the unique issues.

Using a sentence transformer to detect duplicate issues can
pose a threat. To mitigate, we manually experiment with one
report from each dataset, checking whether the reported dupli-
cates were reliable and configuring the threshold accordingly.

External Validity: To increase the generalizability of our
results, we experiment with test sessions from three different
sources. One of these sources, Dfb, was conducted in real
world setting by external clients, with analysis from experts.
While the sessions for Dgs were conducted by the authors,
the website itself, along with the issues injected, were de-
veloped by accessibility experts. We conducted Dmm on an
open-source application that has been experimented with for
accessibility in prior papers. The issues we injected were in
accordance to categories derived by prior studies.

We distributed our test sessions to represent all three popular
AT types: screen readers, alternative navigation and magnifi-
cation, and both user testing methods: self-guided tasks and
user interview. The numeric distribution of the latter is based
on Dfb, a real world project.

VII. CONCLUSION

In this study, we aimed to automatically generate test reports
from recorded user transcripts, in an effort to streamline the
accessibility user testing process. We employ GPT 4.0, a
large language model capable of comprehending, synthesizing
and generating natural language, to derive accessibility and
usability issues from test transcripts. From our findings, we
observe that the model performs well when the transcript
is split into smaller chunks and is paired with detailed in-
structions and contextual information about the test. Our tool
secures a precision of 85% and a recall of 98%, indicating its
success in finding the great majority of reported issues. We
also investigate its inaccuracies and derive limitations such as
forced interpretation and susceptibility to guideline language.

To ensure reproducibility of our study, we publish our
artifacts on a companion website [67].

VIII. ACKNOWLEDGMENTS

This work has been supported, in part, by award numbers
2211790, 1823262, and 2106306 from the National Science
Foundation. We thank Fable for their collaboration in making
this research possible. We are grateful for the detailed feedback
from the anonymous reviewers of this paper, which helped
improve this work.

11



REFERENCES

[1] “Disability fact sheet - who,” Mar 2023. [Online]. Available:
https://www.who.int/news-room/fact-sheets/detail/disability-and-health

[2] A. Alshayban, I. Ahmed, and S. Malek, “Accessibility issues in android
apps: state of affairs, sentiments, and ways forward,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 1323–1334.

[3] S. Chen, C. Chen, L. Fan, M. Fan, X. Zhan, and Y. Liu, “Accessible
or not an empirical investigation of android app accessibility,” IEEE
Transactions on Software Engineering, vol. 48, pp. 3954–3968, 2021.

[4] S. Yan and P. Ramachandran, “The current status of accessibility in
mobile apps,” ACM Transactions on Accessible Computing (TACCESS),
vol. 12, no. 1, pp. 1–31, 2019.

[5] WebAIM, “Webaim: The webaim million - the 2022 report
on the accessibility of the top 1,000,000 home pages,”
https://webaim.org/projects/million/, 2022, (Accessed on 08/24/2022).

[6] W3C, “Web content accessibility guidelines (wcag) 2.1.” [Online].
Available: https://www.w3.org/TR/WCAG22/

[7] A. S. Compliance. (2022) A recap of 2022 website
accessibility lawsuits. Ada Site Compliance. [Online]. Avail-
able: https://adasitecompliance.com/recap-2022-website-accessibility-
lawsuits/

[8] S. F. Huq, A. Alshayban, Z. He, and S. Malek, “#a11ydev:
Understanding contemporary software accessibility practices from
twitter conversations,” in International Conference on Human-
Computer Interaction, ser. CHI ’23. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3544548.3581455

[9] KIF. (2023) Keep it functional - an ios functional testing framework.
[Online]. Available: https://github.com/kif-framework/KIF

[10] Android. (2023) Improve your code with lint checks. Google. [Online].
Available: https://developer.android.com/studio/write/lint?hl=en

[11] G. Android. (2023, March) Accessibility scanner. [Online]. Available:
https://support.google.com/accessibility/android/answer/6376570?hl=en

[12] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:
programmable ui-automation for large-scale dynamic analysis of mobile
apps,” in Proceedings of the 12th annual international conference on
Mobile systems, applications, and services. Bretton Woods, New
Hampshire, USA: ACM New York, NY, USA, 2014, pp. 204–217.

