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ABSTRACT
Despite the availability of numerous automatic accessibility test-
ing solutions, web accessibility issues persist on many websites.
Moreover, there is a lack of systematic evaluations of the efficacy of
current accessibility testing tools. To address this gap, we present
the first mutation analysis framework, called Ma11y, designed to
assess web accessibility testing tools. Ma11y includes 25 mutation
operators that intentionally violate various accessibility principles
and an automated oracle to determine whether a mutant is detected
by a testing tool. Evaluation on real-world websites demonstrates
the practical applicability of the mutation operators and the frame-
work’s capacity to assess tool performance. Our results demonstrate
that the current tools cannot identify nearly 50% of the accessibility
bugs injected by our framework, thus underscoring the need for the
development of more effective accessibility testing tools. Finally,
the framework’s accuracy and performance attest to its potential
for seamless and automated application in practical settings.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; •Human-centered computing→ Accessibility design
and evaluation methods.
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1 INTRODUCTION
In today’s world, websites play a crucial role in facilitating our
daily routines, from commuting to staying connected to managing
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our finances [59]. With the ever-increasing usage of websites, it is
imperative that developers prioritize accessibility to cater to the
needs of everyone, including the 15% of the population with dis-
abilities [60]. However, recent research reveals that a significant
portion of websites are plagued with accessibility issues [57], in-
cluding low-contrast text making it difficult for people with low
vision to perceive the text. Additionally, nearly 60% of the analyzed
websites lack alternative text for their images, which hinders indi-
viduals with visual impairments from understanding the content
and context conveyed by the images.

Several studies have investigated the reasons behind such preva-
lence of accessibility issues and have identified developers’ lack
of awareness of website accessibility guidelines and lack of reli-
able, automated tools as some of the primary reasons [2, 3, 25]. In
fact, manual testing is still the most reliable way to ensure website
accessibility; however, it can be expensive to hire individuals and
have them thoroughly examine each feature of the website while
checking for adherence to all accessibility guidelines. Moreover,
human evaluators are prone to making mistakes, and it is challeng-
ing to ensure comprehensive coverage of all features and various
usage scenarios. While engaging individuals with disabilities in
accessibility testing is valuable, it has similar limitations and may
not always be possible due to a lack of access to individuals with
disabilities. As a result, many developers opt for automatic testing
to evaluate accessibility [15, 48].

However, automatic testing for accessibility has limitations. One
limitation is incomplete coverage [48], as these tools may not ad-
dress all accessibility guidelines. In addition, these tools have differ-
ent degrees of accuracy and tend to produce inconsistent reports
[26], requiring manual checks to verify the testing results. Further-
more, there is a lack of systematic evaluation methods for assessing
the automatic testing tool’s effectiveness. Existing efforts on eval-
uation of web accessibility testing tools, such as the Accessibility
Tools Audit [5, 22], utilize manually constructed benchmarks that
typically consist of overly simplistic test cases, often containing
only a single or a few HTML tags. Such benchmarks do not capture
the intricacy and diversity of real-world web applications, leading
to a significant overestimation of the tools’ abilities to identify ac-
cessibility issues across complex and dynamic web environments.
This poses a challenge for software developers in selecting the most
suitable tool for their specific needs. A systematic evaluation of the
tools would not only benefit developers in making informed deci-
sions but also highlight the shortcomings of the tools and provide
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insights on how to improve them. In this paper, we aim to fill this
gap.

We leverage mutation analysis to create an accessibility muta-
tion framework, called Ma11y, aimed at evaluating web accessibil-
ity testing tools. Our mutation operators are crafted based on the
Web Content Accessibility Guidelines (WCAG) version 2.1, with a
specific focus on the success criteria and their corresponding fail-
ures [53]. These success criteria set the standards for accessible web
content, and the associated failures are designed to reliably indicate
non-compliance with these criteria. By mapping our 25 accessibility
mutation operators to these failures, we guarantee that the injected
accessibility issues are not only realistic but also accurately reflect
the types of deficiencies that are likely to be encountered in actual
web environments. Notably, Ma11y injects these operators into
the final HTML DOM that loads in the browser. This design elimi-
nates the need for the website’s source code [62] while enabling the
framework to seamlessly adapt to the dynamic nature of modern
websites (dynamically added or removed elements and attributes
within the program code), ensuring accurate generation of mutants.
Additionally, our framework incorporates a fully automatic oracle
for assessing a testing tool’s ability to kill mutants (i.e., detect the
presence of inaccessibility defects) by analyzing its output.

We investigate several key research questions to assess the effec-
tiveness of our proposed accessibility mutation framework. Firstly,
we aim to evaluate the quality of the 25 defined accessibility muta-
tion operators and their contribution to each accessibility princi-
ple. Secondly, we assess the framework’s ability to generate non-
equivalent mutants and the accuracy of our oracle in successfully
detecting mutants that are killed. Thirdly, we compare the perfor-
mance of multiple web accessibility testing tools in their ability
to detect various accessibility defects, and identify their strengths
and weaknesses. Additionally, we explore potential approaches to
improve the accuracy of these tools in identifying and address-
ing accessibility defects. These research questions aim to help us
gain insights into the effectiveness of our approach and existing
accessibility testing tools.

We evaluated Ma11y on 24 websites across different categories,
along with 6 web accessibility testing tools. The results revealed the
high applicability of the designed operators across diverse websites,
while also demonstrating Ma11y’s effectiveness in mitigating the
generation of equivalent mutants. Additionally, the findings reveal
that each tool exhibits distinct strengths and weaknesses. However,
as a collective observation, these tools prove ineffective in detecting
nearly 50% of the injected bugs, highlighting their limitations.

Overall, this article contributes the following:

• A set of 25 accessibility mutation operators derived from
WCAG 2.1 failures.

• The first open-source, publicly available mutation analysis
framework for web accessibility [45].

• Experimental results demonstrating the efficacy of the frame-
work and the designed operators.

• An evaluation of existing tools, providing insights into their
capability to identify real-world accessibility issues.

The remainder of this paper is organized as follows. Section 2
provides an overview of our mutation analysis framework, followed
by the details of the fault model used in the design of our mutants

in Section 3, and the implementation details in Section 4. Section
5 presents our evaluation of the framework. The paper concludes
with an overview of the related work in Section 7, and a summary
of our contributions in Section 8.

