Providing Data Sharing As a Service

Ravi Chandra Jammalamadakaf, Roberto Gambonif, Sharad Mehrotraf,

Kent E.Seamons}, Nalini Venkatasubramaniany

Donald Bren School of Information and Sciencesy Computer Science Department?
University of California,Irvine Brigham Young University
{rjammala,gamboni,sharad,nalini}@ics.uci.edu seamons@cs.byu.edu

September 27, 2007

Abstract

This paper presents DataVault, an architecture designed for Web
users that allows them to securely access their data from any ma-
chine connected to the Internet and also lets them selectively share
their data with trusted peers. The DataVault architecture is built
on the outsourced database model (ODB), where clients/users out-
source their database to a remote service provider that provides data
management services such backup, recovery, transportability and data
sharing. In DataVault, the service provider is untrusted. DataVault
utilizes a novel PKI infrastructure and encrypted storage model that
allows data sharing to take place via an untrusted server. The con-
fidentiality and integrity of the user’s data is preserved using cryp-
tographic techniques so that the service provider manages encrypted
data without having access to the content.

1 Introduction

Modern day computer users generates a lot of personal information by utiliz-
ing computer applications. The proliferation of networking technologies and
multimedia devices has served as a catalyst for such a trend. Examples of
personal information that users generate include email, pictures, passwords,
video albums, tax documents, work related documents, telephone directo-
ries, etc. Such personal information is scattered across diverse platforms and
software.

Given that personal information is being produced, a natural questions
to ask is, can personal data be accessed from anywhere and anytime. For
instance, consider a user’s address book which stores information about ac-
quaintances. The user could generate the address book information from
his/her home machine and desire access to it from the office machine.

When it comes to personal information another requirement is the ability
to share it. Users share their personal information using a variety of meth-
ods such as disseminating information via email, posting data on a publicly
accessible websites, etc. Such solutions have severe security drawbacks as
unauthorized recipients can gain secure access to personal data. Expecting
users to install and administer data sharing architectures is unrealistic and
infeasible.

Imagine a file system on the Web that allows users to outsource their
information to a service provider. The service provider can now provide
services on the top of outsourced information and provide interfaces for the
user to access such services from any machine connected to the Web, thereby
achieving device independence. Also, the service provider can provide data
sharing functionality for users to share data with other peers.

Such architectures already exist and are functioning commercially as well.
For instance, Yahoo! Briefcase and Apple’s Idisk are examples of such ser-
vices. These services provide the user with disk storage and some preliminary
data sharing functionality. Advantages of such services include: a) Availabil-
ity: The data can be accessed 24/7 from any computer connected to the
Internet; b) relatively low cost: The service provider can amortize the cost
over several clients; and c) Better service: The service providers typically
employ experts to provide better quality service. We refer to this as an
Outsourced File System (OFS) architecture.

The primary limitation of such services is the requirement to trust the
service provider. The client’s data is stored in plaintext and therefore is
susceptible for the following attacks:

e Outsider attacks: There is always a possibility of Internet thieves/hackers

breaking into the service provider’s system and stealing or corrupting
the user’s data.

e Insider attacks: Malicious employees of the service provider can steal
the data themselves and profit from it. There is no guarantee that the
confidentiality and integrity of the user’s data are preserved at the
server side. Recent reports indicate that the majority of the attacks
are insider attacks [2, 1].

Despite these security concerns, OFS architectures are gaining popularity

due to the convenience and usefulness of the data services they offer. A user

of such a service can access his/her personal information from any computer
equipped with a browser and an Internet connection. Besides mobility, the
architecture lets users share their information with other users on the Web.

In this paper, we consider the problem of designing an OFS service when
the service provider is untrusted. We describe the DataVault system that
offers the same functionality as existing OFS systems with an untrusted ser-
vice provider. This architecture is based on a realistic model that addresses
the attacks that are prevalent today.

There are many challenges to address before an architecture of this kind
can be built. The first set of challenges occur due to the requirement for
designing a system that is easy to use. In other words, one of the fundamental
tenets of DataVault is that it should be built keeping an average user in mind.
To use DataVault, the user has to remember only one secret called the master
password that controls the overall security that is provided by DataVault.

The second set of challenges occur due to requirements for preserving data
confidentiality and integrity of client’s data. To preserve data confidentiality,
encryption offers a natural solution. The user’s data can be encrypted before
being outsourced to the server. When access to the data is required, the
appropriate data can be fetched from the server and decrypted locally on a
trusted machine. When encrypting user’s data, care should be taken that
the encrypted storage at the server side does not reveal information. In
DataVault, we propose a novel encrypted storage model that does not reveal
the content, metadata and the structure of user’s data. The storage model
that we propose also has performance benefits, which is described in the
coming sections. DataVault also utilizes cryptographic techniques to detect
if the data stored at the server is tampered with (i.e. ensures data integrity).