[13] M. M. Eler, J. M. Rojas, Y. Ge, and G. Fraser, “Automated accessibility
testing of mobile apps,” in 2018 IEEE 11th International Conference on
Software Testing, Verification and Validation. Västerås, Sweden: ICST,
2018, pp. 116–126.

[14] N. Salehnamadi, A. Alshayban, J.-W. Lin, I. Ahmed, S. Branham,
and S. Malek, “Latte: Use-case and assistive-service driven automated
accessibility testing framework for android,” in Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems. Virtual,
Okohama, Japan: ACM New York, NY, USA, 2021, pp. 1–11.

[15] N. Salehnamadi, F. Mehralian, and S. Malek, “Groundhog: An auto-
mated accessibility crawler for mobile apps,” in Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2022, pp. 1–12.

[16] A. S. Alotaibi, P. T. Chiou, and W. G. Halfond, “Automated detection
of talkback interactive accessibility failures in android applications,” in
2022 IEEE Conference on Software Testing, Verification and Validation
(ICST), IEEE. Virtual: IEEE, 2022, pp. 232–243.

[17] A. Alshayban and S. Malek, “Accessitext: Automated detection of
text accessibility issues in android apps,” in Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2022.
New York, NY, USA: Association for Computing Machinery, 2022, p.
984–995. [Online]. Available: https://doi.org/10.1145/3540250.3549118

[18] F. Mehralian, N. Salehnamadi, S. F. Huq, and S. Malek, “Too much
accessibility is harmful! automated detection and analysis of overly ac-
cessible elements in mobile apps,” in 2022 37th IEEE/ACM International
Conference on Automated Software Engineering, IEEE. Rochester,
Michigan, USA: ACM New York, NY, USA, 2022.

[19] N. Salehnamadi, Z. He, and S. Malek, “Assistive-technology aided
manual accessibility testing in mobile apps, powered by record-and-
replay,” in Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems, 2023, pp. 1–20.

[20] G. Brajnik, “A comparative test of web accessibility evaluation meth-
ods,” in Proceedings of the 10th international ACM SIGACCESS con-
ference on Computers and accessibility, 2008, pp. 113–120.

[21] A. Aizpurua, M. Arrue, S. Harper, and M. Vigo, “Are users the gold
standard for accessibility evaluation?” in Proceedings of the 11th Web
for All Conference, 2014, pp. 1–4.

[22] D. A. Mateus, C. A. Silva, A. F. De Oliveira, H. Costa, and A. P.
Freire, “A systematic mapping of accessibility problems encountered
on websites and mobile apps: A comparison between automated tests,
manual inspections and user evaluations,” Journal on Interactive Sys-
tems, vol. 12, no. 1, pp. 145–171, 2021.

[23] Y. Inal, K. Rızvanoğlu, and Y. Yesilada, “Web accessibility in turkey:
awareness, understanding and practices of user experience profession-
als,” Universal Access in the Information Society, vol. 18, no. 2, pp.
387–398, 2019.

[24] Y. Inal, F. Guribye, D. Rajanen, M. Rajanen, and M. Rost, “Perspectives
and practices of digital accessibility: A survey of user experience
professionals in nordic countries,” in Proceedings of the 11th Nordic
Conference on Human-Computer Interaction: Shaping Experiences,
Shaping Society, 2020, pp. 1–11.

[25] T. Bi, X. Xia, D. Lo, J. Grundy, T. Zimmermann, and D. Ford,
“Accessibility in software practice: A practitioner’s perspective,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 31, no. 4, pp. 1–26, 2022.

[26] S. L. Christopher Vendome, Diana Solano and M. Linares-Vásquez,
“Can everyone use my app? an empirical study on accessibility in
android apps,” in 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2019.

