
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024 1639

DARCY: Automatic Architectural Inconsistency
Resolution in Java

Negar Ghorbani , Tarandeep Singh , Joshua Garcia , Member, IEEE, and Sam Malek , Member, IEEE

Abstract—Many mainstream programming languages lack ex-
tensive support for architectural constructs, such as software
components, which limits software developers in employing many
benefits of architecture-based development. To address this issue,
Java, one of the most popular and widely-used programming
languages, has introduced the Java Platform Module System
(JPMS) in its 9th and subsequent versions. JPMS provides the
notion of architectural constructs, i.e., software components, as
an encapsulation of modules that helps developers construct
and maintain large applications efficiently—as well as improv-
ing the encapsulation, security, and maintainability of Java
applications in general and the JDK itself. However, ensuring
that module declarations reflect the actual usage of modules in
an application remains a challenge that results in developers
mistakenly introducing inconsistent module dependencies at both
compile- and run-time. In this paper, we studied JPMS properties
and architectural notions in-depth and defined a defect model
consisting of eight inconsistent modular dependencies that may
arise in Java applications. Based on this defect model, we
also present DARCY, a framework that leverages the defect
model and static analysis techniques to automatically detect
and repair the specified inconsistent dependencies within Java
applications at both compile- and run-time. The results of our
experiments, conducted over 52 open-source Java 9+ applications,
indicate that architectural inconsistencies are widespread and
demonstrate DARCY’s effectiveness for automated resolution of
these inconsistencies.

Index Terms—Software Architecture, Java Platform Module
System, Architectural Inconsistency, Software Analysis, Software
Repair.

I. INTRODUCTION

EVERY software system has an architecture comprising the
principal design decisions employed in the system’s con-

struction [1], which is not usually explicitly documented, e.g.,
in the form of UML models. Furthermore, the architecture of a
system is often conceptualized in terms of high-level constructs,
such as software components, connectors, and their interfaces.
However, programming languages used to implement the soft-
ware systems provide low-level constructs, such as classes,
methods, and variables. Therefore, in many software systems,

Manuscript received 4 August 2023; revised 18 April 2024; accepted
22 April 2024. Date of publication 3 May 2024; date of current version
14 June 2024. This work was supported by the National Science Foundation
award numbers 2211790 and 2106306. Recommended for acceptance by
R. Kazman. (Corresponding author: Negar Ghorbani.)

Negar Ghorbani, Tarandeep Singh, Joshua Garcia, and Sam Malek
are with the Department of Informatics, University of California Irvine,
Irvine, CA 92697-3440, USA (e-mail: negargh@uci.edu; tarandes@uci.edu;
joshug4@uci.edu; malek@uci.edu).

Digital Object Identifier 10.1109/TSE.2024.3396433

the architecture as intended or even documented, known as
the prescriptive architecture, does not match the architecture
reflected in the system’s implementation, known as the de-
scriptive architecture, and it is a non-trivial task to map one
to the other. Hence, ensuring the conformance between the
prescriptive and descriptive architecture has been a significant
challenge in the software engineering literature [1].

Inconsistencies between prescriptive and descriptive archi-
tectures are of utmost concern in any software project since ar-
chitecture is the primary determinant of a software system’s key
properties. One promising approach for abating the occurrence
of architectural inconsistencies is to make it easier to bridge the
gap between architectural abstractions and their implementation
counterparts. To that end, the software engineering research
community has previously advocated for architecture-based
development, whereby a programming language (e.g., ArchJava
[2]) or a framework (e.g., C2 [3]) provides the implementation
constructs for realizing the architectural abstractions.

In spite of this prior work in the academic community, until
fairly recently, Java—arguably the most popular programming
languages over the past two decades—lacked extensive support
for architecture-based development. This all changed with the
introduction of Java Platform Module Systems (JPMS) in Java
9 and subsequent versions1. Modules are intended to make it
easier for developers to construct large applications and im-
prove the encapsulation, security, and maintainability of Java
applications in general as well as the JDK itself [4].

Using Java’s module system, the developer explicitly spec-
ifies the system’s components (i.e., modules in Java) as well
as the specific nature of their dependencies in a file called
module-info. However, Java does not provide any mech-
anism to ensure the prescriptive architecture specified in the
module-info file is in fact, consistent with the descriptive
architecture of the implemented software, i.e., whether the de-
clared dependencies in the module-info file are accurately
reflecting the implemented dependencies among the system’s
components. Similarly, in case of any changes to the speci-
fied dependencies of modules at run-time, Java cannot ensure
whether those changes are consistent with the applications’
implemented dependencies.

Inconsistencies between the prescriptive and descriptive ar-
chitectures in Java 9+ matter. The Java platform uses the
module-info file to determine the level of access granted
to each module and to determine which modules should be

1We may refer to Java 9 and subsequent versions as Java 9+ in this paper.

0098-5589 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 21,2024 at 23:33:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0528-6138
https://orcid.org/0009-0001-3323-1791
https://orcid.org/0000-0002-1696-8783
https://orcid.org/0000-0001-6152-7402
mailto:negargh@uci.edu
mailto:tarandes@uci.edu
mailto:joshug4@uci.edu
mailto:malek@uci.edu

1640 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

packaged together for deployment. As a result, inconsistencies
between prescriptive and descriptive architecture in Java have
severe security and performance consequences. These inconsis-
tencies also affect an engineer’s ability to use the prescriptive
architecture to understand a system’s properties or to make
maintenance decisions.

In this paper, we present DARCY, an automated framework
that leverages a defect model consisting of 8 types of architec-
tural inconsistencies we formally defined and static analyses to
automatically resolve the identified inconsistencies within Java
applications at both compile- and run-time. The results of our
experiments, conducted over 52 open-source Java 9+ applica-
tions, indicate that architectural inconsistencies are widespread
and demonstrate the benefits of DARCY in automated detection
and repair of these inconsistencies. DARCY found 567 instances
of inconsistencies in our dataset of Java applications. By auto-
matically fixing these inconsistencies, DARCY was able to mea-
surably improve various attributes of the subject applications’
architectures at both compile- and run-time by reducing the at-
tack surface of applications, improving their encapsulation, and
producing deployable applications that consume less memory.

This paper presents several new non-trivial extensions to the
preliminary version of our work published previously [5] as
follows: (1) We have extended DARCY to detect and repair
architectural inconsistencies not only statically at compile-time,
but also dynamically at run-time. JPMS allows for the architec-
ture of a software system to be changed dynamically at run-
time. These dynamic changes may introduce inconsistencies
that could not be detected using the techniques described in
our prior publication. (2) Since at the time of our previous
work [5] JPMS was a newly introduced concept, open-source
repositories lacked an adequate number of appropriate Java 9
applications. Therefore, in this paper, we have expanded our
evaluation dataset to include ten additional, larger and more ma-
ture Java 9+ applications to better evaluate DARCY’s effective-
ness. (3) We have designed and reported on new experiments
to evaluate DARCY’s ability in terms of resolving architectural
inconsistencies at run-time and improving architectural metrics
followed by the resolution.

To summarize, this paper makes the following contributions:
• Construction of a defect model representing formal defini-

tions of 8 modular inconsistencies that may occur in Java
9+ applications at both compile- and run-time.

• An automated framework that leverages the defect model
and static analysis techniques to automatically (1) detect
the specified inconsistencies within Java applications, and
(2) repair them at both compile- and run-time. DARCY is
also publicly available [6].

• An extensive empirical evaluation on real-world Java 9+
applications demonstrating DARCY’s effectiveness
in resolving compile- and run-time architectural
inconsistencies.

The remainder of this paper is organized as follows. Section
II introduces the module system of Java and its design goals.
Section III formally specifies a defect model consisting of the
architectural inconsistencies in the context of Java 9+. Section
IV provides the details of our approach and its implementation.

Section V presents the experimental evaluation of the research.
Section VI includes the threats to validity of our approach.
The paper concludes with an outline of related research and
future work.

II. JAVA PLATFORM MODULE SYSTEM

To aid the reader with understanding architectural specifica-
tion in Java 9+, we introduce the new module system for Java
9+, called Java Platform Module System (JPMS). We overview
JPMS’s goals and the architectural risks that arise from its
misuse. We then discuss the details of modules in Java 9+—
including module declarations, module directives, and their
behavior at run-time.

A. JPMS Goals and Potential Misuse

JPMS enables specification of a prescriptive architecture in
terms of key architectural elements—specifically components
in the form of Java modules, architectural interfaces, and re-
sulting dependencies among components. JPMS aims to enable
reliable configuration, stronger encapsulation, modularity of the
Java Development Kit (JDK) and Java Runtime Environment
(JRE) to solve the problems faced by engineers when develop-
ing and deploying Java applications [7].

Software designers and developers can achieve strong encap-
sulation in their Java 9+ systems by modularizing them and
allowing explicit specification of interfaces and dependencies.
Encapsulation in Java 9+ is achieved by allowing architects or
developers to specify which of a Java module’s public types are
accessible or inaccessible to other modules [8]. A module must
explicitly declare which of its public types are accessible to
other modules. A module cannot access public types in another
module unless those modules explicitly make their public types
accessible. As a result, JPMS has added more refined accessi-
bility control—allowing architects and developers to decrease
accessibility to packages, reduce the points at which a Java
application may be susceptible to security attacks, and design
more elegant and logical architectures [9].

Prior to Java 9, the Java platform was a monolith consisting
of a massive number of packages, making it challenging to
develop, maintain, and evolve. Software developers could not
easily choose a subset of the JDK as a platform for their appli-
cations. This results in software bloat and more potential points
of attack for malicious agents. With the introduction of JPMS
in Java 9, the Java platform was modularized into 95 modules.
Furthermore, many internal APIs are hidden from apps using
the platform [8], potentially reducing problems involving soft-
ware bloat and security.

Using JPMS, Java developers can create lightweight custom
JREs consisting of only modules they need for their application
or the devices they are targeting. As a result, the Java platform
can more easily scale down to small devices, which is important
for microservices or IoT devices [10]. For example, if a device
does not support GUIs, developers could use JPMS to create a
runtime environment that does not include the GUI modules,
significantly reducing the runtime memory size [9].

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 21,2024 at 23:33:14 UTC from IEEE Xplore. Restrictions apply.

GHORBANI et al.: DARCY: AUTOMATIC ARCHITECTURAL INCONSISTENCY RESOLUTION IN JAVA 1641

JPMS also allows developers to modify Java applications
at run-time. More specifically, developers can dynamically
load new modules into a running Java application or unload
them [11].

Although JPMS allows for specification of prescriptive ar-
chitectures, the descriptive architecture of a Java application
may be inconsistent with the prescriptive architecture. Such
inconsistencies may arise due to architects or developers mis-
understanding of a software systems’ architectures (e.g., an
architect mistakenly specifies a more accessible interface than
he intended), or simply due to mistaken implementations (e.g.,
a developer neglects to use a module’s interface, even though
the architect intended such a use). This can result in (1) a
poorly encapsulated architecture, making an application harder
to understand and maintain; (2) bloated software; or (3) insecure
software. In terms of security, for instance, one of the poten-
tial problems is the granting of unnecessary access to internal
classes and packages, potentially resulting in security vulner-
abilities. In terms of software bloat, inconsistent dependencies
can compromise scalability and performance of Java software
(e.g., requiring many unnecessary modules from the JDK).

B. Understanding JPMS Modules

In JPMS, a module is a uniquely named, reusable group of
related packages, as well as resources (such as images and
XML files) [4]. Each module has a descriptor file, module-
info.java, which contains meta-data, including the declara-
tion of a named module. A named module should specify (1) its
dependencies on other modules, i.e., the classes and interfaces
that the module needs or expects, and should specify (2) which
of its own packages, classes, and interfaces are exposed to other
modules.

A module can be a normal module or an open module. A
normal module allows access from other modules at compile-
time and run-time to only explicitly exported packages; an open
module allows access from other modules (1) at compile-time
to only explicitly exported packages and (2) at run time to all
its packages [12].

The module declaration file consists of a unique module
name and a module body. Any module body can be empty
or contain one or more module directives, which specifies a
module’s exposure to other modules or the modules it needs
access to.

Fig. 1 shows an example of a Java application. This example
is inspired by one of the subject applications studied in our work
(see Section V), called Quasar. For the purpose of introduc-
ing JPMS module constructs and directives, we only present
a subset of Quasar’s architecture consisting of three modules,
namely core, actor, and disruptor. The declarations
of each module provided in its module-info.java file is
described in Fig. 1(a). Fig. 1(b) is a diagram that depicts the
relationship between the same modules based on dependencies
in their declarations.

