
Too Much Accessibility is Harmful! Automated Detection and
Analysis of Overly Accessible Elements in Mobile Apps

Forough Mehralian∗
fmehrali@uci.edu

School of Information and Computer Sciences
University of California, Irvine, USA

Navid Salehnamadi∗
nsalehna@uci.edu

School of Information and Computer Sciences
University of California, Irvine, USA

Syed Fatiul Huq
fsyedhuq@uci.edu

School of Information and Computer Sciences
University of California, Irvine, USA

Sam Malek
malek@uci.edu

School of Information and Computer Sciences
University of California, Irvine, USA

ABSTRACT

Mobile apps, an essential technology in today’s world, should pro-
vide equal access to all, including 15% of the world population with
disabilities. Assistive Technologies (AT), with the help of Accessi-
bility APIs, provide alternative ways of interaction with apps for
disabled users who cannot see or touch the screen. Prior studies
have shown that mobile apps are prone to the under-access problem,
i.e., a condition in which functionalities in an app are not accessi-
ble to disabled users, even with the use of ATs. We study the dual
of this problem, called the over-access problem, and defined as a
condition in which an AT can be used to gain access to function-
alities in an app that are inaccessible otherwise. Over-access has
severe security and privacy implications, allowing one to bypass
protected functionalities using ATs, e.g., using VoiceOver to read
notes on a locked phone. Over-access also degrades the accessibility
of apps by presenting to disabled users information that is actually
not intended to be available on a screen, thereby confusing and
hindering their ability to effectively navigate. In this work, we first
empirically study overly accessible elements in Android apps and
define a set of conditions that can result in over-access problem. We
then present OverSight, an automated framework that leverages
these conditions to detect overly accessible elements and verifies
their accessibility dynamically using an AT. Our empirical evalua-
tion of OverSight on real-world apps demonstrates OverSight’s
effectiveness in detecting previously unknown security threats,
workflow violations, and accessibility issues.

KEYWORDS

Android, Accessibility, Security, and Software Testing

∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International
4.0 License.

ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9475-8/22/10.
https://doi.org/10.1145/3551349.3560424

ACM Reference Format:

Forough Mehralian, Navid Salehnamadi, Syed Fatiul Huq, and Sam Malek.
2022. Too Much Accessibility is Harmful! Automated Detection and Anal-
ysis of Overly Accessible Elements in Mobile Apps. In 37th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’22), Oc-
tober 10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3551349.3560424

1 INTRODUCTION

Principles of universal design [16] dictate that technologies and
services, including mobile apps, must be accessible to everyone re-
gardless of their abilities. These principles are often overlooked in
development practices, where developers build and test their apps
based on the assumption that by default, a user views the app con-
tent on the screen and interacts with it by touch. Such assumptions
exclude about 15% of the world’s population with some form of
disability, especially users with visual and fine-motor impairments.
To facilitate disabled users’ interaction with apps, mobile platforms
support Assistive Technologies (AT) such as screen readers or spe-
cial physical keyboards, which utilize the information exposed by
Accessibility APIs to provide an alternative interaction model.

Prior studies have shown that many apps are shipped with func-
tionalities that are not accessible using ATs [3, 42]. We call this
the under-access problem. In this paper, we look at the dual of this
issue, which we call the over-access problem. That is, some apps are
shipped with functionalities that in certain states can be accessed
using ATs but not otherwise.

An element is Overly Accessible (OA) when it provides more
information and functionality to AT users than regular users. In
security-sensitive apps, OA elements can jeopardize the security
of password-protected apps such as banking, investment, health,
etc. Case in point, for several iOS versions, users have reported
scenarios of using VoiceOver, the standard screen reader in iPhones,
to bypass iOS passcode and gain access to contacts, photos, notes,
etc [12, 30, 31]. Moreover, OA elements can be used to provide
unauthorized access to premium functionalities in apps with in-app
purchases, endangering around 60% of companies on app stores
that derive revenue from such functionalities in their apps [35].
As an example, the Mediation Moments app [11] has premium
articles that are available to subscribed users; however, we found
that an AT user can read these articles without purchasing the
subscription. Lastly, bypassing the designed workflow can result

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3551349.3560424
https://doi.org/10.1145/3551349.3560424
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3551349.3560424&domain=pdf&date_stamp=2023-01-05

ASE ’22, October 10–14, 2022, Rochester, MI, USA Forough Mehralian, Navid Salehnamadi, Syed Fatiul Huq, and Sam Malek

in invalid inputs to be provided to an app, breaking its logic and
leading to unexpected crashes. For example, in using the Airbnb
app to book a place, the “decrement” button is disabled for touch
when there is only one traveler, preventing zero and negative inputs.
We found that an AT user can still click this button and submit a
request for a room for a negative number of people.

Interestingly, over-access also degrades the accessibility of apps.
Blind users utilize screen readers to navigate through the elements
on a screen sequentially. Even if the OA elements are not security-
sensitive, presenting information that the developer did not intend
to be available on the screen can confuse the screen-reader users. OA
elements also increase the number of required interactions to reach
the desired element, resulting in a less optimal user experience.

Despite the severe impacts of OA elements, they have received
practically no attention in prior accessibility analysis of apps or
security-related studies. Neither Google Accessibility Scanner [6],
nor Apple Accessibility Inspector [10] check any rules for over ac-
cessibility. They only check a set of accessibility rules (e.g., proper
text size and color) on displayed UI elements. Most other accessibil-
ity testing studies [7, 40] extend the accessibility rules of standard
scanners and cannot detect OA elements consequently. A recent ac-
cessibility testing study proposed Latte [42], an accessibility testing
framework to examine the accessibility of UI elements by executing
a specific use case using AT. Nevertheless, OA elements are not a
concern of Latte as it focuses on finding inaccessible elements.

Prior security-related studies [25, 36] have investigated the feasi-
bility of constructing malicious software (e.g., malware) to launch a
security attack by exploiting accessibility APIs. No prior study has
investigated the vulnerabilities caused by OA elements in benign
apps that can be exploited by any user, and using the standard ATs.

To fill this gap, we conducted an empirical study on 100 different
UIs from 20 randomly selected apps to understand OA elements
and their specifications. We then developed a tool, OverSight, to
automatically detect them on a given state of the app.

OverSight first leverages the findings of our empirical study and
devises a static checker to analyze currently displayed UI elements
and localize OA smells, i.e., elements with one of the OA character-
istics that may lead to revealing information or functionality that
is unavailable for sighted users and available for AT users. Then,
OverSight validates the accessibility of these elements dynami-
cally using a custom AT with all the capabilities of Accessibility
API and Talkback, which is the standard screen reader on Android
devices. Finally, OverSight reports accessibility issues resulting
from OA elements. Our empirical evaluation on 30 apps reveals that
OverSight can precisely detect more than 83% of OA elements.

This paper makes the following contributions:

• First study that introduces the problems caused by apps that
are overly accessible.
• An empirical study of OA elements and their characteristics.
• The first automated tool, called OverSight, for localizing and
detecting OA elements in Android apps, which has been made
publicly available [37].
• An empirical evaluation on real-world apps, corroborating the
effectiveness of OverSight in detecting OA elements.

The remainder of this paper is organized as follows. Section 2
motivates this study with an example and provides background

(a) (b)

Figure 1: Built-in lock for a security-sensitive app.

information. Section 3 introduces OA elements according to our em-
pirical study. Section 4 explainsOverSight, an automated approach
to detect OA elements. In Section 5, the evaluation of OverSight on
real-world apps is presented. The paper concludes with a discussion
of the related research and avenues of future work.

2 MOTIVATING EXAMPLE & BACKGROUND

Figure 1 shows screenshots of AppLock [28], a popular app locker
with more than 5,000,000 installations and rating of 4.2. As shown in
Figure 1 (a), the app lists all the installed apps on a phone on its first
page, enabling users to add a lock to any desired app. App lockers
protect themselves and other requested apps by preventing access
to their content without providing a secret pattern or passcode.
When a user opens the AppLock or any locked apps, e.g., Files or
Messages as shown in Figure 1(a), she first sees the lock screen,
depicted in Figure 1(b), and should first unlock it with a preset
pin. Many other types of apps (e.g., investment, health monitoring,
diary, etc.) employ a similar protection strategy for their contents.

A user without disability can see the pin pad and the text ask-
ing to “Enter pin” on the screen. She would try to unlock the app
by entering the pin through touching the numbers on the screen.
However, a user with disability has to rely on ATs to interact with
apps. Mobile platforms such as Android have integrated ATs such as
TalkBack [20]—the standard Android screen reader—and SwitchAc-
cess [5]—a special keyboard with two keys, Next and Select—to
enable app exploration for disabled users. Both of these ATs fo-
cus on each element on the screen and navigate through them
sequentially, from top left to bottom right. The Select switch in
SwitchAccess or the double tap gesture in TalkBack perform the
Click action that is similar to touching the element without ATs. To
represent each element to blind users, TalkBack also announces a
textual description of the focused element on the screen. For visual

Too Much Accessibility is Harmful! Automated Detection and Analysis of Overly Accessible Elements in Mobile Apps ASE ’22, October 10–14, 2022, Rochester, MI, USA

elements like icons, these textual descriptions, which are called Con-
tent Description in Android, should be provided by developers in the
UI specification, a hierarchical structure of elements represented in
an XML file.