The third set of challenges occur due to data sharing requirements. In
DataVault, data sharing is achieved at the level of access control. Access
control on file systems is a well studied problem [16]. Most of the previous
work largely concentrated on enforcing access control via a trusted server [17].
The trusted server is in charge of authentication and distributing information
to the authorized recipients of the data. In DataVault, the server is untrusted
and hence we cannot apply the techniques proposed previously. We explore
an access control model that is cryptographically enforced. Data is encrypted
and stored at the untrusted server. Both read and write permissions are
granted by distributing the appropriate keys to the intended recipients. The
problem then largely becomes of key management. Previous solutions on
securing remote storage [7, 8] pushed the burden of key management to the
user and assumed the presence of a trusted PKI infrastructure already in
place. Such a model has the following inherent drawbacks: a) users have
increasingly found it difficult to manage public/private key pairs; and b)

3

there are monetary costs involved in purchasing a public private key pair,
thereby making it a less attractive proposition.

On the other hand, a PKI infrastructure is essential for enabling data
sharing. Such an infrastructure allows data owners to share data with re-
cipients if s/he know their public keys. Without a PKI infrastructure, the
only other alternative is for the data owner to negotiate a secret symmet-
ric key with every data recipient. This further places more burden of key
management on the user. To combat the above issues, we introduce a nowvel
PKI infrastructure that is run collaboratively both by the client and server
and pushes much of the burden of key management to the server. Our PKI
infrastructure is designed in such a way such that the server cannot compro-
mise the security of the user. The user for all practical purposes is not aware
of this infrastructure running in the background. This infrastructure, makes
DataVault easy to use and yet retain most of the security properties offered
by commercial PKI infrastructures. The reader should note that the scope
of our PKI infrastructure is limited, it can only be used in our context and
is not designed for use in other settings.

Cryptographically enforcing access control on file systems has been ex-
plored before [18, 19]. These models allow the data owner to grant privileges
to recipients only at the level of files. This could be limiting in situations
where the recipients also want read/write access at the level of directories.
For instance, consider two groups of researchers placed geographically apart
working collaboratively on an academic paper. We will assume the contents
of this paper are placed in a directory, which further contains some directo-
ries that store the source code, tex documents, and figures. Let us assume
that one of the groups wants to create new figures or add new tex files. Such
a situation will require the groups to manipulate even the directory structure
as well. To combat the above issues, we propose a new cryptographic access
control model that allows data owners to grant read and write privileges at
the level of directories as well.

Contributions: In summary, our contributions in this paper are as fol-
lows:

e We propose a complete design of DataVault architecture that allows
data sharing via an untrusted server. The DataVault architecture is
designed keeping an average user in mind. The user has to remember
only one secret called the master password to use DataVault.

e We propose a cryptographic access control model that allows data own-
ers to grant privileges both at the level of files and directories.

e We propose a novel transparent PKI infrastructure that is run collab-
oratively with the client and server and provides most of the function-

ality of commercial PKI services.
e We implemented a prototype of DataVault to measure the feasibility of
such a service. A beta version of DataVault is available for download
[20].
Roadmap: In section 2, we present a brief overview of our architecture.
In section 3, we describe our PKI infrastructure. In section 4, we describe
our encrypted storage model. In section 5, we show the different client server
interactions. In section 6, we present the performance results of our working
prototype. In section 7, we describe our related work and in section 8, we
conclude.

2 Architectural Overview

Fig 1 illustrates our overall architecture.

Service Provider Encrypted DB

E

Recipient’s public keys I

2) Request for a set of public keys.
) g P 4 PKDC

w

Request for encrypted file and FCK.

S

Encrypted data and keys.

ul

Encrypted data and key request

)

Required encrypted data and keys

1

2) 5 6)

3 ¥

Local FS

File data

Client Application

[] PR

Public/private keys File access|
requests
AKG Data encryption/decryption
module

Data encryption/decryption :?::s’\yator Client Local FS

module Application

|

:

Client / Data owner Data recipient

Figure 1: DataVault’s architecture

Client /Data Owner: The data owner is the entity that produces and
owns the personal data. The data owner is assumed to have some compu-
tational resources! but not comparable to the service provider. The data

! Any modern PC could serve as the client.

owner/client in DataVault is assumed to be a non-sophisticated user who is
largely incapable of making security decisions. The client is also assumed to
remember at most one secret to use DataVault, known as the master pass-
word. It needs to be kept completely confidential, since if an adversary gets
hold of the master password, he can impersonate the client. The client side
computing resources are assumed to be trusted (i.e., not under control of any
malicious entities).

The client outsources local file system to the service provider. Before out-
sourcing, the client encrypts the file system to enforce its security constraints
and access control policies. The keys used to encrypt the files are encrypted
with the public keys of the user to distribute data. These public keys are
provided by the server.

