
Assistive-Technology Aided Manual Accessibility Testing in
Mobile Apps, Powered by Record-and-Replay

Navid Salehnamadi

nsalehna@uci.edu

School of Information and Computer

Sciences

University of California, Irvine, USA

Ziyao He

ziyaoh5@uci.edu

School of Information and Computer

Sciences

University of California, Irvine, USA

Sam Malek

malek@uci.edu

School of Information and Computer

Sciences

University of California, Irvine, USA

ABSTRACT

Billions of people use smartphones on a daily basis, including 15%

of the world’s population with disabilities. Mobile platforms en-

courage developers to manually assess their apps’ accessibility in

the way disabled users interact with phones, i.e., through Assistive

Technologies (AT) like screen readers. However, most developers

only test their apps with touch gestures and do not have enough

knowledge to use AT properly. Moreover, automated accessibility

testing tools typically do not consider AT. This paper introduces

a record-and-replay technique that records the developers’ touch

interactions, replays the same actions with an AT, and generates a

visualized report of various ways of interacting with the app using

ATs. Empirical evaluation of this technique on real-world apps re-

vealed that while user study is the most reliable way of assessing

accessibility, our technique can aid developers in detecting complex

accessibility issues at different stages of development.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; •Human-centered computing→ Accessibility design

and evaluation methods.

KEYWORDS

Android, Accessibility, Software Testing, TalkBack, AssistiveTech-

nology

ACM Reference Format:

Navid Salehnamadi, Ziyao He, and Sam Malek. 2023. Assistive-Technology

Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-

and-Replay. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (CHI ’23), April 23–28, 2023, Hamburg, Germany. ACM,

New York, NY, USA, 20 pages. https://doi.org/10.1145/3544548.3580679

1 INTRODUCTION

Mobile devices are the most popular computing devices [62], and

mobile applications are an integral part of people’s daily lives. Mod-

ern mobile devices are equipped with touchscreens, providing rich

experiences for users; however, they also force developers to test

and validate the functionality of their apps either manually or using

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9421-5/23/04.

https://doi.org/10.1145/3544548.3580679

automated tools. In the testing process, developers may neglect to

evaluate their software for approximately 15% of the world’s popu-

lation with disabilities [66], many of whom cannot use conventional

interaction methods, such as touch gestures. According to law en-

forcement and social expectations, developers should design apps

accessible to all users, regardless of their abilities. Still, prior studies

have revealed that many popular apps ship with accessibility issues,

preventing disabled users from using them effectively [2, 23, 56].

App developers are aided by accessibility guidelines published

by companies such as Apple [16] and Google [8], as well as tech-

nology institutes such as the World Wide Web Consortium [65].

In order to understand how people with disabilities use mobile

apps, developers are encouraged to conduct user studies with users

(preferably with disabilities) using assistive services, such as screen

readers. Despite the fact that software practitioners acknowledge

the importance of human evaluation in accessibility testing, they

admit that end-user feedback is difficult to obtain [19]. Furthermore,

for small development teams with limited resources, finding users

with various types of disabilities and conducting such evaluations

can be prohibitively challenging and expensive.

Using accessibility analysis tools, app compliancewith guidelines

and accessibility issues can be detected automatically [5, 7, 17,

18]. An app’s User Interface (UI) can be analyzed, for example, to

determine if the contrast between elements and backgrounds is

above a certain threshold or if the button area exceeds a specified

area defined in the guidelines. Solely analyzing the UI specification

of an app may not reveal many accessibility problems that are only

present when assistive services are used, such as screen readers.

Blind users, for instance, can use a screen reader like Android’s

TalkBack to navigate UI elements and perform actions. If TalkBack

is unable to focus on an element, the element becomes completely

inaccessible.

Generally, automated accessibility testing does not consider as-

sistive services, except for a few recent research tools [1, 58, 60].

Latte [58] assumes the availability of GUI test cases for validat-

ing an app’s functionality. The test cases are then repurposed to

execute with assistive services, e.g., TalkBack, for accessibility anal-

ysis. Since developers rarely write GUI tests for their apps, Latte

is limited to situations where GUI tests are available. According to

a recent study, over 92% of Android app developers do not have

GUI tests [46]. Other works try to mitigate this issue by analyz-

ing a single app screen while ignoring the app’s functionalities.

ATARI [1] assesses the focusability of screen elements by navigat-

ing sequentially using TalkBack. However, ATARI does not consider

any actions, e.g., clicking, and depends on the developers/testers to

provide the screen. Moreover, both Latte and ATARI consider one

https://doi.org/10.1145/3544548.3580679
https://doi.org/10.1145/3544548.3580679


CHI ’23, April 23–28, 2023, Hamburg, Germany Salehnamadi, et al.

type of navigation in TalkBack: linear navigation. Groundhog [60]

addresses this limitation by using an app crawler to visit multi-

ple screens and assessing whether the elements are clickable by

TalkBack. Although Groundhog considers performing actions, its

analysis is limited to one action on one screen and cannot detect

accessibility issues occurring in a sequence of interactions. More-

over, it is limited to one action, i.e., click, and does not support

other actions like swipe or type. Finally, Groundhog cannot visit

and analyze various parts of an app due to the limitation in random

input generation, e.g., it cannot pass the login screen.

The key insights that guide our research are (1) mobile de-

velopers and testers still prefer manual testing in-app develop-

ment [38, 41, 47], (2) assistive services need to be incorporated for

evaluating apps’ accessibility, and (3) there is a lack of expertise

and knowledge among many mobile developers and testers on how

to properly evaluate the accessibility of their apps with guidelines,

automated tools, and assistive services. A survey found that 48%

of Android developers cite lack of awareness as the main reason

for accessibility issues in apps [2]. Another survey found that 45%

of accessibility practitioners are experiencing problems related to

accessibility development and design, such as inadequate resources

and experts [19].

Informed by the above-mentioned insights, we have developed a

new form of automated accessibility analysis, calledA11yPuppetry,

that aids developers in gaining insights on accessibility issues of

their apps. Developers and testers can evaluate their apps manually

by using touch gestures, whileA11yPuppetry records these interac-

tions. After that, A11yPuppetry interacts with the app on another

device using an assistive service to perform the equivalent actions

on behalf of the testers, regardless of their knowledge and expertise

in accessibility and assistive services. A11yPuppetry is inspired by

Record-and-Replay (RaR) techniques, such as [31, 33, 57], where a

program records the user actions on an app and replays the same

actions on the same app in another device. However, to the best of

our knowledge, all existing RaR techniques replay the recorded ac-

tions exactly as they are performed. For example, if the user touches

specific coordinates of the screen, the replayer program also sends

a touch event for the same coordinates. A11yPuppetry is different

from these techniques since the replaying part is completely done

by an alternative way of interaction, e.g., a screen reader. More

importantly, A11yPuppetry generates a fully visualized report for

developers after replaying the recorded use case with assistive

services, which are augmented by accessibility issues.

This paper makes the following contributions:

• A novel, high-fidelity, and semi-automated form of accessibility

analysis that can be used by almost any mobile developer or

tester to evaluate the accessibility of mobile apps with assistive

services;

• A publicly available implementation of the above-mentioned

approach for Android called A11yPuppetry [59];

• Conducting user studies with users with disabilities and creating

a benchmark of real apps with accessibility issues confirmed by

disabled users; and

• An extensive empirical evaluation demonstrating the effective-

ness of A11yPuppetry in identifying issues that the existing

automated techniques cannot detect.

The rest of this paper is organized as follows: Section 2 moti-

vates this study with an example and explains the challenges that

we are facing. Section 3 examines the related literature, next the

Section 4 provides an overview of our approach and the follow-

ing sections explain the details of our approach. The evaluation of

A11yPuppetry on real-world apps is finally presented in Section 9.

The paper concludes with a discussion of the avenues for future

work.

2 MOTIVATING EXAMPLE

This section illustrates how users with visual impairments use

screen readers to interact with apps. Further, we demonstrate a cou-

ple of accessibility issues that cannot be detected by conventional

accessibility testing tools. Finally, we elaborate on the challenges

of automatically recording touch gestures and replaying them with

a screen reader.

Figure 1(a) shows the home page of the Dictionary.com app

with more than ten million users in the Android Play store [25].

Assume a tester wants to validate the correctness of a use casewhich

consists of 3 parts: Selecting the “word of the day” and listening to

its pronunciation, marking the word as a favorite, and reviewing

or removing favorite words.

A user without a disability who can see all elements on the screen

and perform any touch gestures can perform this use case fairly

easily. First, she taps on the word of the day, box 10 in Figure 1(a),

then the app goes to Figure 1(b). Next, she taps on the speaker button

to listen to the pronunciation, pink-dashed box in Figure 1(b). Then

to mark the word as a favorite, she taps the star button, yellow-

solid box in Figure 1(b), and she can get back to the home page,

Figure 1(a), by pressing the back button. Next, to see the list of

favorite words, she taps on box 2. The app will go to the state

depicted in Figure 1(c). To remove a word, the user needs to tap

on the edit button, yellow-solid box in Figure 1(c), then the navbar

changes to depict the number of selected words, and the delete

button, Figure 1(d). Finally, the user selects the checkbox next to

the word, and taps on the delete button, the yellow-solid box in

Figure 1(d).

To perform the same use case, users with visual impairments,

particularly blind users, have a completely different experience.

They rely on screen readers, e.g., TalkBack for Android [10], to

interact with the app. Users can perceive the screen’s content by

navigating through elements and listening to the textual description

of the focused element by TalkBack. A common accessibility issue

among mobile apps is the lack of content description for visual

icons [2, 23]. For example, if the star button in Figure 1(b) does

not have a content description, a blind user cannot guess the func-

tionality of this button. For the sake of this example, assume this

app does not have such issues and all elements have proper textual

description, e.g., box 2 in Figure 1(a) has a content description as

“Favorites List”.

There are several ways of navigating the elements of an app

with TalkBack. Using Linear Navigation, the user can navigate to

the next and previous element of the currently focused element

by swiping right and left on the screen. For example, to reach

the “word of the day” in Figure 1(a), which is diphthongize, the
user can start from box 1 (top left icon) and navigate to the next



Assistive-Technology Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-and-Replay CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 1: (a) The main page of Dictionary app; (b) The page after tapping on the word of the day; (c) The page showing all of the

words favored by a user; (d) The page after user taps on the edit button in Figure 1(c); (e) Upper menu disappears when user

scrolls down the page; (f) The Search Navigation provided by TalkBack.

elements until it reaches box 10. Note that TalkBack may group

elements for a more fluent announcement, like here, where a couple

of textual elements are grouped into box 10. Secondly, the user can

utilize Jump Navigation to focus on elements with specific types,

e.g., buttons or edit-text boxes. For example, by jumping in button

elements, the user can focus on boxes 1, 4, 5, 6, and 7, pink-dashed

boxes in Figure 1(a). The third way is Touch Navigation where the

user touches different parts of the screen, and TalkBack focuses

on the elements behind the user’s finger. For example, if the user

touches the top right of the screen in Figure 1(b), it focuses on

box 2, and TalkBack announces “Favorites List”. Another way is

finding the element through a search. TalkBack user can enter the

name of the element she is looking for, either by text entry or voice

command, and TalkBack focuses on the element with the same text.

For example, by searching “View All” TalkBack focuses on box 9 in

Figure 1(a).

Besides these navigating ways for focusing on an element, there

are alternative ways to perform touch gestures. For example, the

user can replicate the scroll action by swiping on the screen with

two fingers. Also, the user can execute some predefined actions by

performing special gestures. For example, swiping up then left is

equivalent to going to the device’s home screen, or swiping left

then right is equivalent to scrolling backward.

To click on an element, the user should perform a double-tap

gesture on the screen when the target element is focused. Talk-

Back perceives this gesture and sends a click accessibility event,

ACTION_CLICK, to the focused button, which is the equivalent of

tapping on the button by touch. After getting to the word of the

day page, to listen to the pronunciation, the user needs to locate

the speaker button, pink-dashed box in Figure 1(b). However, the

element cannot be focused on by TalkBack as developers only set

focus to its ancestor, the RelativeLayout, and telling TalkBack to

skip all the descendants, including the speaker button; therefore,

this functionality is inaccessible for TalkBack users. While the unlo-

catablity of this element by TalkBack is a critical accessibility issue,

Google’s Accessibility Scanner, the most widely used accessibility

analyzer for Android, cannot detect it since the scanner does not

consider assistive services like TalkBack into account.