A module body can utilize combinations of the following
five module directives [12], which specify module interfaces
and their usage: the requires directive specifies the packages

Fig. 1. Three example modules with their inter-dependencies.

that a module needs access to, the exports and opens directives
make packages of a module available to other modules, the
provides directive specifies the services a module provides, and
the uses directive specifies the services a package consumes.
These directives can be declared as described below:

• The requires directive with declaration requires
m2 of a module m1 specifies the name of a module m2

that m1 depends on. m2 can be a user-defined module or
a module within the JDK. For example, in Fig. 1, module
disruptor requires module java.instrument. The
requires declaration of a module m1 may be followed by
the transitive modifier, which ensures that any mod-
ule m3 that requires m1 also implicitly requires module
m2. As an example, in Fig. 1, module actor requires
module disruptor and any module that requires ac-
tor also implicitly requires disruptor.

• The exports directive with declaration exports p of
a module m1 specifies that m1 exposes package p’s public
and protected types, and their nested public and protected
types, to all other modules at both runtime and compile-
time. For example, in Fig. 1, the module disruptor ex-
ports the package quasar.disruptor.channels.
We can also export a package specifically to one or

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 21,2024 at 23:33:14 UTC from IEEE Xplore. Restrictions apply.

1642 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

more modules by using the exports p tom2,m3, ...,mn

declaration. In this case, the public and protected types of
the exported package are only accessible to the modules
specified in the to clause. As an example, in Fig. 1, module
actor exports quasar.actors.spi to the module
disruptor.

• The opens directive with declaration opens p speci-
fies that package p’s nested public and protected types,
and the public and protected members of those types, are
accessible by other modules at runtime but not compile-
time. This directive also grants reflective access to all
types in p, including the private types, and all its mem-
bers, from other modules. For example, in Fig. 1, module
actor makes package quasar.actors.util avail-
able to other modules only at runtime, including through
reflection.

This directive may also be followed by the to modi-
fier, resulting in the opens p to m2,m3, ...,mn declara-
tion. In this case, the public and protected types of p are
only accessible to the modules specified in the to clause.
For instance, in Fig. 1, module actor makes package
quasar.actors.actor available only at runtime, in-
cluding through reflection, to the module disruptor.
Unlike the other directives that can only be used in the
body of a module’s specification, open can be used in both
the body of a module’s specification and in its header (i.e.,
before the module’s name). The latter usage is a shorthand
way of denoting all packages in the module are open.

• The provides with directive with declaration
provides c1 with c2, c3, ..., cn of module m1

specifies that a class c1 is an abstract class or interface
that is provided as a service by m1. The with clause
specifies one or more service provider classes for use with
java.util.ServiceLoader. A service is a well-
known set of interfaces and (usually abstract) classes. A
service provider is a specific implementation of a service.
The class java.util.ServiceLoader<S> is a
simple service-provider loading facility. It loads a provider
implementing the service type S [13]. For instance in
Fig. 1, module disruptor provides the abstract
class quasar.common.util.ProcessUtil as a
service using the quasar.disruptor.processor.
ImplProcess class as the service’s implementation.

• The uses directive with declaration uses c1 of a module
m1 specifies that m1 uses a service object of an abstract
class or interface, c1, provided by another module. For this
purpose, the module should discover providers of the spec-
ified service via java.util.ServiceLoader. As an
example from Fig. 1, module actor uses the service ob-
ject of class quasar.common.util.ProcessUtil,
which is provided by module disruptor.

Note that, as depicted in Fig. 1, both provides with and
uses directives need the module being declared to require
the service module as well.

Depending on different use cases, Java modules can be dy-
namically loaded or unloaded at run-time [11], altering the
system’s prescriptive and descriptive architecture.

III. DEFECT MODEL: INCONSISTENT MODULE DEPENDENCIES

We found certain types of inconsistencies may arise be-
tween the specification of module dependencies in the mod-
ule.info file (i.e., prescriptive architecture) and the actual
dependencies among the implemented modules comprising the
system (i.e., descriptive architecture). These inconsistencies oc-
cur in modules’ specifications at both compile- and run-time.
Insufficiently specified dependencies (e.g., a module that at-
tempts to use a package it does not have a requires directive
for) are already checked by the Java platform. However, excess
dependencies, where a module either (1) exposes more of its
internals than are used or (2) requires internals of other modules
that it never uses, are not handled by the Java platform. These
inconsistencies can affect various architectural attributes:

A1: Encapsulation and Maintenance—Requiring un-
needed functionalities of other modules increases the complex-
ity of the module unnecessarily, compromises its encapsulation,
and decreases its maintainability.

A2: Software Bloat and Scalability—Requiring unneeded
modules, especially from JDK, can result in bloated software,
which compromises scalability of the application.

A3: Security—Excessively exposing the internals of a mod-
ule can result in errors or security issues arising in the module.

To achieve a systematic and comprehensive coverage of
all types of inconsistent module dependencies, we studied all
potential inconsistencies resulting from developers’ misuse of
each type of module directive. In the remainder of this section,
we focus on specifying eight types of inconsistent dependencies
that may arise when using JPMS and the functions needed to
specify those dependencies.

Table I includes 11 functions that directly model different
variations of the five module directives in JPMS. To describe a
class loading a service using java.util.ServiceLoader
API, we define the LoadsService function. For actual code
usage among packages, as opposed to those specified through
module directives, we define the Dep function.

By leveraging the functions in Table I, we introduce eight
types of excess inconsistent dependencies: requires, JDK re-
quires, requires transitive, exports(to), provides with, uses,
open, and opens(to) modifiers. For each inconsistent depen-
dency type, there is a dependency explicitly defined in a
module-info file that is not actually used in the source
code of the module. Using these formal definitions, Section IV
detects and repairs the following inconsistent dependencies.

Inconsistent Requires Dependency: This scenario de-
scribes an inconsistent requires dependency in which (1) mod-
ule m1 explicitly declares that it requires another module m2

and (2) no class of m1 actually uses any class inside exported
packages of m2. As a result, this inconsistency mostly affects
attribute A1. It can also affect attribute A2.

Req(m1 ,m2) ∧ (� p1 ∈m1, p2 ∈m2 :Dep (p1, p2)) (1)

Inconsistent JDK Requires Dependency: This scenario
describes an inconsistent requires dependency in which mod-
ule m1 explicitly declares that it requires a module inside the
Java JDK, mjdk. However, none of the classes inside m1 uses

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 21,2024 at 23:33:14 UTC from IEEE Xplore. Restrictions apply.

GHORBANI et al.: DARCY: AUTOMATIC ARCHITECTURAL INCONSISTENCY RESOLUTION IN JAVA 1643

TABLE I
FUNCTIONS DESCRIBING DEPENDENCIES BASED ON MODULE

DIRECTIVES OF JPMS

Function Description

Req(m1,m2) Module m1 requires module m2.

ReqJDK(m1,mjdk) Module m1 requires the JDK
module mjdk .

ReqTransitive(m1,m2) Module m1 requires transitive
module m2.

Exp(m, p) Module m exports package p.

ExpTo(m1, p1, {m2,m3, . . .}) Module m1 exports package p1 to
the set of modules {m2,m3, …}.

Open(m) Module m is open.

Opens(m, p) Module m opens package p.

OpensTo(m1, p, {m2,m3, . . .}) Module m1 opens package p to
the set of modules {m2, m3, …}.

Uses(m, s) Module m uses Service s.

ProvidesWith(m, s, {c1, c2, . . .}) Module m provides service s with
the set of classes {c1, c2, …}.

LoadsService(c, s) Class c loads Service s via the
java.util.ServiceLoader
API.

Dep(p1, p2) Source code in package p1 uses
classes of package p2.

ReflDep(p1, p2) Source codes in package p1
uses classes of package p2 via
reflection.

any class inside exported packages of mjdk. Hence, it affects
attribute A1, and more importantly A2. We distinguish this
scenario from the previous one because an inconsistency in-
volving JDK modules has a greater effect on portability than
the previous more generic scenario.

Req(m1,mjdk) ∧ (�p1 ∈m1, p2 ∈mjdk :Dep(p1, p2)) (2)

Inconsistent Requires Transitive Dependency: An excess
transitive modifier in a requires dependency consists of the
following (1) a module m1 explicitly declares in its module-
info file that it transitively requires another module m2—
which means any module that requires m1 also implicitly re-
quires m2; and (2) no class of a module that requires m1
actually uses any class in m2. This type of inconsistency mostly
affects attribute A1, but also affects A2.

ReqTransitive(m1,m2) ∧ (∀ m :Req(m,m1),

∀ p ∈m, ∀ p2 ∈m2 : ¬Dep(p, p2)) (3)

Inconsistent Exports/Exports to Dependency: An incon-
sistent exports dependency occurs when a module m1 explicitly
exports a package p1 to all other modules, while no package in
those other modules use p1.

Exp(m1, p1) ∧ (∀ p /∈m1 : ¬Dep(p, p1)) (4)

For an exports to directive, this inconsistency occurs when m1

exports the package p1 to a specific list of modules M , while

no class outside m1, or inside module list M , uses any class
inside p1.

ExpTo(m1, p1,M) ∧ (∀ p ∈M : ¬Dep(p, p1)) (5)

These inconsistencies mostly affect attribute A3 by granting
unnecessary access to classes and packages. They also affect
attribute A1 due to complicating the architecture.

Inconsistent Provides With Dependency: An inconsis-
tent provides with dependency has two key parts: (1) a mod-
ule m explicitly declares that it provides a service s, which
is an abstract class or interface that is extended or imple-
mented by a set of classes E = {c1, c2, ..., ck} inside m; and
(2) none of the classes inside other modules uses service s
via the java.util.ServiceLoader API. Consequently,
this inconsistency type—similar to inconsistent requires
dependency—affects attribute A1 and A2 because the pro-
vides with dependency necessitates a requires directive
as well. Additionally, this inconsistency type grants unnec-
essary access to a subset of the application’s classes via the
ServiceLoader API which affects attribute A3.

ProvidesWith(m, s,E) ∧ (∀m′ �=m : ¬Uses(m′, s)) (6)

Inconsistent Uses Dependency: An inconsistent uses de-
pendency occurs when (1) a module m explicitly declares in
its module-info.java file that it uses a service s and
(2) none of the classes inside m actually use the service s via
the java.util.ServiceLoader API. This inconsistency
type, similar to the previous type, will affect attribute A1 and
A2, due to adding an additional requires directive.

Uses(m, s) ∧ (∀ c ∈m : ¬ LoadsService(c, s)) (7)

Inconsistent Open Modifier: An excess open modifier oc-
curs in the following scenario: (1) a module m declares that it
opens all its packages to all other modules—recall from Section
II-B that unlike the other directives, open can be used in the
header of a module’s specification to denote all its packages
are open; and (2) there is at least one package p inside m that
no class outside m reflectively accesses. As a result, any such
package p is potentially open to misuse through reflection, e.g.,
external access to private members of a class that should not be
allowed by any other class. This inconsistency type will affect
attribute A3—and make the architecture inaccurate and more
complicated, affecting attribute A1.

Open(m) ∧ (∃p ∈m : ∀p′ /∈m : ¬ReflDep(p′, p) (8)

Inconsistent Opens/Opens To: An inconsistent opens de-
pendency occurs when a module m declares that it opens a
package p to all other modules via reflection, while none of the
classes outside m reflectively accesses any classes of package p.

Opens (m, p) ∧ ∀ p′ /∈m : ¬ReflDep(p′, p) (9)

Similarly, for opens to, the to modifier specifies a list of mod-
ules M for which module m opens a package p to access via
reflection, while no package of m reflectively accesses p.

OpensTo(m, p,M) ∧ ∀ p′ ∈M : ¬ReflDep(p′, p) (10)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 21,2024 at 23:33:14 UTC from IEEE Xplore. Restrictions apply.

1644 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

Fig. 2. A high-level overview of DARCY.

For these inconsistency types, private members of p are open
to dangerous misuse through undesired access and reflection,
affecting attribute A3, and can also affect attribute A1 due to
unnecessarily complicating the architecture.

IV. DARCY

In the previous section, we introduced various types of incon-
sistent dependencies. This section describes how we leverage
these definitions to design and implement DARCY. Fig. 2 depicts
a high-level overview of DARCY comprised of two phases: De-
tection and Repair. Each DARCY’s component works at either
compile-time, run-time, or both, which is color-coded in Fig. 2.
DARCY is implemented in Java and Python.

A. Detection

The detection phase takes a Java application as input and
identifies any instance of the eight inconsistent dependencies
described in Section III.

To identify the implemented dependencies of an input Java
application, DARCY relies on static analysis, represented as
Package Dependency Analysis in Fig. 2. In the implementation
of DARCY, we leveraged Classycle [14] for Package Depen-
dency Analysis. More precisely, the information about imple-
mented dependencies in the source code of the input application
is collected by running Classycle, which provides a complete re-
port of all dependencies in the source code of a Java application
at both the class and package levels. We only need the extracted
dependencies among packages since the dependencies defined
in modules are at the package level. Package Dependency Anal-
ysis’s results are stored in Implemented Dependencies, which
is a database component.

A Java application may contain multiple modules, each with
a module-info file describing the module’s dependencies.

For extracting a prescriptive architecture, we developed
Module-Info Scanner which examines all module-
info.java files within the input Java application and
extracts all specified dependencies which are defined at
the package level. The collected information of specified
dependencies is stored in another database component,
Specified Dependencies.