Server /Service Provider: The service provider is the entity in charge
of providing data management services such as storage, backup, recovery,
software updates, support for multi-modal access, etc., to the data owner.
The service provider provides interfaces to the data owner to create, store
and access their data. The data owners relinquish their administrative duties
to the service provider. For reasons explained before, the service provider is
untrusted. For purpose of this paper, we will adopt an honest-but-curious
trust model for the service provider. The service provider or the corporation
responsible for the service is expected to perform the services it advertises
but any malicious employees are expected to be curious about data belonging
to data owners and will try to profit by stealing such data. The honest-
but-curious model has also been considered by previous data outsourcing
approaches [3, 4].

As stated before, clients outsource their data in the form of files. In
DataVault, the service provider stores files using a relational database man-
agement system (RDBMS). Alternatively, the service provider could have
used a file system to provide the storage and retrieval for client’s data.
Database systems offer the following advantages over files systems: a) better
multi-user support; b) better data searching capabilities and c) higher level
of abstraction than files making development of DataVault easy. For these
precise reasons, databases are getting very popular for maintaining data on
the web. Utilizing a database as a backend for information management
also saved us a lot of implementation time, since most of code for accepting
user connections and managing them is already implemented in the data-
bases. The server also maintains a public key distribution center(PKDC).
The PKDC provides the required public key of the users and will be discussed
in section 3.

Data Recipient: The data recipient could either be the data owner or
another client of the service provider who has access to some of the data

owner’s data. The data recipient can only access data according to the data
sharing policy of the data owner. For instance, the data owner can allow
a colleague access to work related documents. Data sharing is explained in
more detail in the coming sections.

Usage Model: DataVault runs as an application on the client’s machine.
It provides a file system like view to the user. The user is not aware of the
communication with server, to the best of user’s knowledge s/he is accessing
a local drive. The user can right click on a file or directory and share files
with other users.

3 Public Key Infrastructure

This section describes a modest public key infrastructure to support the
goals for DataVault. The PKI does not require some of the features of a full-
fledged PKI, such as certificates, certifying authorities, and revocation. In
DataVault, the client is responsible for generating public keys and the server
is responsible for providing a repository for storing and retrieving public keys.

3.1 Client side PKI

DataVault requires that the user remember only one secret, the master pass-
word. This section shows how the client maps a master password to a pub-
lic/private key pair. The reason for generating the key pair based on a
password and not protecting a random key pair with a password instead is
to allow the client to use any machine to generate the key pair without com-
municating with a server. Also, the mapping procedure always generates the
same key pair from a given password. The client can then use the key pair
to preserve data confidentiality and share files.

The key pair is generated using an asymetric key genenator (AKG) func-
tion.

Definition 1: Asymmetric key pair generator(AKG) function F: P —
{Upu, Upi} translates a secret string P into asymmetric key pair Uy, Upg.

The asymmetric key generator function should have the following prop-
erties:

P1: Let E be and D be asymmetric key cipher functions denoting en-
cryption and decryption functions respectively. For any plaintext message x,

Dyi(Epu(x)) = 2 and Dypy(Epi(z)) = .

P2: Function F should be deterministic. That is given a secret master
password P, the function should always produce the same {Upy, Up }-

P3: The cost of function F should be sufficient to deter a dictionary at-
tack but efficient enough for a user to re-compute for each DataVault session.

Property P1 is satisfied using an appropriate public key cipher like RSA[26].
Property P2 is necessary so a user’s password is always mapped to the same
public/private key pair. Otherwise, the user will not be able to access her
encrypted data.

Property P3 is important to prevent off-line dictionary attacks. For in-
stance, since the asymmetric key generator function is public, an adversary
with sufficient computing resources can try to guess a password and verify if
it is correct in order to impersonate the user. Let ¢ be the cost an adversary
pays to guess a user’s master password and run the asymmetric key genera-
tor function. If the adversary needs an average of n attempts to successfully
reach user’s master password, then the cost paid by the adversary is equal to
nxc. If n is sufficiently large, then we can relax the requirement for property
P3. Since most users pick weak passwords, which can easily be broken using
dictionary attacks, it is desirable to make c as large as possible to raise the
cost of a dictionary attack. However, this is an interesting tradeoff since if ¢
is too large, then the user is unnecessarily delayed before she can start using
the system.

Our goal is to define an asymmetric key generator function that satisfies
all the properties stated above. Our approach is to modify the traditional
RSA key generation algorithm shown in Fig 2. The RSA key generation
algorithm begins in step 1 by randomly selecting two large prime numbers p
and q. Fig 3 shows a common method for accomplishing this by generating
large random numbers and checking if they are prime using the Rabin_Miller
test[26]. If the random number fails the test, another random number is
generated and the process continues.