2 FRAMEWORK OVERVIEW
Ma11y’s overview, depicted in Figure 1, consists of three main
components. The first component is the Mutant Generator, which
applies 25 mutation operators derived from the defect model based
on WCAG 2.1 accessibility guidelines [54] to the website under
test. We detail the mutation operators and their derivation pro-
cess in Section 3. The Mutant Generator also includes checks to
avoid generating equivalent mutants, discussed in detail in Section
4. The second component is the Tool Runner, which so far inte-
grates the implementation of 6 popular accessibility testing tools
through a unified interface. Once mutants are generated, the Tool
Runner executes the accessibility testing tools on them. The final
component is the Oracle, which compares the reports generated
by each tool for both the original website and its corresponding
mutated websites. By analyzing these reports, the oracle determines
whether the accessibility issues were successfully identified by the
tool. The framework generates a comprehensive report showcasing
each tool’s performance in detecting accessibility bugs, along with
valuable insights and a mutation score assessment.

Figure 1: Mutation Testing Framework Architecture

3 MUTATION OPERATORS
In this section, we outline our approach for designing our defect
model and subsequently deriving the mutation operators from them.
Additionally, we provide detailed explanations of several mutation
operators and delve into their implementation specifics in the sub-
sequent sections.

3.1 Defect Model and Derivation of Operators
We started by analyzing the web accessibility guidelines that serve
as a resource for making websites accessible to individuals with
disabilities. Our goal was to identify violations of these guidelines,
which represent accessibility bugs. We focused on the WCAG 2.1
guideline [53] among various available accessibility guidelines [40,
47, 54, 58, 61] due to its comprehensiveness, and its clear, testable
success criteria. These criteria are crucial for evaluating web acces-
sibility comprehensively, and each criterion is linked to detailed
descriptions of failures. The failures illustrate how specific coding
errors can lead to success criteria violations, often accompanied by
practical examples. Such documentation of failures makes WCAG
2.1 an invaluable resource for identifying common web accessibility
issues leading to its extensive adoption in prior work [32, 43, 55].
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Table 1: List of proposed accessibility mutation operators

Principle Guideline Id Name Scope Det. Failure

Perceivable Text Alternatives/Time-based Media RID Replace Image with Div T Syn F3
CIA Change Image Alt Text A Sem F30
RIA Remove Image Alt Text A Syn F65

Adaptable RHP Replace Header with Paragraph T Both F2
ASB Add Space Between Characters C Sem F32
RAS Replace Anchor Text with Span T Syn F42
RHD Replace Table Headers with Table Data T Syn F91

Distinguishable CFC Change Foreground Color S Syn F24
RAD Remove Anchor Text Decorations S Both F73
CIF Change Input Font Size S Syn F80
CPF Change Paragraph Font Size S Syn F94
ROA Remove Outline from Anchor Text S Syn F78

Operable Enough Time MTB Make Text Blink S Syn F4
Navigable CPT Change Page Title C Sem F25

CTO Change Tab Index Order A Both F44
RAI Remove Anchor Text Identifier S Syn F89

Keyboard Accessible CDP Change Device-Specific Pointer E Syn F54
Input Modalities CBL Change Button Label A Sem F96

Understandable Predictable RFA Remove Focus from Anchor Text S,E Syn F55
CCC Change Context on Click E Syn F22
CCB Change Context on Blur E Both F9
CCI Change Context on Input E Both F36
CCS Change Context on Selection E Both F37

Robust Compatible RIN Remove Input Names T,A Syn F68
MDI Make Duplicate Ids A Syn F77

WCAG provides a set of 13 guidelines aimed at improving the
accessibility of web content. The guidelines are organized into 4
principles: Perceivable, Operable, Understandable, and Robust [53].
Each one of these principles signifies an essential aspect of web
accessibility and ensures that all users can discern and use the web-
site without facing any accessibility issues. Each guideline includes
testable success criteria that determine conformance to WCAG.
Meeting the success criteria is necessary to achieve WCAG compli-
ance. Significantly, the failures associated with each success crite-
rion provide insightful descriptions that result in non-conformance.
These failures are instrumental in our development of mutation
operators, as they offer a direct link to real-world scenarios where
web accessibility is compromised.

We utilized the failures to construct a defect model. We selected
25 failures from 13 WCAG 2.1 guidelines. We ensured that the
selected failures covered different locations in an HTML DOM, re-
ferred to as “scope”. The scope of a failure can be categorized as
Attribute, Event handler, Tree (Element Tag), Style, or Content, as
defined in [62]. Some of these failures are syntactic, for example,
issues with the HTML tags and their attributes. Some are semantic,
requiring an understanding of the page’s content; for example: the
Change Image Alt Text (CIA) operator changes the alternative text
of an image to an unrelated text. And finally, some are a combina-
tion of both semantic and syntactic. One of our selection criteria
entailed ensuring that selected failures do not involve the JavaScript
logic of a website. This criterion has been set because the accessi-
bility testing tools we used for evaluation analyze a web page after
JavaScript is loaded. Therefore, we focused only on accessibility
issues that arise after JavaScript loading. Failures that did not meet
the above-mentioned criteria were excluded from the list. It is worth
noting that three WCAG guidelines, named “Seizures and Physical
Reactions”, “Readable”, and “Input Assistance”, do not have defined
failures, and thus, we excluded them from the list.

We derived the mutation operators by analyzing the selected
failures. To illustrate this procedure, let us consider failure F3, cor-
responding to success criterion “SC 1.1.1: Non-text Content” [51].
F3 occurs when developers use CSS to include images instead of
using the HTML <img> tag. This creates an accessibility issue due
to the absence of “alternative text” which is necessary for proper
functioning of screen readers that are used by blind users. Our
analysis of this failure led to the creation of a mutation operator
called RID (Replace Image with Div). The RID operator replaces
an <img> tag with a <div> tag containing the background-image
CSS property. This mutation operator does not affect the image’s
visibility or functionality, but introduces an accessibility issue by
using CSS instead of the appropriate HTML tag.

In total, we designed 25 operators. The complete list of opera-
tors is provided in Table 1, where the first two columns indicate
the principle and guideline violated by each operator. Columns 3
and 4 display the identifier and name of the operators, while the
fifth column denotes the scope of the operator in the HTML DOM,
i.e., the location where it applies. The sixth column specifies the
detection analysis needed for this operator, which can be syntac-
tic, semantic, or both. Syntactic operators solely alter the syntax
without affecting the content, while semantic operators modify
the content (e.g., replace an informative alt text for an image with
random text). Some operators possess both semantic and syntactic
properties. The last column provides the WCAG failure number
from which the operator is derived. Due to space constraints, we
will discuss a subset of these operators in detail in the following
subsections. More information about all operators can be found on
the companion website [34, 45].