Unfortunately, developers oftentimes only test their apps’ func-
tionality under conventional ways of interaction, leading to many
inaccessible functionalities in apps. A developer who is aware of
the disabled users’ limitations may utilize accessibility testing tools,
such as Google Accessibility Scanner [6], to evaluate the acces-
sibility of their app. For example, for the lock page of AppLock,
Accessibilty Scanner reports an issue for the text contrast of “En-
ter pin”. Accessibility Scanner may also report “missing speakable
text” if there is a clickable image without a content description,
or “small touch target size” if the clickable area is too small for an
element. Google Accessibility Scanner, as well as all other prior
accessibility testing tools (e.g., [6, 8, 34, 42]), are aimed at finding
under-access, i.e., features that should be available to the user but
cannot be accessed using ATs. None of these tools report issues
related to over-access, i.e., features that should not be available to
the user but can be accessed using ATs.

In practice, a blind user may need to understand the screen
content by exploring and navigating through all the elements on
the screen. Figure 1(b) shows which elements can be focused by
TalkBack. The numbers indicate the order in which elements are
focused. After passing pin pad elements, TalkBack detects some
elements that are not visible to sighted users. We call these elements
Overly Accessible (OA) as they are not visible to sighted users or
clickable by touch. Announcing these elements not only misleads
the blind user about the content of the page, but in many cases also
requires an exorbitant number of interactions to pass a long list of
OA elements until the user reaches the visible functionality that
the developer intended to be available. Such OA elements remain
undetected in the prior accessibility testing tools.

These OA elements, as specified in Figure 1(b), can also pose
security concerns. By listening to what TalkBack announces, we
can understand that the OA elements correspond to the first page
of AppLock as shown in Figure 1(a). This page contains the list
of device apps and the mechanism to enable or disable their locks.
For instance, element 17 in Figure 1(b) is the lock toggle for the
Files app. This means that, using TalkBack, a user can access the
locked apps and disable their protections, without even entering
the pin code. In essence, she can bypass the lock screen protection.
Prior research has demonstrated how Accessibility APIs can be
used by malware authors to launch a security attack [25, 36] and
how to prevent such attacks [38, 39]. No prior work, however, has
aimed to develop a method of assisting developers with detecting
vulnerabilities caused by OA elements in benign apps that can be
readily exploited by any user, and using the standard ATs.

To fill this gap, we took a deeper look at how UI elements are rep-
resented to ATs. In modern platforms such as Android, Accessibility
Service runs in the background and provides the required infor-
mation about a window’s content to ATs. From the perspective of
Accessibility Service in Android, a window’s content is presented as
a tree of AccessibilityNodeInfos (nodes) [23]. Android 12 docu-
mentation lists 65 different types of information that are provided
by nodes. Table 1 illustrates a sample set of this information. We
hypothesize that nodes with peculiar specifications can lead to OA

Table 1: Sample types of information exposed from nodes to ATs.

Attribute Description

1 ActionList The actions that can be performed on the node.
2 Bounds The coordinates of the bounding box of the node.
3 DrawingOrder The drawing order of the view of this node.
4 Text The text of this node.
5 Enabled Whether this node is enabled.
6 VisibleToUser Whether this node is visible to the user.
7 Clickable Whether this node is clickable.
8 ContentDesc The content description of this node.
9 ChildCount The number of children.
10 PackageName The package this node comes from.

elements. For example, in Figure 1(b), by comparing the Bounds and
DrawingOrder of elements, the second and third method in Table 1,
we found that the layout that expands the whole window is drawn
on top of some of the elements. While the elements underneath are
covered for a sighted user, an AT can still navigate through them
and announce them to an AT user. Our objective in this study is to
study specifications of OA elements and propose an automated tool
to detect such OA elements that can have severe security, privacy,
and accessibility impacts on apps.

3 OVERLY ACCESSIBLE ELEMENTS

An element is OA if it is exposing more information/functionality
to ATs than what is available through the conventional interaction
mode. To understand to what extent node specifications can reveal
OA elements, we perform an empirical study on manually detected
OA elements on some real world apps. In this section, we explain
the data collection and results of this study.

3.1 Data Collection

Our goal is to collect all the available information from nodes
to ATs. To that end, we first developed an accessibility service,
called OverSight Service (OSS), which is capable of capturing
different types of information exposed from nodes. OSS runs in
the background on an Android device and receives commands
from Android Debug Bridge (ADB) [9], a command line tool that
ships with Android devices. Using this service, we conducted an
empirical study on 100 different screens of 20 real world apps. Our
app list consists of 5 apps with built-in lock from Google play and
15 randomly selected apps from 38,106 apps that were published
in 2021 in AndroZoo [1]. We installed each app on a Google Pixel
4 device, along with OSS. Then, one author interacted with each
app to find 5 different states and explored each state with TalkBack
and without it. We aimed at finding elements that are not visible
to sighted users but TalkBack announces them or performs an
action on them. We utilized OSS to dump OA nodes screenshot and
specification in the hierarchy of nodes.

We then performed open coding of these elements iteratively.
Two authors of the paper coded the elements, noting any condition
that was not discovered before. To facilitate efficient coding, we
developed a web application to visualize unannotated elements
with search and batch tagging capabilities. In this way, authors
can search and tag elements in batches using queries specified by
different types of information from nodes, for example, Text ,
� ∨ ContentDesc , � filters elements without any information.
After the initial coding, the authors discussed disagreements to
reach a consensus.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Forough Mehralian, Navid Salehnamadi, Syed Fatiul Huq, and Sam Malek

<node …
packageName
=“app1"/>

packageName=“app2”
(a) Out of boundary

(b) Covered

(c) Belongs

(d) Camouflaged

natural

com.google.android.apps
.messaging

com.gamemalt.applocker

Figure 2: Over Accessibility Conditions.

3.2 Results

We categorized the conditions of OA elements that were yielded
during the coding procedure into two main classes:

• Overly Perceivable: elements that reveal content to an AT that
is not available through regular interaction mode.
• Overly Actionable: elements that provide action to an AT that
is not available through regular interaction mode.

These classes are inline with two accessibility principles from
Web Content Accessibility Guidelines (WCAG) [46]: (1) Content
should be equally perceivable by different users [47], and (2) UI
elements should be equally operable by different users [48]. These
principles can be violated due to bias in the level of access granted
to any type of user, e.g., screen reader users vs. sighted users. While
providing more access through conventional interaction modes, i.e.,
under-access problem, has been studied extensively and supported
by a series of guidelines, not many works have investigated its
counterpart, i.e., over-access problem. Our study is based on these
principles and we organize detected OA elements’ conditions under
them. These conditions can be considered as accessibility guidelines
to be later expanded or tailored to different platforms. Below, we
list the conditions of OA elements we found in Android apps.

3.2.1 Overly Perceivable. A node with a textual data or content
description is Overly Perceivable if it cannot be read or viewed by a
sighted user, but can be accessed through programmatic means. We
found the following conditions for such elements that are hidden
to sighted users:

P1. Out of boundary:Nodes that are outside of the screen bound-
ary, either with negative coordinates or with coordinates exceeding
the device size. On the left, Figure 2(a) illustrates a schematic of the
screen in layers corresponding to the drawing order of comprising
elements. The orange element is OA as it is out of screen boundary
and is not visible on the rendered screen. Figure 2(a) also shows
an example in our empirical study on the right.
P2. Covered: Nodes that are covered by other nodes in the ren-
dered UI. Dashed boxes in Figure 1 are examples of covered nodes.

Figure 2(b) also schematically shows how the orange OA element
is covered by a blue sliding pane.
P3. Zero area: Nodes whose bounding box has zero area. These
nodes will not be depicted on the screen but can be focused by an
AT that will announce their content.
P4. Invalid bounds:Nodes whose captured bounds contradict the
bounding box definition in Android documentation. The bounds
attribute is supposed to be presented as the coordinates of the
top-left and bottom-right points of the box. For example, if the
coordinates of the ending point are smaller than the start point,
the node has invalid bounds.
P5. Android invisible:Nodes that are not out of screen boundary
and have positive area but they are specified as invisible to user.
P6. Belongs:Nodes that belong to a package name that is different
from the app under test. Left side of Figure 2(c) illustrates that the
green screen from app2 is placed on top of the elements of app1.
In the rendered screen, the elements from app1 are not visible
to sighted user but may be announced by ATs. The right side of
Figure 2(c) shows a locker in our study, in which the elements of
the Messages app are detected on the lock screen.

3.2.2 Overly Actionable. The ActionList attribute of nodes spec-
ifies the list of actions available to ATs. When a node support click
action for ATs, the following conditions are barriers in performing
that action through conventional interaction modes.

A1. Hidden: Nodes that are hidden to sighted users, i.e., with any
of P1 to P6 conditions stated above.
A2. Disabled: Nodes that are disabled under certain conditions
in the app and cannot be triggered by touch. Figure 3 provides an
example for this condition, where the teeth correction function is
disabled for unsubscribed user but using TalkBack, the user can
activate it.
A3. Camouflaged: Empty nodes that are used as placeholders
and are not detectable by sighted users, e.g., empty text boxes.
Figure 2(d) provides the schematic placement of these nodes on
the screen on the left and a real example on the right.