Fig 4 illustrates our AKG function, based on a modification of the prime
number generation phase in RSA to make the algorithm more expensive. The
algorithm utilizes a secure one-way hash function A. In order to generate the
first prime number p, the master password P is repeatedly hashed k times to
generate a number R. If R is even, it is incremented to make it odd. Then
the primality of R is then checked. If R passes the test, the value of R is
used as the prime number p. If not, then R set to R 4 2 and checked again
for primality. The process continues until a prime number is found. The

Step 1. Choose two large prime numbers p and gq.

Step 2. Compute n = p *q.

Step 3. Compute ¢p(n) = (p—1) * (¢ —1)

Step 4. Choose e coprime to ¢(n)

Step 5. Compute d such that de — 1 is divisible by ¢(n)
Step 6. (e,n) is the public key and (d,n) is the private key.

Figure 2: RSA key generation algorithm

1. R = Generate_Random().

_if (1 isOdd(R)) RH+;

3. If (Rabin_Miller(r) == Prime) then {p = R} else
Go to Step 1.

4. Repeat Steps 1 to 3 for q.

[\

Figure 3: Picking large prime numbers

generation of prime number ¢ uses the same approach, and begins by taking
the value R and hashing it k£ times.

The hash iteration parameter k is a tunable parameter and plays a signifi-
cant role in increasing the cost of the the asymmetric function. The adversary
now will be forced to run the hash functions k times for every guess during
a dictionary attack.

Care should be taken when choosing the hashing algorithm, since the size
of the output determines the length of the key pair. In our implementation,
we use the SHA-512 function to produce 512 bit output from the hash func-
tion. This implies that prime numbers p and ¢ that we pick are 512 bits,
hence the AKG generates a 1024 bit public key.

Cost analysis: Let ¢; represent the cost of executing step ¢ in the RSA
algorithm illustrated in fig 2. The total cost of one run for the RSA algorithm
iS Crea = €1 + 2 + ...+ cg. Let caxg be the cost of our asymmetric key
generation function (AKG). Then caxg = 2 X k X ¢, + Cpgq — €1 since we
have replaced the step 1 of RSA algorithm with our repeated hashes of the
master password P. Therefore, the slowdown of the RSA algorithm is equal
to:

(2% kX cp+ Crgg — 1)

CT‘SCL

Increasing the value of k increases the cost of the AKG function. Typ-
ically costs ¢; where i = {1,2...6} and ¢, are very small in the order of

Input: Master Password P,
Hash iteration parameter k.

Function:

Step 1. Compute R = hg(hi—1(hk—2(.....ha(h1(P)))))

Step 2. If (lisOdd(R)) R++ ;

Step 3. If (Rabin_-Miller(R) == Prime) then {p = R} else {
R = R+2 and Goto Step 3}

Step 4. Compute R = hy (hy (R}, (.....hy(h}(R)))))

Step 5. If (lisOdd(R')) R ++;

Step 6. If (Rabin,Miller(Rl:: Prime) then {p = R'} else {
R = R +2 and Goto Step 6}

Step 7. Follow steps 2 to 6 from RSA algorithm

Figure 4: Asymmetric key generator function

microseconds/nanoseconds, k is typically on the order of hundreds of thou-
sands to increase the cost of the AKG to the order of seconds. If the client is
willing to wait a few seconds while logging in, the AKG function will provide
increased resistance to a dictionary attack.

Claim 3.1 AKG function is a one way function.

Proof Sketch: The asymmetric key generation function first maps a master
password MP to two different random numbers R and R by iteratively hashing
the master password. Let h'(z) represent a function that iteratively applies
a secure hash function such as SHA512 on a string. Since SHA512 is a one
way hash function, h'(z) is also a one way hash function. The AKG, then
maps < R,R > to < Upu, Upr > pair using the RSA key generation function.
It is well know that RSA function is a one way function. Since the AKG
internally utilizes two one way functions, the adversary cannot determine
the value of master password MP, when provided with the < Up,, U, > pair.
Hence, the AKG function is a one way function.

Claim 3.2 AKG function is a secure function.

Proof Sketch: We will say the AKG function is insecure, if an adversary A
can obtain the private key Uy, of a user U without trying all possible master
passwords.

From theorem 3.1 we know that AKG is a one way function. Therefore by
knowing a public key < Uy, > of a user U, A cannot determine the master
password MP. Since we map a master password to a set of random numbers
R and R used for the public/private key generation, A can potentially try

10

the whole space of random numbers in a brute force manner to determine
the private key Uy,.. The output of SHA512 or the random numbers, is 512
bits long. That implies that A on the worst case needs to try 2512 possible
random values to determine the private key. In the average case, A needs to
try 2512 /2 possible random numbers, which is a very huge number.

The only option that is left for A is to try all possible master passwords
in a brute force manner. In DataVault, the master passwords needs to be
at least § characters long. The master passwords should at least contain 2
special characters, 2 numbers and 2 upper case characters. The user can of
course choose a password that is more than 8 characters long. Let us assume
that the user barely satisfies the requirements®. Number of possible master
passwords are:

81 x 27% x 30% x 10% = 1928493100800000

In DataVault, the iteration parameter is set to a value that ensures that
AKG function takes about 1 min. Therefore the adversary potentially can
spend more than 366912690/ years trying to break the AKG function. Hence,
the AKG function is secure.