Assuming the mentioned accessibility issue does not exist, the

blind user continues the rest of the use case by selecting the favorite

button, the yellow-solid box with the star icon in Figure 1(b), and

then returns to the home page. After returning to the home page,

the user needs to find Favorites List or box 2 in Figure 1(a). However,

since the user was previously on this page, box 10 is focused. By

navigating to the next elements, boxes 11 and 12, TalkBack auto-

matically scrolls forward to fetch the items below; however, the

app makes the upper menu disappear as shown in Figure 1(e). A

sighted user can notice this major change in the screen since she

can observe all parts of the screen; however, a blind user may not

notice it. Consequently, the blind user cannot locate the favorites

list button, initially located at the top right of the display. Even if

the user searches for the word “Favorite”, Figure 1(f), there is no

result since the favorites list button does not exist on the screen

anymore. This is another example of accessibility issues that cannot



CHI ’23, April 23–28, 2023, Hamburg, Germany Salehnamadi, et al.

be detected without considering exactly how blind users interact

with apps, i.e., through a screen reader such as TalkBack.

While it is straightforward for most app developers and testers

without disabilities to perform the aforementioned use case with

touch gestures, none of the accessibility issues above could be

detected unless the same use case is performed using a screen

reader. Our objective is to record touch gestures from an arbitrary

app tester, execute them using a screen reader automatically, and

generate a report with detected accessibility issues. Now, we explain

the possible challenges to realizing this idea.

• Action Mapping. Although users with visual impairments also

use touch gestures with screen readers like TalkBack, the way

actions are performed are completely different. For example, as

we mentioned in the example, clicking an element without a

screen reader is a simple touch on the element’s coordinates;

however, a screen reader user needs to first locate the element

and then perform a double tap gesture to initiate a click. There

is no trivial mapping between the touch gestures and the screen

reader’s actions.

• Action Approximation/Alternatives. In the case of having a

mapping between touch gestures and screen readers, the actions

are not completely equivalent. For example, sighted users can

scroll different parts of the screen with different velocities; how-

ever, TalkBack users can only perform four limited scrolling, left,

right, forward, and backward, where their start/end points and

velocity are constant, regardless of what TalkBack user wants.

On the other hand, TalkBack users can scroll through lists by

navigating through items via swiping left or right. Either way,

although there are equal actions with and without screen readers,

their effects are different, making it complicated to ensure the

apps are in the same state.

• Element Identification. Besides the fact that actions are done

differently with and without screen readers, the way elements

are accessed is also different. As mentioned earlier, TalkBack may

group multiple elements into one for a better user experience for

visually impaired users. Moreover, if action is associated with

an element of a group, TalkBack assigns the action to the whole

group. For example, in Figure 1(d), a sighted user may tap on the

checkbox to select the word; however, TalkBack focuses on the

group of the checkbox and the word (pink-dashed box), not the

checkbox itself. Therefore, to select the checkbox, a TalkBack

user needs to focus on the group of elements and then perform a

double-tap gesture.

• Lack of Accessibility Knowledge. In traditional record-and-

replay techniques, a tester can easily identify the bugs and issues

since the replaying is supposed to be identical to the record-

ing, and all interactions are familiar to the tester. However, it

is not trivial for a sighted user to understand accessibility is-

sues in a screen reader’s replays if she is not an experienced

assistive-service user. That is why it is important to not only

detect accessibility issues, but to also provide an explanation

for developers as to how the detected issues hinder the visually

impaired users.

3 RELATEDWORK

3.1 Accessibility Testing

Accessibility testing aims to identify the accessibility issues that

hinder disabled people from interacting with apps or software.

Based on the previous study, accessibility testing can be categorized

into two types: static accessibility testing and dynamic accessibility

testing [61].

In general, static accessibility testing tries to find accessibility

issues by investigating the source code. Android Lint [11] is a static

analyzer embedded into Android Studio and can detect accessibility

issues such as the lack of content descriptions. Prior researches also

focus on finding certain accessibility issues, such as [23, 51] used

deep learning technique to detect unlabeled icons and generate the

corresponding labels for them. However, static approaches cannot

detect problems that only manifest themselves at runtime.

Dynamic accessibility testing can detect runtime accessibility

issues by analyzing the rendered UI components’ attributes and

the corresponding interactions with UI components. Accessibility

Scanner [5], PUMA [35], MATE[26], Xbot [24], and KIF [40] rely

on a single app screen to perform the testing, and they can report

issues such as the inappropriate size of touch elements and the

low text contrast. Other works [2, 26] utilize a crawler so that

developers do not need to explore the app manually. However,

all the aforementioned tools fail to detect accessibility issues that

manifest themselves in interactions with apps. In addition, few prior

works consider assistive services for accessibility testing except

the following ones. Alotaibi, et al. [1] utilize TalkBack to identify

accessibility issues, such as unfocusable elements. However, their

tool, called ATARI, is limited to a single app screen and fails to

detect accessibility issues related to actions such as clicking and

typing. Latte [58] also employs TalkBack and executes GUI tests

via assistive services to identify the related accessibility issues.

As a result, Latte can detect accessibility issues related to actions.

However, Latte assumes the availability of GUI tests, and prior work

indicates that over 92% of Android app developers do not have GUI

tests [46]. Furthermore, Latte and ATARI only implemented one

type of navigation in TalkBack (linear navigation) while ignoring

other navigation methods such as search and jump. Groundhog

[60] is an accessibility app crawler, and therefore not limited to

a single app screen. In addition, Groundhog assess whether the

elements are clickable by TalkBack. Nevertheless, Groundhog only

supports the click action and cannot detect accessibility issues in a

sequence of interactions. OverSight [50] is an automatic tool that

can detect overly accessible elements in Android. Overly accessible

elements refer to the elements that provide additional information

and functions to the user of AT, compared to what is available

through the conventional interaction mode. OverSight dumps all

the nodes belonging to the current window and lists potential overly

accessible elements using predefined rules. Potential OA elements

are then verified through AT on the actual device, and a report is

generated to provide additional clues for developers. AccessiText [3]

can automatically detect text accessibility issues that occur when

using Text Scaling Assistive Service (TSAS) in Android. AccessiText

executes the same GUI test on an app with both the default size

text and the scaled text, and captures screenshots and metadata for



Assistive-Technology Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-and-Replay CHI ’23, April 23–28, 2023, Hamburg, Germany

further analysis. It then analyzes the execution results and reports

text accessibility issues to users.

Several accessibility testing tools have been developed for

Web applications. MAUVE++ [22], AChecker[30], Accessibility

Designer[63], and ABD[20] are dynamic accessibility testing tools

for web applications. MAUVE++ and Achecker mainly rely on ac-

cessibility guidelines for analyzing the accessibility of websites.

More specifically, MAUVE++ incorporates WCAG 2.1 as its guide-

line together with additional success criteria for mobile websites.

Achecker enables users to select one of nine international acces-

sibility standards during the check. It categorizes and prioritizes

the accessibility issues into known problems, likely problems, and

potential problems. Accessibility Designer enables users to find the

mismatch between the voice generated by a screen reader and the

original texts. In addition, it investigates the time-oriented aspects

by calculating how long it takes to navigate from the top of the

page to the rest of the page using a screen reader. ABD is a plug-in

to the WebAnywhere screen reader that lets users record the ac-

cessibility issues they encounter as human-understandable macros.

Then users can share the problems with developers in the form of

a URL that encapsulates the assistive technology and the recorded

interactions. Compared to A11yPuppetry, ABD mainly focuses on

three accessibility issues (reading orders, alt orders, and alt text),

while A11yPuppetry can detect additional accessibility issues, such

as unlocatable elements and ineffective actions.

3.2 Record-and-Replay

There are lots of prior works related to record-and-replay in An-

droid. RERAN [31], appetizer [15], Mosaic [34], and Orangutan[42]

rely on the Linux Kernel for recording and replaying events. For

example, RERAN requires a rooted device and employs the ADB

commands getevent and sendevent to record and replay events.

For tools that rely on Linux Kernel, the captured events are low-level

and hard to translate to high-level gestures that are understandable

by assistive services.

VALERA [36] has a high accuracy for recording and replying

and can capture various events, such as network inputs. However,

VALERA relies on a customized OS as it requires a modified Android

system image, which imposes threats to its application.

Mobiplay [53], Espresso[9], Barista [27], Robotium[55],

Culebra[52], Ranorex[54], SARA [33], RANDR [57], Sugilite [45]

rely on the application layer to capture inputs. Mobiplay utilizes

client-server architecture. The client app and target app run on

an Android device and a remote server, respectively. Mobiplay

identifies the targeted node based on the screen coordinates

during the replay stage. Nevertheless, Mobiplay is not publicly

available to researchers. Espresso can record motion events via

an attached debugger but requires the recorded app’s source

code. Barista is a cross-platform record-and-replay tool. However,

Barista fails to record and replay on non-open-source apps as

it highly relies on the Espresso framework. Robotium can only

capture widgets that are rendered by the app’s main process,

but normally the apps will run several processes [33]. Culebra

provides a desktop GUI for user recordings, and the widget that

interacts with users is identified via the view hierarchy. The

drawback of Culebra is it causes a large overhead while identifying

the view hierarchy of the interacted widget. Ranorex can record

interactions via instrumentation, but the instrumentation fails

when it encounters apps that have a large size. SARA can record

and replay several input sources via dynamic instrumentation and

the interaction can be recorded in the form of coordinate and the

widget. Specifically, SARA records the interaction coordinate at

first and identify the corresponding widget information via the

self-replay technique. Then, SARA employs an adaptive replay

method to replay captured interactions on different devices. The

drawbacks of SARA are the lack of a graphical user interface and

the high reliance on the third-party dynamic instrumentation

tool called Frida. Frida cannot instrument classes that implement

the Android Interface android.text.Editable, which cause

SARA to lose essential interactions during the recording. RANDR

utilizes both static and dynamic instrumentation so that it is able

to record and replay multiple input sources, including external

non-deterministic sources such as random numbers. While RANDR

can record and replay abundant input sources, it does not require

administrative device privileges or the access to the app source

code. However, RANDR is not publicly available to researchers.

In addition, as RANDR and SARA both utilize instrumentation

to capture the events and interactions, the non-standard widgets

such as android.webkit.WebView are ignored. Current popular

android apps implement WebView to display web contents as a

part of an activity layout, so failing to identify WebView makes the

recorder lose essential interactions during the recording. Sugilite

is a publicly available android application for record and replay

that utilizes an overlay to intercept interactions, such as click and

typing. Using an overlay enables Sugilite to capture various events

and widgets, even the non-standard widgets such as WebView. For

each interaction being recorded, users need to confirm whether

the identified interaction is correct. After confirmation, Sugilite

performs that interaction on behalf of users. However, it fails

to recognize a node that is not clickable and gets stuck at the

current window if the clicked node has accessibility issues. Overall,

Sugilite is the most promising recorder for our project as it is

publicly available to us and can capture various widgets, even

WebView. The known drawbacks of Sugilite can be mitigated via

re-implementations.

None of the tools mentioned above use assistive service to replay

the recorded interactions.

Besides the Android platform, plenty of record and replay tools

have been implemented for web applications. Actionshot[44],

Coscripter[43], WebVCR[14], Smart Bookmarks[37], and

WebRR[48] rely on the application layer for recording and

replaying events. Actionshot and Coscripter can record users’

browsing activity through interactions, such as the button click.

They then generate the human-readable text scripts for the replay

stage. However, they both have problems recording interactions

for pages that employ complex HTML and JavaScript. WebVCR

requires users to specify the start point and end point of each

recording and utilize the DOM signature as part of the identifier.

The recording is reflected as browsing steps in a smart bookmark

that can be replayed later. As WebVCR relies on DOM API,

interactions related to HTTP authentication cannot be precisely

recorded. Smart Bookmarks trigger recording when Javascript

events occur and capture the corresponding text label and XPath of



CHI ’23, April 23–28, 2023, Hamburg, Germany Salehnamadi, et al.

the interacted components as identifiers. During the replay, it runs

each recorded interaction in sequence and utilizes Chickenfoot’s

algorithm[21] to match the desired element. WebRR refers to the

self-replay technique SARA uses, and WebRR generates several

identifiers to improve the robustness of recorded interactions.