Too Much Accessibility is Harmful! Automated Detection and Analysis of Overly Accessible Elements in Mobile Apps ASE ’22, October 10–14, 2022, Rochester, MI, USA

user

Figure 3: Neat button is not working when touched by enabled

users but is available to TalkBack users.

Over Accessibility
Smells

OA Verifier

OA Detector

Overly Accessible
Elements

PNG

OverSight

Draw pattern
 to unlock

Developer

Oversight
Service

Draw pattern
 to unlock

Visualizer

Figure 4: Overview of OverSight framework.

4 APPROACH

In this section, we introduce OverSight, an automated tool that
gets the information from a specific state of the app and returns
a list of OA elements confirmed by an AT. Figure 4 illustrates the
overview of our approach. OverSight engine consists of two main
components: OADetector (Section 4.1) and OAVerifier (Section 4.2).

OA Detector gets a window’s content specification in XML along
with its screenshot through OverSight Service (OSS). As described
in Section 3, OSS runs in the background, dumps hierarchical rep-
resentation of nodes in an XML file, and enables communication
with the device through broadcast messages. OA Detector analyzes
nodes on the window and returns Over Accessibility Smells, i.e.,
nodes that meet one of the conditions derived from our empiri-
cal study (Section 3). Confirming over accessibility issues in these
nodes is the responsibility of OA Verifier . Our approach only relies
on available information to AccessibilityServices; therefore, it is
applicable to any app regardless of its technology or even if it is
obfuscated. OA Verifier communicates with the device and explores
the window with an AT to validate the reachability and action-
ability of over accessibility smells. OverSight also visualizes over
accessibility smells as well as OA elements on the screenshot along
with their specification for developers. In the following sections,
we describe the details of each component.

4.1 OA Detector

Our empirical study organizes a set of conditions under the basis of
over-perceivability and over-actionability. OA Detector implements
these conditions to automatically check the nodes against them.

Here, we describe the details of P1, P3-P6, and A1-A2 as im-
plemented, and also elaborate on the algorithms used to calculate
covered nodes (P2) and camouflaged nodes (A3). Implementation
details of all conditions are available with our open-source tool

available at [37]. First, we define the conditions for perceivable and
actionable nodes, and then we formally define all over-perceivable
and over-actionable nodes. Recall from the description of these
conditions in the previous section that all P1 to P6 nodes must be
perceivable, and all A1 to A3 nodes must be also actionable.
Perceivable: A node is perceivable if it has a textual information.
Based on Table 1, the attributes text andContentDesc may contain
such information.

∀n ∈ Node;n.Text , � ∨ n.ContentDesc , �
⇒ perceivable(n) = True

(1)
Actionable: A node is actionable if it has an attribute that is associ-
ated with an action, e.g.,Clickable , LonдClickable , or the existence
of these actions in ActionList .

∀n ∈ Node;n.Clickable ∨ n.LonдClickable∨
{CLICK ,LONGCLICK} ∩ n.ActionList , �

⇒ actionable(n) = True
(2)

P1. Out of boundary: To detect these nodes, we compare the
boundary of the nodewith the size of thewindow, i.e.Window .width,
Window .heiдht . The bounds of an element is shown as the coordi-
nates of the top left and bottom right of its bounding box.

∀n ∈ Node,n.bounds ≡ [x0,y0,x1,y1];
x0 < 0 ∨ x1 >Window .width ∨ y0 < 0 ∨ y1 >Window .heiдht

⇒ out_o f _bound(n) = True
(3)

P2. Covered: To find out covered elements, we investigate how
Android draws elements on a window. Android draws a window
starting from the root node and recursively draws the child elements
according to their drawingOrder. To determine what nodes are
covered, we simulate Android’s drawing in reverse order using a
depth-first search algorithm. We start visiting nodes from the last
drawn node to the first drawn node and keep track of covered areas.
A node is “covered” if any of the covered areas obscure its bounding
box.

Algorithm 1 explains our approach in details. For a given node,
n, and a set of bounds that may cover it, BC , DetectCovered first
checks if n is covered to set all the descendants up to the leaf node
as covered. (Line 2-4) Ifn is not covered, we will assess if its children
are covered. To that end, we first sort the children in descending
order based on their drawingOrder in line 5. The first element in
the ordered list is the last child drawn by Android on the window
among the other children. Then, in line 6, we iterated through
the children and check if they are covered by any bounds in BC .
If that is the case, in the recursion call, the algorithm set all the
descendants covered. Otherwise, in the recursion call, children of
nodem will be assessed. In line 10, we add the bounds of nodem to
the set of covering bounds since the other children in the for loop
of line 6 may be covered bym.
P3. Zero area: The bounding box of any node forms a rectangle
which can have a zero area.

∀n ∈ Node,n.bounds ≡ [x0,y0,x1,y1];
x0 = x1 ∨ y0 = y1 ⇒ zero_area(n) = True (4)

P4. Invalid bounds:We use Equation 5 to find the nodes whose
bounding box – bottom-left and top-right coordinates – is not a

ASE ’22, October 10–14, 2022, Rochester, MI, USA Forough Mehralian, Navid Salehnamadi, Syed Fatiul Huq, and Sam Malek

Algorithm 1: Overlap Analysis Algorithm
Input: n ∈ Node(The visiting node),

BC : {b1, · · · , bk }(The set of covering bounds)
1 Function DetectCovered(n, BC):
2 if n .covered then

3 ∀d ∈ n .descendants : d .covered ← T rue
4 return

5 ordered ← Sort n .children based on decreasing order of
drawinдOrder

6 foreachm ∈ ordered do

7 if m .bounds is covered by BC then

8 m .covered ← T rue

9 DetectCovered(m, BC)
10 BC ← BC ∪m .bounds

rectangle.
∀n ∈ Node,n.bounds ≡ [x0,y0,x1,y1];x0 > x1 ∨ y0 > y1
⇒ invalid_bounds(n) = True (5)

P5. Android invisible: To detect nodes with this condition, we
look for nodes without any of the above-mentioned conditions that
are marked as invisible to user in node attributes. (Recall row 6 in
Table 1)

∀n ∈ Node;¬n.Visible ∧ ¬out_o f _bound(n)∧
¬n.covered ∧ ¬zero_area(n) ∧ ¬invalid_bounds(n)
⇒ android_invisible(n) = True

(6)

P6. Belongs: We compare the package name of nodes with the
package name of the UI under test (UIUT) to find if nodes belong
to its corresponding app.

∀n ∈ Node;n.pkдName , U IUT .pkдName

⇒ belonдs(n) = True
(7)

A1. Hidden: An actionable node that has any conditions in Equa-
tions 3 to 7 is considered hidden, since a sighted user cannot perform
any touch gesture on it.
∀n ∈ Node;out_o f _bounds(n) ∨ n.covered ∨ zero_area(n)∨
android_invisible(n) ∨ invalid_bounds(n) ∨ belonдs(n)
⇒ hidden(n) = True

(8)

A2. Disabled: The enabled attribute of a disabled actionable node
should be False to be considered as over-actionable (Recall row 5
in Table 1).

∀n ∈ Node;¬n.enabled ⇒ disabled(n) = True (9)

A3. Camouflaged: Detecting camouflaged nodes (A3) is challeng-
ing since there is no attribute in nodes indicating their color. This
condition occurs when developers want to utilize some empty views
as a placeholder. To detect these elements, we filter out nodes that
have any child. Then, we evaluate the image associated to the re-
maining nodes. To get the image, we crop the screenshot based
on the coordinates of the bounding box of the node. Then, we
check if all the pixels of the image have the same color. With the
advent of advanced computer vision and machine learning algo-
rithms, analyzing app screenshots has been recently studied in prior
works [13, 15, 50]. Such techniques can infer not only UI nodes,
but also their structure from screenshots. While these advanced

UI analysis techniques can be adopted here, we opt for the simple
aforementioned technique that can effectively detect empty boxes
without the need for complex models.

OA Detector evaluates compliance of each node with the defined
conditions to find nodes that has Over Accessibility Smells, i.e., they
have symptoms that can lead to revealing information or function-
ality to AT users that is not available to sighted users. To verify
their accessibility with an AT, we propose OA Verifier as below.

4.2 OA Verifier

The behavior of different ATs in focusing on the elements and
performing an action on them cannot be predicted statically. To
confirm if an AT can reach the detected over accessibility smells, we
utilize OA Verifier . The goal of this component is to evaluate the
reachability and actionability of nodes identified by OA Detector on
a real device with an AT. To interact with the device, we expand the
capabilities of OverSight Service (OSS) that was previously only
responsible for capturing information from nodes. OSS receives
commands from OA Verifier, perform the required gestures on the
device, broadcast commands and return the results.