3.2 Mutation Operators for Perceivability
Perceivability, as the first accessibility principle in WCAG, under-
scores the need for information and user interface components to



ISSTA ’24, September 16–20, 2024, Vienna, Austria Mahan Tafreshipour, Anmol Deshpande, Forough Mehralian, Iftekhar Ahmed, and Sam Malek

be presented in a perceptible manner. This principle encompasses
four guidelines: Text Alternatives, Time-based Media, Adaptable,
and Distinguishable [53]. In this section, we focus on mutation
operators derived from failures violating these guidelines, thereby
compromising the perceptibility of web content.

For the Text Alternatives and Time-based Media guidelines,
which are concerned with the presence of informative alterna-
tive text for non-text content, our mutation operators intentionally
modify the alternative text or remove it entirely. For instance, the
operator named Change Image Alt Text (CIA) alters the text al-
ternative of an image to a randomly generated non-informative
string.

The Adaptable guideline is concerned with content that can
be presented in different ways without losing information. Our
mutation operators under this guideline modify elements while
maintaining their visual presentation, resulting in elements that
visually resemble the originals but lack the intended information
and structure for assistive technologies. For example, the Replace
Anchor Text with Span (RAS) operator shown in Figure 2 replaces
a hypertext link <a> tag with a <span> tag, replicating all the func-
tionality and styles of the original <a> tag but omitting essential
ARIA attributes. These attributes provide additional information to
assistive technologies for better navigation and interaction [14]. As
a result, the new <span> element remains unrecognized as a link
by screen readers.

1 <a href="/what -we-offer/secure -2. aspx">

2 Learn more

3 </a>

(a) Original Element
1 <span onclick="window.location.href='/what -we-offer/

secure -2.aspx ';" class="a-decoration"

2 >

3 Learn more

4 </span>

5 ...

6 <style>

7 .a-decoration {

8 text -decoration: underline; !important;

9 cursor: pointer; !important;

10 color: blue; !important;

11 }

12 </style>

(b) Mutated Element

Figure 2: Example of Adaptability Mutation Operators

The Distinguishable guidelines underscore the importance of
making elements on a page distinguishable through different fore-
ground and background colors, font sizes, or text decorations. The
mutation operators designed for this guideline aim to modify these
style attributes and render elements inaccessible. For instance, Re-
move Anchor Text Decorations (RAD) removes any text decoration
from the <a> tag, relying solely on color differences to distinguish
the link. However, such reliance on color alone may lead to failures
for individuals who cannot perceive color differences.

3.3 Mutation Operators for Operability
Operability, a foundational principle of web accessibility, aims to
ensure that user interface components and navigation are easy to
operate. This principle is guided by five crucial guidelines from
WCAG: Keyboard Accessibility, Enough Time, Navigation, Seizures
and Physical Reactions, and Input Modalities [53]. In this section,
we present a set of mutation operators designed from failures that
violate these guidelines, with the exception of Seizures and Physical
Reactions, which lacks assigned failures.

The first guideline, Keyboard Accessibility, ensures that all web-
site functionalities can be accessed and operated via a keyboard. An
example of the operator designed to hinder keyboard accessibility is
Change Device-Specific Pointer (CDP), which mutates an element
with the onclick event handler and changes it to onmousedown.
This mutation replaces the original keyboard-accessible control
with a device-specific control, effectively making it unavailable to
keyboard users. Consequently, individuals who rely solely on key-
board navigation and interaction may find this control inaccessible.

The Enough Time guideline emphasizes allowing users sufficient
time to read and interact with content. The Make Text Blink (MTB)
operator, illustrated in Figure 3, continuously blinks a <span> text
without providing a mechanism to stop the blinking effect. This
mutation hampers the user’s reading experience, particularly for
those with cognitive or visual impairments, by causing distractions
and making it difficult to consume content within the provided
time.

1 <span aria -hidden="false" class="input --wrap -label" data

-mutation -id="F4">

(a) Original Element
1 <span aria -hidden="false" class="input --wrap -label

blink_me" data -mutation -id="F4">

2 ...

3 <style>

4 .blink_me {

5 animation: blinker 1s linear infinite;

6 }

7 @keyframes blinker {

8 50% {

9 opacity: 0;

10 }

11 }

12 </style>

(b) Mutated Element

Figure 3: Example of Enough Time Mutation Operators

The Navigation guideline stresses the importance of smooth nav-
igation, content discovery, and clear indicators of the user’s location
within the interface. An operator violating navigation, Change Page
Title (CPT), alters the page title to a randomly generated string un-
related to the content, misleading users and disrupting their ability
to accurately determine their location within the interface. This
modification may lead to confusion and hinder users from navi-
gating effectively through the website especially when attempting
to retrace their steps or understand the overall structure of the
content.
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The Input Modalities guideline encourages diverse input meth-
ods beyond the traditional keyboard, such as speech input, to en-
hance ways in which operations can be performed. The Change
Button Label (CBL) operator, aiming to violate this guideline, alters
the value of the aria-label attribute of a <button> element to a
text unrelated to the button’s visible label. This operator highlights
situations where speech input users face difficulties in reliably ac-
tivating controls due to mismatches between visible labels and
accessible names. Addressing such issues would improve the acces-
sibility of web interfaces for diverse user interaction modes.

3.4 Mutation Operators for Understandability
The principle of Understandability emphasizes the importance of
users being able to comprehend both the information presented
and the functionality of the user interface, without encountering
content or operations that exceed their understanding. This princi-
ple encompasses three guidelines: Readable, Predictable, and Input
Assistance, with only Predictable having assigned failures inWCAG
[53].

The Predictable guideline emphasizes the need for consistent
behavior on web pages, promoting a predictable and coherent user
experience. The mutation operators within this section are designed
to introduce unexpected changes to the page context, challenging
its predictability. For example, the Change Context on Click (CCC)
operator, as illustrated in Figure 4, unexpectedly opens a new win-
dow when a user clicks on a <span> element without any prior
indication or warning. Such behavior can disrupt the user’s focus
and distract them from their current reading or task, potentially
leading to confusion and difficulty in understanding the interface.