WebRR uses generated identifiers to locate the desired elements

during the replay. Nevertheless, WebRR fails to capture interactions

that happen through non-standard widgets and has problems

recording interactions inside a dynamic iframe. WaRR[4] requires

a customized browser and an interaction driver. Using WebKit,

the WaRR recorder is able to capture interactions on multiple

platforms, including desktop and mobile. The recorded interactions

are saved in the form of WaRR Commands. During the replay, the

browser interaction driver converts commands into ones that are

understandable by a browser.

4 APPROACH OVERVIEW

A11yPuppetry consists of four main phases, (1) Record, (2) Action

Translate, (3) Replay, and (4) Report. In this section, we provide an

overview of the approach and in the next four sections, we explain

the details of each phase.

Figure 2 depicts an overview of A11yPuppetry. The process

starts with the Record phase when the user interacts with a device

enabled with the Recorder service. The Recorder service listens to

UI changes events and adds a transparent GUI widget overlay on

top of the screen to record the user’s touch gestures. After receiving

a touch gesture on the overlay, the Recorder replicates the gesture

on the underlying app, and sends the recorded information to the

server as an Action Execution Report. The server will store the

recorded information in the database.

In the second phase, Action Translation, the Action Translator
component receives the Action Execution Report from the Recorder

(containing UI hierarchy, screenshot, and the performed gesture)

and translates it to its equivalent TalkBack Action. For example,

touching on the coordinates of the favorite button in Figure 1(b)

will be translated to focusing on the favorite button and performing

a double-tap gesture.

In the Replay phase, the TalkBack Action is sent to several re-

player devices that perform the action. Each replayer device has a

running TB Replayer service that receives TalkBack Action from

the server, creates and maintains a TalkBack Element Navigation
Graph (TENG) of the app, and performs the received actions with a

navigation mode. We will define and explain TENG and navigation

modes in Sections 6 and 7 in detail; however, for now, assume TENG

is a model of the app UI designed for TalkBack, and a navigation

mode is a way of locating elements, e.g., Linear or Jump Navigation.

Once an action is performed, a TalkBack Execution Report is stored

in the database. The TalkBack Execution Report consists of actions

that are executed with TalkBack, screenshots, and UI hierarchy files

of the different states of the app before, during, and after execution.

In the final phase (Report), the A11y Analyzer component reads

the stored information in the database, i.e., Action and TalkBack

Execution Reports, and produces anAggregated Report of the record-
ing, replaying, and the detected accessibility issues. The user can

access this report using a web application.

5 RECORDER

In this section, we first study the various touch gestures and explain

how we model them. Next, we explain how we record the touch

gestures of a user when she interacts with a mobile app.

5.1 Touch Gestures

To have a complete and sound understanding of the different ways

of interaction, we used the official documentation of user inter-

actions and touch gestures in Android [13, 49]. By analyzing the

various touch gestures, we came up with two attributes for a touch

gesture: (1) the number of involved fingers, and (2) motion. For

example, a single tap is considered a touch gesture with one finger

without any motion, or pinching-in is a touch gesture with two

fingers with movement. We categorized the common touch gestures

into several categories. However, due to space limits, we explain

only two of these categories here since they are widely used in

applications, and they have counterpart actions in screen readers.

• PointGesture. This is the most common way of interacting with

a touch-based mobile device. To perform this type of gesture, the

user uses one finger at a specific point on the screen without

moving her finger to other parts of the screen. This type of touch

gesture is identified as PG(𝑡, 𝑝) where 𝑡 is the type of the gesture,
e.g., single-tap or long-press, and 𝑝 is the coordinates of a point

on the screen.

• LineGesture. In this type of touch gesture, the user puts her fin-

ger on the screen and draws a line. The movement’s velocity and

starting point may lead to different behaviors. For example, if the

user draws the line from the edge of the display, it is considered

an edge swipe that is usually associated with system actions, e.g.,

going to the home screen or navigating back. This type of touch

gesture is identified as LG(𝑙, 𝑣) where 𝑙 is a straight line on the

screen and 𝑣 is the velocity of the gesture, i.e., fast, regular, and

slow.

5.2 Implementation

In a nutshell, the recorder component uses two different ways to

record the user’s actions, (1) through a transparent overlay placed

on top of the app and (2) by listening to system events related to

the changes on the screen. We implement the recorder on top of

Sugilite [45], a programming by demonstration tool for Android

apps. We briefly explain some background for understanding the

concept, then describe how the recorder is implemented.

WithAndroid’s Accessibility API, developers can create apps that

interact with the device and receive feedback from it. These APIs

can be accessed via the implementation of AccessibilityService [6],
an abstract Android service that acts as a wrapper to interact with

the device. AccessibilityService can augment the current screen by

creating new GUI objects. For example, TalkBack is an implemen-

tation of AccessibilityService, which focuses on and highlights an

element (by annotating a green rectangle GUI widget around the

element), describes the focused element (by reading the textual

description of the focused element), and interacts with the app on

behalf of the user (by clicking on the focused element when the user

double taps). By receiving AccessibilityEvents, an AccessibilitySer-
vice can be notified when there is a significant change on the screen.



Assistive-Technology Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-and-Replay CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 2: An overview of A11yPuppetry.

These events are generated by AccessibilityManager, which moni-

tors the display and communicates with AccessibilityServices. An
AccessibilityEvent is usually associated with an AccessibilityNode-
Info object which describes the attributes of the changed element,

e.g., its text, content description, or class.

Although Accessibility API is mainly designed to assist users

with disabilities, it can be used for other purposes. We implemented

the recorder as an AccessibilityService to understand the user’s

action. When the recorder is enabled, it creates an overlay of the

screen’s size, which is an android.view.object and attaches it to the

foreground window. This overlay acts as an echo component; it

performs any received touch gestures on the app with Accessibility

API. A touch gesture event, e.g., PointGesture PG, is captured by

onTouchListener which is enabled for the overlay. Once the touch

gesture is received, a copy of the touch gesture, the UI hierarchy

of the current screen, and a screenshot image are combined and

packed as Action Execution Report.
Although the overlay object can record touch gestures, a few

other actions such as adjusting volume with physical buttons or typ-

ing with a keyboard cannot be captured. To that end, the recorder

listens to all AccessibilityEvents and records the events that repre-

sent actions performed by the user. For example, when the user

types on an EditText with a keyboard, the recorder will receive Ac-
cessibilityEvent.TYPE_VIEW_TEXT_CHANGED containing the typed

text. Similar to touch gestures, these events, along with the UI hi-

erarchy and screenshot of the app, are packed and sent as Action
Execution Reports.

Once the Action Execution Report is created, either by the overlay
screen or AccessibilityEvent, the recorder sends it with WebSocket

to the Server. Note that the recorder is an app inside an Android

device or emulator, and all the storing, analysis and broadcasting is

done on the external remote server.

6 ACTION TRANSLATOR

In the second phase of A11yPuppetry, theAction Translator compo-

nent (Figure 2) translates actions recorded from the user using touch

gestures to their counterparts in TalkBack. As seen in Section 2, the

main challenge here is that there is no one-on-one mapping from

touch gestures to actions that can be performed by TalkBack. To

address this challenge, we first studied TalkBack and categorized

its actions, which in turn allowed us to propose a mapping from

touch gestures, i.e., Point and Line Gestures, to these categories.

6.1 TalkBack Actions

We studied and examined the Android documentation to under-

stand TalkBack and its actions. Then, two authors followed official

tutorials on TalkBack on Android devices and interacted with at

least 5 popular Android apps. Finally, we interviewed a blind user

who used TalkBack and asked him to perform a few use cases in

an app to clearly understand different ways of interacting with

TalkBack.

TalkBack, when it is enabled, creates a virtual layer between

the app and the user to enable users to perceive the UI without

performing unintended actions. TalkBack draws an overlay on the

screen, receives touch gestures, and translates these gestures into

different actions. We categorized the different ways of interaction

into the following three categories:

• ElementBased. This type of interaction is mostly used to per-

ceive the content of an element or perform a click or long-press

on the focused element. TalkBack focuses on an element and

announces its textual description. Given that the element is 𝑒 and

the type of the action is 𝑡 , an ElementBased action can be defined

as EB(𝑡, 𝑒), meaning that the element 𝑒 should be focused by

TalkBack and action 𝑡 , e.g., click, should be performed on the



CHI ’23, April 23–28, 2023, Hamburg, Germany Salehnamadi, et al.

focused element. There are various ways to focus on an element

that previously were mentioned in Section 2.

– LinearNavigation. User can change the focus to the next

and previous element of the currently focused element. The

actions associated with linear navigation are swiping right and

left. The order of the next and previous elements is determined

based on their position in the UI hierarchy. Note that, TalkBack

may also perform scroll action while navigating to the next

or previous element if they are (partly) out of the screen, e.g.,

Figure 1(e).

– JumpNavigation.Users can jump through elements of certain

types for faster navigation by swiping up and down. For exam-

ple, users can go to the next heading, paragraph, control, or

link instead of navigating element by element. Moreover, users

can adjust the granularity of announcements to understand

the content easier. For example, users can move to other lines,

words, or even characters instead of focusing on elements.

– SearchNavigation. Users can search for a specific element on

the screen with text or voice interface enabled by a three-finger

long-press. It is similar to finding a specific word on a page in

a text viewer/editor.

– TouchNavigation. Users touch a spot on the screen, and

TalkBack focuses on the element on the same coordinates.

This navigation method is usually used when the user has an

estimation of the coordinates of the element she is looking for,

e.g., top or bottom menu, or when the element could not be

detected by the other navigation methods and the user has

to conduct an exhaustive search to find all elements on the

screen.

• TouchGestureReplication. Besides the click and long-press

actions that can be done by ElementBased actions, users can

replicate several other touch gestures, in particular, LineGestures
by bypassing the TalkBack overlay. A user can replicate scrolling,

dragging, or edge swiping by swiping with two fingers when

TalkBack is enabled. A TouchGestureReplication can be defined

as TGR(𝑙𝑔) where 𝑙𝑔 is a LineGesture.

• PredefinedActions. Various actions that TalkBack can perform

are not dependent on the app that the user is interacting with.

For example, global actions, e.g., Home, Recent Apps, or Back,

are not dependent on an app and can be performed with special

gestures in TalkBack, e.g., swiping up then left will go to the

home screen of the device. A PredefinedAction is PA(𝑡) where 𝑡
determines the action(s) to be performed, e.g., scroll forward or

volume up.

6.2 Mapping

We can map the touch gestures, defined in Section 5, to these cate-

gories.

6.2.1 PointGesture. PointGestures, like single-tap or long-press,

can be mapped to ElementBased actions in Talkback since a Point-

Gesture is usually associated with a GUI element. In some cases,

the PointGesture is not associated with a single element and the

exact coordinate of the touched surface is important. For example, a

painting app may have a large canvas where the user can paint and

draw shapes by touch gestures. Although the underlying element of

all these gestures is the canvas, the exact coordinate of the gesture

is important to draw the lines precisely. We exclude these cases in

this work since they require a fine visual perception of the screen

to pinpoint the desired coordinates.

However, to precisely find the equivalent of a PointGesture, we

also need to find the element associated with the touch gesture. To

find the associated element, we list all elements in the UI hierarchy

(recall that the Action Execution Report has the UI hierarchy of the

app before the execution). Then filter the elements that enclose the

touched point and sort them based on their z-index. An element

with a greater z-index is always in front of an element with a lower

z-index [28]. Then we iterate the list to find an element that has a

matching attribute to the action that is performing. For example,

if the PointGesture is single-tap or long-press, then the element

should have a clickable or long-clickable attributes respectively. If
no such element can be found, we choose the first element in the

list.

6.2.2 LineGesture. LineGestures can be mapped to either

TouchGestureReplication or PredefinedActions. For example, a

swipe-up touch gesture can be performed in TalkBack either by

swiping up with two fingers or performing the predefined action,

swipe right then left.

Once the input action is translated into a TalkBack action, it

will be sent to replayer devices, in particular, to their TB Replayer

components.

7 REPLAYER

The third phase of A11yPuppetry replays the received TalkBack
Action with TalkBack. Before the user starts interacting with the

app, the recorder and replayer devices are in the same state, i.e.,

the app under test is installed and opened. In the replayer device,

TalkBack and TB Replayer services are enabled. TB Replayer is

an AccessibilityService similar to the Recorder service, which is

responsible to communicate with TalkBack to perform the received

action. For each navigation mode, i.e., Linear, Jump, Search, and

Touch, there is one replayer device receiving the inputs from the

server.