To achieve its objective, OA Verifier uses two subcomponents:
1) Reachability Analyzer, and 2) Actionability Analyzer. The first
component verifies if an AT can focus on the node, while the second
one checks if the AT can perform the action on it. In this work, we
describe our approach for TalkBack as the standard screen reader
in Android, and a custom AT, called Super AT (SAT), as it has all
the information and functionalities provided by Accessibility Ser-
vice. As briefly mentioned in Section 2, Accessibility Service in
Android runs in the background and provides the required informa-
tion to ATs. Each AT specifies a list of flags [21] to request for the
corresponding information and capabilities from the Accessibility
Service. For example, flagRetrieveWindowContent is required to
be able to get the events indicating that something on the win-
dow has changed. In this work, we give all the capabilities to SAT,
making it a representative of all ATs that are using a subset of its
capabilities. In other words, SAT-verified nodes show what can
potentially be accessible to different ATs, while OA nodes verified
by TalkBack show that any user, who utilizes the standard platform
screen reader, can get access to their content. The input for both
of these subcomponents is an emulator snapshot, captured from a
specific state of the UI under test, and a list of nodes to be verified,
i.e., over accessibility smells.

4.2.1 Reachability Analyzer. If an AT can focus on a node, we
call the node reachable by that AT. In Android, Accessibility API
can perform actions on given nodes by calling the performAction
method. OA Verifier identifies nodes by their XPath, i.e., their ab-
solute path from the root node, and performs the focus action,
ACTION_ACCESSIBILITY_FOCUS, on them. If this focused node, re-
turned by AccessibilityService, is the desired node, OA Veri-
fier determines the node reachable by SAT.

To assess the reachability of a node with TalkBack, we utilize
the “Explore by swiping” strategy instead of the touch exploration
as OA elements are not viewable on the screen to be enabled by
tapping/touching. Since OA elements most likely appear after the
ones that are visible to sighted users, OA Verifier first explores
the screen backward by drawing “swipe left” gesture. Whenever

Too Much Accessibility is Harmful! Automated Detection and Analysis of Overly Accessible Elements in Mobile Apps ASE ’22, October 10–14, 2022, Rochester, MI, USA

TalkBack focuses on a node, OA Verifier calls the node TalkBack
Reachable. TalkBack continues screen exploration until either it
reaches all the nodes in the given list, or sees a repetitive node.

Some UI components such as scrollable widgets may render some
elements on the app unreachable. In practice, to break such infinite
loops, a screen-reader user can touch on an element outside of the
loop and resume exploring the app. To work around these loops, OA
Verifier performs both forward and backward navigation from the
top of screen when it does not meet its stopping criteria. Eventually,
nodes that TalkBack cannot focus on by either backward or forward
app exploration are determined to be unreachable by TalkBack.

4.2.2 Actionability Analyzer. An element is considered actionable,
if it 1) is reachable and 2) performs the action successfully. Thus, Ac-
tionability Analyzer first evaluates reachability of over actionability
smells using the same strategy as Reachability Analyzer.

Once Actionability Analyzer determines reachable nodes, it
attempts to performing the action on them. This means it re-
quires to first focus on the element and trigger the action us-
ing TalkBack or SAT. Since reachability of these nodes have al-
ready confirmed, we directly put the accessibility focus on the
node under test using Accessibility API. Then, we utilize the
specific AT to perform action. For TalkBack, OA Verifier per-
forms a double-tap gesture to click the focused node. For SAT,
OA Verifier calls performAction(ACTION_CLICK) on any given
node. To verify if the action was performed successfully, OA Veri-
fier listens to the AccessibilityEvents and denotes the node click-
able by either TalkBack or SAT if VIEW_CLICK event or WIN-
DOW_CONTENT_CHANGED was logged.

5 EVALUATION

In this section, we evaluate OverSight on real-world apps to an-
swer the following research questions:
RQ1. How accurate is OverSight in detecting OA elements?
RQ2. How prevalent are over-access problems in security-

concerned apps?
RQ3. What are the potential impacts of OA elements on different

apps and communities?
RQ4. What is the performance of OverSight?

5.1 Experimental Setup

5.1.1 Datasets. We evaluated our approach on 60 app screens from
30 real-world Android apps. Our test set consists of three groups
of apps: (group1) 10 app lockers similar to the motivation example
from Google Play, (group2) 10 apps with known accessibility issues
in a prior study [42], and (group3) 10 randomly selected apps from
different categories of Google Play. For each app, we captured two
different states of the app. For apps in group1, the first state is
the lock screen of the app itself, and the second state is the lock
screen that protects a third-party app, e.g., Messages, when it is
locked. For apps in group2, we selected two different screens of
the app with the confirmed accessibility issue. Lastly, for apps in
group3, we randomly explored the apps and captured two different
screens. For the second question, we mainly focus on app lockers,
security-critical apps that are responsible for protecting user apps.
We picked 5 highest-rated, 5 lowest-rated, and 5 randomly selected
app lockers from Google Play and followed the same strategy as

group1 to capture two different states from each app. We did not
incorporate the low-rated app lockers in RQ1 to keep the quality
of apps in that study consistent.

5.1.2 Implementation details. We ran our experiments on an An-
droid emulator based on Android 11.0 and with TalkBack version
12.1 on a typical development machine, using a MacBook Pro with
2.4 GHz core i7 CPU and 16 GB memory. OverSight Service is
implemented in Kotlin and communicates with OA Detector and
OA Verifier components, implemented in Python, using ADB [9].

5.2 RQ1. Accuracy of OverSight

To answer this question, we ranOverSight on each snapshot in our
test set and carefully examined the reports. We separately evaluate
OverSight’s two main components, OA Detector and OA Verifier.
OA Detector: To evaluate OA Detector, we carefully checked the
reported OA smells in each category and tagged them as True Posi-
tive (TP) if it was correctly detected with one of the OA conditions
and False Positive (FP) otherwise. We then calculate OA Detector’s
precision as the ratio of the number of nodes that were correctly
detected by OA Detector to the number of all detected OA smells.

Table 2 summarizes the results of this experiment. Each row
in this Table corresponds to one state of an app. The number of
nodes in each state varies as shown in the second column (N). In
our test set, it can be as few as 6 nodes and as many as 656. Smell
column indicates the number of nodes with Overly Perceivable (P)
or Overly Actionable (A) conditions on each screen. We display the
precision per app state under the DP (Detector Precision) column,
and the average precision is in the last row.

As shown in the Table 2, on average, OA Detector has a preci-
sion of 84.23% in detecting OA smells. For 56 different states in 28
number of apps, the precision is 100%. We analyzed the elements
recognized as False Positive, i.e., with FP tag, to better understand
OA Detector failures. Figure 5 shows some examples where OA
Detector erroneously evaluates a node as OA. In Figure 5(a), the
map and the text on it is annotated as OA. Further inspection of
this layout showed us that the map is behind a transparent layout
and made our algorithm classify the underlying nodes as “covered”
(recall P.2 in Section 4.1). In Android, transparent layouts pass the
touch gesture to the underlying elements so that they are not rec-
ognizable through conventional interaction modes. Since layout
colors are not included in node information, OA Detector cannot
distinguish transparent layouts from color-filled ones. Moreover,
having a stack of transparent nodes, if not maintained properly, can
cause troubles for AT users. For example, if all the stacked nodes
are focusable, AT will focus on each of them separately, confusing
AT users about what is shown on the screen and resulting in a less
optimal navigation experience. Partially covered nodes are another
failure of OA Detector as shown in Figure 5(b). There is a “Sort and
Filter” button covering the elements underneath. However, as the
underlying texts are partially recognizable to sighted users they
are tagged as FPs. OA Detector does not exclude partially covered
elements in the “covered” category since a developer may have
intentionally blocked access to part of a node content.

To evaluate if OA Detector fails to detect any issues, i.e., False
Negatives, we ran OA Detector on a set of apps with known is-
sues. OA Detector’s False Negatives are the OA elements that OA

ASE ’22, October 10–14, 2022, Rochester, MI, USA Forough Mehralian, Navid Salehnamadi, Syed Fatiul Huq, and Sam Malek

Detector fails to report. Since no prior dataset exists, we take our
apps from the empirical study that were manually investigated
for OA elements (recall Section 3). We investigated the manually
confirmed OA issues that do not appear in the list of OA smells.
Figure 3 shows the only case that the OA Detector failed to detect.
The reason for this failure is that instead of disabling the button,
the app intercepts the click event at runtime when it is touched to
show an error message. This means the button performs the click
action successfully with and without AT. However, its inconsistent
behavior cannot be detected by OA Detector. We also noticed in
some cases the issue was captured not in the first attempt but after
the second attempt. This issue is due to the challenges of interacting
with the device using OSS and analyzing the results at a proper
time. To mitigate such validity threats, we ran our experiments 3
times on each app.