1 <span

2 class="-img _glyph"

3 >

4 Stack Overflow

5 </span>

(a) Original Element
1 <span

2 class="-img _glyph"

3 onclick="window.open('https :// example.com ')"

4 >

5 Stack Overflow

6 </span>

(b) Mutated Element

Figure 4: Example of Predictability Mutation Operators

3.5 Mutation Operators for Robustness
The Robust principle emphasizes the significance of ensuring web
content’s reliable interpretation by various user agents, including
assistive technologies, and its continued accessibility as technolo-
gies evolve over time. This principle is supported by the Compatible
guideline [53], which plays a critical role in maximizing compatibil-
ity with present and future user agents and assistive technologies.
By adhering to this guideline, web developers can ensure that their
content remains accessible and functional across diverse platforms
and evolving technologies.

One example of an operator that violates the Compatible guide-
line is Remove Input Names (RIN). This operator removes all labels
and names associated with an <input> element within a <form>.
Consequently, users may encounter difficulties in identifying the
purpose of the form control, as the essential descriptive information
is stripped away. Such mutations can lead to compatibility issues
with assistive technologies, hindering users with disabilities from
accurately interpreting and interacting with the form.

1 <label for="query">Search the NIH Website </label>

2 <input autocomplete="off" id="query" name="query" type="

text">

(a) Original Element
1 <input autocomplete="off" id="query" name="query" type="

text">

(b) Mutated Element

Figure 5: Example of Compatibility Mutation Operators

4 APPROACH
In this section, we discuss the implementation details of the three
key components of the tool presented in this article.

4.1 Mutant Generator
The first component, called the Mutant Generator, is responsible for
implementing and applying the mutation operators to websites. To
achieve this, we utilize Puppeteer, a headless browser developed in
JavaScript [20]. The decision to adopt a browser-based approach for
implementing the operators was driven by several factors. Firstly,
websites are dynamic in nature, which means their elements can
change or be loaded at runtime, and attributes may be added or re-
moved. To handle such variations effectively and avoid generating
equivalent mutants (mutants that are equivalent to the original pro-
gram), a solution capable of handling runtime changes is essential.
Secondly, browsers provide the necessary tools to traverse and in-
spect a website’s DOM, allowing for efficient search and evaluation
of candidate elements. This capability enhances the effectiveness
and accuracy of the mutation process.

While implementing mutation operators, we use Puppeteer to
load the HTML DOM of each website. Once the loading process
is complete, we assess each operator’s applicability within the
website’s context. Applicability checking serves several purposes.
Firstly, it verifies the presence of the desired element on the page.
This ensures that the targeted element exists and can be manipu-
lated. Secondly, it checks if the element is visible and can be accessed
through the accessibility API. This is essential to ensure the opera-
tor’s changes are observable and interactable. Note that assistive
technologies (e.g., screen readers) rely on accessibility API for their
implementation. Lastly, the applicability check confirms that the
targeted element does not already possess the accessibility issue
the operator aims to inject. This precautionary step is crucial to
avoid generating equivalent mutants that do not introduce new
accessibility issues.
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To assess element visibility and its ability to be interacted with
using accessibility API, Ma11y examines the properties of the ele-
ments shown in table 2, along with their respective values.

Table 2: Properties responsible for element’s visibility

Property Value

display != none
visibility != hidden
opacity != 0
role != presentation || != none

aria-hidden != true

The validation process for applying mutation operators in the
framework involves checking the absence of the intended acces-
sibility issue before execution. While straightforward for some
operators like RIN, which simply removes labels from inputs, other
operators are challenging. For example, validating ROA, which re-
moves outlines from <a> tags during keyboard navigation, requires
simulating keyboard navigation using the accessibility API and
ensuring the target element receives a visible outline when focused,
i.e., ensuring that in fact it can be accessed using accessibility API
and that it does not already have an accessibility problem.

Similarly, operators like the CIA, altering the alternative text of
images with unrelated text, necessitate determining if the original
text was genuinely related to the image. To tackle this, we have
implemented a series of heuristics designed to filter out text alter-
natives that may not be relevant to the image. These heuristics
are derived from WCAG failure [49, 50], specifically drawing from
failures 25 and 30, where certain alternative texts and page titles
were found to be uninformative and unsuitable for use. For instance,
we check that the original text does not contain specific patterns
or phrases that indicate it is uninformative. Some of these checks
are highlighted below:

• Trivial/template alt text: “ ”, “spacer”, “image”, “picture”
• Filename extensions in the alt text: “*.png”, “*.jpg”, “*.jpeg”
• Duplicate alt texts on a page
• Image URL as the only alt text

Before selecting an image for mutating its alt text, we verify that
the alt text does not contain the aforementioned patterns. It is worth
noting that these checks are primarily aimed at excluding alt texts
that might be uninformative. However, they do not affirmatively
establish an alt text is informative, as achieving that would require
semantic analysis of both the alt text and the image, which falls
outside the scope of this paper.

The framework tags the targeted element with a “data-mutation-
id” attribute after verifying the operator’s applicability on the web-
site. The operator is then applied to the element, and the original
DOM and mutated DOM are saved in separate files. Subsequently,
the websites, with all operators applied, are hosted on a server to
assess the effectiveness of web accessibility testing tools on these
mutated versions. Finally, to ensure the quality and accuracy of
the created mutants, two authors independently verified each one,
complementing the automatic correctness checks of the mutants
and their implementation.

4.2 Tool Runner
After generating and hosting the mutants on the server, the Tool
Runner component takes over and executes the website accessibility
testing tools on these web pages. Ma11y is designed such that any
web accessibility testing tool can be integrated, so long that the
output of the tool can be transformed to a particular JSON format.

The current version of Tool Runner integrates six web accessibil-
ity testing tools, namely, A11yLite [1], Access Continuum [31], axe
[13], IBM Equal Access [24], QualWeb [39], andWAVE [56] as listed
in Table 3. The implementation process differs for each tool, as some
provide a RESTful API, while others are accessible through pack-
ages and programming libraries, necessitating integration through
the respective libraries.

Given the diversity in the development and design of these tools,
the output report format varies across them. To ensure consistency
in the reports and integration with the oracle, we developed a
transformation module that unifies the output format of these tool
into the previously-mentioned JSON format. This format provides
detailed information about the accessibility issues identified by
each tool, including the unique problem code (generated by each
tool), issue description, and pointers to each problematic HTML
element. Listing 1 is showing an example of the JSON format.