Recall that a TalkBack Action can be ElementBased (EB),
TouchGestureReplication (TGR), or PredefinedAction (PA). To per-

form TGR(𝑙𝑔), TB Replayer makes a copy of the LineGesture 𝑙𝑔,

called 𝑙𝑔′ and moves its coordinate 2cm toward the top or right of

the display, then combine the two LineGestures (𝑙𝑔 and 𝑙𝑔′) and
perform them when TalkBack is enabled. Performing a 𝑃𝐴(𝑡) is
easier since it is predefined and not dependent on the app. TB Re-

player has a database of PredefinedActions and can perform the

actions accordingly, e.g., perform swipe right then left when 𝑡 is

“Scroll Forward”.

However, performing an ElementBased action is relatively chal-

lenging since it requires finding and focusing on the element first.

Moreover, there are various ways of navigating to locate an ele-

ment, i.e., Linear, Jump, Search, and Touch. To that end, we intro-

duce TENG (TalkBack Element Navigation Graph) to model the

different ways of navigating an app with TalkBack. After that, we

define different strategies to guide TB Replayer on traversing the

TENG of the app.



Assistive-Technology Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-and-Replay CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 3: (a) TENG representing LinearNavigation of Figure 1(d); (b) TENG representing SearchNavigation; (c) TENG representing

Touch Navigation.

7.1 TENG

Simply put, TENG is a graph modeling the different states of Talk-

Back when enabled. TENG is defined over the UI hierarchy of an

app screen, where the nodes include GUI elements that can be fo-

cused by TalkBack and the edges represent actions that can be done

by the user (or TB Replayer) to change the focus from one node

to another. For example, Figure 3(a) represents a part of the TENG

of the app screen in Figure 1(d). For now, please ignore the Start

and End red boxes, we will define and explain them shortly. The

blue ovals represent control elements, e.g., buttons or checkboxes,

and green-round boxes represent the textual elements. Also, the

gray boxes are a View element containing a set of elements that are

grouped by TalkBack to announce. Recall that in Section 2, we dis-

cussed TalkBack grouped elements that are related and associated

the group with an action for a better user experience. In runtime,

when Talkback is in any of these nodes (states), i.e., focused on

their corresponding element, we call it an active node. The solid ar-

rows in Figure 3(a) represent Linear Navigation between elements,

e.g., red arrows are associated with swiping right or moving to the

next element. The dotted arrows represent Jump Navigation which

changes the active node to the next control element. For example,

if the Delete node is active, by swiping right TalkBack focuses on

the text element that starts with “Favorite” and by swiping down,

TalkBack jumps on the previous control element which is “Back”.

Besides the UI elements, TENG has some other nodes which we

call Virtual States. These states do not correspond to an element on

the screen; however, they represent some internal states of TalkBack.

For example, the virtual states Start and End in Figure 3(a), represent
the states where TalkBack reaches the first or last element on the

screen and notifies the user there is no element left to visit. Note

that, the user can still change the focus to other elements by Linear

or Jump Navigation, even if TalkBack is in a virtual state, e.g.,

swiping left from Start changes the focus to the compound element

in the end.

Recall that TalkBack supports two other navigation modes, i.e.,

Search and Touch. We model these navigations in TENG using

virtual states. Figure 3(b) shows the part of TENG related to the

search navigation. The entry edge is a representative edge that

comes from all nodes in TENG and is associated with three-finger

tap. We did not draw all edges to not make the figure complicated

and messy. Once the Search Screen is activated, the user can type

the text she is looking for, then the result appears in a list (Result

Screen). Once the user selects a search entry, TalkBack focuses on

the selected element. Finally, the Touch Navigation is modeled and

depicted in Figure 3(c). Whenever the user taps somewhere on the

screen, TalkBack finds the underlying element and focuses on it.

Similar to Search Navigation in Figure 3(b), the entry edge of the

Touch State comes from all nodes of TENG.

Given a target element, we can use TENG to plan a sequence of

interaction with the device to focus on the element. For example,

similar to the last step of our motivating example in Section 1,

assume we want to click on the checkbox and at the beginning

TalkBack is focused on the Back button. Therefore, the TENG’s

active node is the Back button in Figure 3(a), and the goal is focusing

on the TENG’s node containing the goal element (which is the

compound element denoted by the grey box), and then performing

double-tap. There are various ways to reach the target node, for

instance, by performing two swipe up actions, TalkBack first jumps

to the Delete button and then to the target node.

However, traversing with TalkBack is not as easy as it sounds.

There are three reasons that TENG may be modified during the

interaction with TalkBack. First, the app may dynamically update

the visible elements on the screen. For example, a slide show con-

stantly changes the visible content after showing it for a specific

amount of time. Secondly, TalkBack may change the app state by

performing extra gestures for navigation. For instance, recall that

TalkBack scrolled the page once it reaches the last element visible

on the screen in the motivating example, Figure 1(e). Lastly, the



CHI ’23, April 23–28, 2023, Hamburg, Germany Salehnamadi, et al.

app may change the focused element at runtime. For example, if

developers do not want users to access certain elements, regardless

of the rational behind this decision, they can focus on another el-

ement as soon as that element is focused by TalkBack. Therefore,

we cannot rely solely on the TENG created UI hierarchy before

navigation.

To that end, once TB Replayer performs an action associated with

an edge, e.g., swiping right to focus to the next element, the service

listens to any changes in the UI to determine if the UI hierarchy is

changed. If anything changes, the TB Replayer recreates the TENG

and continues the navigation. Otherwise, the service verifies if the

current active node in TENG is focused by TalkBack. If it was not,

then we mark the performed edge as ineffective and replan the

locating path again.

7.2 Implementation

TB Replayer is an implementation of AccessibilityService. It builds
the UI hierarchy by analyzing all visible AccessibilityNodeInfo on
the screen. Then using the utility library provided by TalkBack [12],

TB Replayer creates TENG from the UI hierarchy. Basically, this

library has some helper methods to determine elements that can be

focused by TalkBack and the linear order among them. The virtual

states in TENG are created and maintained by the TB Replayer

service.

Each TB Replayer in a device is responsible for one navigation

mode, e.g., Linear or Jump. To locate an element, the TB Replayer

only uses the edges in TENG that belong to its navigation mode.

For example, to navigate to the checkbox element from the back

element in Figure 3(a), the TB Replayer for Jump Navigation only

uses the dotted arrows or the Search Navigation only uses the

edges in Figure 3(b). Once the element is located, the TB Replayer

performs the desired action, e.g., double tap for click or double tap

and press for long-press.

TB Replayer compiles a set of information and sends it to the

server, including the UI hierarchy, screenshot, TENG, and per-

formed actions in all stages.

8 REPORT

In the final phase of A11yPuppetry (Report), the A11y Analyzer

component in Figure 2 analyzes all information stored in the data-

base and generated from the Recorder and TB Replayers, compiles

and aggregates them, and shows the final report to the user via

a web interface. Since the target users of A11yPuppetry are de-

velopers and testers with limited knowledge on accessibility, we

implemented the following features to illustrate the accessibility

barriers in their apps.

• Annotated Video. Once the record and replay for an app is com-

pleted, A11y Analyzer creates recorder videos using the captured

screenshots, then animates the touch gesture on the image, as

indicated by Figure 4(a). It also generates the replayer video and

annotates the focused elements by TalkBack during the naviga-

tion, as indicated by Figure 4(b).

• Action Detail. In addition to the annotated video, we provide

action detail of each step, which displays the essential informa-

tion of each interaction, as indicated by Figure 4(c). The action

detail includes the class name, the UI Hierarchy of the clicked

element, and the text that belongs to the clicked element. We

also highlight the clicked element using the red box.

• ExecutionResult.We display the execution result of each action

to developers. Remember that TalkBack supports four different

ways to focus on an element, i.e., Linear, Jump, Search, and Touch.

Each navigation method corresponds to a TB Replayer. If the exe-

cution of a TB Replayer fails, we highlight the replayer using the

red color, as indicated by Figure 4(d)—here indicating Replayer

Search failed to execute the action. On the right of the execu-

tion result, we summarize the accessibility issue and provide the

potential cause of the found issue.

• Blindfold Mode. The replayer video cannot represent the is-

sues that blind users may face, especially the ones related to

the semantics of the app. For example, when visual icons have

content descriptions that are irrelevant to their corresponding

buttons’ functionality, blind users may become confused and not

understand the app. We provide a blindfold mode in our report

which lists the textual description of the items that have been

navigated with TalkBack, as indicated by Figure 4(e). For example,

the Blindfold Mode report of Linear Navigation for Figure 3(a)

would be "(1) Back button, double tap to activate, (2) 1 Selected,

(3) Delete button, double tap to activate, (4) Favorite ..., (5) Select,

(6) diphtongize, not checked, checkbox, double tap to toggle."

• State Comparison. A11y Analyzer also compares the state of

the apps in the recorder and replayer devices to see if there is

any difference between them. Ideally, if all actions are performed

correctly in all replayers, there should be no difference between

the states. The comparison is done by checking the UI hierarchy

of the apps before performing any action. In case of a difference

between states, the web interface shows a warning sign near the

state to show the issue.

8.1 Automated Issue Detection

A11y Analyzer detects and reports some of the accessibility issues

automatically so that developers can pinpoint the accessibility prob-

lems more conveniently. In particular, three categories of issues

can be detected automatically: Unfocusable Elements, Ineffective

Actions, and Missing Speakable Texts. The last category can be

detected easily by checking the existence of the content descrip-

tion attribute for the target element. However, the first and second

categories are challenging to find.

Unfocusable Elements. As mentioned before, a TB Replayer exe-

cutes an action by first locating the element (by focusing on it) and

then performing the corresponding touch gesture, e.g. double-tap.

If a TB Replayer cannot locate an element, A11y Analyzer reports

that as an accessibility issue. There are various reasons an element

cannot be located. For example, if the element does not exist on the

screen or there is a navigational loop preventing TalkBack from

focusing on the element. In the report section, we describe the

reason why the element could not be focused.

Ineffective Action. Sometimes TB Replayer can locate the element

and perform the action; however, the action is not effective, i.e., the

intended functionality is not triggered. A11y Analyzer can detect

such an issue by comparing the app’s state before and after the

execution by TB Replayer. Also, it considers the recorder’s state for



Assistive-Technology Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-and-Replay CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 4: (a) The annotated recorder video; (b) The annotated replayer video; (c) The action detail; (d) The execution result; (e)

The blindfold mode.

the same action as the reference. An action is reported as ineffective,

if the before and after UI hierarchy of the app is identical and the

corresponding action in the recorder state introduced changes.

In the next section, we provide examples of such automatically

detected issues.

9 USER STUDIES

This section explains our experiments and user studies to evaluate

the effectiveness and limitations of A11yPuppetry.

We selected five Android apps with possible accessibility issues

reported in the literature [60] or online social media [39]. For each

app, we designed a task (consisting of 21 to 33 actions) according to

the functionalities of the app. Also, we included the parts of the app

that were reported inaccessible in the task. The first four columns

of Table 1 show some information about the subject apps and the

number of actions involved in the designed tasks.

We use A11yPuppetry on each task of these five apps. We

used an Android emulator with Android 11 and TalkBack (ver-

sion 12.1) for both recording and replaying devices. Our proto-

type of A11yPuppetry enables us to perform the experiments syn-

chronously (recorder and replayers are running simultaneously) or

asynchronously (the recording can be done before the replaying).

For the experiments, we use the asynchronous mode to not intro-

duce any problem caused by network or other concurrency issues;

however, in practice, the synchronous mode is more promising

since the results can be obtained much faster.

To compare A11yPuppetry with existing work, we used Latte

and Accessibility Scanner. Since Latte requires GUI test cases for

the analysis, we transformed recorded use cases to GUI test cases.

Scanner is not a use-case driven tool and scans the whole screen;

therefore, we ran Scanner on the screens of the app after each

interaction. Moreover, since in this experiments we are focused

on blind users who uses TalkBack, we filter out issues that are

not related to blind users, like small touch target size or low text

contrast.