3.2 Server Side PKI

The server is responsible for providing access to the user’s public keys. If a
data owner wants to share a file with a data recipient, he/she requires access
to the recipient’s public key. To achieve this, all users register their public
keys generated using the asymmetric generator function with the Public key
distribution center (PKDC). The PKDC then provides access to the public
keys of other users to the requestor. Note, if two users choose the same
passwords, then their public keys will be the same. This is clearly undesir-
able, as both users could have access to each other’s data. To prevent such
a situation, DataVault needs to ensure that no two users pick the same pub-
lic/private key pair. This is achieved in the following manner: In DataVault,
each user is identified by a unique username. The username is actually the
email address of the user. The server ensures that during registration, no
two users register under the same email address. The server also ensures
that the user registering to the server is the valid holder of the email ad-
dress, by sending an email with a random token to the address. Now only
the valid user with access to the email account can provide the token back
to the server and hence authenticate himself/herself. Once the uniqueness

2Unfortunately, in practice we have found the users to pick minimally satisfying pass-
words.

11

of the username is ensured, the user is free to choose any password. The
masterpassword is derived in the following manner:

Masterpassword = Hash(Username, User_chosen_pasword)

Where Hash is any strong cryptographic hash function such as SHA384,
SHADb12, etc. Since the username is unique, any collision resistant hash func-
tion output of the username and the chosen password of the user, will always
be unique. The derived master password will now be used to generate the
public/private keys using the asymmetric generator function described in sec-
tion 3.1. Now, no two users will have the same public key. The PKDC stores
the <username, public_key > pairs for all users. Note, by using the email
address as the username, we have ensured to an extent that no malicious
user assumes a false identity. Most current online users identify other online
individuals with email addresses and this design naturally fits with such a
model.

Note that if the PKDC does not function properly, then there could be a
possible loss of data confidentiality to the user. For instance, if the PKDC
behaves maliciously and provides the wrong public key to a user, then the
user might end up revealing it’s information to an adversary. To prevent
such things from happening in DataVault, the PKDC is run in a separate
administrative domain from that of the database server. The service provider
should make sure that there is no common employee that works both at the
database server side and the PKDC. Such a measure, we will show later
provides tremendous security to the user. This assumption of non-colluding
servers collaboratively providing a service has been previously been made
in [14]. In that work, the authors provide techniques to store and maintain
data objects with two non-colluding servers. Unless the servers collaborate
the value of the data object will not be revealed.

4 Encrypted Storage Model

This section describes the server side representation of user’s data. The de-
sign of the encrypted storage model(ESM) should have the following desirable
properties:

e Hide structure: ESM should not leak information about the file sys-
tem content, metadata and the structure. It is obvious that the file
content must be protected. We believe that mere encryption of the
files is insufficient in itself. Both the metadata and the structure of the
file system also contain information about user’s data and therefore it
makes sense to hide them as well. Metadata of the file system contains

12

information such as file names, directory names, etc., and file system’s
structure reveals information about the number of directories, the num-
ber of files underneath a directory, etc. Also, the standard for XML
encryption proposed by the W3C consortium also hides the structure
of the XML documents [15].

e Access control: ESM should enforce the access control policy of the
user. Access control policies in DataVault are cryptographically en-
forced. Further details about the access control enforcement is de-
scribed later in the section.

e Dynamic nature: ESM should be amenable to the dynamic nature
of the user’s file system. The effort to encrypt/decrypt a file should be
minimal when the user updates the file system.

The following definitions are necessary to understand our model.

Definition 2: File System: A user’s file system is represented as a
graph G =<V, E >, where V is a set of vertices that represents both the file
and directory nodes and E represents the set of edges between them. Let the
function parent(ny) represent the parent node of node ny. If node n is the
parent of node ny we represent the relationship as follows: n «— parent(ny).
The edge set E contains all the edges between any two nodes ny and ng, where
ny <« parent(ngy), or vice versa. For every node n € V, n.metadata repre-
sents the metadata that is associated with the node n and n.content represents
the content of the node.

Definition 3: File Structure: Let the graph G =< V| E > represent
the File system of a user. The file structure of the file system is also a graph
G =< V',E' >, where V' inherits all the nodes from V. That is ¥n, where
n € V, n also belongs to V', but the nodes content n.content is set to null.
E and E’ are equivalent sets, which we will represent as E = E'.

The file structure is very central to our model. It contains the nodes on
which users specify the access control primitives.

Definition 4: Access Control Model: The access control model of a
user is a set of rules denoted by R = { r; - 1 < i < n}. Each rule r; is a
tuple of the form < node, R., W, > where node represents a node in the file
structure, R, represents a set of users with read access and W, represents a
set of users with write access.