{
"code": "event_handler",
"description": "Device dependent event handler",
"pointer": "/HTML/BODY/DIV[3]/DIV/SPAN"

}

Listing 1: Unified JSON format

The unified JSON format reports accessibility issues using point-
ers like CSS selectors or XPaths, but since the Oracle component
(discussed further below) needs to match problems detected by
the tools to the mutated elements, access to the actual elements is
required. The Tool Runner component uses Puppeteer once again
to search the DOM based on the pointers provided by the tools. By
mapping each pointer to its corresponding element in the DOM and
verifying the presence of the "data-mutation-id" property, the Tool
Runner collects all accessibility issues associated with the mutated
elements for subsequent evaluation by the Oracle.

4.3 Oracle
The Oracle plays a crucial role in determining the effectiveness
of the web accessibility testing tools by assessing their ability to
identify (kill) the generated mutants. Upon receiving the unified
tool reports for both the original and mutant websites from the Tool
Runner, the Oracle compares the two lists of accessibility errors
reported for these web pages. If the reported list for the mutant does
not contain any new errors, it indicates that the tool failed to detect
the mutant. Conversely, if a new error is present in the mutant list
and corresponds to an accessibility bug that was injected into the
website, the Oracle concludes that the tool successfully identified
the problem, i.e., killed the mutant. Table 4 shows an example of
the outputs examined by the Oracle for ROA operator and the IBM
Equal Access tool.



Ma11y: A Mutation Framework for Web Accessibility Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 3: List of Tools implemented in Tool Runner

Tool Name Publisher License API Type Release Date

A11yLite [1] A11yWatch LLC Open Source Library Package 2020-Jan-29
Access Continuum [31] Level Access Free Software Library Package 2017-Oct-13
axe [13] Deque Systems, Inc. Open Source Library Package 2015-Jan-10
IBM Equal Access [24] IBM Accessibility Open Source Library Package 2020-May-18
QualWeb [39] Faculdade de Ciências da Universidade de Lisboa Open Source Library Package 2008-Jan-01
WAVE [56] WebAIM Commercial REST API 2014-Jan-01

Table 4: Example of the original and mutated issues
examined by Oracle

Original Element’s Issues [style_focus_visible]
Mutated Element’s Issues [style_focus_visible,

script_focus_blur_review]
New Issues [script_focus_blur_review]

Killed true

The Oracle component utilizes a mapping list that we devel-
oped between errors reported by tools and mutation operators. To
that end, we extensively utilized each tool’s documentation and
conducted multiple executions of each tool on sample web pages
with previously injected accessibility bugs. This process allowed
us to observe the errors generated by each tool in response to the
known accessibility issues present on web pages. Using this map-
ping list, the Oracle can determine whether a newly reported error
on a mutated web page is due to detection of an accessibility bug
injected by a specific mutation operator or not. When the reported
error identifier matches a mutation operator that was applied to
the mutated page, the Oracle counts that as the tool was success-
fully able to detected the mutant. Conversely, if no match is found,
the Oracle concludes that the tool failed to detect the mutant. For
example, in Table 4, the new issue detected by IBM Equal Access
is script_focus_blur_review. Since the Oracle finds a match for
this issue in the mapping list we created for the ROA operator, it
concludes that this mutant was successfully detected (killed) by the
IBM Equal Access tool.

To integrate a new tool, future researchers would need to provide
our framework with their API specification and a mapping of error
identifiers produced by the tool to mutation operators listed in
Table 1.

5 EVALUATION
In this section, we present the experimental evaluation of our mu-
tation operators and framework, as well as the assessment of the
current state of web accessibility testing tools in detecting accessi-
bility bugs. We aim to address the following research questions:

RQ1. Operators: What is the quality of accessibility mutation
operators? What is the contribution of each operator to each acces-
sibility principle?

RQ2.Mutation Framework: How effective is Ma11y in generating
non-equivalent mutants? What is the accuracy of oracle?

RQ3. Accessibility Tools: How effective are web accessibility
testing tools in detecting accessibility issues?

RQ4. Performance: How long does it take for Ma11y to generate
and analyze the mutants?

Table 5: Statistics of the selected websites.

Statistics HTML Elements # of Mutants

Total 33,866 366
Average 1,411 15

Standard Deviation 1,189 2.84
Maximum 4,662 (shein.com) 20 (nih.gov)
Minimum 73 (google.com) 9 (craigslist.org)

5.1 Experimental Setup
5.1.1 SubjectWebsites: In order to select websites for testingMa11y
and web accessibility evaluation tools, we decided to compile a list
of the most popular websites. We made use of top visited websites
at the time of writing of this paper as tracked by Semrush [12].
Semrush hosts a list of the 20 most popular websites in 33 cate-
gories such as Banking, E-Commerce, Fashion, Finance, and others.
To ensure comprehensive representation of different websites, we
created a selection strategy based on the following criteria. We
selected the most popular website worldwide from each of the 33
categories.

We then narrowed the list of websites to those that were in
English. We manually examined the downloaded version of the
websites to ensure that they closely resemble their online version
in appearance and functionality. We did this check since some
websites do not retain their styles when downloaded due to various
factors, such as the website’s server-side configurations, usage of
dynamically loaded resources, or content security policies. Two
researchers performed this task independently and arrived at a
list of websites selected for testing. Out of 33 categories, we were
able to select 24 unique, most visited websites. This is because in 4
cases there were the same website for different categories and we
excluded 5 websites because they were equipped with detection
scripts that identified when the site was accessed from any URL
other than its original hosting location. This behavior rendered
these websites unsuitable for our examination. The list of these
websites are mentioned in the companion website [34, 45]. Table
5 provides a summary of the selected websites in terms of HTML
elements.

5.1.2 Web Accessibility Testing Tools: We selected a set of 6 tools
from the W3C’s list of web accessibility evaluation tools [52]. There
are 167 tools on this website. We filtered these tools on the basis of
following factors. The tool must support the latest version ofWCAG
(i.e., WCAG 2.1), be available in English language, and provide an
API to automate testing. This gave us a list of 14 tools. This list
is inclusive of the open source and only plugin variations of the
same tool. Some tools in this list have been deprecated and are
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no longer available. We decided to use the open source version of
the commercial tools that provide an alternative, and commercial
version of the tools that do not have any open source alternative. In
total, we ended up with 6 unique tools, which are also some of the
most widely used tools due to the nature of our selection criteria .