Further investigation of conditions of detected OA elements re-
vealed that the “covered” condition (recall P.2 in Section 4.1) is the
most frequent symptom of OA elements. 18 apps out of 30 had at
least one “covered” OA element. According to Android documen-
tation, Android attempts to evaluate whether a node is visible to
user [19] (recall row 6 of Table 1) to be announced by TalkBack.
However, our review of Android’s source code [22] indicates the
platform only compares the bounds of a child node with its par-
ents to evaluate if they are visible to user (i.e., the corresponding
VisibleToUser flag is set to true). However, such a comparison
does not exist for nodes that are siblings or children of siblings. We
believe Android platform should reassess its strategy of detecting
visible nodes to minimize such issues.
OA Verifier: To evaluate the OA Verifier component, we investi-
gate the nodes specified as reachable and actionable with TalkBack
and SAT. To check the reported nodes by OA Verifier, we load the
corresponding snapshots of the app states on the emulator and
utilize an AT, e.g., TalkBack, to explore the app and assess Reacha-
bility (R) and Actionability (A) of OA smells. In terms of reachabil-
ity, if the AT can focuses on a node, we consider it reachable. For
actionability, the node is actionable if it is reachable and is click-
able, i.e., the click gesture, such as double tap in TalkBack, broad-
casts a click event. When an element is clicked successfully in An-
droid, an AccessibilityEvent, called VIEW_CLICKED, is created
and sent to AccessibilityServices. To determine if the action
was performed, OverSight service captures the events and shows
if an event of type VIEW_CLICKED or WINDOW_CONTENT_CHANGED is
logged. Since OA Verifier follows the same strategy in detecting
clicked nodes, the accuracy of OA Verifier equals to its accuracy
in detecting reachable nodes. Thereby, we label the output of OA
Verifier as true if it matches with our manual investigation and
false otherwise. Using these tags, we calculate precision and recall
of OA Verifier as follows: Precision is the ratio of number of nodes
that correctly verified to be reachable to the number of reachable
nodes detected by OA Verifier, while recall is the ratio of number
of nodes that correctly verified to be reachable to the number of
OA smells that are manually verified to be reachable.

Table 2 shows the average precision and recall of OA Verifier
using TalkBack and SAT in the last two columns, VP (Verifier Preci-
sion) and VR (Verifier Recall). As shown in the last row, the average
precision and recall on all apps is 100% and 83.27% respectively.
While OA Verifier is 100% precise in its reports, the recall shows

(c)(b)

(a)

1
2

3108

9

31018

31085

19

10

Figure 5: OverSight Failures: (a) and (b) are false positives of OA

Detector, where dashed green boxes are erroneously detected as cov-

ered; (c) is a false negative of OA Verifier, where TalkBack is stuck

in the world map.

that it has missed some issues. Figure 5(c) shows an example of a set
of nodes that were erroneously detected to be unreachable by OA
Verifier. On this state of the “Weawow” app, there is a map of all the
cities that a user can get the weather information for. When Talk-
Back reaches this widget, it navigates through all the nodes on the
map, as depicted by number annotations on the map, and gets stuck
there in an infinite loop. Thus, all the nodes on the second half of
the screen were mistakenly reported by OA Verifier as unreachable
or not over accessible (False Negative). OverSight attempted to
address such issues for scrollable widgets by navigating both for-
ward and backward on the screen. However, backward navigation
on this app does not help since the app content loads dynamically
in forward navigation, while scrolling to the bottom. OA Verifier
also has a similar issue in web apps such as Dictionary. In this app,
every time the app is scrolled forward, it fetches a totally new UI
specification which although looks visually similar, uses different
XPaths for nodes, making the logged information inaccurate.

5.3 RQ2. OA Elements in Security-Sensitive

Apps

OA elements in security-sensitive apps, such as app lockers, put the
privacy and security of both users and apps at stake by divulging
private content or granting access to functionality that they are
supposed to protect. To understand the prevalence of such critical
issue in these apps, we utilize OverSight to test 15 real-world app
lockers. All app lockers require two permissions from the users
to work, 1) “Usage Access”, to track what other apps the users are
using, 2) “Display Over other Apps”, to place their lock screen on
top of the other apps. We grant the required permissions to the
apps and evaluate two main functionalities of lockers: 1) locking the
locker app itself, and 2) locking another third-party app that they
are to protect. Table 3 summarizes the test set and results. The table
contains three groups of 5 app lockers — most popular, randomly
selected and least popular — from a list of 125 lockers we got from
the Google Play store. The list includes the app locker from our
empirical study, marked by ‘*’ in the table. ‘x’ indicates that the
protection could be bypassed by an AT, while ‘✓’ indicates no OA
element was detected by OverSight. We also manually confirmed

Too Much Accessibility is Harmful! Automated Detection and Analysis of Overly Accessible Elements in Mobile Apps ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 2: Accuracy of OverSight in running on 30 apps.

App N Smells DP TalkBack SAT VP VRP A R A A

...domobi... 47 0 2 0.00 0 2 2 1.00 1.00
26 9 6 1.00 8 3 6 1.00 0.95

...alpha... 12 0 0 1.00 0 0 0 1.00 1.00
8 0 0 1.00 0 0 0 1.00 1.00

...sp.pro... 42 0 0 1.00 0 0 0 1.00 1.00
26 9 6 1.00 8 5 6 1.00 0.90

...thinky... 18 0 0 1.00 0 0 0 1.00 1.00
17 1 0 1.00 0 0 0 1.00 0.50

...litetoo... 73 6 7 1.00 6 7 7 1.00 1.00
73 0 0 1.00 0 0 0 1.00 1.00

...nevways... 55 1 1 0.00 0 1 1 1.00 1.00
6 0 0 1.00 0 0 0 1.00 1.00

...ammy.a... 16 0 0 1.00 0 0 0 1.00 1.00
26 9 6 1.00 8 6 6 1.00 0.95

...gsmobile... 53 0 0 1.00 0 0 0 1.00 1.00
37 0 0 1.00 0 0 0 1.00 1.00

...cd.app... 12 0 0 1.00 0 0 0 1.00 1.00
12 0 0 1.00 0 0 0 1.00 1.00

...saeed.ap... 13 0 0 1.00 0 0 0 1.00 1.00
16 0 1 0.00 0 1 1 1.00 1.00

...c51 83 4 1 0.00 4 1 1 1.00 1.00
29 0 1 0.00 0 0 1 1.00 1.00

...fatsec... 41 0 1 1.00 0 0 1 1.00 0.50
147 14 5 1.00 2 0 5 1.00 0.70

...colpit... 18 2 0 1.00 0 0 0 1.00 0.50
67 2 1 1.00 0 0 1 1.00 0.50

...tripit 202 55 20 0.91 6 1 20 1.00 0.54
270 68 23 1.00 4 4 23 1.00 0.55

...contex... 52 0 26 1.00 0 0 5 1.00 0.50
57 1 0 0.00 1 0 0 1.00 1.00

...yelp.an... 66 0 0 1.00 0 0 0 1.00 1.00
129 15 9 0.86 0 0 6 1.00 0.50

...devhd.f... 71 19 4 1.00 4 0 4 1.00 0.60
138 44 21 1.00 8 0 21 1.00 0.67

...ziprecr... 36 0 0 1.00 0 0 0 1.00 1.00
63 5 5 1.00 0 0 2 1.00 0.50

...diction... 102 8 5 1.00 2 1 4 1.00 1.00
177 98 5 0.89 98 1 1 1.00 1.00

...and... 110 16 10 0.95 0 0 8 1.00 0.50
69 16 10 0.53 16 9 9 1.00 1.00

...airbnb... 42 0 1 1.00 0 0 0 1.00 0.50
56 0 3 1.00 0 0 1 1.00 0.50

...carfax... 30 0 0 1.00 0 0 0 1.00 1.00
20 0 0 1.00 0 0 0 1.00 1.00

...expedi... 53 0 2 1.00 0 0 1 1.00 0.50
98 6 0 0.33 4 0 0 1.00 0.83

...houzz 22 0 0 1.00 0 0 0 1.00 1.00
169 37 27 1.00 9 3 5 1.00 0.85

...mcdona... 42 1 0 1.00 0 0 0 1.00 0.50
126 35 10 0.32 35 5 5 1.00 0.94

...meditat... 22 3 2 1.00 0 0 2 1.00 0.50
46 15 1 0.75 14 0 1 1.00 0.94

...pinterest 32 1 1 1.00 1 1 1 1.00 1.00
24 0 0 1.00 0 0 0 1.00 1.00

...popular... 36 5 3 1.00 0 0 3 1.00 0.50
158 40 19 1.00 21 0 2 1.00 0.68

...theathl 20 0 1 1.00 0 1 1 1.00 1.00
77 35 5 1.00 34 5 5 1.00 0.99

...weawow 32 2 2 0.00 0 0 2 1.00 1.00
656 280 52 1.00 194 3 5 1.00 0.87

Average: 84.23% 100% 83.27%

the automatically diagnosed over-access problem by OverSight
and reported all the issues to the developers.

As Table 3 shows, 13 cases out of 30 different states have over-
access problems not only by SAT, but also by TalkBack, the standard
screen reader. 5 of these issues belong to the most popular apps,
endangering the security of hundreds of millions of users.

We also observed that apps with lower rating and installation
number are not as robust as popular ones. For example, we had to
reopen the locked app using “com.saeed...” multiple times to finally

Table 3: Over accessibility issues in app lockers.