Notice that our representation of the access control rule is a more compact
form of the popular <subject, object, access> representation. As we will see
later, the expressiveness of both representations is the same. Consider the
rule Ry: < ny, {John, Jake}, {Bob, Alice} >. This rule states that John and
Jake have read access to node n; and Bob and Alice have write access to the

13

node. We will henceforth use the notation n.Read and n.Write to represent
the set of users with read and write access for node n.

In DataVault, the data owner can navigate to a directory or a file, press
the share button and specify the set of readers and writers to the file. This
process of the owner specifying the access control policies on the internal
nodes of the file structure can be termed as annotation. The user by anno-
tation transforms a file structure F to an annotated file structure. The nodes
that have access control policies specified on them are called annotated nodes.
For instance, in fig 5a, the node n; is an annotated node.

We will now describe the semantics of the access control rules in DataVault.

Semantics: When a user is provided access to an internal node it implies
access to all nodes underneath it. This property is the containment property
that is inherently present in access control models for file systems. When the
user is given access to a directory, it is implied that the user has access to
the directories and the files underneath it.

In DataVault, there is no strict write access. Users are granted Read-
Write access. That is, for every user U granted write access to node n, U
also has read access to node n. Such semantics are necessary for many data
sharing applications.

Currently, we do not allow negative authorizations which exclusively pre-
vent an user from accessing certain nodes in our model. In future, we plan
to extend our access control semantics in this direction.

4.1 Rewrite Rules

We do not place any restrictions on the user when specifying access control
rules. The user can identify any node and specify any arbitrary number
of readers and writers. Due to such flexibility, the resulting annotated file
structure could posses redundant or inconsistent information in it. We will
describe some rewrite rules that remove such redundancies and inconsisten-
cies.

Read-write inconsistency: Consider the file structure represented in
fig 5a. For a node ny, a user U has specified an access control rule < R, W >3,
Let us assume that there exists a user U; such that Uy € W and U; ¢ R.
This violates the semantics that we described above, where every user with
write access also acquires read access immediately. In situations, we rewrite
the contents of R to contain users represented by RU{n : n € W and n ¢ R}.

Read redundancy: Consider the file structure represented by the fig
5b). Consider two annotated nodes n; and ny where ny < Ancestor(ny). We

3We have ignored the node in the rule for simplicity

14

n; <R,W>
a) Read-write WIOR
inconsistency

@ <mw
b) Read redundancy <R ,W> RnNnR= ¢
O <R,W>
c) Write redundancy <R, W> WnW=¢@
""" < R1 W1 >
d) Symbolic link O R; =R, OR,
inheritance Y <R, W, >
W, =W, OW,

<Ry, W, >

Figure 5: Rewrite rules

will assume that n;.Read Nny.Read # ¢. That is, Ir, such that r € ny.Read
and r € ng.Read. Since the user r has read access to node nq, due to
the containment property r has read access to ny. There is no requirement
for user r to be part of the set ny.Read. Removing this redundancy has
performance benefits that will be clear soon. In such situations, we remove
the user r from ny.Read. We ensure that no two nodes which belong to a
single path, contain a user in common in their readers set.

Write redundancy: This rewrite rule follows the same pattern for the
writers set that was described above for readers.

Symbolic link inheritance: Consider the file structure represented by
fig 5d). The unshaded node in the figure represents a symbolic link. When
a user access the symbolic link, s/he is requesting access to the node the
symbolic link points to. Therefore, all the users that have access to the sym-
bolic link, should have access to the node the symbolic link references. Let a
node s be a symbolic link referencing node n;. Let the function Ancestor(s)
represent all the ancestor nodes of node s. Then, Yv, where v € Ancestor(s),
node ny inherits all the users with read and write access. That is,

15

ni.Read = ny.Read U v.Read (1)

Vve€ Ancestor(s)

ny. . Write = ny.Write U v.Write (2)
Yve Ancestor(s)
Given a file structure, the rewrite rules are evaluated in the order we
presented them. Following the rewriting process, we say the file structure is
well formed.

4.2 Enforcing access control cryptographically

In this section we describe how a well formed annotated file structure is
encrypted to satisfy the access control rules the user specifies. We will first
start by providing the intuition of our approach before we formally present
it.