5.2 RQ1. Operators
The evaluation of the accessibility mutation operators focuses on
understanding their prevalence, applicability, impact on different
accessibility principles, their distribution based on the semantic or
syntactic type, and their scope. To comprehensively assess these as-
pects, we conducted a mutation generation experiment on a diverse
set of 24 subject websites described in Section 5.1.

The results of our experiments are summarized in Table 6, show-
casing the applicability of the operators on each website. In total
Ma11y could create 366 mutants for the 24 websites, with an aver-
age of 15 mutants per website. This indicates the high applicability
of the defined operators for diverse web contexts.

Figure 6 illustrates the distribution of the created mutants based
on the accessibility principles they violate. Notably, approximately
half of the generated mutants pertain to the Perceivability principle,
while the other half are associated with the principles of Operability,
Understandability, and Robustness.
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Figure 6: Distribution of the number of mutants generated
per WCAG accessibility principles

Our findings reveal that 64% of the operators are associated with
syntactic changes, 17% with semantic changes, and the remaining
19% exhibit both syntactic and semantic attributes. This diversity of
operators enables a comprehensive evaluation of web accessibility
testing tools, allowing for the identification of a wide range of
potential accessibility issues across different dimensions.

Furthermore, we examined the distribution of mutants in terms
of the corresponding operators’ scope, which we defined in section
3. The analysis reveals that the mutants cover a diverse range of
scopes, with 18% of the mutants targeting Event Handlers, 31%
modifying the Style of elements, and 22% making alterations to
HTML Attributes, 16% making changes to HTML Tree and the
remaining 13% modify the Content. This comprehensive coverage
ensures a thorough assessment of web accessibility testing tools
across various scenarios and contexts.

5.3 RQ2. Mutation Framework
Despite our best effort to prevent the generation of equivalent
mutants as detailed in Section 4.1, there are scenarios in which
it is challenging to guarantee the absence of equivalent mutants.

The three mutation operators, namely CIA, CPT, and CBL, fall
under this category, where we cannot ensure complete avoidance
of equivalent mutants. CIA alters the alternative text of images, CPT
modifies the page title to a non-informative title, and CBL changes
the button aria-label to a text unrelated to the button text. In Section
4.1, we briefly discussed employing heuristics, such as checking
for template or trivial text or filenames, to mitigate the creation
of equivalent mutants. To further assess the potential presence
of equivalent mutants, a manual analysis was conducted on the
three aforementioned operators and their corresponding mutants,
as outlined in Table 6. This analysis involved comparing the original
and mutated versions of the websites under these operators and
identifying cases that led to equivalent mutants.

Remarkably, out of a total of 44 cases in which mutants were gen-
erated using these three operators, only one case produced an equiv-
alent mutant. This outcome underscores the effectiveness of Ma11y
by minimizing the occurrence of equivalent mutants and enhances
its reliability for detecting genuine accessibility issues. Despite the
challenges posed by semantic analysis, the framework’s ability to
avoid equivalent mutants in the majority of cases demonstrates
its robustness and potential as a valuable tool in web accessibility
assessment.

In Section 4.3, we presented the approach utilized by the oracle
to determine whether a mutant is detected (killed). To ensure the
accuracy and reliability of our oracle, a comprehensive manual
analysis was performed on all 366 mutants, examining each tool’s
execution and cross-referencing with the mapping list previously
created, which linked mutation operators to the error codes gen-
erated by each tool. To validate the oracle’s classification of killed
mutants, two authors independently scrutinized each decisionmade
by the oracle. For mutants marked as “killed”, the authors manu-
ally checked whether the tool indeed generated a new relevant
error, affirming the oracle’s correctness. Conversely, if no such er-
ror was produced, it indicated a false positive. A similar approach
was adopted to identify false negatives.

During the manual analysis, we identified 15 cases of false nega-
tives, resulting in an accuracy of approximately 96%. These false
negatives occurred due to the oracle’s reliance on error mapping be-
tween violated WCAG guidelines and the errors reported by acces-
sibility testing tools. In some cases, the mapping between violated
guidelines and the errors generated by the tools was not one-to-one.
Notably, for a single injected accessibility issue, certain tools may
produce different error codes on different pages. For example, the
“Remove Input Names” (RIN) operator triggered varied error codes
in the IBM Equal Access tool, such as input_label_exists or
input_label_visible, depending on the specific case. Similarly,
Access Continuum generated error codes 338 and 2440 for the same
injected bug in different mutants. These inconsistencies led to de-
creased accuracy of our oracle. However, this is not a shortcoming
of our oracle, but rather a shortcoming of existing tools, because in
certain cases the existing tools do not produce a consistent output.
In essence, this is similar to the problem of running flaky tests [33]
for the conventional mutation testing. Due to the unpredictabil-
ity of flaky tests, mutants may or may not be killed, which could
affect the mutation kill score. Similarly, in certain situations exist-
ing accessibility testing tools are flaky, preventing our oracle from
properly tracking their mutation kill score.
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Ma11y exhibits strong capabilities in mitigating the generation
of equivalent mutants and the accuracy of our oracle in identify-
ing killed mutants provides a solid foundation for evaluating the
performance of web accessibility testing tools.

5.4 RQ3. Accessibility Tools
In this evaluation, we investigate the performance of various web
accessibility testing tools in detecting accessibility bugs within the
366 mutants generated Ma11y. The results are presented in Table 6,
which displays the total number of mutants killed by each tool for
each mutation operator.

The table presents an overview of the performance of various
web accessibility testing tools in detecting accessibility bugs across
the 366 mutants. On average, the tools detected 92 mutants, with
IBM Equal Access achieving the highest number of 190 mutants
killed and A11yWatch achieving the lowest with 52 mutants killed.
Despite these figures, the mutation scores are disappointingly low
(≈50%). This indicates that these accessibility testing tools cannot
detect nearly 50% of the accessibility issues present in the websites.
Surprisingly, even WAVE, a widely used commercial tool, exhibits
a notably low mutation score of 25%.

Further analysis of the results revealed that two operators, MDI
(Make Duplicate IDs) and RIA (Remove Image Alt Text), were the
most easily detected by the tools. Almost all of the 41 mutants
generated for these operators were successfully detected. These
issues can often be identified through simple DOM inspections,
making their detection relatively straightforward for the tools.