App Version #Installed Rate State 1 State 2
TB SAT TB SAT

com.netqin.ps 293 +100M 4.3 ✓ ✓ ✓ x
com.domobile.... 2021052001 +100M 4.2 ✓ ✓ x x
com.alpha.app... 412 +50M 4.7 ✓ ✓ ✓ ✓
com.sp.protec... 231 +50M 4.4 ✓ ✓ x x
com.thinkyeah... 166 +10M 4.6 ✓ ✓ ✓ ✓

com.litetools... 91 +10M 4.3 x x ✓ ✓
*com.gamemalt... 108 +5M 4.3 x x x x
com.nevways.a... 92 +5M 4.3 ✓ ✓ ✓ ✓
com.ammy.app.... 151908296 +1M 4.6 ✓ ✓ x x
com.gsmobile.... 34 +500K 4.5 ✓ ✓ ✓ ✓
me.ibrahimsn.... 134 +50K 4.0 ✓ ✓ ✓ x

com.cd.applo.... 2 +10K 4.5 ✓ ✓ ✓ ✓
com.saeed.app... 4 +10K 4.4 ✓ ✓* ✓ ✓*
com.applockli... 8 +10K 4.0 ✓ ✓ ✓ ✓
com.mms.applo... 1 +5K 4.0 ✓ ✓ ✓ ✓
app.lock.hide... 6 +5K 3.5 ✓* ✓* ✓* ✓*

see the lock screen. On the other hand, interestingly, the over-access
problem is not as common in the last 5 apps. We realized that app
lockers utilize different strategies in providing a lock screen. For
example, in the last app in Table 3, we found that the app locker first
puts the app in the background and then displays the lock screen.
In this way, OA elements still exist, yet they will not endanger the
target app as they are the nodes on the home screen. Such strategy
is time and energy consuming and would be less appealing to users.
Among other apps, some inflate a full-screen overlay on the locker
without creating a new Activity such as “com.gamemalt.ap...” or
“com.litetools...”, while the other ones such as “com.sp.protec...”,
“com.domobile....” and “com.ammy...” create a new Activity for the
lock screen. Android provides mechanisms for both approaches to
manage the hierarchy of nodes for the UI elements. The default
behavior in inflating an overlay on the same Activity results in
appearance of all the elements of the Activity, including those that
should not be accessible, in the UI hierarchy. Thus, developers
need to take proper actions to avoid that by setting their nodes not
important for accessibility for example. However, by default, the
hierarchy of nodes for a new activity only incorporates nodes that
are specified in this activity and will not leak the elements from
prior activities.

Developer’s decision in utilizing these strategies can impact app
stability, robustness and usability. We strongly encourage them
to consider security threats of OA elements, resulting from their
design decisions as well as the other app qualities.

5.4 RQ3. Qualitative Analysis of OA Elements

We manually examined all reported OA elements by OverSight
in Table 2 and categorized them based on their impact on disabled
users and app developers in terms of app accessibility, app security,
and work flow violations.
5.4.1 App Accessibility. Both over perceivable and over actionable
elements degrade app accessibility, hindering disabled users’ ability
to explore the app conveniently. For example, in “30 days workout”
app, Figure 6(a), a blind user has to navigate through the covered
elements, highlighted in green. Although these OA elements, re-
quiring paid subscription to access, are not actionable, a user who
wants to understand the app content would be confused of what is
shown on the screen. Moreover, if she wants to reach a specific but-
ton, e.g., Profile, she has to pass through all OA elements, resulting
in a less optimal user interaction. A similar scenario happens in the

ASE ’22, October 10–14, 2022, Rochester, MI, USA Forough Mehralian, Navid Salehnamadi, Syed Fatiul Huq, and Sam Malek

So owning a new house, a bigger car
or having a busy social life only
affects 10% of your happiness. And
often it will only give you a short
boost of happiness. The rest comes
from within and meditation is a very
useful 'tool' for achieving inner
contentment.

(a)
(b)

(c)

(d)
Figure 6: Impacts of OA elements. (a) Accessibility issue of overly perceivable elements. (b) Accessibility issue of overly actionable elements.

(c) Workflow violation, giving access to premium content. (d) Workflow Violation, breaking app logic.

welcome page of “iSaveMoney” app. The intended use-case is for
the user to follow the introductory steps; however, the information
from next steps are available to AT user from the beginning, making
the introduction complicated. School Planner, ZipRecruiter, and
McDonlads have a similar issue. It is worth mentioning that OA
elements in app lockers discussed in RQ2 not only undermine app
functionality for AT users but also complicate their interaction with
apps. When they explore app by swipe, there is no lock preventing
their access. However, app exploration by touch will not activate
the OA elements that supposedly exist on the screen.

In some cases, OA elements provide actions to AT users. Case in
point, background images in Geek, shown in Figure 6(b), are not
accompanied with any textual data but are actionable. Although
none of them are associated with any functionalities, i.e., they do
not change the screen content when triggered, they complicate app
exploration for AT users who believe there are real buttons on the
screen. Interestingly, this app was also diagnosed with under-access
problem in a prior work [42] because of a rolling dynamic widget
in the background. The AT user gets stuck in an infinite loop and
cannot login if she wants to explore the screen by swiping.
5.4.2 App Security. In RQ2, we extensively explained the critical
impact of OA elements on the security of app lockers. OA elements
in such apps can reveal the screen content of other apps that they
are designed to protect. They can also provide access to the settings
page, where the AT user can disable the lock totally. As the app lock-
ers are mainly responsible for protecting app content, OA elements
put a vulnerable app’s reputation at stake. The issue is, however, not
limited to app lockers. For example, parental control apps, which
provide a mechanism to lock specific apps on the child’s device, or
variety of built-in locks in apps such as banking are also vulnerable
to OA elements.
5.4.3 Workflow Violations. Developers design a workflow by
which users interact with apps. Violating such workflows can 1)
break app logic, 2) provide unauthorized access to premium content.

Developers restrict access to some functionalities to avoid false
inputs and gather required information from users. For example,

in the Airbnb app depicted in Figure 6(c), when the number of
passengers is zero, the decrease button for the number of travelers
is disabled. However, using AT one can decrease the number of pas-
sengers to less than zero. Similarly, in Expedia and FatSecret apps,
the continue button is disabled until the user enters the required
information at each step. Using ATs, users can pass invalid inputs,
which can result in the app malfunctioning or crashing.

In some cases, the workflow violation targets developer’s rev-
enue model. Figure 6(d) illustrates an article in a meditation app
which is only available fully for the subscribed users. However,
TalkBack announces the whole content of this article and scrolls
through it without asking for a subscription. The same issue exists
for the premium articles in the “The Athletics” app. While these
examples are related to the restricted scroll functionality, the same
issue threatens any other blocked functionalities that are intended
to be available to subscribed users.
5.5 RQ4. Performance

The time-consuming component of OverSight is OA Verifier
which needs to interact with the device and perform actions on
elements. On average, it takes 54 seconds for OA Verifier to per-
form an action. The execution time varies in different apps as their
number of nodes and OA smells are different. For the apps in our
test set, the average execution time of OverSight is 571 seconds,
which can be effectively used in practice. Any dynamic analysis
tool, including OverSight, is costly in time compared to simple
static checkers. The OA Detector runs very fast, under one second.
By identifying the OA smells, OA Detector reduces the number
of nodes that need to be verified by 84% on average. Without OA
Detector, an expensive verifier would need to assess every single
node on the screen.

6 THREATS TO VALIDITY

External validity. An important threat is the completeness of OA
elements’ conditions, extracted from examining 100 different states
of 20 randomly selected apps. To mitigate this issue, we carefully
selected a diverse set of app states considering the limitations of

Too Much Accessibility is Harmful! Automated Detection and Analysis of Overly Accessible Elements in Mobile Apps ASE ’22, October 10–14, 2022, Rochester, MI, USA

manual exploration. The extracted conditions were organized un-
der two main classes, Over Perceivability and Over Actionability,
inspired by accessibility guidelines. Although this process gives us
confidence that the conditions provide a good coverage for differ-
ent variations of app states, having a larger set of app states would
increase the validity of generalization of our findings.

Another threat is the generalizability of the reported results of
OverSight on real world apps. Our evaluation dataset for RQ1
consists of 60 screens from 30 apps. While including more apps and
screens would increase the validity of this experiment, we have
attempted to mitigate this threat by selecting the apps from three
different sources: (1) apps with confirmed under-accessibility issues,
(2) apps with an intention to make users’ information secure, and
(3) a diverse selection of popular apps – 30 apps in 16 different
categories in total. The first two groups are intentionally selected,
since they are related to under- and over-accessibility, respectively.

While Oversight mainly relies on XML layout of a screen to de-
tect OA conditions, for detecting camouflaged elements it requires a
screenshot of the screen, which is not possible for apps that restrict
the ability to capture screenshot. This tends to be the case for apps
displaying copyrighted content. In such situations, Oversight may
miss OA elements with the camouflaged condition.
Internal validity. Our implementation of OverSight is built on
top of several tools, like ADB and AccessibiltiyService, which can
introduce bugs in the process of OA element detection. Moreover, it
is possible there are defects in our implementation of the prototype.
To address these threats, we used the latest versions of third-party
tools, conducted code review on our implemented program via
Github, and extensively tested the prototype in a set of apps (with
no intersection with the empirical study or the evaluation data
sets).
7 RELATEDWORK

Accessibility Analysis of Mobile Apps. Analyzing mobile app
accessibility has been an active research area with the focus on
proposing accessibility guidelines [46], empirical study [3, 41, 44],
automated testing [6–8, 17, 24, 40], and repair techniques [2, 14,
33, 53]. Although accessibility principles [49] have implications for
both under-access and over-access problems, there is no guideline
regarding over accessibility and prior studies and tools are merely
aimed at analyzing inaccessible functionalities in apps. OverSight
is the first work in introducing the over-access problem and the
first attempt to detect them.