Besides experiments with these tools, we conducted two user

studies with users with visual impairment who have experience

working with TalkBack in Android. To connect to such users, we

used the third-party service Fable.
1
Fable is a company that con-

nects tech companies to users with disabilities for user research

and accessibility testing. Fable compensates all user testers and is

committed to fair pay for the testers.
2

We used two services of Fable: Compatibility Test and User

Interview. In the compatibility test, we provided the designed tasks

and apps to Fable, then Fable distributed each task to three users

with visual impairment. For all the users who participated in the

compatibility tests, the assistive technology used was TalkBack

(Screen Reader in Android). The users performed the tasks, and for

each step of the task, they reported any issues they faced. Once

we gathered all of the detected issues from A11yPuppetry and

1
https://www.makeitfable.com

2
https://makeitfable.com/article/why-fair-pay-for-testers-matters/

https://www.makeitfable.com
https://makeitfable.com/article/why-fair-pay-for-testers-matters/


CHI ’23, April 23–28, 2023, Hamburg, Germany Salehnamadi, et al.

Table 1: The evaluation subject apps with the detected accessibility issues.

App Category #Installs #Actions

#User #Scanner #Latte #A11yPuppetry Issues

Issues Issues Issues Linear Touch Jump Search Total

ESPN Sports >50M 24 11 18 6 6 2 13 6 17

DoorDash Food >10M 23 8 22 10 9 1 13 9 15

Expedia Travel >10M 33 8 89 4 2 3 19 7 22

Dictionary Books >10M 21 8 113 6 4 2 13 5 15

iSaveMoney Finance >1M 21 5 35 2 10 9 10 2 11

Table 2: The percentage of the intersection of user-confirmed

issues detected by Scanner, Latte, and A11yPuppetry to the

total number of user-confirmed issues.

App

% Intersection with User-Confirmed Issues

Scanner LATTE A11YPUPPETRY

ESPN 10% 18% 63%

DoorDash 25% 25% 87%

Expedia 12% 25% 62%

Dictionary 25% 50% 87%

iSaveMoney 40% 40% 60%

compatibility tests in Fable, we conducted a preliminary analysis

and produced a comprehensive list of accessibility issues for each

step. Then for each app, we sent requests for user interviews with

Fable, where Fable scheduled a one-hour online interview with a

blind user who uses TalkBack. During the interview, the user shared

his/her Android phone screen. We asked the users to perform the

designed tasks and explain their thoughts and understanding of the

app’s pages. When they faced an accessibility issue that prevented

them from continuing the task, we intervened and guided them to

skip to the next step. Once the users finished the tasks, we started

a conversation and asked them some specific questions about the

tasks or general questions about their experience in working with

screen readers and apps. In summary, each app is assessed four

times: three users in compatibility tests and one user in an online

interview.

The source code of A11yPuppetry, a demo of the web interface,

designed tasks, apps, and user responses can be found in our com-

panion website [59].The designed tasks can also be found in the

appendix A.

We would like to understand howA11yPuppetry can help detect

accessibility issues confirmed by users with visual impairment. As

discussed before, all five tasks from five subject apps are assessed

by users with disabilities, Accessibility Scanner, Latte [58], and

A11yPuppetry. For A11yPuppetry, we used four navigation modes

(Linear, Touch, Jump, and Search). For user feedback, if at least one

user expresses an issue with a certain action, we assume the action

has an accessibility issue. The number of reported issues for each

app can be found in Table 1. The last column (Total) represents

the number of actions that at least one of the navigation modes in

A11yPuppetry reported an issue. As can be seen, the issues detected

by Latte and A11yPuppetry are proportional to the number of

actions; however, Scanner reported many issues that can be difficult

for testers to examine and verify.

Table 2 summarizes the effectiveness of Scanner, Latte, and

A11yPuppetry in detecting issues confirmed by actual users. For

each tool, we calculate the number of user-confirmed problems

that the tool could automatically detect. The key insight for de-

signing A11yPuppetry was that a human tester interacts with it

and interprets the results to locate accessibility issues that could

require human knowledge to detect. Therefore, for A11yPuppetry,

we also calculate the number of user-confirmed issues for which

evidence of the same issues exists in the report of A11yPuppetry.

Table 2 shows the results obtained for each tool in comparison to

the user-confirmed issues. As can be seen, even the automatically

detected results of A11yPuppetry outperforms the existing tools.

On average, A11yPuppetry could detect more than 70% of issues

confirmed by users.

Results from Table 2 indicates that A11yPuppetry outperforms

two existing accessibility checkers Latte and Accessibility Scanner.

We further summarize what issues existing accessibility checkers

can and cannot detect.

Accessibility Scanner is a dynamic accessibility testing tool on

Google Play Store that provides accessibility suggestions based on

scanned screens [5]. Developers can either scan a single screen or

a series of snapshots through recording and Accessibility Scanner

provides the results of the scan to them. According to its official doc-

umentation, Accessibility Scanner reports four types of accessibility

issue.

• Content Labeling. Issues related to the content labels, such as

missing labels, unclear and uninformative link text, and duplicate

descriptions.

• Implementation. Issues inside View hierarchies that might

hinder people with motor disabilities from interacting with a

layout, such as duplicate clickable views that share the exact

screen location, unsupported item types for Android Accessibility

Service, traversal orders, and text scaling.

• Touch Target Size. Identifies the small touch elements. The

threshold of the element size can be adjusted in Accessibility

Scanner settings.

• Low Contrast. Identifies elements with a low contrast ratio

between text and background or between background and fore-

ground. Similar to touch target size, the threshold of the contrast

ratio can be adjusted in Accessibility Scanner settings.

As Accessibility Scanner does not incorporate any assistive ser-

vice during the evaluation apps, it cannot detect issues related to

unfocusable element and ineffective actions nor provides evi-

dence for difficulties in reading that A11yPuppetry supports. A

detailed description of these issues is provided later in this section.



Assistive-Technology Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-and-Replay CHI ’23, April 23–28, 2023, Hamburg, Germany

Latte [58] relies on the availability of the GUI test cases for

detecting accessibility issues in Android and only supports the

linear navigation of TalkBack for locating an element. Therefore,

Latte can only detect unfocusable elements and ineffective actions

related to linear navigation. Latte can neither provide any evidence

for developers about the uninformative textual description, nor

difficulties in reading.

To have a better understanding of the detected issues, we man-

ually analyzed all reported issues and categorized them into five

categories: (1) Automated Detection the ones that both users

and A11yPuppetry reported, (2) Evidence Provided the ones that

users reported and A11yPuppetry provide some evidence of the

existence of such issue in its report which can guide the tester

to detect the issue, (3) Unsettled Issues that A11yPuppetry re-

ported, but users did not find significant, (4) Flaky Issues that

A11yPuppetry mistakenly reported as issues, and (5) Undetected

Issues are the one that users reported but A11yPuppetry did not

provide any evidence of such issue. In the following, we explain the

subcategories of each of these categories and provide illustrative

examples.

9.1 Automated Detection

Missing Speakable Text. This issue (a visual element without the

content description) is among the most common types of accessi-

bility issues in mobile apps [23]. Due to the nature of this issue,

existing accessibility testing techniques, like Accessibility Scanner,

can detect this issue by only analyzing the layout of the app without

considering assistive services. A11yPuppetry detects such issues

using the Search navigation, i.e., if an element is not associated

with a textual description, it cannot be searched with TalkBack.

Unfocusable Element. Here, an element associated with a func-

tionality or certain data cannot be focused by TalkBack; as a result,

TalkBack users cannot access them or even realize such an ele-

ment exists. In Section 2, we gave an example of such an issue (the

speaker button in Figure 1(b)). Note that this issue cannot be de-

tected by Accessibility Scanner since it requires assessing whether

the element is focusable by TalkBack in runtime.

Sometimes the unfocusable element belongs to a minor feature

that the user may not need. For example, the collapse button in

the iSaveMoney app that hides the details of expenses (red-dashed

box in Figure 5(a)). However, sometimes this issue becomes critical.

For example, on one of the search pages of Expedia, none of the

elements on the screen, including Navigate Up Button, are focusable,

making the user confused. A user mentioned: “After typing New

York and pressing the search button, I am unable to move around

the screen at all. None of the gestures that I use to navigate or read

the screen work.”

Ineffective Action. Sometimes elements are focused on by Talk-

Back, but the intended action cannot be performed. For example,

in the iSaveMoney app, many buttons, including all yellow-solid

boxes in Figure 5(a), can be focused by TalkBack. However, after

performing a click action by double tapping, nothing happens. It

seems the underlying reason behind this issue is the customized

implementation of the button, which is sensitive to touch gesture

and not click action. The issue is also found in Doordash when the

user wants to change the delivery option to pick-up.

9.2 Evidence Provided

The following issues are reported by users and not by

A11yPuppetry. However, the aggregated report of A11yPuppetry,

including the annotated video and blindfold mode, provides evi-

dence of these issues. The report can help accessibility testers find

these types of issues faster without the need to interact with an

app multiple times.

Uninformative Textual Description. The main purpose of content

description for elements is to help users with visual impairment

understand the app better; as a result, merely having a content

description does not improve accessibility. A11yPuppetry is not

capable of analyzing the semantics of content descriptions; however,

its blindfold mode lists the texts that are announced while exploring

the app. A developer/tester can determine whether the textual

descriptions are informative or not by reading the blindfold mode

report. The example of blindfold mode can be found in figure 4(e).

Here are some examples of this type of issue confirmed by users.

• The textual element has some random or irrelevant data. For

example, the notification icon in ESPN, highlighted button in

Figure 5(b), has a content description “Í”, which is not informative

• The elements associated with a functionality, e.g., button, check-

list, or tab, should express their functionality. While TalkBack

takes care of standard elements like android.widget.button, it
does not announce the functionality of non-standard elements,

e.g., a button which is a android.widget.TextView. Doordash
app has many of these issues, e.g., “Save” without button or

“Pickup/Delivery” without announcing toggle.

• The textual description should describe the purpose of the ele-

ment completely. For example, on the renting page of Expedia,

there is a compound element described as “Pick-Up”; however, it

is unclear if it is related to location or date. A sighted user can

easily recognize it by looking at the pinpoint icon inside this

element which hints this element is related to the location of

picking up.

• Sometimes, the textual descriptions provide complete informa-

tion; however, they can be incorrect. For example, the traveler’s

element, highlighted in Figure 5(c), clearly shows there are 3 trav-

elers selected, but its textual description is “Number of travelers.

Button. Opens dialog. 1 traveler”, which is incorrect.

Difficulties in Reading. Besides the textual description of ele-

ments, the way the texts are announced by TalkBack is important

for understanding an app. We found a few accessibility issues re-

ported by the users that make it difficult for them to perceive the

text. This kind of issue can be detected by testers by manually ana-

lyzing the annotated videos and blindfold mode. The examples

of annotated replayer video and blindfold mode can be found in

figures 4(b) and 4(e), respectively. For example, in Dictionary, para-

graphs of texts cannot be read as a whole; the user has to read a long

text word by word. Or in the Doordash app, yellow-solid boxes in

Figure 6(a), each category on the main page is announced two times,

one time the visible text, e.g., “Grocery” or “Chicken”, another time

the image which does not have a textual description, announced



CHI ’23, April 23–28, 2023, Hamburg, Germany Salehnamadi, et al.

Figure 5: (a) The toggle button in iSaveMoney is not focusable and buttons indicated by yellow-solid boxes have ineffective

action; (b) The content description of the notification icon in ESPN has unsupported characters; (c) The textual description of

travelers numbers are different in Expedia; (d) (e) different fragments showing to different users.

as “unlabeled”. In another example, all textual content of the sum-

mary block in the iSaveMoney app, green-dotted highlighted box

in Figure 5(a), is announced altogether in an unintuitive order, and

the user had to change the reading mode to understand each word.

Although these issues do not make the app incomprehensible, they

create barriers to blind users. We asked one of the interviewees

how they felt about this kind of inaccessibility, and he said he could

deal with them “but we, blind people or deaf people, deserved the

same amount of dignity as others.”

9.3 Unsettled Issues

A11yPuppetry detected some issues that the users in our user study

did not find to be significant. Mainly these issues belong to Jump

and Search navigation modes. In the Jump navigation mode, TB

Replayer tries to locate the element using jump navigation (going

to the next control or heading element); however, sometimes, it

is not possible to reach to element since it does not have proper

attributes, e.g., it is not a button. TB Replayer with Search naviga-

tion mode tries to locate the elements by searching their textual

description; however, when there are multiple elements with the

same description, this mode cannot locate the element correctly.