However, there are six operators for which none of the tools
were able to detect a single mutant. These problematic operators
include CPT (Change Page Title), CIA (Change Image Alt Text),
CCS (Change Context on Selection), MTB (Make Text Blink), CTO
(Change Tab Index Order), CCB (Change Context on Blur), and CPF
(Change Paragraph Font Size). Among these, five operators are of
the semantic or both syntactic and semantic types, highlighting
the tools’ limitations in semantic analysis of the website’s content
and their consequent failure to detect semantic accessibility bugs.
Notably, the MTB operator, which uses animation to add dynamic-
ity to text, cannot be detected by any of the tools, exposing their
limitations in identifying dynamic accessibility bugs. Additionally,
the CPF operator, a syntactic operator that changes the font-size of
the paragraph, surprisingly eludes detection by all the tools.

Figure 7 shows the detection distribution based on the syntac-
tic/semantic categorization of bugs. Out of 130 mutants categorized
as semantic or both, the tools successfully detected 35 of them,
amounting to only 26% detection rate. In contrast, the tools demon-
strated a relatively better performance in detecting syntactic bugs,
successfully identifying around 54% of them.

We also analyzed the results based on accessibility principles
(Perceivability, Understandability, Robustness, and Operability).
The tools exhibit satisfactory performance in detecting the op-
erators violating the Robustness principles. However, their perfor-
mance significantly drops when it comes to detecting operators
violating the Operability principle, with WAVE exhibiting a de-
tection rate of 0%. IBM Equal Access performed well in detecting
mutants violating Perceivability and Understandability principles.
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Figure 7: Number of Mutants Killed by tools

A11yWatch showed effectiveness in detecting Operability viola-
tions, while Continuum excelled in identifying Robustness issues.

Based on these observations, it is evident that each tool excels
in detecting specific types of accessibility issues. As a result, we
hypothesize that combining these tools may yield a more effec-
tive approach to detection. To assess this, we analyzed the results
obtained from the combination of the tools, revealing a mutation
score of 60%, surpassing the performance of the best individual tool
by 8%. However, despite this improvement, the overall mutation
score remains relatively low, with 40% of the accessibility issues
remaining undetected. This indicates that while the combination
shows promise, further enhancements are necessary to achieve
more comprehensive and accurate accessibility testing.

Our study reveals a notable inconsistency in the effectiveness
of tools in detecting accessibility bugs across various websites. In
certain cases, a tool may identify a specific accessibility issue on
one website but fail to do so on another. These inconsistencies,
not previously highlighted in benchmark-based evaluations, chal-
lenge prior findings (e.g., [22]). For instance, while examining the
CBL operator, we noticed when altering the button aria-label to
unrelated text, IBM Equal Access and QualWeb could identify this
issue on capitalone.com but not on yahoo.com. This contrasts
with [21], where both tools were credited with detecting the bug.
These findings highlight the inadequacy of relying solely on basic
benchmark tests for a comprehensive evaluation of tools’ ability
to detect accessibility issues, since the design of a web page, how
content is loaded, and how adaptive UI is rendered may impact the
effectiveness of tools in detecting accessibility issues. Real-world
web environments are more complex than benchmarks suggest.
Our study, featuring intricate and realistic examples, offers a more
accurate portrayal of tools’ effectiveness in practical scenarios and
opens up the opportunity for further investigation.

5.5 RQ4. Performance
To assess the performance of Ma11y, we measured the time required
for generating mutants and analyzing the results produced by each
tool to determine the detection status of the mutants. The experi-
ments were conducted on a computer with a 1.4 GHz Intel Core i7
processor and 8 GB DDR3 RAM.

For evaluating the performance of the mutant generator compo-
nent, wemeasured the time needed for analyzing the code, checking
the applicability of the operator, and applying the operator. In Table
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Table 6: Summary of web accessibility testing tools
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Targeted Accessibility Principle P U P O P P P U U O P O O U P R U R P P O U P P O - -
Scope T E S C T A C E E S T A E E A T S A S S S E T S A - -
Syntactic/Semantic Bo Sy Sy Se Sy Se Se Bo Bo Sy Sy B Sy Sy Sy Sy Bo Sy Sy Sy Sy Bo Sy Sy Se - -
Total 17 23 19 24 17 17 20 7 1 24 24 20 5 24 17 2 15 24 20 5 12 6 1 19 3 366 -
Equivalent 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -

IBM Equal Access Killed 0 19 11 0 17 0 15 4 0 0 23 0 0 24 17 2 0 24 20 0 11 0 1 0 2 190 52
QualWeb Killed 0 20 11 0 0 0 0 0 0 0 0 0 0 22 13 2 0 24 0 5 10 0 0 0 1 108 30
Wave Killed 10 23 16 0 0 0 0 0 0 0 0 0 0 0 16 1 0 24 0 0 0 0 0 0 0 90 25
Continuum Killed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 1 0 24 0 0 11 0 1 0 0 53 14
A11yWatch Killed 0 0 0 0 0 0 0 0 0 0 0 0 5 0 11 2 0 24 0 0 9 0 0 0 1 52 14
Axe Killed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 2 2 24 0 0 12 0 0 0 0 56 15
Unique Killed 10 23 16 0 17 0 15 4 0 0 23 0 5 24 17 2 2 24 20 5 12 0 1 0 2 220 60

Table 7: Performance Metrics of Mutation Framework. (Total columns represent the sum of
the average time per mutant across all projects)

Statistics Mutant Generation Time (s) Mutant Analysis Time (s) Overall Time (s)
Total Per Mutant Total Per Mutant Total Per Mutant

Total 669.56 3.25 2,060.99 136.82 2,730.56 140.08
Average 27.90 0.14 85.87 5.70 113.77 5.84
Standard Deviation 24.19 0.25 200.80 11.98 219.14 12.09
Maximum 106.51 1.17 977.79 57.52 1,084.30 58.06

craiglist.com google.com craiglist.com craiglist.com craiglist.com craiglist.com
Minimum 5.86 0.02 0.73 0.10 7.56 0.12

live.com nih.gov* stackoverflow.com discord.com* live.com discord.com
* More than one website had the same maximum/minimum time.