Intuition: Let us assume that a data owner wants to share a data object
with a set of recipients. A data object could be a file or a directory. To pro-
vide read access to a data object, the data owner encrypts the object with
a object encryption key(OEK) randomly generated. This object encryption
key is then distributed to the recipient. The details of how this is achieved
are explained in section 5. The recipient can now decrypt the object and
read the object contents. To provide write access, the data owner generates
a object integrity public/private key pair < OIK,,, OI K, >. The OIK,, is
publicly known. That is all users of DataVault have access to the key. The
data owner distributes OI K, along with the OEK to recipients whom s/he
desires to have write access. The recipients when they want to make changes
to the data object can encrypt the updated object with the OEK, calculate
the integrity information of the object and encrypt the integrity informa-
tion with OIK,,. In DataVault, we use the HMAC function to calculate
the integrity information of the encrypted object. The value of the HMAC
function is stored along with encrypted object. Now any user of DataVault
can verify that the changes are correct by decrypting the encrypted integrity
information using OI K,,,. We will use the notation, OF'K,,, to represent the
object encryption key of node n;. Similar notation is used for the object
integrity public private key pair.

Basic Technique: Consider the example well formed annotated file
structure represented in fig 6. There are two annotated nodes n; and ns.
To satisfy the access control requirements of node n;, we need to encrypt
the complete subgraph(n;) including the files underneath it. The function
subgraph(ny) represents the subgraph rooted at nj. This would interfere

16

<R, W, >

" ()
N\ N\

<R, W, >
Guard Node

’Reference‘ ’ OEK ‘ ’ OIK,,

’ Integrity‘ ’ OIKp,

Figure 6: Rule enforcement

with the access control requirements of no, since the read and write set of
node n; differs from node n,. If the path from n; to no, does not contain
another annotated node, then n; and nsy are immediate annotated nodes.
Given two immediate annotated nodes n; and ne. Let us assume as
in the figure that height of node ns is greater than that of n;. We first
isolate subgraph(ns). subgraph(ny) can now be considered as an data object.
The data owner generates an OEK,, and < OIKy,, ,0IK,. > for the
object/node ny. The owner then encrypts the object with the OEFK,,. Which
means that the owner encrypts the file structure and the nodes underneath
the node ny. This encrypted object is represented as E(ng) in fig 6. The
owner computes the integrity information of the E(ny) and signs it with
OIK,,. Then, a guard node whose structure is shown in fig 6 is added to the
parent node of ny. The guard node is an ancillary node that DataVault adds
to the file structure. It is completely transparent to the user. The guard
node contains the OFK,, , OI sz of node ny and a reference node that
points to E(nz). The contents of the reference node are explained later in
the section. The OIK,, of node ny is encrypted with OIK,, of node ny,
which implies that a user having write access to node n; will also have write
access to node ny. We then repeat the procedure we performed on node ny
on n;. That is we generate OEK,,, and < OIKpun1 , OIKm1 > encrypt the
subgraph(n;) with OEK,,, calculate the integrity information and place it

17

Input: An annotated file structure Fg
BEGIN:
h = MaximumHeightofAnnotatedNodes();
while(h > 0) {
for all annotated nodes at height h {
/* Let n1 be the current node.
Find its immediate annotated ancestor node ns.
if there is no immediate annotated ancestor node {
/* we have reached the root node.
Encrypt the subgraph(ni) to compute E(n1)
Compute the integrity information for E(n1)
} else {
Encrypt the subgraph(nz) to compute E(nz)
Compute the integrity information for E(n2)
Add the guard node to parent of ng

}

-~ =
!
R

END:

Figure 7: Basic Scheme for access control enforcement

under the E(n;) node.

After the encryption process, all the users in n;.Read are distributed
the key OEK,,, and all users with write access in n,.Write are distributed
OIK,,, . Similarly, we do the key distribution for node ny. Hence, access
control is achieved via key distribution.

Basic Scheme: Fig 7 illustrates our overall basic scheme for crypto-
graphically enforcing access control in file systems. We first find annotated
nodes with the maximum height and their corresponding immediate anno-
tated node. Then, the procedure described above is executed. This process is
repeated until there are no more annotated nodes. In the algorithm described
in fig 7, we need a quick way to find annotated nodes with the maximum
height. To achieve this, we maintain a priority queue along with the file
structure. The priority queue maintains pointers to the nodes in the file
structure. This gives us a quick way to access the required nodes. Notice
that in enforcing access control we are breaking a file system into a set of en-
crypted subgraphs. In the remainder of this paper, we will refer to subgraphs
as file system chunks or chunks for short.

Observation 1: Let the number of annotated nodes in a file structure be
na. Let ng be the minimum number of object encryption keys (OEKs) required
to satisfy the access control requirements according to the basic scheme. Then
Ng = Ny

Observation 1 states the minimum number of encryption keys required

18

Directory node

. File node
File node
Reportl.pdf Report2.pdf
Integrity
Metadata
Metadata
FIK,,
FEK FIKp
FIK

pu
FIK,

Figure 8: Final Scheme

for satisfying the read access requirements of the access control rules. Ob-
servation 1 can also be easily extended for write access requirements of the
access control rules as well. It is quite straightforward to see why this is the
case, since for every annotated node we are generating one object encryption
key and one object integrity public private key pair.