[27] M. V. R. Leite, L. P. Scatalon, A. P. Freire, and M. M. Eler,
“Accessibility in the mobile development industry in Brazil: Awareness,
knowledge, adoption, motivations and barriers,” Journal of Systems
and Software, vol. 177, p. 110942, Jul. 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S016412122100039X

[28] S. Cao and E. Loiacono, “The state of the awareness of web accessibility
guidelines of student website and app developers,” in International
Conference on Human-Computer Interaction. Springer, 2019, pp. 32–
42.

[29] H. Petrie and N. Bevan, “The evaluation of accessibility, usability, and
user experience.” The universal access handbook, vol. 1, pp. 1–16, 2009.

[30] S. Alyahya, “Crowdsourced software testing: A systematic literature
review,” Information and Software Technology, vol. 127, p. 106363,
2020.

[31] A. Beganovic, M. A. Jaber, and A. Abd Almisreb, “Methods and
applications of chatgpt in software development: A literature review,”
Southeast Europe Journal of Soft Computing, vol. 12, no. 1, pp. 08–12,
2023.

[32] J. Li, A. Dada, B. Puladi, J. Kleesiek, and J. Egger, “Chatgpt in
healthcare: a taxonomy and systematic review,” Computer Methods and
Programs in Biomedicine, p. 108013, 2024.

[33] G. Brajnik, Y. Yesilada, and S. Harper, “The expertise effect on web ac-
cessibility evaluation methods,” Human–Computer Interaction, vol. 26,
no. 3, pp. 246–283, 2011.

[34] D. A. Mateus, S. B. L. Ferreira, M. R. de Almeida Souza, and A. P.
Freire, “Accessibility inspections of mobile applications by professionals
with different expertise levels: An empirical study comparing with
user evaluations,” in IFIP Conference on Human-Computer Interaction.
Springer, 2023, pp. 135–154.

[35] G. Brajnik, M. Vigo, Y. Yesilada, and S. Harper, “Group vs individual
web accessibility evaluations: effects with novice evaluators,” Interacting
with Computers, vol. 28, no. 6, pp. 843–861, 2016.

[36] S. Song, J. Bu, A. Artmeier, K. Shi, Y. Wang, Z. Yu, and C. Wang,
“Crowdsourcing-based web accessibility evaluation with golden max-
imum likelihood inference,” Proceedings of the ACM on Human-
Computer Interaction, vol. 2, no. CSCW, pp. 1–21, 2018.

[37] Feb 2024. [Online]. Available: https://makeitfable.com/
[38] M. Van Someren, Y. F. Barnard, and J. Sandberg, “The think aloud

method: a practical approach to modelling cognitive,” London: Aca-
demicPress, vol. 11, no. 6, 1994.

[39] W.-T. Tsai, L. Zhang, S. Hu, Z. Fan, and Q. Wang, “Crowdtesting
practices and models: An empirical approach,” Information and Software
Technology, vol. 154, p. 107103, 2023.

[40] M. Gómez, R. Rouvoy, B. Adams, and L. Seinturier, “Reproducing
context-sensitive crashes of mobile apps using crowdsourced monitor-
ing,” in Proceedings of the international conference on mobile software
engineering and systems, 2016, pp. 88–99.

[41] D. Liu, X. Zhang, Y. Feng, and J. A. Jones, “Generating descriptions for
screenshots to assist crowdsourced testing,” in 2018 IEEE 25th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2018, pp. 492–496.

12



[42] X. Chen, H. Jiang, Z. Chen, T. He, and L. Nie, “Automatic test report
augmentation to assist crowdsourced testing,” Frontiers of Computer
Science, vol. 13, pp. 943–959, 2019.

[43] H. Jiang, X. Li, Z. Ren, J. Xuan, and Z. Jin, “Toward better summarizing
bug reports with crowdsourcing elicited attributes,” IEEE Transactions
on Reliability, vol. 68, no. 1, pp. 2–22, 2018.