7, we report the summary statistics due to space constraints. Com-
plete statistics for all 24 websites are available at [45]. As shown
in Table 7, the average time taken to create each mutant by the
generator was 0.14 seconds, with an average time of 27.90 seconds
to create all mutants for a subject website. This indicates that the
mutant generation process is swift and efficient.

Regarding the tool runner component, the analysis time heavily
depends on the total number of errors and warnings generated
by the web accessibility tool, which, in turn, is influenced by the
size of the source code and the number of components rendered
in the HTML DOM. On average, the analysis time for each mutant
remains below 6 seconds, totaling an average of 86 seconds for all
mutants on a website. Furthermore, the average running time of
the tool for each mutant is 6 seconds, while the average analysis
time for each website is 144 seconds. These results demonstrate the
practicality and feasibility of using our tool in real-world scenarios.

6 THREATS TO VALIDITY
We have strived to eliminate bias and the effects of random noise
in our study. However, it is possible that our mitigation strategies
may not have been effective.

Our fault model is based on WCAG 2.1 guidelines, which, while
comprehensive, are subject to updates and changes over time. It is
important to note that the WCAG 2.1 guidelines may not cover all
possible accessibility issues as it is not exhaustive. Possible errors in
the tools usedmay affect our findings. Tominimize this, we leverage
tools that have been extensively used and validated in the literature.

Moreover, we have extensively tested our implementation to ensure
that there are no defects in the implementation of our tool.

To minimize the potential threats to validity related to selection
of websites, we aimed to ensure maximum coverage of different
types of websites. We selected the most popular websites from a
wide range of domains allowing us to increase the generalizability
of our findings.

7 RELATEDWORK
Web accessibility testing/evaluation:Web accessibility guide-
lines have been instrumental in aiding numerous studies and tools
to evaluate both web pages [1, 13, 24, 31, 39, 56] and mobile apps [7–
9, 16, 23, 28, 35, 36, 42]. Tools such as Siteimprove [44], Google Light-
house [19], and Tenon [27] were designed to assess web accessibility
based on these guidelines. AI-based approaches like AccessiBi [4],
Equally AI [17], and Applitools [10] have emerged for web page
accessibility evaluation. Studies have focused on detecting specific
accessibility issues, such as improving HTML tables’ accessibility
for individuals with visual impairments [55] or enhancing data
visualizations with interactive JavaScript plugins [43]. Others have
utilized assistive technologies to identify dynamic web accessibility
problems, such as detecting and localizing keyboard accessibility
failures in web applications using modeled keyboard navigation
flow [11]. Despite having a plethora of accessibility testing tools,
a critical gap exists in the form of a unified framework to assess
their effectiveness. Absence of such framework hinders effective
comparison and identification of the best tools available. Our work
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addresses this gap by providing a framework that can be integrated
with new accessibility testing tools, enabling researchers to evaluate
their effectiveness accurately.
Web accessibility testing tools:Prior studies have compared web
accessibility testing tools. In these studies, manually constructed
HTML pages with intentional accessibility errors [46] or simpli-
fied web pages, often containing only a single or a few HTML
tags [5, 22], are employed to assess the detection abilities of the
compared tools. Other research has focused on comparing tool fea-
tures, usability, and web page evaluation [18, 30], or on evaluating
tool performance on real-world websites with known accessibility
issues [6, 26, 29, 41, 48]. Additionally, there is research that man-
ually created HTML pages with accessibility bugs based on web
accessibility guidelines to assess web development frameworks like
Angular for accessibility warnings [32]. However, these methods
are not automated and require significant manual effort to assess
new accessibility testing tools. In contrast, our work presents a
novel and systematic approach by automatically injecting various
accessibility bugs into existing web pages. By utilizing mutation
analysis, we rigorously evaluated the effectiveness of the tested
tools in detecting bugs, addressing the limitations of benchmark-
based and manual approaches. Our framework’s ability to simulate
real-world scenarios, including the complexity and dynamicity of
modern web applications, provides a more accurate and compre-
hensive assessment of tool performance.
Mutation testing for web: Various studies have delved into web
application mutation testing from different perspectives. One no-
table study by Yandrapally and Mesbah [62] introduced MAEWU, a
web GUI mutation framework that evaluates UI test quality by ap-
plying mutation operators to the final DOM of the website. Nishiura
et al. [38] focused on client-side JavaScript mutation operators
specifically designed for DOM manipulation in web applications.
Another research [37] developed mutation operators tailored to
JavaScript in web applications, along with generic JavaScript oper-
ators. While these studies have made significant contributions to
web application mutation testing, our work differs in its primary
focus on defining accessibility-aware mutation operators. We aim
to assess the capabilities of web accessibility testing tools in detect-
ing accessibility-related bugs introduced by these operators, which
no previous research has done.

8 CONCLUSION
This research introduced a novel accessibility mutation framework,
called Ma11y, with 25 operators derived from WCAG 2.1, covering
a wide range of accessibility guidelines and principles across differ-
ent scopes and types of issues. The integration and evaluation of
6 popular web accessibility testing tools using Ma11y highlighted
their strengths and weaknesses. The study revealed that on average,
the tested tools detected less than 50% of the injected accessibility
issues, underscoring the need for further improvement in web ac-
cessibility testing tools. We also found that the tools mostly fail to
eliminate mutants that modify the semantic content of page ele-
ments or operators related to the dynamics of web pages. Therefore,
one future direction for accessibility tool designers could be to focus
on considering the dynamic nature of web pages and incorporate
semantic and contextual analysis into their tools.

Additionally, a key finding from our study was the inconsistency
in the tools’ ability to detect accessibility issues across different
websites. This highlights that a tool’s effectiveness can vary sig-
nificantly depending on the specific web context, challenging the
reliability of benchmark-based evaluations.

Our framework is designed in ways that can support integration
of various accessibility testing tools with minimal effort. We demon-
strated this through the integration of 6 popular web accessibility
testing tools. We believe its adoption by future researchers as a
common platform for comparing and contrasting web accessibil-
ity testing tools can significantly foster progress and research in
this area. For our future work, we aim to expand the diversity of
mutation operators supported by Ma11y, which would increase its
coverage of accessibility issues that may occur in practice. Specifi-
cally, Ma11y currently does not include operators that can mutate
the JavaScript logic of a website. We believe expanding the frame-
work with such operators can further enhance its utility.

The research artifacts for this study are available publicly at the
companion website [34, 45].
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