Java Reflection Analysis leverages a custom static analysis
[15], which we have implemented using the Soot framework
[16], to identify the usage of reflection in the input application.
The traces of any actual usage of reflection in the Java applica-
tion is then stored in Implemented Dependencies.

Java Reflection Analysis extracts reflective invocations that
occur in cases where non-constant strings, or inputs, are used
as target methods of a reflective call. Reflective invocation of
a method, for both constructor and non-constructor methods,
occurs in three stages: (1) class procurement (i.e., a class with
the method of interest is obtained), (2) method procurement
(i.e., the method of interest to be invoked is identified), and
(3) the method of interest is actually invoked. Java Reflection
Analysis attempts to identify information at each stage.

A simple example, based on those found in real-world apps,
of reflective method invocation, not involving constructors, is
depicted in Fig. 3. In this example, a ClassLoader for My-
Class is obtained (line 3), which is responsible for loading
classes. The NetClass class is loaded using that Class-
Loader (line 3). The getAddress method of NetClass
(line 3)—which performs network operations—is retrieved and
eventually invoked using reflection (line 3).

Our analysis identifies reflectively invoked methods us-
ing a backwards analysis. That analysis begins by iden-
tifying all reflective invocations (e.g., line 3 in Fig. 3).
Next, the analysis follows the use-def chain of the invoked
java.lang.reflect.Method instance (e.g., m on line 3)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 21,2024 at 23:33:14 UTC from IEEE Xplore. Restrictions apply.

GHORBANI et al.: DARCY: AUTOMATIC ARCHITECTURAL INCONSISTENCY RESOLUTION IN JAVA 1645

Fig. 3. Reflective method invocation example.

to identify all possible definitions of the Method instance
(e.g., line 3). Our analysis considers various methods that re-
turn Method instances, i.e., using getMethod or getDe-
claredMethod of java.lang.Class.

The analysis then records each identified method name. If
the analysis cannot resolve the name, this information is also
recorded. In this case, the analysis conservatively indicates
that any method of the package opened for reflection can be
accessed. Similarly, in situations where the class names cannot
be determined, the analysis considers any classes of the opened
package can be accessed.

For constant strings, the analysis attempts to identify
the class name that is being invoked. Similar to the
resolution of method names, the analysis follows the
use-def chain of the java.lang.Class instance from
which a java.lang.Class is retrieved (e.g., following
the use-def chain of c on line 3). We model various
means of obtaining a java.lang.Class instance.
For example, the class may be loaded by name using a
ClassLoader’s loadClass(...)method (e.g., line 3),
using java.lang.Class’s forNamemethod, or through
a class constant (e.g., using NetClass.class). The analysis
then records the class name it can find statically, or stores that
it could not resolve that name. Note that our analysis considers
any subclass of ClassLoader. Our reflection analysis
involving constructors works in a similar manner by analyzing
invocations of java.lang.reflect.Constructor and
invocations of its newInstance method.

Similar to our analyses for reflectively invoked
methods, We perform analyses for any set* methods of
java.lang.reflect.Field (e.g., setInt(...))
or get*Field* methods of java.lang.Class (e.g.,
getDeclaredField(String)).

For extracting the implemented dependencies of type uses we
implemented ServiceLoader Usage Analysis which leverages
a custom static analysis using the Soot framework to identify
usage of java.util.ServiceLoader in the input appli-
cation. The traces of any actual usage of a service is then stored
in Implemented Dependencies.

An application obtains a service loader for a given service
by invoking the static load method of ServiceLoader
API. A service loader can locate and instantiate providers of
the given service using the iterator or stream method
[17], through which an instance of each of the located service
providers can be created. As an example, Fig. 4 depicts the code
that obtains a ServiceLoader for MyService (line 4). The
ServiceLoader loads providers of MyService (line 4)
and can instantiate any of the located providers of this service

Fig. 4. Service loader example.

using its iterator—created by the for loop in line 4. In this
example, the service provider with the getService method
is desired (line 4).

Our analysis identifies the usage of the ServiceLoader
API using a backward analysis by following the use-def chain
of ServiceLoader instances (e.g., s on line 4) to identify
all possible definitions of a ServiceLoader (e.g, line 4 in
Fig. 4). The results of the ServiceLoader API usage is
then stored in Implemented Dependencies.

All the above-mentioned components are used at both
compile-time, for the whole application, and run-time, for the
dynamically loaded modules, to collect all specified and im-
plemented dependencies of Java modules to further assist the
detection of architectural inconsistencies.

1) Detection at Compile-Time: Static Inconsistency Analy-
sis’s main goal is to identify all types of inconsistency scenarios
described in Section III at compile-time. For each directive in a
module-info.java file, Static Inconsistency Analysis ex-
plores implemented and specified dependencies, stored in their
respective database components, to identify any occurrence of
an inconsistent dependency defined in Section III. If a matching
instance is found, Static Inconsistency Analysis reports the
identified architectural inconsistency, the modules affected, and
the specific directive involved. The component then stores the
identified inconsistencies in Inconsistent Dependencies, which
are then used in the repair phase.

2) Detection at Run-Time: A Java application can dynami-
cally load a module while running. Hence its architecture and
module dependencies can change at run-time. Subsequently,
the loaded module can contain architectural inconsistencies,
which will be introduced to the Java application at run-time. The
Module Loading Monitor and Dynamic Inconsistency Analysis
components have been added to our previous work [5], extend-
ing DARCY to automatically detect architectural inconsistencies
at run-time.

Module Loading Monitor monitors the running Java appli-
cation for any dynamic changes to its dependencies, i.e., dy-
namically loading a new module. More specifically, the Module
Loading Monitor has been implemented as a wrapper module
that resides in between the application modules and the JDK
modules, allowing it to monitor the loading and unloading of
any new application module at run-time. For this purpose, the
Module Loading Monitor needs to interact with the JDK and
its specific classes in java.lang.module and record all
module load/unload requests. Additionally, the Module Load-
ing Monitor component needs to analyze and load any depen-
dent third-party libraries that the loading module introduces.
For this purpose, we implemented an algorithm that searches
the introduced libraries in the module path and collects all
required information along with the loaded module. This step

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 21,2024 at 23:33:14 UTC from IEEE Xplore. Restrictions apply.

1646 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

is crucial as it prevents false negatives in extracting the imple-
mented dependencies later by their corresponding components.
Accordingly, in case a new module is dynamically loaded in
the system, as illustrated in Section II, Module Loading Moni-
tor notifies and passes the loaded module’s information to the
following components: Module-info Scanner, Java Reflection
Analysis, Package Dependency Analysis, and ServiceLoader
Usage Analysis. Unlike the detection phase at compile-time, the
components mentioned above only analyze the loaded module
and collect the additional implemented and specified dependen-
cies into their corresponding database components

Afterward, Dynamic Inconsistency Analysis (1) analyzes the
change in the architecture using the previously-stored depen-
dencies at compile-time, and (2) identifies all types of incon-
sistency scenarios described in Section III that arise by the
loaded module at run-time. Dynamic Inconsistency Analysis
analyzes the added dependencies by the loaded module at
run-time, whereas Static Inconsistency Analysis analyzes the
whole application at compile-time. Although identifying the
inconsistencies at run-time follows the same algorithm as the
one at compile-time, unlike the Static Inconsistency Analysis
component, the Dynamic Inconsistency Analysis component
needs to build a dynamic architecture graph of the system and
update it with any changes at run-time in an efficient way, i.e.,
only analyzing the changes as opposed to analyzing the whole
application. For this purpose, we implemented the Dynamic
Inconsistency Analysis as an additional module loaded along-
side other application modules with an algorithm that stores
and updates the dynamic dependency graph of the application.
Finally, the inconsistencies detected by Dynamic Inconsistency
Analysis are then added to Inconsistent Dependencies to be used
later in the repair phase.

B. Repair

To repair inconsistent dependencies, the repair phase trans-
forms modules with detected inconsistent dependencies both
statically at compile-time and dynamically at run-time. Module-
Info Transformer is responsible for transforming module spec-
ifications to match with their implemented dependencies.

To repair inconsistent dependencies in a module, Module-
Info Transformer deletes or modifies the explicit dependen-
cies defined in the module-info files. Inconsistencies found
in the previous phase are all unnecessarily defined dependen-
cies among an application’s modules and packages. Therefore,
Module-Info Transformer needs to omit those inconsistent de-
pendencies specified in the module-info files.

The detection phase results include the type and details of
identified inconsistencies. For instance, in the case of an in-
consistent exports dependency, one result stored in Inconsistent
Dependencies includes the module in which this dependency is
specified, the type of the inconsistent dependency (exports in
this case), and the package that is unnecessarily exported. The
repair phase takes the results of the detection phase as input.
For each module, the repair phase finds the related records of
inconsistent dependencies defined in that module and modifies
the affected lines in module-info.

For this purpose, we leveraged ANTLR [18] to transform the
module-info.java files to repair the inconsistent depen-
dencies. ANTLR is a parser generator for reading, processing,
executing, or translating structured text. Hence, we generated
a customized parser using Java 9+ grammar and modified it
to check the records of inconsistent dependencies found in the
detection phase of DARCY.

More precisely, we have implemented the generated parser so
that if it finds any match between the tokens of module-info
files and the inconsistent dependencies, it skips or modifies the
specific token with respect to the type of the inconsistency. As a
result, depending on the type of dependency, the corresponding
line in the module-info file is omitted or modified.

Module-Info Transformer repairs each type of inconsis-
tent dependency at both compile- and run-time. In most
cases, Module-Info Transformer deletes the entire statement.
However, for requires transitive, Module-Info Trans-
former only removes the token transitive.

In case of inconsistencies involving open module m (Equa-
tion 8 in Section III), the open modifier is removed from the
header of the module declaration. However, there may be some
packages in m that other modules reflectively access. For each
of these packages, Module-Info Transformer adds an opens
to statement that make private members of the package acces-
sible to the modules that reflectively access the package. If other
modules reflectively access no package in m, no statement will
be added to the module’s body.

In certain situations, the DARCY user may disagree with how
it repairs the specified dependencies because DARCY is not
aware of the architect’s or developer’s intentions. For example,
this situation may occur if the user wants to develop a library
and export some packages for further needs or even allow other
modules to reflectively access the internals of some classes and
packages. DARCY warns the developers and architects about
potential threats caused by architectural inconsistencies in their
Java application and allows them to override DARCY prior to
application of repairs.

After the repair phase at compile-time, the transformed Java
application can be executed, but it is continuously monitored
by Module Loading Monitor. In case of dynamically loading a
module at run-time, the detection and repair phases are repeated
for the loaded module.

V. EVALUATION

To assess the effectiveness of DARCY, we study the following
research questions:
RQ1: How pervasive are inconsistent, architectural dependen-

cies in practice?
RQ2: How accurate is DARCY in resolving inconsistent, archi-

tectural dependencies statically at compile-time?
RQ3: How accurate is DARCY in resolving inconsistent, archi-

tectural dependencies dynamically at run-time?
RQ4: To what extent does DARCY reduce the attack surface

of Java modules?
RQ5: To what extent does DARCY enhance encapsulation of

Java modules?

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 21,2024 at 23:33:14 UTC from IEEE Xplore. Restrictions apply.

GHORBANI et al.: DARCY: AUTOMATIC ARCHITECTURAL INCONSISTENCY RESOLUTION IN JAVA 1647

TABLE II
SUBJECT APPLICATIONS

No. Application Rel. # Modules # Pckgs # Directives
Name Version

1 Auto-sort 1.0.0 3 35 13
2 Ballerina-lang 2.0.0 65 4486 532
3 Blynk-Server 0.28.0 9 742 122
4 BunnyHop 1.0.0 2 22 28
5 Codersonbeer-app 1.0.0 4 5 9
6 Constantin 0.1 4 15 9
7 Eclipse Jetty 10.0.5 56 10437 413
8 Java-9-lab 1.0.0 5 6 15
9 Java-9-modularity 1.0.0 4 5 11
10 Java-Bookstore 1.0.0 6 11 17
11 Java-SPI 1.0.0 6 6 26
12 Java9-demo 1.0.0 4 12 10
13 Java9-junit 1.0.0 3 15 13
14 Java9-labs 1.0.0 4 6 10
15 java9-modules 1.0.0 2 2 5
16 Java9-TLB-modules 1.0.0 5 8 12
17 JavaUtils 2.0.0 6 39 36
18 Jigsaw-resources 1.0.0 2 2 5
19 Jigsaw-tst 1.0.0 4 5 11
20 Jwtgen 0.0.1 2 9 13
21 Logback 1.3.0 2 1250 65
22 Meetup 1.0.0 4 4 14
23 Music-UI 1.0.0 3 7 15
24 Number-to-text 1.0.0 3 11 11
25 Practical-Security 1.0.0 4 8 20
26 Quasar 0.8.0 4 783 42
27 QuestDB 6.0.4 2 3222 65
28 Rahmnathan-utils 1.0 3 16 14
29 RecolInline-Server 0.3 7 73 42
30 Rhizomatic-IO 0.3.4 7 111 58
31 Sense-nine 1.0 6 48 31
32 Sirius 0.0.1 7 392 37
33 Spring-mvn-java9 1.0.0 3 6 18
34 Springuni-java9 1.0.0 3 2 6
35 Tascalate-Javaflow 2.7.0 10 258 56
36 The-Message 1.0.0 3 32 16
37 TRPZ 1.0.0 4 20 19
38 Vstreamer 1.0.0 6 6 25

RQ6: To what extent does DARCY reduce the size of runtime
memory?