The biggest challenge in detecting these issues is that OA ele-
ments manifest themselves in interactions involving ATs. However,
the majority of accessibility testing tools are AT-agnostic. Static
analysis tools like Lint [8] parse screen content and configura-
tion files upon compilation to identify accessibility violations in
code. To find issues that are undetectable in code, dynamic ap-
proaches [6, 7, 17, 26, 40] have been developed that analyze the
rendered UI components on the screen, either after manual naviga-
tion to the target state of the app [6, 7, 26] or with an automated
crawler [17]. These techniques, however, do not consider the use of
ATs like screen readers and external keyboards in app exploration.

A prior technique, called Latte [42], utilizes ATs to evaluate if an
app’s functionalities, generated from its UI test cases, can be per-
formed by disabled users. However, test cases are not always avail-
able, without which assessing UI elements with ATs is a time and

memory intensive process. To mitigate this issue, Groundhog [43]
proposes an optimized app exploration approach for accessibility
testing. However, both Latte and Groundhog only focus on inacces-
sible elements. OverSight’s contribution is in taking advantage of
characteristics of OA elements to detect and verify over accessibility
issue and its impacts on mobile apps.
Security Studies on Accessibility. Accessibility has also been
studied in a security context, considering how accessibility APIs
on mobile platforms can be exploited by attackers [27]. Kraunelis
et al. [32] showed how malicious apps can abuse accessibility ser-
vice to detect app launches and bypass security measures [45]. Re-
searchers have also investigated the potentials of using accessibility
APIs in designing attacks such as ClickJacking attacks [4, 29, 52].
These targeted the BIND_ ACCESSIBILITY_SERVICE permission
to take full control of the UI, as demonstrated by Cloak and Dag-
ger technique [18]. Studies have devised defense schemes [51] and
solutions to this attack [25, 38, 39].

These security studies approached accessibility from a malware’s
perspective, designing potential attacks, analyzing the framework
and proposing solutions based on the assumption that the assistive
app is malicious. Conversely, we introduced OA elements as a new
vulnerability that can be exploited using a benign app or standard
ATs such as TalkBack. The privacy implications of such elements for
users as well as their negative impact on developers’ revenue and
reputation has remained unnoticed in security studies. While prior
security studies have shed light on what attackers can do through
exploitation of accessibility APIs, our paper aims to provide soft-
ware engineers with a tool to detect and eliminate vulnerabilities
due to over-access in their apps.

8 CONCLUSION

Assistive Technologies help disabled users have equal access to
mobile apps by providing alternative modes of interaction. An in-
consistency between different interaction modes may result in both
under-access as well as over-access problems. The former has been
extensively studied in prior works, concerning inaccessible data
and functionality. However, in this study, we presented the latter
and discussed the threats of overly accessible elements, enabling
an assistive-technology user to get access to app content or func-
tionality that is not available otherwise. We also studied the charac-
teristics of overly accessible elements and proposed OverSight to
automatically detect them in mobile apps with high accuracy. Our
evaluation reveals overly accessible elements have severe impacts
on both disabled users and developers. They can degrade app acces-
sibility, endanger app security, and put developers’ reputation and
revenue at stake. To avoid such issues, in the future, we investigate
the application of automatic program repair techniques in resolving
the over-access problem in mobile apps.

ACKNOWLEDGMENTS

This work was supported in part by award numbers 2211790,
1823262, and 2106306 from the National Science Foundation. We
would like to thank the anonymous reviewers of this paper for their
detailed feedback, which helped us improve the work.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Forough Mehralian, Navid Salehnamadi, Syed Fatiul Huq, and Sam Malek

REFERENCES

[1] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
AndroZoo: Collecting Millions of Android Apps for the Research Community. In
Proceedings of the 13th International Conference on Mining Software Repositories
(Austin, Texas) (MSR ’16). ACM, New York, NY, USA, 468–471. https://doi.org/
10.1145/2901739.2903508

[2] Ali S Alotaibi, Paul T Chiou, and William GJ Halfond. 2021. Automated Repair of
Size-Based Inaccessibility Issues in Mobile Applications. In 2021 36th IEEE/ACM
International Conference on Automated Software Engineering. IEEE, 730–742.

[3] Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. 2020. Accessibility issues
in Android apps: state of affairs, sentiments, and ways forward. In 2020 IEEE/ACM
42nd International Conference on Software Engineering. ICSE, Virtual, 1323–1334.

[4] Yair Amit. 2018. Accessibility Clickjacking–Android Malware Evolution.(2016).
[5] Android. 2020. About Switch Access for Android. https://support.google.com/

accessibility/android/answer/6122836?hl=en.
[6] Android. 2020. Accessibility Scanner - Apps on Google Play. https:

//play.google.com/store/apps/details?id=com.google.android.apps.accessibility.
auditor&hl=en_US.

[7] Android. 2020. Espresso : Android Developers. Google. Retrieved August 20, 2020
from https://developer.android.com/training/testing/espresso

[8] Android. 2020. Improve your code with lint checks. Google. Retrieved August 20,
2020 from https://developer.android.com/studio/write/lint?hl=en

[9] Android. 2022. Android Debug Bridge. Google. Retrieved March 15, 2022 from
https://developer.android.com/studio/command-line/adb

[10] Apple. 2022. Apple Accessibility Scanner. https://developer.apple.com/library/
archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/
OSXAXTestingApps.html.

[11] Meditation Moments B.V. 2022. Meditation Moments. Retrieved March 10, 2022
from https://play.google.com/store/apps/details?id=com.meditationmoments.
meditationmoments&hl=en_US&gl=US

[12] Mikey Campbell. 2021. Lock screen bypass enables access to Notes in iOS 15.
Retrieved February 26, 2022 from https://appleinsider.com/articles/21/09/20/lock-
screen-bypass-enables-access-to-notes-in-ios-15

[13] Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. 2018.
From ui design image to gui skeleton: a neural machine translator to bootstrap
mobile gui implementation. In Proceedings of the 40th International Conference on
Software Engineering. 665–676.

[14] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, and
Guoqiang Li. 2020. Unblind Your Apps: Predicting Natural-Language Labels for
Mobile GUI Components by Deep Learning. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering. ICSE, Virtual, 322–334.

[15] Jieshan Chen, Mulong Xie, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming
Zhu, and Guoqiang Li. 2020. Object detection for graphical user interface: Old
fashioned or deep learning or a combination?. In proceedings of the 28th ACM
joint meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 1202–1214.

[16] Bettye Rose Connell. 1997. The principles of universal design, version 2.0.
http://www. design. ncsu. edu/cud/univ_design/princ_overview. htm (1997).

[17] Marcelo Medeiros Eler, José Miguel Rojas, Yan Ge, and Gordon Fraser. 2018.
Automated accessibility testing of mobile apps. In 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation. ICST, Västerås, Sweden,
116–126.

[18] Yanick Fratantonio, Chenxiong Qian, Simon P. Chung, and Wenke Lee. 2017.
Cloak and Dagger: From Two Permissions to Complete Control of the UI Feedback
Loop. In 2017 IEEE Symposium on Security and Privacy (SP). 1041–1057. https:
//doi.org/10.1109/SP.2017.39

[19] Google. 2020. AccessibilityNodeInfo. Retrieved March 6, 2022 from
https://developer.android.com/reference/android/view/accessibility/
AccessibilityNodeInfo#isVisibleToUser()

[20] Google. 2020. Get started on android with talkback - android accessibility help.
https://support.google.com/accessibility/android/answer/6283677?hl=en.

[21] Google. 2022. AccessibilityFlags. Retrieved March 16, 2022 from
https://developer.android.com/reference/android/accessibilityservice/
AccessibilityServiceInfo#attr_android:accessibilityFlags

[22] Google. 2022. AccessibilityInteractionController.java. Retrieved May 3, 2022
from https://android.googlesource.com/platform/frameworks/base/+/80943d8/
core/java/android/view/AccessibilityInteractionController.java#680

[23] Google. 2022. AccessibilityNodeInfo. Retrieved March 12, 2022 from
https://developer.android.com/reference/android/view/accessibility/
AccessibilityNodeInfo

[24] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan.
2014. PUMA: programmable UI-automation for large-scale dynamic analysis of
mobile apps. In Proceedings of the 12th annual international conference on Mobile
systems, applications, and services. 204–217.

[25] Jie Huang, Michael Backes, and Sven Bugiel. 2021. A11y and Privacy don’t have
to be mutually exclusive: Constraining Accessibility Service Misuse on Android.
In 30th USENIX Security Symposium (USENIX Security 21). 3631–3648.