[44] F. Scientific. (2023, March) Jaws. [Online]. Available:
https://www.freedomscientific.com/products/software/jaws/

[45] N. Access. (2023, March) Nvda. [Online]. Available:
https://www.nvaccess.org/about-nvda/

[46] Apple. (2023, March) Introducing voiceover. [Online]. Available:
https://www.apple.com/voiceover/info/guide/ 1121.html

[47] A. Talkback. (2023, March) Get started
on android talkback. [Online]. Available:
https://support.google.com/accessibility/android/answer/6283677?hl=en

[48] M. Taeb, A. Swearngin, E. Schoop, R. Cheng, Y. Jiang, and
J. Nichols, “Axnav: Replaying accessibility tests from natural
language,” in Proceedings of the CHI Conference on Human Factors
in Computing Systems, ser. CHI ’24. New York, NY, USA:
Association for Computing Machinery, 2024. [Online]. Available:
https://doi.org/10.1145/3613904.3642777

[49] OpenAI. (2024) Introducing chatgpt. [Online]. Available:
https://openai.com/blog/chatgpt

[50] J. Yang, H. Jin, R. Tang, X. Han, Q. Feng, H. Jiang, S. Zhong, B. Yin,
and X. Hu, “Harnessing the power of llms in practice: A survey on
chatgpt and beyond,” ACM Transactions on Knowledge Discovery from
Data, 2023.

[51] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a
few examples: A survey on few-shot learning,” ACM computing surveys
(csur), vol. 53, no. 3, pp. 1–34, 2020.

[52] N. Nasser. (2024) Money manager app. [Online]. Available:
https://github.com/Nada-Nasser/Money-Manager-App

[53] Instructions - record a goose sighting. [Online]. Available: https://record-
a-goose-sighting.apps.live.cloud-platform.service.justice.gov.uk/

[54] B. Newing, “Answers - record a goose sighting.”

[Online]. Available: https://record-a-goose-sighting.apps.live.cloud-
platform.service.justice.gov.uk/steps/answers

[55] Nuance. (2023, March) Get more done by voice. [Online]. Available:
https://www.nuance.com/dragon.html

[56] A. Support. (2023, March) Use voice control. [Online]. Available:
https://support.apple.com/en-us/111778

[57] Fable. (2023, March) What is a switch system. [Online]. Available:
https://makeitfable.com/glossary-term/switch-system/

[58] F. Scientific. (2023, March) Zoomtext. [Online]. Available:
https://www.freedomscientific.com/products/software/zoomtext/

[59] Hugging Face. [Online]. Available: https://huggingface.co/sentence-
transformers/all-mpnet-base-v2

[60] N. Reimers, “Pretrained models - sentence-transformers documentation.”
[Online]. Available: https://www.sbert.net/docs/pretrained models.html

[61] OpenAI. (2023, March) Gpt-4. [Online]. Available:
https://openai.com/research/gpt-4

[62] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[63] Z. Cheng, T. Xie, P. Shi, C. Li, R. Nadkarni, Y. Hu, C. Xiong, D. Radev,
M. Ostendorf, L. Zettlemoyer et al., “Binding language models in
symbolic languages,” arXiv preprint arXiv:2210.02875, 2022.

[64] N. Nashid, M. Sintaha, and A. Mesbah, “Retrieval-based prompt se-
lection for code-related few-shot learning,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). IEEE, 2023,
pp. 2450–2462.

[65] Q. Guo, J. Cao, X. Xie, S. Liu, X. Li, B. Chen, and X. Peng, “Exploring
the potential of chatgpt in automated code refinement: An empirical
study,” in Proceedings of the 46th IEEE/ACM International Conference
on Software Engineering, 2024, pp. 1–13.

[66] (2024, June) Amazon mechanical turk. [Online]. Available:
https://www.mturk.com/

[67] (2024, March) Reca11 artifacts. [Online]. Available:
https://anonymous.4open.science/r/Reca11-3E54/

13