RQ7: What is DARCY’s runtime efficiency in terms of execu-
tion time?

To answer these research questions, we selected a set of
Java applications from GitHub [19], a large and widely used
open-source repository of software projects, all of which are
implemented in Java 9+. To accomplish this task, we developed
a GitHub crawling Python script that systematically explores
GitHub repositories, actively identifying Java applications con-
taining the module-info.java file. It leverages the GitHub search
API to query repositories based on specific parameters, includ-
ing the filename and desired file size range, then parses the
HTML response using the BeautifulSoup [20] library to extract
relevant information such as repository name, URL, and index
time from the search results. To handle rate limits imposed
by the GitHub API, the script implements a mechanism to
pause execution for a specified duration before retrying the
request, and it employs techniques to manage large result sets
by splitting queries into smaller subsets when the total number
of results exceeds a certain threshold. Subsequently, we filtered
GitHub repositories with more than one module that could

have been successfully built. By scouring tens of thousands
of GitHub repositories, this method offers an automated solu-
tion for detecting Java applications containing module-info.java
files. The result is a conclusive dataset comprising 52 Java 9+
applications, effectively minimizing potential selection biases.

DARCY detected 567 instances of architectural inconsisten-
cies in 38 out of 52 applications. Table II includes these 38
subject applications, their number of modules, packages, and
directives. At the time of our previous paper [5], JPMS was a
new concept, and Java developers did not have enough time to
incorporate JPMS into open-source Java applications. However,
in this paper, we evaluated DARCY with 10 additional larger
and more mature Java 9+ applications. Each of the additional
applications includes 17 modules, 2175 packages, and 99K
lines of code, on average, which is significantly larger than
those of our previous dataset’s applications, i.e., 4 modules, 13
packages, and 9K lines of code.

A. RQ1: Pervasiveness

Table III shows, for each application in our dataset, the total
number of inconsistent dependencies DARCY found and sep-
arates them by their type. 73% of applications in our dataset
(38 out of 52) have a total number of 567 inconsistent depen-
dencies. Recall that even one existing inconsistent dependency
could cause undesired behaviors or issues with encapsulation,
security, or memory utilization (see Section III).

As depicted in Table III, most of the inconsistent dependen-
cies are of types exports or requires because these two types
of directives are used more frequently than others. The high
frequency of inconsistent exports dependencies indicates that
granting unnecessary access to internal packages is quite com-
mon in Java 9+ applications, which could cause security vulner-
abilities. Furthermore, different types of inconsistent requires
dependencies can impair encapsulation and maintainability of
applications. Additionally, the requires JDK inconsistency in-
creases the risk of loading unnecessary JDK modules and com-
promising portability.

Table III indicates that a few applications have inconsistent
dependencies of type provides with, and only two applications
have an inconsistent uses dependency. In fact, these directives
are rare compared to other directives. For provides with and
uses, Java platform already checks most of the conditions that
may lead to inconsistent dependencies at compile-time. There-
fore, the possibility of encountering an inconsistent provides
with and uses dependencies decreases. Nevertheless, DARCY

covers the inconsistent dependencies corresponding to these
two directives because they are risky and may appear more
frequently in future usage of JPMS.

Finally, we reported the identified architectural inconsisten-
cies and their suggested repairs to the developers of 21 subject
applications (out of 38) for which we were able to obtain any
contact information. As of now, we have received 7 responses,
out of which 5 have confirmed Darcy’s detected inconsistencies
and agreed with Darcy’s repairs. These applications are: Sense-
nine, Java-9-lab, Meetup, Java9-labs, and Practical-Security.
One of the developers (of Java-9-lab application) acknowledged

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 21,2024 at 23:33:14 UTC from IEEE Xplore. Restrictions apply.

1648 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

TABLE III
IDENTIFIED INCONSISTENCIES AND ROBUSTNESS AT COMPILE-TIME

Application # Total Inconsistencies Types % Correct Compiled Test Passing Rate (%)
Name Incons. R R.J. R.T E P U O Incons. (After Repair) Before After

Auto-sort 1 - - - 1 - - - 100 � 97 97
Ballerina-lang 115 21 4 - 88 1 - 1 100 � 100 100
Blynk-Server 26 - - - 26 - - - 100 � 100 100
BunnyHop 17 - 1 2 11 - - 3 100 � - -
Codersonbeer-app 4 1 - - 2 - - 1 100 � - -
Constantin 5 - - 1 4 - - - 100 � 100 100
Eclipse Jetty 147 3 1 90 49 4 - - 100 � 100 100
Java-9-lab 1 - - - 1 - - - 100 � - -
Java-9-modularity 1 - - 1 - - - - 100 � - -
Java-Bookstore 3 - - 2 - 1 - - 100 � - -
Java-SPI 5 - - 1 4 - - - 100 � - -
Java9-demo 1 - - - 1 - - - 100 � - -
Java9-junit 1 - - - 1 - - - 100 � - -
Java9-labs 4 - - - 4 - - - 100 � - -
java9-modules 1 - - - 1 - - - 100 � - -
Java9-TLB-modules 1 - - - 1 - - - 100 � - -
JavaUtils 29 14 9 6 - - - 100 � - -
Jigsaw-resources 1 - - - 1 - - - 100 � - -
Jigsaw-tst 1 - - - 1 - - - 100 � - -
Jwtgen 2 1 - - 1 - - - 100 � - -
Logback 30 - - 3 26 1 - - 100 � 100 100
Meetup 6 - - - 3 3 - - 100 � - -
Music-UI 4 - - 1 1 - - 2 100 � - -
Number-to-text 4 - - - 4 - - - 100 � 100 100
Practical-Security 4 - 1 - 3 - - - 100 � - -
Quasar 22 - 1 4 17 - - - 100 � 100 100
QuestDB 34 - - 1 33 - - - 100 � 100 100
Rahmnathan-utils 7 - 1 - 6 - - - 100 � - -
RecolInline-Server 20 4 6 2 6 - - 2 100 � - -
Rhizomatic-IO 3 - - - 2 - 1 - 100 � 100 100
Sense-nine 10 2 2 3 - - 3 100 � - -
Sirius 9 2 - 4 3 - - - 100 � - -
Spring-mvn-java9 8 2 - - 6 - - - 100 � - -
Springuni-java9 3 2 - - 1 - - - 100 � - -
Tascalate-Javaflow 17 - - 12 5 - - - 100 � - -
The-Message 9 - - - 9 - - - 100 � - -
TRPZ 5 - - - 3 - - 2 100 � - -
Vstreamer 6 1 - - 2 - 3 - 100 � - -

(R: Requires, R.J: Requires JDK, R.T: Requires Transitive, E: Exports, P: Provides With, U: Uses, O: Opens)

that Darcy’s suggested repairs would improve the maintain-
ability of their application. In the two responses with respect
to QuestDB and Eclipse Jetty applications, the developers dis-
agreed with Darcy’s identified inconsistencies and stated that
the dependencies were intentional. More specifically, a devel-
oper of QuestDB explained that they have intentionally ex-
ported some packages for other extensions which extend key
classes of QuestDB with additional functionalities. One of the
developers stated that in their opinion, one of the most common
reasons for architectural inconsistencies in Java is the lack of
understanding in the definitions of dependencies.

Additionally, we have examined the subject applications’
latest versions, which were released while this paper was under
review, and found that 35 identified inconsistencies in 9 ap-
plications have been removed in their latest versions, further
confirming Darcy’s results. The removed inconsistency types
and their corresponding applications are as follows:

• Three requires and twelve exports in Ballerina-lang
• Two exports and one opens in BunnyHop
• Four exports in Logback
• Three provides in Meetup

• Two exports in QuestDB
• Three exports in RecolInline-Server
• Two requires JDK in Sense-nine
• Two requires in Tascalate-Javaflow
• One exports in TRPZ

B. RQ2: Inconsistency Resolution at Compile-Time

To answer RQ2 for DARCY’s detection capability at compile-
time, we ran the detection phase for each Java application in our
evaluation dataset before running them and assessed whether
DARCY can accurately detect inconsistent dependencies. To
that end, we manually checked the inconsistent dependencies
found by DARCY to ensure their correctness. More precisely,
we compared the corresponding record in both Implemented
Dependencies and Specified Dependencies to verify the correct-
ness of the inconsistencies discovered by the detection phase.
As shown in Table III, all inconsistent dependencies found by
DARCY at compile-time are correct.

To evaluate DARCY’s ability to correctly resolve inconsisten-
cies at compile-time, we ran the repair phase of DARCY for each

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 21,2024 at 23:33:14 UTC from IEEE Xplore. Restrictions apply.

GHORBANI et al.: DARCY: AUTOMATIC ARCHITECTURAL INCONSISTENCY RESOLUTION IN JAVA 1649

TABLE IV
IDENTIFIED INCONSISTENCIES AND ROBUSTNESS AT RUN-TIME

Application The Loaded Module # Runtime Inconsistencies Types % Correct # Runtime
Name Name # Packages # Directives Incons. R R.J. R.T E P U O Incons. Disruptions

Auto-sort Unification Service 1 3 1 - - - 1 - - - 100% 0
Ballerina-lang Shell 12 19 9 - - - 9 - - - 100% 0
Blynk-Server Core 66 62 26 - - - 26 - - - 100% 0
BunnyHop BunnyHop 20 23 17 - 1 2 11 3 - - 100% 0
Codersonbeer-app Data Model 1 3 2 - - - 1 1 - - 100% 0
Constantin Database 2 3 2 - - 1 1 - - - 100% 0
Eclipse Jetty Unixsocket Server 1 7 5 - - 4 1 - - - 100% 0
Java-9-lab Greeter 1 4 1 - - - 1 - - - 100% 0
Java-9-modularity Analysis Service 1 3 1 - - 1 - - - - 100% 0
Java-Bookstore Logging 1 2 1 - - - - - 1 - 100% 0
Java-SPI API 1 3 2 - - 1 1 - - - 100% 0
Java9-demo Bank Impl 1 4 1 - - - 1 - - - 100% 0
Java9-junit NFO 2 5 1 - - - 1 - - - 100% 0
Java9-labs CMS 3 4 3 - - - 3 - - - 100% 0
java9-modules Main 1 3 1 - - - 1 - - - 100% 0
Java9-TLB-modules Poetry 1 4 1 - - - 1 - - - 100% 0
JavaUtils JavaFX 2 7 6 - - 4 2 - - - 100% 0
Jigsaw-resources App 1 3 1 - - - 1 - - - 100% 0
Jigsaw-tst Astro 1 2 1 - - - 1 - - - 100% 0
Jwtgen Generator 6 11 1 - - - 1 - - - 100% 0
Logback Core 38 33 4 - - 3 1 - - - 100% 0
Meetup Belarusian Lang 1 4 2 - - - 1 - 1 - 100% 0
Music-UI UI 1 6 2 - - - 1 1 - - 100% 0
Number-to-text API 3 4 3 - - - 3 - - - 100% 0
Practical-Security Banking Server 5 8 2 - 1 - 1 - - - 100% 0
Quasar Core 21 33 16 - - - 16 - - - 100% 0
QuestDB IO 67 57 34 - - 1 33 - - - 100% 0
Rahmnathan-utils Video Converter 4 6 3 - - - 3 - - - 100% 0
RecolInline-Server SQL 3 13 7 3 - 1 3 - - - 100% 0
Rhizomatic-IO IO Inject 4 9 2 - - - 1 - - 1 100% 0
Sense-nine Client 4 10 5 - 1 - 1 3 - - 100% 0
Sirius Frontend 1 3 2 - - 1 1 - - - 100% 0
Spring-mvn-java9 Spring MVC 1 7 3 2 - - 1 - - - 100% 0
Springuni-java9 Chat Model 1 2 1 - - - 1 - - - 100% 0
Tascalate-Javaflow Agent Proxy 8 13 5 - - 4 1 - - - 100% 0
The-Message Base 10 11 1 - - - 1 - - - 100% 0
TRPZ GUI 1 9 2 - - - 1 1 - - 100% 0
Vstreamer Player 1 4 3 1 - - 1 - - 1 100% 0

(R: Requires, R.J: Requires JDK, R.T: Requires Transitive, E: Exports, P: Provides With, U: Uses, O: Opens)

Java application in our evaluation dataset before running them
and assessed whether DARCY repairs the detected inconsisten-
cies without introducing any unexpected behavior. To assess
the correctness of a repair, we (1) check if each application
compiles successfully after running the repair phase, and (2) if
the application contains a test suite, determine if the application
obtains the same test passing rate, i.e., the ratio of the number
of passing test cases to the total number of test cases, both
before and after repairs. We also ran the detection phase after the
repair actions. The result showed zero inconsistencies within
the transformed Java applications.