[26] IBM. 2020. IBM Accessibility Checklist. Retrieved September 14, 2020 from
https://www.ibm.com/able/guidelines/ci162/accessibility_checklist.html

[27] Yeongjin Jang, Chengyu Song, Simon P Chung, Tielei Wang, and Wenke Lee.
2014. A11y attacks: Exploiting accessibility in operating systems. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security.
103–115.

[28] KewlApps. 2022. AppLock. Retrieved March 10, 2022 from https://play.google.
com/store/apps/details?id=com.gamemalt.applocker

[29] Swati Khandelwal. 2017. New ransomware not just encrypts your Android
but also changes Pin Lock. https://thehackernews.com/2017/10/android-
ransomware-pin.html

[30] Filip Koroy. 2018. Another BAD iOS 12 Passcode Bypass! 12.1/12.0.1 (Works on
XS). Retrieved February 26, 2022 from https://www.youtube.com/watch?v=
7CyiouCv6Kk

[31] Filip Koroy. 2018. iOS 12 Passcode Bypass! Photos & Contacts (Works on
XS). Retrieved February 26, 2022 from https://www.youtube.com/watch?v=
YYucGhyOjUE

[32] Joshua Kraunelis, Yinjie Chen, Zhen Ling, Xinwen Fu, and Wei Zhao. 2014.
On Malware Leveraging the Android Accessibility Framework. In Mobile and
Ubiquitous Systems: Computing, Networking, and Services, Ivan Stojmenovic, Zixue
Cheng, and Song Guo (Eds.). Springer International Publishing, Cham, 512–523.

[33] Forough Mehralian, Navid Salehnamadi, and Sam Malek. 2021. Data-driven
accessibility repair revisited: on the effectiveness of generating labels for icons in
Android apps. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
107–118.

[34] Microsoft. 2022. Accessibility Insights for Android. Retrieved March 13, 2022 from
https://accessibilityinsights.io/docs/en/android/overview/

[35] Matt Miller. 2017. Monetization Insights from App Professionals. https://www.
data.ai/en/insights/app-monetization/app-marketers-developers-survey-2/.

[36] Mohammad Naseri, Nataniel P Borges Jr, Andreas Zeller, and Romain Rouvoy.
2019. Accessileaks: Investigating privacy leaks exposed by the android accessi-
bility service. (2019).

[37] OverSight. 2022. OverSight. https://github.com/seal-hub/Oversight.
[38] Andrea Possemato, Andrea Lanzi, Simon Pak Ho Chung, Wenke Lee, and Yanick

Fratantonio. 2018. Clickshield: Are you hiding something? towards eradicating
clickjacking on android. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 1120–1136.

[39] Chuangang Ren, Peng Liu, and Sencun Zhu. 2017. WindowGuard: Systematic
Protection of GUI Security in Android.. In NDSS.

[40] Robolectric. 2019. robolectric/robolectric. https://github.com/robolectric/
robolectric

[41] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O Wobbrock. 2017.
Epidemiology as a framework for large-scale mobile application accessibility
assessment. In Proceedings of the 19th international ACM SIGACCESS conference
on computers and accessibility. ASSETS, Baltimore, MD, USA, 2–11.

[42] Navid Salehnamadi, Abdulaziz Alshayban, Jun-Wei Lin, Iftekhar Ahmed, Stacy
Branham, and Sam Malek. 2021. Latte: Use-Case and Assistive-Service Driven
Automated Accessibility Testing Framework for Android. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. Association for
Computing Machinery, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3411764.3445455

[43] Navid Salehnamadi, Forough Mehralian, and Sam Malek. 2022. GroundHog:
An Automated Accessibility Crawler for Mobile Apps. In 2022 37th IEEE/ACM
International Conference on Automated Software Engineering. IEEE.

[44] Christopher Vendome, Diana Solano, Santiago Liñán, and Mario Linares-Vásquez.
2019. Can everyone use my app? an empirical study on accessibility in android
apps. In 2019 IEEE International Conference on Software Maintenance and Evolution.
IEEE, 41–52.

[45] Dinesh Venkatesan. 2016. “Malware may abuse androids accessibility service to
bypass security enhancements.

[46] W3. 2020. Web Content Accessibility Guidelines (WCAG) Overview. World Wide
Web Consortium. Retrieved August 20, 2020 from https://www.w3.org/WAI/
standards-guidelines/wcag/

[47] W3. 2022. Principle 1: Perceivable. World Wide Web Consortium. Retrieved
March 15, 2022 from https://www.w3.org/TR/WCAG20/#perceivable

[48] W3. 2022. Principle 2: Operable. World Wide Web Consortium. Retrieved March
15, 2022 from https://www.w3.org/TR/WCAG20/#operable

[49] W3. 2022. Understanding the Four Principles of Accessibility. World Wide
Web Consortium. Retrieved March 15, 2022 from https://www.w3.org/TR/
UNDERSTANDING-WCAG20/intro.html#introduction-fourprincs-head

[50] Jason Wu, Xiaoyi Zhang, Jeff Nichols, and Jeffrey P Bigham. 2021. Screen Parsing:
Towards Reverse Engineering of UI Models from Screenshots. In The 34th Annual
ACM Symposium on User Interface Software and Technology. 470–483.

[51] Longfei Wu, Benjamin Brandt, Xiaojiang Du, and Bo Ji. 2016. Analysis of
clickjacking attacks and an effective defense scheme for Android devices. In
2016 IEEE Conference on Communications and Network Security (CNS). 55–63.
https://doi.org/10.1109/CNS.2016.7860470

https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508
https://support.google.com/accessibility/android/answer/6122836?hl=en
https://support.google.com/accessibility/android/answer/6122836?hl=en
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://developer.android.com/training/testing/espresso
https://developer.android.com/studio/write/lint?hl=en
https://developer.android.com/studio/command-line/adb
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://play.google.com/store/apps/details?id=com.meditationmoments.meditationmoments&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.meditationmoments.meditationmoments&hl=en_US&gl=US
https://appleinsider.com/articles/21/09/20/lock-screen-bypass-enables-access-to-notes-in-ios-15
https://appleinsider.com/articles/21/09/20/lock-screen-bypass-enables-access-to-notes-in-ios-15
https://doi.org/10.1109/SP.2017.39
https://doi.org/10.1109/SP.2017.39
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo#isVisibleToUser()
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo#isVisibleToUser()
https://support.google.com/accessibility/android/answer/6283677?hl=en
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo#attr_android:accessibilityFlags
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo#attr_android:accessibilityFlags
https://android.googlesource.com/platform/frameworks/base/+/80943d8/core/java/android/view/AccessibilityInteractionController.java#680
https://android.googlesource.com/platform/frameworks/base/+/80943d8/core/java/android/view/AccessibilityInteractionController.java#680
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo
https://www.ibm.com/able/guidelines/ci162/accessibility_checklist.html
https://play.google.com/store/apps/details?id=com.gamemalt.applocker
https://play.google.com/store/apps/details?id=com.gamemalt.applocker
https://thehackernews.com/2017/10/android-ransomware-pin.html
https://thehackernews.com/2017/10/android-ransomware-pin.html
https://www.youtube.com/watch?v=7CyiouCv6Kk
https://www.youtube.com/watch?v=7CyiouCv6Kk
https://www.youtube.com/watch?v=YYucGhyOjUE
https://www.youtube.com/watch?v=YYucGhyOjUE
https://accessibilityinsights.io/docs/en/android/overview/
https://www.data.ai/en/insights/app-monetization/app-marketers-developers-survey-2/
https://www.data.ai/en/insights/app-monetization/app-marketers-developers-survey-2/
https://github.com/seal-hub/Oversight
https://github.com/robolectric/robolectric
https://github.com/robolectric/robolectric
https://doi.org/10.1145/3411764.3445455
https://doi.org/10.1145/3411764.3445455
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/TR/WCAG20/#perceivable
https://www.w3.org/TR/WCAG20/#operable
https://www.w3.org/TR/UNDERSTANDING-WCAG20/intro.html#introduction-fourprincs-head
https://www.w3.org/TR/UNDERSTANDING-WCAG20/intro.html#introduction-fourprincs-head
https://doi.org/10.1109/CNS.2016.7860470

Too Much Accessibility is Harmful! Automated Detection and Analysis of Overly Accessible Elements in Mobile Apps ASE ’22, October 10–14, 2022, Rochester, MI, USA

[52] Martin Zhang. 2016. Android ransomware variant uses clickjacking to become
device administrator.

[53] Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin, Samuel White, Kyle Murray,
Lisa Yu, Qi Shan, Jeffrey Nichols, Jason Wu, Chris Fleizach, et al. 2021. Screen

recognition: Creating accessibility metadata for mobile applications from pixels.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–15.

	Abstract
	1 Introduction
	2 Motivating Example & Background
	3 Overly Accessible Elements
	3.1 Data Collection
	3.2 Results

	4 Approach
	4.1 OA Detector
	4.2 OA Verifier

	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1. Accuracy of OverSight
	5.3 RQ2. OA Elements in Security-Sensitive Apps
	5.4 RQ3. Qualitative Analysis of OA Elements
	5.5 RQ4. Performance

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