Although users mentioned it would be nice if the attributes were

set properly so they could use different navigation modes; they did

not find these issues important since they usually do not use Jump

and Search navigation modes. We further examined why users do

not use these modes that often in Section 10.

9.4 Flaky Issues

SometimesA11yPuppetry reports issues that are not correct, which

is caused by technical problems with the experiments. The main

characteristic of this category is that by rerunning A11yPuppetry,

the issue may not be reported again. There are three main tech-

nical problems. First, TalkBack sometimes freezes and does not

respond properly and on time, making A11yPuppetry think the

app has accessibility issues that do not let TalkBack continue the

exploration. Secondly, the recorder may record incorrect an ele-

ment; for example, on the signup page of the ESPN app, instead

of recording a button, it records a transparent view covering the

button, which does not interface with the touch interaction. Lastly,

the apps can be changed and be in different states on TB Replayer

devices. Mainly this issue is caused by A/B testing, where develop-

ers dynamically show different pages to different users to measure

some metrics about their product. For example, Figures 5(d) and (e)

are two different fragments of changing the number of travelers in

the Expedia app. If the recorder records the action in Figure 5(d),

the same element cannot be found in Figure 5(e) since the structure

is totally different.

9.5 Undetected Issues

As expected, A11yPuppetry cannot detect all forms of accessibility

problems, and the best way to evaluate the accessibility of apps is

by conducting user studies with disabled users. We categorized the

limitation of A11yPuppetry in the following categories.

Improper Change Announcement. As users interact with mobile

apps, the layout constantly changes. A sighted user can monitor

all of these changes to understand the latest state of the app, while



Assistive-Technology Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-and-Replay CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 6: (a) After pressing the search tab in DoorDash, a new search page appears without any announcement; (b) List of saved

stores in DoorDash; (c) The interstitial ad in Dictionary app and the close tab is not focusable by TalkBack; (d)The accessible

calendar in Expedia.

it is much more difficult for users with visual impairment to real-

ize something is changed in the app. During our interview, users

reported a couple of these kinds of issues. For example, when the

user presses the search tab in the Doordash app, the red-dashed box

in Figure 6(a), a completely new search page appears without any

announcement for TalkBack users. One participant mentioned “My

preference is that whenever something like that happens, [Talk-

Back] moves the focus up to where the new content begins because

someone as a screen reader won’t necessarily [realize the app is

changed].”

Excessive Announcement. On the other hand, it can be problem-

atic and annoying when TalkBack announces content more than

a user’s need. For example, in the Expedia app, when a user types

a name in the search edit box, TalkBack interrupts the user by

announcing “Suggestions are being loaded below”. Although it is

informative for users to know the search results are loaded on the

fly, it is annoying to interrupt constantly.

Temporary Visible Elements. Sometimes apps introduce new ele-

ments for a short period to notify the user something has changed

and let the user undo or do something relevant to this change. For

example. in the Doordash app, when the user saves a restaurant

as her favorite, a pop-up box appears, Figure 6(b), notifying the

user the store is saved and disappears momentarily. A blind user is

informed of this change, but does not have enough time to focus

on the appearing dialogue box.

10 DISCUSSION

The previous section demonstrates the effectiveness of

A11yPuppetry in providing insights and detecting accessi-

bility issues. This section discusses other findings from the user

studies that might be insightful for future research work.

TalkBack Interaction Preferences. We further examined how users

with visual impairments interact with apps using TalkBack. We

asked the interviewees to explain the different ways they use Talk-

Back. If they did not mention any of the navigation ways that we

found in TalkBack documentation, we asked them if they are aware

of them.

Generally, the primary way of navigation mode for all partici-

pants is Linear navigation. A user mentioned “I’m more into the

flick, element to element, to explore an app and understand its

layout.” This mode is especially used when the user interacts with

an app or page that is unfamiliar.

The next favorite way of navigating is through Touch mode;

however, it is usually used in certain scenarios. For example, when

a user knows about the possible location of elements, the user is

likely to use the Touch navigationmode. One participant mentioned

“The back buttons are always at the top left, usually so... I’m going

to put my finger at the top left to find that back button.”. Also, when

a user cannot find the element or is stuck in a loop, the user is more

likely to use touch to find the target element.

Some interviewees said they might use Jump navigation for

headings in the apps that they are familiar with. One participant

said “If I don’t know [the app] well enough ... I’m going to flick

through the whole thing to figure out the layout. If I know it well

enough, then I probably would switch to the heading option and



CHI ’23, April 23–28, 2023, Hamburg, Germany Salehnamadi, et al.

then search by heading”. However, almost none of the participants

are willing to use the Search navigation mode. One user mentioned

“I know [search] is there. But I prefer to just hunt for [the elements].

It gives me a more experience with the app.”

We also realized users do not want to use other actions like

scrolling, since scrolling confuses them in understanding the new

state of the app. A user said “[I use scrolling] if I know an app really

well. But sometimes I find that when I do the scrolling thing, it’ll

get me into something else... sometimes it’ll get me where I really

don’t want to be. So I have a tendency not to want to do it.”

Context. A common accessibility issue in mobile apps is missing

speakable text [2, 23]. Although missing speakable text degrades

the user experience and ability to locate elements, sometimes users

can infer the functionality of an unlabeled button given its context.

For example, the user can view the list of saved stores in Doordash

and remove any of them, as depicted in Figure 6(b). The element

for removing a store is an icon with the shape of a heart without a

content description. However, our interviewee did not have a prob-

lem with locating this button. He mentioned “That is a good layout,

an accessible checkbox next to [the restaurant], which is checked

unchecked. I have seen these checkboxes on the home screen. I

don’t like them on the home screen because the user doesn’t know

what that checkbox actually does. The common sense here would

tell you I’m in the saved stores’ section. So if I uncheck a box, it’s

going to remove that.” Anyway, this observation should not en-

courage developers not to care about missing content descriptions;

on the contrary, it emphasizes the importance of context for users

with visual impairment to understand the app better.

Advertisement. In our experiments with A11yPuppetry, we did

not observe any ads. However, if an interstitial ad appears dur-

ing the replay process, A11yPuppetry may fail to continue as the

appearance of ads is random and irregular. For example, for the

Dictionary app, the interstitial ad, such as Figure 6(c), might appear

when the user searches for a word. Disabled users have difficulty

noticing the occurrence of the ads until they get stuck in the ads

window for a few minutes. Even if they are aware of the ads, clos-

ing them and returning to the previously interrupted use case is

challenging. One of the interviewees tried to locate the app with

Linear and Touch navigation modes, but the ad’s close button was

not focusable by TalkBack. As a result, the user had to restart the

app (close and open again) to continue the task.

All the interviewees are cautious about the in-app advertise-

ments. As one stated, “I tend not to open [the in-app advertisements]

because half of the time, these advertisements cause problems.” In

addition, most interviewees expressed a willingness to pay for the

ad-free version if the price is not too high, so they do not have to

deal with ads while navigating apps. A user mentioned: “If the app

gives me the option to do without ads with a small price, I pay the

small price just so I don’t have to deal with the ads. Most of the

time [the ads] don’t work with the screen readers.” Nevertheless,

previous research indicates that some apps still contain ads even if

users pay ad-free fees [32].

To the best of our knowledge, only one previous research inves-

tigated the impact of ads on disabled users. The research found that

most ads are represented in GIFs, and more than half of the sampled

ads have no ALT tag [64]. Therefore, screen readers cannot read the

contents of the ads to blind users. Other researchers investigated

the impact of ads on the whole user group, not just disabled users.

The negative influences of ads include privacy threats, significant

battery consumption, slowing down the app, and disabling an app’s

normal function [29, 32]. We believe that this negative impact is

further magnified for disabled users.

There are some design implications for in-app advertisements.

Generally, ads that take the entire screen are named interstitial

ads, while ads that are represented as horizontal strips are named

banner ads. The ads should be announced correctly via Assistive

Services so disabled users can know the occurrence of the ads. In

addition, developers are encouraged to design banner ads, since

the banner ads usually do not disable an app’s functionality. By

contrast, interstitial ads significantly attract users’ attention and

even require users to close the ad manually [32].

Guided Navigation. The interviewees enjoyed interacting with

an app when the app guided them through the process. In particular,

Expedia did a great job in reserving flights: it consists of several

steps like asking about the origin and destination airports, and

dates. Once each step is done, the focus is changed to the next

question and also announces the changes. Users are also able to

get out of this selection and get back to the search page to change

or view other information. One of the interviewees was especially

happy about the calendar, Figure 6(d), and mentioned “That was

one of the coolest mobile calendars I’ve ever used because it walked

me through where I was. I selected the start date, and it told me

that, and then it said, pick your end date, and then it summarized

with states, like September 19th Start date or September 20th in the

trip.”

Alternative Suggestion. As we discussed before, there are several

complex touch gestures that do not have a corresponding equiva-

lent in TalkBack, e.g., dragging or pinching. Developers are recom-

mended to provide alternative interactions for complex gestures.

For example, the calendar widget in Expedia, Figure 6(d), is designed

to allow sighted users to modify their travel dates by dragging the

start date to end date. For TalkBack users, the app is designed to

announce “Select dates again to modify” which is an alternative

way of modifying the dates.

Common Sense. During the interviews, we noticed participants

sometimes locate certain elements much faster than other elements.

In particular, for elements like “Search” or “Back”, instead of using

Linear navigation, they explored certain parts of the app by Touch

navigation to locate the element. We asked how they locate these

elements and they generally responded to do so with the help of

common sense. For example, the back button or open navigation

drawer is usually located on the top left of the element, or menus

are located in the footer. Common sense is not limited to similar

elements on the screen. In the interview for the Doordash app, the

interviewee found the button that shows the address of a restaurant

pretty fast, even though the button was unlabeled. When we asked

how he found such an element, he responded “A normal company

would put the address on top, you know. So I’m using it. That’s

common sense.” Therefore, it is important for developers to not

change the spatial aspects of UI elements without considering users’

habits.



Assistive-Technology Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-and-Replay CHI ’23, April 23–28, 2023, Hamburg, Germany

11 CONCLUDING REMARKS

In this work, we introduced A11yPuppetry, a semi-automated

record-and-replay technique for detecting accessibility issues in

Android apps using TalkBack, the official screen reader in Android.

A11yPuppetry records the user touch gestures in a device, trans-

lates the gestures into their equivalent action in TalkBack, and per-

forms them on four different devices with four navigation modes in

TalkBack. Finally, A11yPuppetry analyzes reports of the recorder

and replayers and generates aggregated and visualized reports for

developers. We evaluated A11yPuppetry by conducting user stud-

ies with users with visual impairments. We showed A11yPuppetry

detects various types of accessibility issues that cannot be detected

by existing tools. Our experiments also suggest the informative

reports produced by A11yPuppetry can potentially aid developers

with understanding and resolving the accessibility barriers in their

apps.

In our future work, we would like to conduct a developer study

to determine to what extent our tool can provide clues to help de-

velopers understand and resolve accessibility issues. We are also

interested in exploring the application of A11yPuppetry as a peda-

gogical tool, e.g., usingA11yPuppetry to help software engineering

students learn about the impact of their implementation choices on

users that interact with their software through an assistive service.

Furthermore, we are interested in extending our implementation

to support other assistive services and possibly on different plat-

forms.
3
Our ultimate goal is to introduce this record-and-replay

technique in the industry to evaluate its effectiveness in a large-

scale setting.

ACKNOWLEDGMENTS

This work was supported in part by award numbers 2211790,

1823262, and 2106306 from the National Science Foundation and

Sigma Xi Grants in Aid of Research. We would like to thank

Yasaman Razeghi and Forough Mehralian for their valuable dis-

cussions and feedback on this work. We also acknowledge and

appreciate the anonymous reviewers of this paper for their detailed

feedback, which helped us improve the work.

REFERENCES

[1] Ali S Alotaibi, Paul T Chiou, and William GJ Halfond. 2022. Automated Detection

of TalkBack Interactive Accessibility Failures in Android Applications. In 2022
IEEE Conference on Software Testing, Verification and Validation (ICST). IEEE, IEEE,
Virtual, 232–243.