The results for compilation after the repair phase are shown
in Table III, indicating that all transformed Java applica-
tions compiled successfully. This confirms that the inconsis-
tent dependencies have been robustly resolved in a way that
does not prevent compilation of the applications. Additionally,
eleven applications in our study contain a test suite. The pass-
ing rate for each of these test suites remains the same both
before and after DARCY repairs, demonstrating that DARCY

does not negatively affect the expected behavior of repaired
applications.

C. RQ3: Inconsistency Resolution at Run-Time

Java applications can dynamically load new modules while
running. Hence, their architecture changes and the new modules
can introduce further architectural inconsistencies at run-time.
To answer RQ3, we simulated the above-mentioned run-time
behavior and assessed DARCY’s capabilities of dynamically
detecting and repairing architectural inconsistencies that may
arise at run-time.

To simulate this scenario, we randomly selected a module
among those containing one or more architectural inconsisten-
cies in each dataset application and ran the application without
that single module. While DARCY is monitoring the application
during its run-time, we added the previously selected module
as a new module loaded into the system. We then evaluated
whether DARCY can accurately detect inconsistent dependen-
cies of the recently added module at run-time. For this purpose,
we manually checked whether the inconsistent dependencies
found by DARCY match the actual inconsistencies existing in
the added module. Table IV describes the results of this exper-
iment, including the number of packages and directives in the

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 21,2024 at 23:33:14 UTC from IEEE Xplore. Restrictions apply.

1650 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

added module, as well as the detected run-time inconsistencies
separated by their types. As shown in Table IV, all inconsistent
dependencies found by DARCY at run-time are correct.

To evaluate DARCY’s ability to correctly repair this type of
run-time inconsistencies, we ran the repair phase of DARCY for
each of the loaded modules in our experiment. We manually
examined each repair, and all were correct. We further evaluated
whether the transformed module can run sucessfully without
any unexpected run-time behavior caused by DARCY’s repairs.
As shown in Table IV, DARCY was able to repair the detected
run-time inconsistencies without introducing any disruptions
to the applications’ run-time, i.e., run-time exceptions, as it
removes the excessively specified dependencies in module de-
scription files. Similar to RQ2, we also ran the detection phase
after the repair actions, and the results showed zero inconsis-
tencies within the transformed Java applications.

D. RQ4: Security

To assess DARCY’s ability to enhance security, we consider
the attack surface of Java 9+ applications. A system’s attack
surface is the collection of points at which the system’s re-
sources are externally visible or accessible to users or external
agents. Manadhata et al. introduced an attack-surface metric
to systematically measure the security of a system [21], [22],
[23]. Every externally accessible system resource can poten-
tially be part of an attack and, hence, contributes to a system’s
attack surface. This contribution reflects the likelihood of each
resource being used in security attacks. Intuitively, the more
actions available to a user or the more resources accessible
through these actions, the more exposed an application is to
security attacks [21], [22], [23].

For a Java 9+ application, the main resource under consider-
ation is Java modules and their packages. As a result, we define
an application’s attack surface as the number of packages acces-
sible from outside its modules. To measure the attack surface of
Java 9+ applications, we count the number of packages exposed
by exports (to) and open(s to) directives. These directives make
the internals of packages accessible to other modules.

As shown in Table V, 36 out of 38 applications had an
average attack-surface reduction of about 56% at their compile-
time. DARCY was able to totally eliminate the attack surface in
5 applications.2 Although eliminating the module-based attack
surface does not result in perfect security, DARCY can maxi-
mize the protection of the asset (i.e., Java packages) through
a module’s interfaces by eliminating all unnecessary exports
and opens directives of the module—other attack vectors (e.g.,
IPC over network sockets) still remain but are out of scope for
DARCY.

On the other hand, to evaluate DARCY’s ability to enhance
the applications’ security at run-time, we measured the attack
surface reduction ratio followed by repairing the inconsistencies
of the dynamically loaded modules at run-time. To simulate
such a scenario for an individual module in an application,

2These applications are essentially software utilities or libraries including
different modules that provide functionalities for different situations, but do
not have any dependency on one another.

TABLE V
RESULT FOR ATTACK-SURFACE REDUCTION AT COMPILE AND RUN-TIME

Application App’s Attack Surface Reduction (%)
Name Compile-time Run-time (Avg. Per Module)

Auto-sort 50.00% 7.50%
Ballerina-lang 45.64% 3.09%
Blynk-Server 44.83% 4.02%
BunnyHop 87.50% 7.19%
Codersonbeer-app 75.00% 41.67%
Constantin 100.00% 100.00%
Eclipse Jetty 41.88% 5.14%
Java-9-lab 33.33% 3.13%
Java-9-modularity - -
Java-Bookstore - -
Java-SPI 50.00% 33.33%
Java9-demo 50.00% 11.43%
Java9-junit 25.00% 16.67%
Java9-labs 80.00% 31.25%
java9-modules 50.00% 3.37%
Java9-TLB-modules 20.00% 2.92%
JavaUtils 85.71% 19.28%
Jigsaw-resources 50.00% 5.00%
Jigsaw-tst 33.33% 6.00%
Jwtgen 100.00% 3.57%
Logback 52.00% 4.82%
Meetup 75.00% 9.38%
Music-UI 60.00% 1.90%
Number-to-text 25.00% 22.22%
Practical-Security 25.00% 18.75%
Quasar 77.27% 24.31%
QuestDB 63.46% 9.75%
Rahmnathan-utils 100.00% 42.86%
RecolInline-Server 47.06% 1.01%
Rhizomatic-IO 15.38% 0.61%
Sense-nine 83.33% 50.00%
Sirius 21.43% 0.70%
Spring-mvn-java9 100.00% 7.14%
Springuni-java9 100.00% 33.33%
Tascalate-Javaflow 45.45% 1.98%
The-Message 10.00% 15.79%
TRPZ 40.00% 50.00%
Vstreamer 66.67% 10.71%

Avg. Attack Surface Reduction 56.37% 16.94%

for each Java application in our dataset, we selected a module
and ran DARCY on the rest of the application’s modules. Then,
we ran the repaired application without that specific module.
While running, we dynamically loaded the chosen module and
measured the attack surface ratio reduction in the whole appli-
cation as the result of DARCY’s repairing the loaded module at
run-time. This ratio indicates to what extent DARCY is able to
further reduce the attack surface of a transformed application
by resolving inconsistent dependencies of a dynamically loaded
module. We repeated this experiment for all modules in each
application and reported the average attack surface reduction
ratio per module. As shown in Table V, DARCY was able to
reduce the attack surface of the loaded modules in 36 out of 38
applications by an average of about 17% at run-time. DARCY

entirely eliminated the attack surface of the loaded module in
28 applications. Note that the average attack surface reduction
ratios are usually less than those of compile-time as the run-time
measurement includes the effects of repairing only one module
on the whole application attack surface, whereas at compile-
time we measured the effects of repairing all modules.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 21,2024 at 23:33:14 UTC from IEEE Xplore. Restrictions apply.

GHORBANI et al.: DARCY: AUTOMATIC ARCHITECTURAL INCONSISTENCY RESOLUTION IN JAVA 1651

Fig. 5. Cumulative distribution function (CDF) of the attack surface reduc-
tion at compile- and run-time.

Fig. 5 shows a cumulative distribution function (CDF) of the
ratio of attack surface reduction by DARCY among the applica-
tions in our dataset for both compile- and run-time. It indicates
that in 60% of the applications, DARCY was able to reduce
the applications’ attack surface up to about 50% at compile-
time. Furthermore, in 80% of the applications, the repairs by
DARCY reduced the applications’ attack surface up to 80%,
which means that for the remaining 20% of the applications,
it reduced the applications’ attack surface by even more than
80% at their compile-time. At run-time, in about 90% of the
applications, DARCY was able to reduce the attack surface up
to 40% on average per loaded module. The relatively large re-
duction of the attack surface in applications achieved by DARCY

indicates that it can significantly curtail security risks in Java
9+ applications.

E. RQ5: Encapsulation

To evaluate the ability of DARCY to enhance the encapsula-
tion of Java 9+ applications, we leveraged two metrics selected
from an extensive investigation by Bouwers et al. [24] about
the quantification of encapsulation for implemented software
architectures. We selected metrics that involve architectural
dependencies and are appropriate for the context of modules
in JPMS and Java 9+ applications.

The first metric we selected is the Ratio of Coupling (RoC)
[25], which measures coupling among an application’s mod-
ules. For Java 9+ modules, RoC is the ratio of the number of
existing dependencies among modules to the number of all
possible dependencies among modules. Ideally, the value of
RoC would be low, meaning that only a small part of all possible
dependencies among modules is actually utilized—making it
less likely that faults, failures, or errors introduced by changes
or additions to modules will propagate across modules.

The second metric we selected is a variant of Cumulative
Component Dependency (CCD) [26] which is the sum of all
outgoing dependencies for a component. For Java 9+ modules,
outgoing dependencies are requires and uses dependencies of
each module. The specific variant we used is Normalized CCD
(NCD), which is the ratio of CCD for each module to the total
number of modules. Ideally, the value of CCD, or NCD, is low,
indicating lower coupling and better encapsulation.

TABLE VI
RESULTS FOR ENCAPSULATION IMPROVEMENT

Application App’s RoC Change (%) App’s NCD Change (%)
Name Compile-time Run-time Compile-time Run-time

Auto-sort 7.69% 2.00% - -
Ballerina-lang 21.43% 1.41% 7.46% 0.53%
Blynk-Server 21.31% 2.74% - -
BunnyHop 60.71% 5.21% 25.00% 2.78%
Codersonbeer-app 30.77% 12.05% 12.50% 3.13%
Constantin 55.56% 23.33% 20.00% 5.00%
Eclipse Jetty 35.59% 4.46% 34.18% 4.26%
Java-9-lab 6.67% 1.25% - -
Java-9-modularity 9.09% 2.56% 12.50% 3.02%
Java-Bookstore 17.65% 5.07% 16.67% 4.42%
Java-SPI 15.38% 5.58% 5.56% 1.39%
Java9-demo 10.00% 4.40% - -
Java9-junit 7.69% 5.13% - -
Java9-labs 40.00% 11.90% - -
java9-modules 20.00% 2.45% - -
Java9-TLB-modules 8.33% 1.64% - -
JavaUtils 80.56% 20.86% 79.31% 20.37%
Jigsaw-resources 20.00% 3.13% - -
Jigsaw-tst 9.09% 2.31% - -
Jwtgen 15.38% 3.01% 8.33% 1.50%
Logback 46.15% 5.48% 21.43% 2.75%
Meetup 42.86% 6.82% - -
Music-UI 26.67% 2.68% 10.00% 1.27%
Number-to-text 9.09% 7.60% - -
Practical-Security 10.00% 5.00% 7.69% 1.92%
Quasar 52.38% 16.16% 25.00% 6.73%
QuestDB 52.31% 8.55% 8.33% 2.14%
Rahmnathan-utils 50.00% 16.98% 12.50% 3.17%
RecolInline-Server 47.62% 1.07% 48.00% 0.77%
Rhizomatic-IO 5.17% 0.27% 2.44% 0.13%
Sense-nine 29.03% 6.93% 16.00% 2.96%
Sirius 24.32% 1.03% 26.09% 0.90%
Spring-mvn-java9 44.44% 5.29% 16.67% 1.64%
Springuni-java9 50.00% 25.00% 40.00% 16.67%
Tascalate-Javaflow 30.36% 1.66% 26.67% 1.41%
The-Message 6.25% 12.00% - -
TRPZ 10.53% 7.54% - -
Vstreamer 16.00% 3.66% 20.00% 2.26%

RoC
Total # of Affected Systems 38
Compile-time Reduction Avg. 27.53%
Run-time Reduction Avg. 6.69%

NCD
Total # of Affected Systems 24
Compile-time Reduction Avg. 20.93%
Run-time Reduction Avg. 3.80%

Table VI presents the amount of RoC and NCD change in
38 Java 9+ applications with inconsistent dependencies at both
compile- and run-time. Across all 38 applications, the amount
of RoC is reduced by an average of about 28%, and up to about
81% at compile-time. The amount of NCD is also reduced in
24 applications by an average of about 21%, and up to 79% at
compile-time.

To measure the encapsulation improvement at run-time, we
ran the same experiment as RQ4. More specifically, we se-
lected a module in each application and ran the transformed
application without the chosen module and later at run-time
we dynamically loaded the selected module. We then measured
the amount of RoC and NCD change in the whole application
followed by only repairing the loaded module. We repeated
the same experiment for all modules and reported the average
RoC and NCD change per module repair for each application.
As shown in Table VI, DARCY was able to reduce the amount

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 21,2024 at 23:33:14 UTC from IEEE Xplore. Restrictions apply.

1652 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

Fig. 6. Cumulative distribution function (CDF) of the Ratio of Coupling
(RoC) reduction at compile- and run-time.

Fig. 7. Cumulative distribution function (CDF) of the Normalized Cumula-
tive Component Dependency (NCD) reduction at compile- and run-time.

of RoC by an average of about 7% and up to about 25% per
module in the whole application. The repairs by DARCY also
reduced the amount of NCD in 24 applications at run-time by
an average of about 4% and up to 21%. Note that the RoC and
NCD change at run-time ratios are less than those of compile-
time, since at run-time we only measure the effect of repairing a
single module on the whole application. These results indicate
that DARCY can successfully enhance the encapsulation of Java
9+ applications by a significant amount at both compile- and
run-time.

Fig. 6 shows the cumulative distribution function (CDF)
of the RoC reduction followed by DARCY’s repairs at both
compile- and run-time. The figure indicates that, at compile-
time, in about 70% of applications, DARCY was able to reduce
the RoC up to 40%. The figure also shows that, at run-time,
in about 80% of applications, DARCY was able to reduce the
RoC of the entire application by about 10% by resolving the
inconsistencies of a single loaded module.

Fig. 7 demonstrates the cumulative distribution function
(CDF) of DARCY’s NCD reduction rate at both compile- and
run-time. At compile-time, the figure shows that resolving the
inconsistencies in 80% of the applications could reduce the
NCD up to 22%. Furthermore, the figure shows that resolv-
ing the inconsistencies of a module loaded at run-time can
reduce the amount of NCD in 90% of the applications up to
about 10%.

TABLE VII
RESULTS FOR SOFTWARE-BLOAT REDUCTION

Application Runtime Memory Reduction (%)
Name Compile-time Run-time

Ballerina-lang 8.29% 0.09%
BunnyHop 54.72% 20.55%
Eclipse Jetty 16.83% 0.59%
Java-SPI 6.04% 1.51%
JavaUtils 21.87% 19.82%
Practical-Security 0.76% 0.19%
Quasar 4.55% 1.14%
Rahmnathan-utils 0.12% 0.04%
RecolInline-Server 50.70% 7.27%
Sense-nine 0.63% 0.22%

Avg. Memory Reduction 16.45% 5.14%

Fig. 8. Cumulative distribution function (CDF) of software bloat reduction
at compile- and run-time.

F. RQ6: Software Bloat

To answer this research question, we measured the memory
usage of each application before and after DARCY’s repair phase
at both compile- and run-time. Recall that in Java 9+, with
the JDK being modularized, we can create a lightweight cus-
tom Java Runtime Environment (JRE), reducing software bloat.
More specifically, the size of a custom JRE may be reduced after
a repair if the application has inconsistent dependencies of type
requires JDK (Equation 2 of Section III).

Table VII shows the reduction of software bloat in terms of
the reduction in the size of the JRE image of affected applica-
tions after removing inconsistent requires JDK dependencies at
both compile- and run-time repair. According to the results for
compile-time, the reduction is about 16% in 10 applications and
up to 55% once the repair is executed. For run-time, the table
also shows that DARCY reduces the application’s memory con-
sumption by an average of 5% up to about 40% after repairing
a loaded module.

Fig. 8 demonstrates the cumulative distribution function
(CDF) of DARCY’s software bloat reduction rate at both
compile- and run-time. At compile-time, the figure shows that
in 80% of the applications DARCY could reduce the size of
the JRE image up to about 22% by resolving the module in-
consistencies. Furthermore, the figure shows that resolving the
inconsistencies of a module loaded at run-time can reduce the
size of JRE image in 80% of the applications up to about

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 21,2024 at 23:33:14 UTC from IEEE Xplore. Restrictions apply.

GHORBANI et al.: DARCY: AUTOMATIC ARCHITECTURAL INCONSISTENCY RESOLUTION IN JAVA 1653

TABLE VIII
RESULTS FOR EXECUTION TIME

Component Avg. Execution Time (ms)
Compile-time Run-time

Class Dependency Analyzer (Classycle) 7428 -
Java Reflection Analysis 328 131
ServiceLoader Usage Analysis 315 101
Java Inconsistency Analysis 250 27
Repair 453 163
Total 8774 422

7%. Such results are particularly substantial for deployment
and scalability goals in microservices or IoT devices that are
memory constrained.

G. RQ7: Performance

As described in Section IV, DARCY builds on three tools,
Classycle [14], Soot [16], and ANTLR [18]. As a result, to
assess DARCY’s performance we answer RQ7 in terms of these
underlying tools as well as DARCY’s execution time. We ran all
the evaluation experiments on a MacBook Pro 2013 (2.3 GHz
Intel Core i7, 16 GB, MacOS 10.14.).

Table VIII shows the average execution times of DARCY at
both compile- and run-time. Results for Classycle are shown
separately from the results for other components, since Classy-
cle dominates the execution time. Note that Classycle is only
executed once before an application is executed, and DARCY

stores the collected package dependencies for further analysis.
Therefore, it only appears in compile-time execution time in
Table VIII. On average, DARCY takes under 9 seconds to ex-
ecute at compile-time, which is reasonably efficient for both
detection and repair. At run-time, DARCY takes only about 0.4
seconds on average to detect and repair the inconsistencies of a
dynamically loaded module, which poses a minimal overhead
to the system’s execution.

VI. THREATS TO VALIDITY

In terms of accuracy, the main threat to internal validity is
the risk of false positives or negatives of the static analysis
tools used in the implementation. False positives or negatives
in the results of the static analysis tools may cause DARCY

to miss some inconsistencies in the detection phase or report
false inconsistencies, which may lead to compilation errors or
harming functionality of the application after the repair phase.
Since DARCY takes Classycle’s results as an input for the Java
inconsistency analysis, it inherits all of Classycle’s limitations.
The accuracy of detecting the inconsistent dependencies is af-
fected by the accuracy of the static analysis tool we use. How-
ever, Classycle has been used and in development for over 11
years and leveraged by other state-of-the-art tools for software
architecture and anti-pattern analysis [27], [28], [29], [30], [31],
[32], [33]. A similar threat to internal validity exists for our
use of Soot; however, Soot is a widely used [34], [35] and
actively maintained framework [36] for static analysis of Java
programs. We further manually determine whether every identi-
fied inconsistency is correct to ensure that any unforeseen issues

with underlying static analyses do not compromise DARCY’s
accuracy.

The main threat to external validity is that DARCY may iden-
tify an architectural inconsistency that is intentionally defined
by developers. For example, in the case of Java libraries, a
developer may export some packages that might not be used
internally by the library itself. In these situations, DARCY can-
not be aware of the developer’s intention. Consequently, the
evaluation results in this paper report the potential architectural
inconsistencies and the gain of repairing them. To mitigate
this threat, we keep the developers in the loop and let them
override DARCY’s decision before the repair phase, as explained
in Section IV.

Another threat to external validity is the selection and number
of Java applications in the evaluation dataset. To mitigate this
threat, we selected open source Java 9+ applications from many
developers and thousands of repositories in Github, one of the
largest and most widely used open-source repositories online.
Another threat to external validity is whether the types of in-
consistencies we identify comprehensively cover those that may
exist. To alleviate this threat, we considered the architectural
inconsistencies based on all types of module directives defined
in Java.

DARCY’s evaluation on only one programming language,
i.e., Java, is another threat to external validity. This threat is
alleviated by the fact that Java is one of the most widely used
languages in the world [37], [38]. Furthermore, the general
idea behind DARCY can be extended to any other languages
with modular programming constructs that utilize provides and
requires interfaces advocated by software architecture-based
development and design [39], [40], [41].

VII. RELATED WORK

The most closely related literature to DARCY bridges the
gap between the prescriptive and descriptive architecture. There
are a variety of different types of strategies to address this
issue: focusing only on the descriptive architecture by reverse
engineering it; obtaining the descriptive architecture and the
prescriptive architecture, followed by checking their confor-
mance; ensuring that early in the software lifecycle that the
descriptive and prescriptive architectures conform by providing
architectural constructs in code; and approaches that ensure
conformance of the descriptive and prescriptive architecture
from the beginning and into maintenance.

Many approaches address the architecture-implementation
mapping issue by ignoring the prescriptive architecture and
simply trying to obtain the most accurate descriptive archi-
tectures possible [31], [32], [42], [43], [44], [45], [46], [47],
[48], [49]. A large number of these approaches rely on software
clustering to determine components from implementations [42],
[43], [50], [51], [52]. More recently, Hammad et al. [53] have
developed a tool-assisted approach that relies on component
recovery techniques and converts object-oriented Java apps,
i.e., pre-Java-9, to component-based Java 9+ apps that properly
use the JPMS constructs with the least privileged architec-
ture specification. Furthermore, Shi et al. [54] studied C++20

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 21,2024 at 23:33:14 UTC from IEEE Xplore. Restrictions apply.

1654 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

modules and proposed H2M, an approach to convert header-
based C++ applications to module-based C++ applications with
better compiling performance. While these approaches mostly
focus on recovering the descriptive architecture, DARCY tries
to find inconsistencies between the prescriptive and descriptive
architectures.

A series of approaches detect inconsistencies between ar-
chitecture and implementation by reverse engineering the de-
scriptive architecture from the code and comparing it with the
prescriptive architecture [55], [56], [57], [58], [59], [60], [61],
[62], [63], [64], [65], [66], [67], [68]. Murphy et al. intro-
duced the software reflexion method which helps an engineer
compare prescriptive and descriptive architectures in a manual
manner [55]. A number of these approaches extend the reflexion
method with automated architecture recovery techniques [65],
[66], [67]. Moreover, Buckley et al. [69] proposed JITTAC, a
tool that uses a real-time Reflexion Modeling approach to pro-
vide developers with Just-In-Time architectural consequences
of their implementation actions and promote consistency be-
tween the prescriptive and descriptive architecture. However,
the main difference between these approaches and DARCY is
that they require the software architectures to manually specify
the prescriptive architecture, whereas in DARCY the prescriptive
architecture is automatically obtained by leveraging the module
declarations in JPMS.

Other approaches provide implementation-level constructs
that represent architectural elements (e.g., customizable
programming-language classes representing components)
that help ensure architectural conformance from a forward-
engineering perspective [2], [70], [71], [72], [73], [74], [75],
[76]. Many of these approaches support various notions of
software architectural connectors or interfaces, rather than
just components, but, unlike DARCY, they do not address a
mainstream programming language widely used by many
developers such as Java.

Certain approaches achieve architecture-implementation
mapping from both a forward-engineering (e.g., code
generation) and reverse-engineering perspective, i.e., round-
trip engineering [77], [78], [79]. 1.x-way mapping [77] allows
manual changes to be initiated in the architecture and a
separated portion of the code, with architecture-prescribed
code updated solely through code generation. 1.x-line mapping
[78] extends 1.x-way mapping to product-line development.
Song et al. [79] introduce a runtime approach for architecture-
implementation mapping from a roundtrip-engineering
perspective.

Another series of approaches focus on detecting or fixing
different types of dependency conflicts in software systems,
e.g., detecting security issues [80], or conflicts in referenc-
ing third-party libraries [81], [82], [83], [84], [85], [86], [87].
Dann et al. introduced ModGuard [80], a static analysis based
approach that automatically identifies instances involving un-
intentional leaks of sensitive objects in real-world applica-
tions which may have a significant impact on an application’s
security. ModGuard and Darcy are similar in improving the
security of modular Java applications, however, they focus
on two different perspectives. ModGuard focuses on leaking

packages’ internal data without exposing them, while Darcy
detects unnecessarily exposed packages which may lead to
security issues.

On the other hand, Wang et al. focused on the semantic
conflicts caused by the dependency conflicts and proposed an
automated testing technique that attempts to identify incon-
sistent behaviors of the APIs in conflicting library versions
[82] as well as creating the corresponding stack trace [84].
They also proposed techniques to monitor dependency conflicts
for the Python library ecosystem [85] and detect dependency
conflicts in Golang, as well as suggesting proper fixes [86].
Furthermore, Lambers et al. [83] developed a technique that
detects all dependency conflicts on multiple granularity lev-
els based on graph transformation. Additionally, Li et al. [87]
proposed an automated technique to repair dependency issues
where changes in software systems violate package dependency
constraints.

Regarding run-time architectural conformance, in the most
closely related work, Yan et al. [61] introduce DiscoTect, a tech-
nique that observes running software systems and constructs
an architectural view of them. Using this dynamic architectural
discovery, developers and architects can map the architectural
styles to implementation styles which helps them with building
systems that are consistent with their architectural design. How-
ever, their approach does not provide an automated technique to
enforce the conformance between prescriptive and descriptive
architecture as DARCY does.

Despite other techniques, DARCY is the first approach that
supports architectural-implementation conformance, at both
compile- and run-time, in a mainstream programming language
using architectural constructs built directly into the program-
ming language by its creators. Furthermore, our approach in-
cludes repairing non-conforming architectures rather than just
determining inconsistencies. In addition, DARCY is the only
approach for architecture-implementation mapping that focuses
on software bloat and attack-surface reduction.