[2] Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. 2020. Accessibility issues

in Android apps: state of affairs, sentiments, and ways forward. In 2020 IEEE/ACM
42nd International Conference on Software Engineering. ICSE, Virtual, 1323–1334.

[3] Abdulaziz Alshayban and Sam Malek. 2022. AccessiText: Automated Detection

of Text Accessibility Issues in Android Apps. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Singapore, Singapore) (ESEC/FSE 2022). Association for

Computing Machinery, New York, NY, USA, 984–995. https://doi.org/10.1145/

3540250.3549118

[4] Silviu Andrica and George Candea. 2011. WaRR: A tool for high-fidelity web

application record and replay. In 2011 IEEE/IFIP 41st International Conference on
Dependable Systems & Networks (DSN). IEEE, Hong Kong, China, 403–410.

[5] Android. 2022. Accessibility Scanner - Apps on Google Play. Google. RetrievedMay

6, 2022 from https://play.google.com/store/apps/details?id=com.google.android.

apps.accessibility.auditor&hl=en_US

[6] Android. 2022. AccessibilityService in Android. Google. Retrieved May 6, 2022

from https://developer.android.com/guide/topics/ui/accessibility/service

3
We chose TalkBack for this study because its source code is publicly available.

[7] Android. 2022. Android accessibility overview. Google. Retrieved May 6, 2022

from https://support.google.com/accessibility/android/answer/6006564

[8] Android. 2022. Build more accessible apps. Google. Retrieved May 6, 2022 from

https://developer.android.com/guide/topics/ui/accessibility

[9] Android. 2022. Espresso : Android Developers. Google. Retrieved May 6, 2022

from https://developer.android.com/training/testing/espresso

[10] Android. 2022. Get started on android with talkback - android accessibility help.
Google. Retrieved May 6, 2022 from https://support.google.com/accessibility/

android/answer/6283677?hl=en

[11] Android. 2022. Improve your code with lint checks. Google. Retrieved May 6,

2020 from https://developer.android.com/studio/write/lint?hl=en

[12] Android. 2022. TalkBack source code by Google. Google. Retrieved May 6, 2022

from https://github.com/google/talkback

[13] Android. 2022. Use Touch Gestures. Google Inc. Retrieved August 29, 2022 from

https://developer.android.com/develop/ui/views/touch-and-input/gestures

[14] Vinod Anupam, Juliana Freire, Bharat Kumar, and Daniel Lieuwen. 2000. Au-

tomating Web navigation with the WebVCR. Computer Networks 33, 1-6 (2000),
503–517.

[15] appetizerio. 2022. Replaykit. appetizerio. Retrieved September 2, 2022 from

https://github.com/appetizerio/replaykit

[16] Apple. 2022. Accessibility on iOS. Apple. Retrieved May 6, 2021 from https:

//developer.apple.com/accessibility/ios/

[17] Apple. 2022. Apple Accessibility. Apple. Retrieved May 6, 2020 from https:

//www.apple.com/accessibility/iphone/

[18] Apple. 2022. Debug Accessibility in iOS Simulator with the Accessibil-
ity Inspector. Apple. Retrieved May 6, 2022 from https://developer.

apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/

TestAccessibilityiniOSSimulatorwithAccessibilityInspector/

TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html#//apple_

ref/doc/uid/TP40012619-CH4-SW1

[19] Tingting Bi, Xin Xia, David Lo, John Grundy, Thomas Zimmermann, and Denae

Ford. 2022. Accessibility in software practice: A practitioner’s perspective. ACM
Transactions on Software Engineering and Methodology (TOSEM) 31, 4 (2022),

1–26.

[20] Jeffrey P Bigham, Jeremy T Brudvik, and Bernie Zhang. 2010. Accessibility

by demonstration: enabling end users to guide developers to web accessibility

solutions. In Proceedings of the 12th international ACM SIGACCESS conference
on Computers and accessibility. Association for Computing Machinery, Orlando,

USA, 35–42.

[21] Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C Miller.

2005. Automation and customization of rendered web pages. In Proceedings
of the 18th annual ACM symposium on User interface software and technology.
Association for Computing Machinery, Seattle, USA, 163–172.

[22] Giovanna Broccia, Marco Manca, Fabio Paternò, and Francesca Pulina. 2020.

Flexible automatic support for web accessibility validation. Proceedings of the
ACM on Human-Computer Interaction 4, EICS (2020), 1–24.

[23] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, and

Guoqiang Li. 2020. Unblind Your Apps: Predicting Natural-Language Labels for

Mobile GUI Components by Deep Learning. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering. ICSE, Virtual, 322–334.

[24] Sen Chen, ChunyangChen, Lingling Fan,Mingming Fan, Xian Zhan, and Yang Liu.

2021. Accessible or Not An Empirical Investigation of Android App Accessibility.

IEEE Transactions on Software Engineering 48 (2021), 3954–3968.

[25] Dictionary.Com. 2022. Dictionary.com English Word Meanings & Definitions.
Dictionary.Com. Retrieved August 29, 2022 from https://play.google.com/store/

apps/details?id=com.dictionary

[26] Marcelo Medeiros Eler, José Miguel Rojas, Yan Ge, and Gordon Fraser. 2018.

Automated accessibility testing of mobile apps. In 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation. ICST, Västerås, Sweden,
116–126.

[27] Mattia Fazzini, Eduardo Noronha De A Freitas, Shauvik Roy Choudhary, and

Alessandro Orso. 2017. Barista: A technique for recording, encoding, and running

platform independent android tests. In 2017 IEEE International Conference on
Software Testing, Verification and Validation (ICST). IEEE, IEEE, Tokyo, Japan,
149–160.

[28] Earlence Fernandes, Qi Alfred Chen, Georg Essl, J Alex Halderman, ZMorleyMao,

and Atul Prakash. 2014. Tivos: Trusted visual i/o paths for android. University of
Michigan CSE Technical Report CSE-TR-586-14 (2014), 12 pages.

[29] Cuiyun Gao, Jichuan Zeng, Federica Sarro, David Lo, Irwin King, and Michael R

Lyu. 2021. Do users care about ad’s performance costs? Exploring the effects of

the performance costs of in-app ads on user experience. Information and Software
Technology 132 (2021), 106471.

[30] Greg Gay and Cindy Qi Li. 2010. AChecker: open, interactive, customizable, web

accessibility checking. In Proceedings of the 2010 International Cross Disciplinary
Conference on Web Accessibility (W4A). Association for Computing Machinery,

Raleigh, USA, 1–2.

https://doi.org/10.1145/3540250.3549118
https://doi.org/10.1145/3540250.3549118
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://developer.android.com/guide/topics/ui/accessibility/service
https://support.google.com/accessibility/android/answer/6006564
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/training/testing/espresso
https://support.google.com/accessibility/android/answer/6283677?hl=en
https://support.google.com/accessibility/android/answer/6283677?hl=en
https://developer.android.com/studio/write/lint?hl=en
https://github.com/google/talkback
https://developer.android.com/develop/ui/views/touch-and-input/gestures
https://github.com/appetizerio/replaykit
https://developer.apple.com/accessibility/ios/
https://developer.apple.com/accessibility/ios/
https://www.apple.com/accessibility/iphone/
https://www.apple.com/accessibility/iphone/
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html#//apple_ref/doc/uid/TP40012619-CH4-SW1
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html#//apple_ref/doc/uid/TP40012619-CH4-SW1
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html#//apple_ref/doc/uid/TP40012619-CH4-SW1
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html#//apple_ref/doc/uid/TP40012619-CH4-SW1
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html#//apple_ref/doc/uid/TP40012619-CH4-SW1
https://play.google.com/store/apps/details?id=com.dictionary
https://play.google.com/store/apps/details?id=com.dictionary


CHI ’23, April 23–28, 2023, Hamburg, Germany Salehnamadi, et al.

[31] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. 2013. Reran:

Timing-and touch-sensitive record and replay for android. In 2013 35th Interna-
tional Conference on Software Engineering (ICSE). IEEE, IEEE, San Francisco, CA,

USA, 72–81.

[32] Jiaping Gui, Meiyappan Nagappan, and William GJ Halfond. 2017. What aspects

of mobile ads do users care about? an empirical study of mobile in-app ad reviews.

arXiv preprint arXiv:1702.07681 (2017), 10 pages.
[33] Jiaqi Guo, Shuyue Li, Jian-Guang Lou, Zijiang Yang, and Ting Liu. 2019. Sara:

self-replay augmented record and replay for Android in industrial cases. In

Proceedings of the 28th acm sigsoft international symposium on software testing
and analysis. Association for Computing Machinery, Beijing, China, 90–100.

[34] MatthewHalpern, Yuhao Zhu, Ramesh Peri, and Vijay Janapa Reddi. 2015. Mosaic:

cross-platform user-interaction record and replay for the fragmented android

ecosystem. In 2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, IEEE, Philadelphia, PA, USA, 215–224.

[35] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan.

2014. PUMA: programmable UI-automation for large-scale dynamic analysis of

mobile apps. In Proceedings of the 12th annual international conference on Mobile
systems, applications, and services. ACM New York, NY, USA, Bretton Woods,

New Hampshire, USA, 204–217.

[36] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. 2015. Versatile yet lightweight

record-and-replay for android. In Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and
Applications. Association for Computing Machinery, Auckland , New Zealand,

349–366.

[37] Darris Hupp and Robert C Miller. 2007. Smart bookmarks: automatic retroactive

macro recording on the web. In Proceedings of the 20th annual ACM symposium
on User interface software and technology. Association for Computing Machinery,

Newport, USA, 81–90.

[38] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. 2013. Real challenges

in mobile app development. In 2013 ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement. IEEE, IEEE, Baltimore, MD, USA,

15–24.

[39] Kiran Kaja. 2022. DoorDash Issue Tweet. Retrieved September 15, 2022 from

https://twitter.com/kirankaja12/status/1551710324016836608

[40] KIF. 2022. Keep It Functional - An iOS Functional Testing Framework. Retrieved

November 28, 2022 from https://github.com/kif-framework/KIF

[41] Pavneet Singh Kochhar, Ferdian Thung, Nachiappan Nagappan, Thomas Zim-

mermann, and David Lo. 2015. Understanding the test automation culture of

app developers. In 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST). IEEE, IEEE, Graz, Austria, 1–10.

[42] Will Lachance. 2022. Orangutan. wlach. Retrieved September 2, 2022 from

https://github.com/wlach/orangutan

[43] Gilly Leshed, Eben M Haber, Tara Matthews, and Tessa Lau. 2008. CoScripter:

automating & sharing how-to knowledge in the enterprise. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. Association for

Computing Machinery, Florence, Italy, 1719–1728.

[44] Ian Li, Jeffrey Nichols, Tessa Lau, Clemens Drews, and Allen Cypher. 2010. Here’s

what I did: Sharing and reusing web activity with ActionShot. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. Association for

Computing Machinery, Atlanta, USA, 723–732.

[45] Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. 2017. SUGILITE: creating

multimodal smartphone automation by demonstration. In Proceedings of the 2017
CHI conference on human factors in computing systems. Association for Computing

Machinery, Bremen , Germany, 6038–6049.

[46] Jun-Wei Lin, Navid Salehnamadi, and Sam Malek. 2020. Test automation in open-

source android apps: A large-scale empirical study. In Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering. ACM
New York, NY, USA, Virtual, Australia, 1078–1089.

[47] Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Kevin Moran, and Denys Poshy-

vanyk. 2017. How do developers test android applications?. In 2017 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME). IEEE, IEEE,
Shanghai, China, 613–622.

[48] Zhenyue Long, Guoquan Wu, Xiaojiang Chen, Wei Chen, and Jun Wei. 2020.

WebRR: self-replay enhanced robust record/replay for web application testing. In

Proceedings of the 28th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering. Association
for Computing Machinery, Virtual Event, USA, 1498–1508.

[49] Google Material Design. 2022. Gestures. Google Inc. Retrieved August 29, 2022

from https://material.io/design/interaction/gestures.html#principles

[50] Forough Mehralian, Navid Salehnamadi, Syed Fatiul Huq, and Sam Malek. 2022.

Too Much Accessibility is Harmful! Automated Detection and Analysis of Overly

Accessible Elements in Mobile Apps. In 2022 37th IEEE/ACM International Con-
ference on Automated Software Engineering. IEEE, ACM New York, NY, USA,

Rochester, Michigan, USA, 13 pages.