The only existing framework similar to JPMS is OSGI [88].
The major differences between OSGI and JPMS are as fol-
lows. OSGI was not able to modularize the JDK, preventing
the construction of customized runtime images with a mini-
mized JDK, which JPMS enables. Additionally, OSGI cannot
handle reflective access to modules’ internal packages. Similar
dependency-analysis facilities for OSGI are limited to remov-
ing unused dependencies of type import, which represents the
require dependency, and cannot cover the other 7 types of
inconsistencies in JPMS applications previously introduced in
Section III. Therefore, there is no similar facility for OSGI that
repairs all types of inconsistent dependencies as DARCY does.

VIII. CONCLUSION

This paper formally defines 8 types of architectural incon-
sistencies in Java 9+ applications and introduces DARCY, an
approach for automatic detection and repair of these types of
inconsistencies both statically at compile-time and dynamically
at run-time. DARCY leverages custom static analysis, state-of-
the art static analysis tools, and a custom parser generator in its

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 21,2024 at 23:33:14 UTC from IEEE Xplore. Restrictions apply.

GHORBANI et al.: DARCY: AUTOMATIC ARCHITECTURAL INCONSISTENCY RESOLUTION IN JAVA 1655

implementation to effectively detect and robustly repair archi-
tectural inconsistencies. The results of our evaluation indicate
a pervasive existence of architectural inconsistencies among
open-source Java 9+ applications. According to our experiment,
DARCY’s automatic repair results in a significant reduction of
the attack surface, enhancement of encapsulation, and reduc-
tion of memory usage for Java 9+ applications. Possible future
directions of this research include (1) providing run-time archi-
tectural visualization showing the architectural inconsistencies
as they occur, (2) expanding DARCY as an interactive framework
that modifies the repair decisions based on the developer’s
feedback in real-time, and (3) providing an implementation
of DARCY as a plug-in for popular Integrated Development
Environments (IDE).

IX. DATA AVAILABILITY

Darcy’s research artifacts are publicly available on Zenodo.3

The artifacts include the source code of the Darcy tool, the
source code of the subject applications in Table II, the detailed
information of the subject applications, and the GitHub crawl-
ing script for selecting the candidate modular Java applications.

ACKNOWLEDGMENT

We thank the anonymous reviewers of this paper for their
detailed feedback, which helped us improve the work.

REFERENCES

[1] R. N. Taylor and N. Medvidovic, Software Architecture: Foundations,
Theory, and Practice. Hoboken, NJ, USA: Wiley, 2009.

[2] J. Aldrich, C. Chambers, and D. Notkin, “ArchJava: Connecting
software architecture to implementation,” in Proc. 24th Int. Conf.
Softw. Eng., New York, NY, USA: ACM, 2002, pp. 187–197, doi:
10.1145/581339.581365.

[3] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead Jr., and
J. E. Robbins, “A component- and message-based architectural style for
GUI software,” in Proc. 17th Int. Conf. Softw. Eng., New York, NY,
USA: ACM, 1995, pp. 295–304, doi: 10.1145/225014.225042.

[4] “Project Jigsaw.” OpenJDK. Accessed: Jul. 23, 2023. [Online]. Avail-
able: http://openjdk.java.net/projects/jigsaw/

[5] N. Ghorbani, J. Garcia, and S. Malek, “Detection and repair of architec-
tural inconsistencies in Java,” in Proc. IEEE/ACM 41st Int. Conf. Softw.
Eng. (ICSE), Piscataway, NJ, USA: IEEE Press, 2019, pp. 560–571.

[6] “Darcy++ web page.” Google. [Online]. Available: https://sites.google.
com/view/darcy-plus-plus/homess

[7] K. Sharan, “The module system,” in Java 9 Revealed. Berkeley, CA,
USA: Apress, 2017, pp. 7–30.

[8] M. Reinhold, “JSR 376: Java platform module system,” Oracle Corpo-
ration, Austin, TX, USA, Tech. Rep. Accessed: Jul. 23, 2023. [Online].
Available: https://openjdk.org/groups/web/crServer.html

[9] P. Deitel, “Understanding Java 9 modules.” Oracle. [Online]. Avail-
able: https://www.oracle.com/corporate/features/understanding-java-9-
modules.html

[10] P. J. Deitel and H. M. Deitel, Java 9 for Programmers. Englewood Cliffs,
NJ, USA: Prentice Hall, 2017.

[11] S. Mak and P. Bakker, Java 9 Modularity: Patterns and Practices for
Developing Maintainable Applications. Sebastopol, CA, USA: O’Reilly
Media, Inc., 2017.

[12] J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, and D. Smith, “The
Java® language specification Java SE 9 edition,” Oracle Corporation,
Austin, TX, USA. Techn. Rep., [Online]. Available: https://docs.oracle.
com/javase/specs/jls/se9/html/index.html

[13] “API specification for the Java platform, standard edition: Class
ServiceLoader.” Oracle Corporation. Accessed: Jul. 23, 2023.

3https://doi.org/10.5281/zenodo.10574309

[Online]. Available: https://docs.oracle.com/javase/7/docs/api/java/
util/ServiceLoader.html

[14] F.-J. Elmer, “Classycle: Analysing tools for Java class and package
dependencies,” Classycle. Accessed: Jul. 23, 2023. [Online]. Available:
https://classycle.sourceforge.net/

[15] J. Garcia, M. Hammad, and S. Malek, “Lightweight, obfuscation-
resilient detection and family identification of android malware,” ACM
Trans. Softw. Eng. Methodol., vol. 26, no. 3, 2018, Art. no. 11.

[16] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A Java bytecode optimization framework,” in Proc. CASCON 1st
Decade High Impact Papers, Indianapolis, IN, USA: IBM Press, 2010,
pp. 214–224.

[17] “ServiceLoader (Java SE 9 & JDK 9),” Oracle Help Centre. Accessed:
Jul. 23, 2023. [Online]. Available: https://docs.oracle.com/javase/9/docs/
api/java/util/ServiceLoader.html

[18] ANTLR. Accessed: Jul. 23, 2023. [Online]. Available: http://www.antlr.
org

[19] GitHub. Accessed: Jul. 23, 2023. [Online]. Available: https://github.com
[20] “Beautiful Soup,” Segfault. Accessed: Jul. 23, 2023. [Online]. Available:

https://www.crummy.com/software/BeautifulSoup/
[21] P. Manadhata and J. M. Wing, “Measuring a system’s attack sur-

face,” School of Computer Science, Carnegie-Mellon Univ., Pittsburgh,
PA, USA, Tech. Rep., 2004. Available: https://www.cs.cmu.edu/~wing/
publications/tr04-102.pdf

[22] P. K. Manadhata, K. M. Tan, R. A. Maxion, and J. M. Wing, “An
approach to measuring a system’s attack surface,” School of Computer
Science, Carnegie-Mellon Univ., Pittsburgh, PA, USA, Tech. Rep.,
2007.

[23] P. K. Manadhata and J. M. Wing, “An attack surface metric,” IEEE
Trans. Softw. Eng., vol. 37, no. 3, pp. 371–386, May/Jun. 2011.

[24] E. Bouwers, A. van Deursen, and J. Visser, “Quantifying the encapsu-
lation of implemented software architectures,” in Proc. IEEE Int. Conf.
Softw. Maintenance Evol. (ICSME), , Piscataway, NJ, USA: IEEE Press,
2014, pp. 211–220.

[25] L. C. Briand, S. Morasca, and V. R. Basili, “Measuring and assess-
ing maintainability at the end of high level design,” in Proc. Conf.
Softw. Maintenance (CSM), Piscataway, NJ, USA: IEEE Press, 1993,
pp. 88–87.

[26] J. Lakos, Large-Scale C++ Software Design. Reading, MA, vol. 173,
pp. 217–271, 1996.

[27] M. R. Shaheen and L. du Bousquet, “Quantitative analysis of testability
antipatterns on open source Java applications,” in QAOOSE Proc., 2008,
p. 21.

[28] R. Yokomori, N. Yoshida, M. Noro, and K. Inoue, “Extensions of
component rank model by taking into account for clone relations,” in
Proc. IEEE 23rd Int. Conf. Softw. Anal., Evolution, Reeng. (SANER), ,
vol. 3, Piscataway, NJ, USA: IEEE Press, 2016, pp. 30–36.

[29] E. Constantinou, G. Kakarontzas, and I. Stamelos, “Towards open source
software system architecture recovery using design metrics,” in 2011
15th Panhellenic Conf. Inform., Sept 2011, pp. 166–170.

[30] D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian, and
N. Medvidovic, “An empirical study of architectural change in open-
source software systems,” in Proc. IEEE/ACM 12th Work. Conf. Mining
Softw. Repositories (MSR) , Piscataway, NJ, USA: IEEE Press, 2015,
pp. 235–245.

[31] J. Garcia, I. Ivkovic, and N. Medvidovic, “A comparative analysis of
software architecture recovery techniques,” in Proc. 28th IEEE/ACM Int.
Conf. Automated Softw. Eng., Piscataway, NJ, USA: IEEE Press, 2013,
pp. 486–496.

[32] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Med-
vidović, and R. Kroeger, “Comparing software architecture recov-
ery techniques using accurate dependencies,” in Proc. 37th Int.
Conf. Softw. Eng. vol. 2, Piscataway, NJ, USA: IEEE Press, 2015,
pp. 69–78.

[33] E. Constantinou, G. Kakarontzas, and I. Stamelos, “Open source soft-
ware: How can design metrics facilitate architecture recovery?” 2011,
arXiv:1110.1992.

[34] L. Hendren, “Uses of the soot framework,” Sable Research Group.
Accessed: May 8, 2024. [Online]. Available: http://www.sable.mcgill.
ca/~hendren/sootusers/

[35] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The soot framework for
Java program analysis: A retrospective,” in Proc. Cetus Users Compiler
Infrastructure Workshop (CETUS), vol. 15, 2011, p. 35.

[36] “Soot GitHub issue.” GitHub. Accessed: Jul. 23, 2023. [Online]. Avail-
able: https://github.com/Sable/soot/issues

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 21,2024 at 23:33:14 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/581339.581365
http://dx.doi.org/10.1145/225014.225042
http://openjdk.java.net/projects/jigsaw/
https://sites.google.com/view/darcy-plus-plus/homess
https://sites.google.com/view/darcy-plus-plus/homess
https://openjdk.org/groups/web/crServer.html
https://www.oracle.com/corporate/features/understanding-java-9-modules.html
https://www.oracle.com/corporate/features/understanding-java-9-modules.html
https://docs.oracle.com/javase/specs/jls/se9/html/index.html
https://docs.oracle.com/javase/specs/jls/se9/html/index.html
https://doi.org/10.5281/zenodo.10574309
https://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html
https://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html
https://classycle.sourceforge.net/
https://docs.oracle.com/javase/9/docs/api/java/util/ServiceLoader.html
https://docs.oracle.com/javase/9/docs/api/java/util/ServiceLoader.html
http://www.antlr.org
http://www.antlr.org
https://github.com
https://www.crummy.com/software/BeautifulSoup/
https://www.cs.cmu.edu/~wing/publications/tr04-102.pdf
https://www.cs.cmu.edu/~wing/publications/tr04-102.pdf
http://www.sable.mcgill.ca/~hendren/sootusers/
http://www.sable.mcgill.ca/~hendren/sootusers/
https://github.com/Sable/soot/issues

1656 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

[37] “TIOBE Index for August 2018.” TIOBE. Accessed: Jul. 23, 2023.
[Online]. Available: https://www.tiobe.com/tiobe-index/

[38] “The State of the Octoverse 2017.” Dribbble. Accessed: Jul. 23, 2023.
[Online]. Available: https://octoverse.github.com/

[39] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, “The
Koala component model for consumer electronics software,” Computer,
vol. 33, no. 3, pp. 78–85, Mar. 2000.

[40] N. Medvidovic and R. N. Taylor, “A classification and comparison
framework for software architecture description languages,” IEEE Trans.
Softw. Eng., vol. 26, no. 1, pp. 70–93, Jan. 2000.

[41] K. Lau and Z. Wang, “Software component models,” IEEE Trans. Softw.
Eng., vol. 33, no. 10, pp. 709–724, Oct. 2007.

[42] S. Ducasse and D. Pollet, “Software architecture reconstruction: A
process-oriented taxonomy,” IEEE Trans. Softw. Eng., vol. 35, no. 4,
pp. 573–591, Jul./Aug. 2009.

[43] R. Koschke, “Architecture reconstruction,” in Softw. Eng., Springer-
Verlag, 2006, pp. 140–173.

[44] I. Ivkovic and M. Godfrey, “Enhancing domain-specific software
architecture recovery,” in Proc. 11th IEEE Int. Workshop Pro-
gram Comprehension, Piscataway, NJ, USA: IEEE Press, 2003,
pp. 266–273.

[45] M. W. Godfrey and E. H. Lee, “Secrets from the monster: Extracting
Mozilla’s software architecture,” in Proc. 2nd Symp. Constructing Softw.
Eng. Tools (CoSET). Citeseer, 2000, pp. 15–23.

[46] M. Mirakhorli, Y. Shin, J. Cleland-Huang, and M. Cinar, “A tactic-
centric approach for automating traceability of quality concerns,” in
Proc. 34th Int. Conf. Softw. Eng. (ICSE), Piscataway, NJ, USA: IEEE
Press, 2012, pp. 639–649.

[47] A. Shahbazian, Y. K. Lee, D. Le, Y. Brun, and N. Medvidovic,
“Recovering architectural design decisions,” in Proc. IEEE Int. Conf.
Softw. Archit. (ICSA), Piscataway, NJ, USA: IEEE Press, 2018.

[48] E. Constantinou, G. Kakarontzas, and I. Stamelos, “An automated
approach for noise identification to assist software architecture recovery
techniques,” J. Syst. Softw., vol. 107, pp. 142–157, 2015.

[49] D. Qiu, Q. Zhang, and S. Fang, “Reconstructing software high-level
architecture by clustering weighted directed class graph,” Int. J. Softw.
Eng. Knowl. Eng., vol. 25, no. 4, pp. 701–726, 2015.

[50] M. Shtern and V. Tzerpos, “Clustering methodologies for software
engineering,” Adv. Soft. Eng., vol. 2012, pp. 1: 1–1:1, Jan. 2012, doi:
10.1155/2012/792024.

[51] O. Maqbool and H. Babri, “Hierarchical clustering for software archi-
tecture recovery,” IEEE Trans. Softw. Eng., vol. 33, no. 11, pp. 759–780,
Nov. 2007.

[52] R. A. Bittencourt and D. D. S. Guerrero, “Comparison of graph clus-
tering algorithms for recovering software architecture module views,” in
Proc. 13th Eur. Conf. Softw. Maintenance Reeng. (CSMR) , Piscataway,
NJ, USA: IEEE Press, 2009, pp. 251–254.

[53] M. M. Hammad, I. Abueisa, and S. Malek, “Tool-assisted componenti-
zation of java applications,” in Proc. IEEE 19th Int. Conf. Softw. Archit.
(ICSA), Piscataway, NJ, USA: IEEE Press, 2022, pp. 36–46.

[54] C. Shi, “Modularization of C++ applications based on C++ 20 modules,”
Ph.D. dissertation, Univ. California, Irvine, CA, USA, 2022.

[55] G. C. Murphy, D. Notkin, and K. J. Sullivan, “Software reflexion models:
Bridging the gap between design and implementation,” IEEE Trans.
Softw. Eng., vol. 27, no. 4, pp. 364–380, Apr. 2001.

[56] N. Medvidovic, A. Egyed, and P. Gruenbacher, “Stemming architectural
erosion by coupling architectural discovery and recovery.” in Proc. Stray
Relief Anim. Welfare, vol. 3, 2003, pp. 61–68.

[57] A. Van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and C. Riva,
“Symphony: View-driven software architecture reconstruction,” in Proc.
IEEE/IFIP Conf. Softw. Archit. (WICSA) , Piscataway, NJ, USA: IEEE
Press, 2004, pp. 122–132.

[58] L. O’Brien, D. Smith, and G. Lewis, “Supporting migration to services
using software architecture reconstruction,” in Proc. 13th IEEE Int.
Workshop Softw. Technol. Eng. Pract., Piscataway, NJ, USA: IEEE Press,
2005, pp. 81–91.

[59] J. B. Tran, M. W. Godfrey, E. H. Lee, and R. C. Holt, “Architectural
repair of open source software,” in Proc. 8th Int. Workshop Program
Comprehension (IWPC), Piscataway, NJ, USA: IEEE Press, 2000,
pp. 48–59.

[60] M. Abi-Antoun, J. Aldrich, D. Garlan, B. Schmerl, N. Nahas, and
T. Tseng, “Improving system dependability by enforcing architectural
intent,” in Proc. ACM SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, New
York, NY, USA: ACM, 2005, pp. 1–7.

[61] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman, “DiscoTect:
A system for discovering architectures from running systems,” in Proc.

26th Int. Conf. Softw. Eng. (ICSE), Piscataway, NJ, USA: IEEE Press,
2004, pp. 470–479.

[62] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, “Using dependency
models to manage complex software architecture,” in Proc. ACM Sigplan
Notices, vol. 40, no. 10. New York, NY, USA, 2005, pp. 167–176.

[63] J. A. Diaz-Pace, J. P. Carlino, M. Blech, A. Soria, and M. R. Campo,
“Assisting the synchronization of UCM-based architectural documenta-
tion with implementation,” in Proc. Joint Work. IEEE/IFIP Conf. Softw.
Archit. (WICSA) & 3rd Eur. Conf. Softw. Archit. (ECSA), Piscataway,
NJ, USA: IEEE Press, 2009, pp. 151–160.

[64] M. Sefika, A. Sane, and R. H. Campbell, “Monitoring compliance of a
software system with its high-level design models,” in Proc. 18th Int.
Conf. Softw. Eng., Los Alamitos, CA, USA: IEEE Comput. Soc. Press,
1996, pp. 387–396.

[65] R. Koschke and D. Simon, “Hierarchical reflexion models,” in Proc. 10th
Work. Conf. Reverse Eng., Piscataway, NJ, USA: IEEE Press, vol. 3,
2003, pp. 186–208.

[66] A. Christl, R. Koschke, and M.-A. Storey, “Equipping the reflexion
method with automated clustering,” in Proc. 12th Work. Conf. Reverse
Eng., Piscataway, NJ, USA: IEEE Press, 2005, pp. 10–98.

[67] R. Koschke, P. Frenzel, A. P. Breu, and K. Angstmann, “Extending the
reflexion method for consolidating software variants into product lines,”
Softw. Qual. J., vol. 17, no. 4, pp. 331–366, 2009.

[68] A. Gurgel et al., “Blending and reusing rules for architectural degrada-
tion prevention,” in Proc. 13th Int. Conf. Modularity, New York, NY,
USA: ACM, 2014, pp. 61–72.

[69] J. Buckley, S. Mooney, J. Rosik, and N. Ali, “JITTAC: A just-in-time
tool for architectural consistency,” in Proc. 35th Int. Conf. Softw. Eng.
(ICSE), Piscataway, NJ, USA: IEEE Press, 2013, pp. 1291–1294.

[70] M. Caporuscio, H. Muccini, P. Pelliccione, and E. Di Nisio, “Rapid
system development via product line architecture implementation,” in
Proc. Int. Workshop Rapid Integration Softw. Eng. Techn., Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 18–33.

[71] J. Grundy, “Multi-perspective specification, design and implementation
of software components using aspects,” Int. J. Softw. Eng. Knowl. Eng.,
vol. 10, no. 6, pp. 713–734, 2000.

[72] S. Malek, M. Mikic-Rakic, and N. Medvidovic, “A style-aware archi-
tectural middleware for resource-constrained, distributed systems,” IEEE
Trans. Softw. Eng., vol. 31, no. 3, pp. 256–272, Mar. 2005.

[73] J. Aldrich, C. Omar, A. Potanin, and D. Li, “Language-based architec-
tural control,” in Proc. Int. Workshop Aliasing, Capabilities Ownership
(IWACO), 2014, pp. 1–11.

[74] A. Radjenovic and R. F. Paige, “The role of dependency links in
ensuring architectural view consistency,” in Proc. 7thWork. IEEE/IFIP
Conf. Softw. Archit., Piscataway, NJ, USA: IEEE Press, 2008,
pp. 199–208.

[75] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G.
Zelesnik, “Abstractions for software architecture and tools to support
them,” IEEE Trans. Softw. Eng., vol. 21, no. 4, pp. 314–335, Apr. 1995.

[76] N. Ubayashi, J. Nomura, and T. Tamai, “Archface: A contract place
where architectural design and code meet together,” in Proc. 32nd
ACM/IEEE Int. Conf. Softw. Eng.Vol. 1. New York, NY, USA: ACM,
2010, pp. 75–84.

[77] Y. Zheng and R. N. Taylor, “Enhancing architecture-implementation
conformance with change management and support for behavioral
mapping,” in Proc. 34th Int. Conf. Softw. Eng., Piscataway, NJ, USA:
IEEE Press, 2012, pp. 628–638.

[78] Y. Zheng, C. Cu, and R. N. Taylor, “Maintaining architecture-
implementation conformance to support architecture centrality: From
single system to product line development,” ACM Trans. Softw. Eng.
Methodol., vol. 27, no. 2, 2018, Art. no. 8.

[79] H. Song et al., G. Huang, F. Chauvel, Y. Xiong, Z. Hu, Y. Sun, and
H. Mei, “Supporting runtime software architecture: A bidirectional-
transformation-based approach,” J. Syst. Softw., vol. 84, no. 5,
pp. 711–723, 2011.

[80] A. Dann, B. Hermann, and E. Bodden, “Modguard : Identifying integrity
& confidentiality violations in Java modules,” IEEE Trans. Softw. Eng.,
vol. 47, no. 8, pp. 1656–1667, Aug. 2021.

[81] Y. Wang et al., “Do the dependency conflicts in my project matter?”
in Proc. 26th ACM joint Meeting Eur. Softw. Eng. Conf. Symp. Found.
Softw. Eng., 2018, pp. 319–330.

[82] Y. Wang et al., “Will dependency conflicts affect my program’s seman-
tics,” IEEE Trans. Softw. Eng., vol. 48, no. 7, pp. 2295–2316, Jul. 2022.

[83] L. Lambers, D. Strüber, G. Taentzer, K. Born, and J. Huebert, “Multi-
granular conflict and dependency analysis in software engineering based

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 21,2024 at 23:33:14 UTC from IEEE Xplore. Restrictions apply.

https://www.tiobe.com/tiobe-index/
https://octoverse.github.com/
http://dx.doi.org/10.1155/2012/792024

GHORBANI et al.: DARCY: AUTOMATIC ARCHITECTURAL INCONSISTENCY RESOLUTION IN JAVA 1657

on graph transformation,” in Proc. 40th Int. Conf. Softw. Eng., 2018,
pp. 716–727.

[84] Y. Wang et al., “Could I have a stack trace to examine the dependency
conflict issue?” in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE),
Piscataway, NJ, USA: IEEE Press, 2019, pp. 572–583.

[85] Y. Wang et al., “Watchman: Monitoring dependency conflicts for Python
library ecosystem,” in Proc. ACM/IEEE 42nd Int. Conf. Softw. Eng.,
2020, pp. 125–135.

[86] Y. Wang et al., “Hero: On the chaos when PATH meets modules,” in
Proc. IEEE/ACM 43rd Int. Conf. Softw. Eng. (ICSE), Piscataway, NJ,
USA: IEEE Press, 2021, pp. 99–111.

[87] Z. Li, Y. Wang, Z. Lin, S.-C. Cheung, and J.-G. Lou, “NuFix: Escape
from NuGet dependency maze,” in Proc. IEEE/ACM 44th Int. Conf.
Softw. Eng. (ICSE), Piscataway, NJ, USA: IEEE Press, 2022, pp. 1545–
1557.

[88] “OSGI Alliance.” OSGi. Accessed: May 8, 2024. [Online]. Available:
https://www.osgi.org/resources/where-to-start/

Negar Ghorbani received the B.S. degree in com-
puter software engineering from Sharif University
of Tehran, and the M.S. and Ph.D. degrees in soft-
ware engineering from the University of California,
Irvine (UCI). Her research interests include soft-
ware engineering, focusing on the applications of
machine learning and natural language processing
for improving developer productivity, and software
development lifecycle.

Tarandeep Singh received the double bachelor’s
degree with a B.S. in software engineering and a
B.A. in business economics from the University of
California, Irvine. He currently works as a software
engineer in the industry. His research interests in-
clude software engineering, particularly in software
analysis.

Joshua Garcia (Member, IEEE) received the B.S.
degree in computer engineering and computer sci-
ence from the University of Southern California
(USC) and the M.S. and Ph.D. degrees in computer
science from USC. He is an Assistant Professor with
the School of Information and Computer Sciences,
University of California, Irvine. His current research
interests include software engineering, focusing on
software testing and analysis, software security, and
software architecture. He is a member of the ACM
and ACM SIGSOFT.

Sam Malek (Member, IEEE) received the B.S.
degree in information and computer science from
the University of California, Irvine, and the M.S.
and Ph.D. degrees in computer science from the
University of Southern California. He is a Pro-
fessor with the Informatics Department, School of
Information and Computer Sciences, University of
California, Irvine. His research interests include
software engineering, and to date his focus has
spanned the areas of software analysis and testing,
mobile computing, security, software architecture,

and accessible computing.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 21,2024 at 23:33:14 UTC from IEEE Xplore. Restrictions apply.

https://www.osgi.org/resources/where-to-start/

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