[51] Forough Mehralian, Navid Salehnamadi, and Sam Malek. 2021. Data-driven

accessibility repair revisited: on the effectiveness of generating labels for icons in

Android apps. In Proceedings of the 29th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering.
ACM New York, NY, USA, Virtual, Athens, Greece, 107–118.

[52] Diego Torres Milano. 2022. Culebra. Diego Torres Milano. Retrieved September

2, 2022 from https://github.com/dtmilano/AndroidViewClient/wiki/culebra

[53] Zhengrui Qin, Yutao Tang, Ed Novak, and Qun Li. 2016. Mobiplay: A remote

execution based record-and-replay tool for mobile applications. In Proceedings
of the 38th International Conference on Software Engineering. Association for

Computing Machinery, Texas, Austin, 571–582.

[54] Ranorex. 2022. ranorex. Idera, Inc. Retrieved September 2, 2022 from https:

//www.ranorex.com/mobile-automation-testing/android-test-automation/

[55] RobotiumTech. 2022. robotiumrecorder. RobotiumTech. Retrieved September 2,

2022 from https://github.com/RobotiumTech/robotium

[56] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O Wobbrock. 2017.

Epidemiology as a framework for large-scale mobile application accessibility

assessment. In Proceedings of the 19th international ACM SIGACCESS conference
on computers and accessibility. ASSETS, Baltimore, MD, USA, 2–11.

[57] Onur Sahin, Assel Aliyeva, Hariharan Mathavan, Ayse Coskun, and Manuel Egele.

2019. Randr: Record and replay for android applications via targeted runtime

instrumentation. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, IEEE, San Diego, CA, USA, 128–138.

[58] Navid Salehnamadi, Abdulaziz Alshayban, Jun-Wei Lin, Iftekhar Ahmed, Stacy

Branham, and Sam Malek. 2021. Latte: Use-case and assistive-service driven

automated accessibility testing framework for android. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems. ACM New York, NY,

USA, Virtual, Okohama, Japan, 1–11.

[59] Navid Salehnamadi, Ziyao He, and Sam Malek. 2022. A11yPuppetry companion
website. Retrieved Jan 31, 2023 from https://github.com/seal-hub/A11yPuppetry

[60] Navid Salehnamadi, Forough Mehralian, and Sam Malek. 2022. GroundHog:

An Automated Accessibility Crawler for Mobile Apps. In 2022 37th IEEE/ACM
International Conference on Automated Software Engineering. IEEE, ACM New

York, NY, USA, Rochester, Michigan, USA, 13 pages.

[61] Camila Silva, Marcelo Medeiros Eler, and Gordon Fraser. 2018. A survey on the

tool support for the automatic evaluation of mobile accessibility. In Proceedings
of the 8th International Conference on Software Development and Technologies for
Enhancing Accessibility and Fighting Info-exclusion. DSAI, Thessaloniki, Greece,
286–293.

[62] StatCounter. 2022. Desktop vs Mobile vs Tablet vs Console Market Share Worldwide.
StatCounter. Retrieved September 15, 2022 from https://gs.statcounter.com/

platform-market-share

[63] Hironobu Takagi, Chieko Asakawa, Kentarou Fukuda, and Junji Maeda. 2003.

Accessibility designer: visualizing usability for the blind. ACM SIGACCESS
accessibility and computing 77-78 (2003), 177–184.

[64] David Thompson and Birgit Wassmuth. 2001. Accessibility of online advertising:

a content analysis of alternative text for banner ad images in online newspapers.

Disability Studies Quarterly 21, 2 (2001), 26 pages.

[65] W3. 2022. Web Content Accessibility Guidelines (WCAG) Overview. World

Wide Web Consortium. Retrieved May 6, 2022 from https://www.w3.org/WAI/

standards-guidelines/wcag/

[66] WHO. 2011. World report on disability. World Health Organization. Retrieved

May 6, 2022 from https://www.who.int/disabilities/world_report/2011/report/en/

A USER STUDY TASKS

A.1 Dictionary

(1) Type the word “Coffee” in the search bar, the app should provide

a list of entries, please select the first entry (which should be

“Coffee”).

(2) Listen to the pronunciation of the word by selecting the speaker

button. Then read the IPA (International Phonetic Alphabet) of

the word. You may need to select the “Show IPA” link to reveal

the IPA of the word.

(3) On the same page, read the definition of the word “Coffee”. It

should start with “a beverage consisting of”.

(4) Mark the word coffee as a favorite word by selecting the star

button.

(5) Select the back or navigate up button in the app (not Android’s

general back button) to go to the main page. Then open the

menu by selecting the navigation drawer button.

(6) In the menu, select “Word of the Day”. Then on the new page,

select the second word in the list.

https://twitter.com/kirankaja12/status/1551710324016836608
https://github.com/kif-framework/KIF
https://github.com/wlach/orangutan
https://material.io/design/interaction/gestures.html#principles
https://github.com/dtmilano/AndroidViewClient/wiki/culebra
https://www.ranorex.com/mobile-automation-testing/android-test-automation/
https://www.ranorex.com/mobile-automation-testing/android-test-automation/
https://github.com/RobotiumTech/robotium
https://github.com/seal-hub/A11yPuppetry
https://gs.statcounter.com/platform-market-share
https://gs.statcounter.com/platform-market-share
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.who.int/disabilities/world_report/2011/report/en/


Assistive-Technology Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-and-Replay CHI ’23, April 23–28, 2023, Hamburg, Germany

(7) On this page, listen to the pronunciation of theword by selecting

the speaker button. Then read the first example of this word

which is located under “Examples:” section.

(8) Select the back or navigate up button in the app (not Android’s

general back button) to go to the main page. Then open the

menu by selecting the navigation drawer button. In the menu,

select “Favorites”.

(9) On the “Favorites” page you should see the word “Coffee” which

was marked as a favorite in step 4. Remove this word by select-

ing the edit button, then select the word “Coffee”, and finally

select the “Delete” button.

(10) After deleting “Coffee”, the favorite page should be empty with

a text in the middle saying “You don’t have any favorites yet.

Tap here to look up a word”. Please select the “Tap here” link,

and search for the word “Tea”.

A.2 DoorDash

(1) Select the “Continue as guest” button, type “New York” in the

address bar, and select the first entry (which should be “New

York”).

(2) In the address settings page, do not change anything and select

“Save”. Sometimes, a pop-up window will appear to inform you,

“New! Send a gift to your loved ones”. In that case, select “Go

Back”.

(3) Select the “Search” button, and type “Chicken” in the search

bar. Please do not hit enter or search button once you’re done

typing.

(4) Select the second entry of the search result. In the restaurant

page, save the restaurant by selecting the save button (with a

heart icon). A window appears with the title “You’ve saved your

first store”., In this window, select “View Saved Stores”.

(5) Remove the saved restaurant by selecting the save button (with

a heart icon). After selecting, the button should be toggled.

(6) Go back to the search screen by selecting the back or “Navigate

up” button two times. Then Select the “Home” button.

(7) Go to the grocery category page by selecting the “Grocery”

button. Then select the first store.

(8) Change the delivery option to pickup by selecting “Pickup”

button (if you do not see the pickup button, try selecting another

store). Once you select this button, the address of the store

should be available below it under the title “This is a Pickup

order”

(9) Now select the info button (with an exclamation icon) under

the name of the store. It should take you to a new screen with

information of the store such as address and phone number.

(10) Navigate back two times by selecting the “Navigate up” or back

button, and finally select the “Orders” button. In the new screen,

there should be a text “No recent orders”.

A.3 ESPN

(1) Select the “Sign Up” button, and then select the “Change” link.

It may or may not ask an email, you can provide a random email

just to proceed.

(2) On the new window with the title “Where do you live?”, choose

“United States” from the drop downmenu. Then select the “Done”

button.

(3) Then press the back button (or reopen the app) to be on the

first screen. Now select the “Sign Up Later” button. It may ask

you to choose a region, select any region and select next.

(4) On the new screen, select one favorite league, e.g., “NBA” and

then select the “Next” button.

(5) On the new screen, select one team, e.g., “Lakers”, and then

select the “Finish” button.

(6) A new screen may appear with the title “Stream your favorite

teams and sports. Get ESPN+ now!”. In that case, perform the

back button. Now you should be on the main screen of the ESPN

app.

(7) Select the “Scores” button on the bottom menu, and in the

“Scores” screen, select the button next to the “Top Events” but-

ton, e.g., “NFL”. In the showing results, either select the “HIGH-

LIGHTS” button or the notification button (with a bell icon)

for one of the shown matches. Regardless of the button you

selected, select the “Navigate up” or back button.

(8) Select “ESPN+” on the bottommenu, select the “Settings” button,

and then select the “Edition” button.

(9) On the list of editions, select “Global”, a dialogue appears to ask

if you want to switch, select “Continue”.

(10) You should be in the main screen, select the “Search” button,

and type “NFL” in the search bar. An entry “National Footbal

League” should be shown under “LEAGUES” section, select that

button.

A.4 Expedia

(1) After opening the app for the first time, it shows an introduction

page. Select the “Next” button until you reach the last screen.

Then select “LET’S GO” button.

(2) Close the sign-in page by selecting the “Close” button. On the

main screen, select the “Flights” button.

(3) On the the “Flights” page, select the “Flying from” button, type

“New York” and select the first entry. Then it asks you for the

destination or “Flying to”. Type “Los Angeles” and select the

first entry.

(4) Once you enter the airports, the app shows a calendar window

to select the departure date. Select August 23rd and August 26th

buttons, and then press the “Done” button.

(5) Now you should be on the Flights page. Change the traveler’s

number to 3 by selecting the Travelers button, then increase

the number of adults by selecting the plus button two times.

Then select the “Done” button.

(6) Now you should be on the flight’s page. Select the “Search”

button. Once the search results are provided, Then go to the

main screen by selecting the “Navigate up” (or back) button and

then the “Close” button, this should close the flights page.

(7) Select the “Cars” button. On the “Cars” page, select the “Pick-up”

button and type “New York”. Then select the first entry (which

should be “New York”).

(8) On the Cars page, select the “Search” button. Then go to the

main screen by selecting the “Navigate up” (or back) button and

then the “Close” button.

(9) Select the “Account” button. Under the “Settings” section, select

“Choose a theme” button. Then select the “Dark” button and

press “Done”.



CHI ’23, April 23–28, 2023, Hamburg, Germany Salehnamadi, et al.

(10) Select the “Trips” button and then select “Sign in or create free

account”.

A.5 iSaveMoney

(1) Skip the tutorial by selecting Next.

(2) Once you get to the actual app page of iSaveMoney, select

“Create your first budget” button.

(3) In the “New Budget” page, do not change the start and end

dates, and just select “Next” button.

(4) In the “Select Categories” page, select the “ADD” button for

“Daily Living” category.

(5) When the dialouge appears, type 1000 for the “Estimated Budget”

field, then select the “Save” button, and finally, select the “Done”

button.

(6) Now, you should be on the current budget page, where the title

is the current month, for example, Jul 1 - 31, 2022. Select the

“Add Expense” at the bottom. If you are a screen reader user, it

may be the second “Add Expense” to select.

(7) In the “Add Expense” page, fill the form by picking a cate-

gory (Daily Living), Writing something on the Description, e.g.,

“SomeExpense”, and entering 500 in the “Amounts” textbox.

Finally, Select the “Save Button”.

(8) Now, you should be in the budget page. Try to collapse the

“Total Expendture” section, by selecting the arrow inside this

section.


	Abstract
	1 Introduction
	2 Motivating Example
	3 Related Work
	3.1 Accessibility Testing
	3.2 Record-and-Replay

	4 Approach Overview
	5 Recorder
	5.1 Touch Gestures
	5.2 Implementation

	6 Action Translator
	6.1 TalkBack Actions
	6.2 Mapping

	7 Replayer
	7.1 TENG
	7.2 Implementation

	8 Report
	8.1 Automated Issue Detection

	9 User Studies
	9.1 Automated Detection
	9.2 Evidence Provided
	9.3 Unsettled Issues
	9.4 Flaky Issues
	9.5 Undetected Issues

	10 Discussion
	11 Concluding Remarks
	Acknowledgments
	References
	A User Study Tasks
	A.1 Dictionary
	A.2 DoorDash
	A.3 ESPN
	A.4 Expedia
	A.5 iSaveMoney