The basic scheme has one drawback in terms of security. Annotated nodes
with maximum height contain the content of the files. All these files are en-
crypted with the OEK of the annotated node. Such a scheme could generate
a large amount of ciphertext encrypted with the same key. Particularly, if
the subtree of the annontated nodes contains a large number of files. This
could potentially make the data vulnerable to Cryptanalysis attacks whose
effectiveness increases with the size of the ciphertext. We will now present
the final scheme that counters such attacks.

Final Scheme: To enforce the access control rules, we split the file sys-
tem into a set of file system chunks. Each chunk, contains a set of files as
leaf nodes. In our final scheme we separate the files from each chunks. Each
file is individually encrypted using the a file encryption key (FEK). This is
done to counter cryptanalysis attacks by reducing the amount of ciphertext
encrypted with one key. We also generate a file integrity public/private key
pair < FIK,,, F'IK,, > for generating and verifying the integrity informa-

19

tion. These keys are stored in the file structure as shown in the fig 4.2. We
then follow all the steps described in the basic scheme. The user who has
access to the annotated node, will also have access to the files underneath the
node, since s/he can access the file keys. Finally we store the set of chunks
and files in the following relational tables 4.

CHUNK(ID, ENCRYPTED_CONTENTS, INTEGRITY);
FILES(ID,ENCRYPTED_CONTENTS, INTEGRITY);

For every chunk, DataVault assigns a unique id calculated as follows: ud
= h (username, full_path_of-root_node), where h is a one way hash function.
The username is used to ensure the uniqueness property of the ids. Recall
that we introduced reference nodes that refer to chunks. The value of the
reference node is the id of the chunk it is referring to.

The file ids are calculated a little differently. The id of a file is calculated
as follows: fileid = h (username, filename, random_number). We do not use
the path of the file when generating a file id, since it can change when the
file is moved. Instead, we use the file name and a random number that is
generated when the file is created. The random number is used to ensure that
no two files with the same name map to the same id. The random number
and the file id are placed in the chunks to which the files belong.

4.3 Updates to the access control policy

We will discuss how updates to the access control policy are handled in
DataVault. There are two situations that can occur when an access control
policy is updated.

When annotation to a node is changed: Consider an annotated node
n whose read and write set is represented by < R, W >. The owner can make
changes to both the R and W either by adding users or removing them. When
users are added to these sets, the required keys OEK or < OIK,,,, Ol K,, >
are distributed to the users.

Revocation, i.e., removing users from R and W is a bit tricky, since
malicious users can continue to cache the keys that were distributed to them.
We therefore need to re-encrypt all the chunks and their associated files that
are underneath the node n with a new set of keys and distribute the set
of keys to authorized recipients. This could potentially be an expensive
operation, depending on the number of chunks that need re-encryption.® In

4Recall that the server maintains an RDBMS for storing and retrieving data.
5In practice we have found that it is not usually an expensive operation, since number
of chunks to re-encrypt usually tends to be less than or equal to two.

20

DataVault, the chunks that are effected by revocations are flagged at the
server to prevent other users from modifying them, and a separate thread
running at the data owner side with low priority, re-encrypts the required
data. This allows the data owner to continue to work while the data is being
re-encrypted.

New annotation: Let n; be the new node that is annotated by the data
owner. We find its corresponding immediate annotated node ny, and apply
the basic technique that we described before. This will split the chunk rooted
at no into two chunks, one rooted at n, and one rooted at n.

4.4 Security Discussion

In this section we will discuss the relevant security issues in DataVault.

Information revealed: An adversary at the server side, by looking at
the ciphertext stored at the server can procure some information regarding
the file system of the user. The information includes: a) The number of files
and their relative sizes: The size of the ciphertext dictates the size of the
plaintext files; b) The number of chunks of the user’s file system and their
relative sizes: All the file structure chunks are downloaded by the user as
soon s/he logs in. The size of the file structure chunk linearly increases with
the number of nodes inside it. Hence, the adversary can reasonably guess
the number of directory and file nodes in each chunk. The adversary does
not get any further information regarding the user’s file system.

Another alternative for the encrypted storage model is to create a data
object that subsumes both the file structure chunks and the files. Such
an object can then be downloaded at the beginning of the session. This
representation provides more security, since the adversary does not know if
the user has large number of files, or a large number of internal nodes in the
file structure. Downloading the entire file system at the time of login puts
an enormous performance strain on the system thereby making the system
inherently not usable. The current design of the encrypted storage model
strikes an appropriate balance between performance and security.

Inherit trust on recipients: Access control in DataVault is achieved
via key distribution. The server stores the encrypted data and provides access
to the data to any user of DataVault. Hence, a malicious data recipient can
provide read/write access to other users by sending the relevant keys to
them. DataVault currently assumes that all data recipients are trusted and
do indulge in such attacks. Our future work will deal with preventing such
miscue of access. One possible solution would be to push some part of the
access control to the server. The server can take advantage of the access
control mechanisms of the database to provide the required functionality.

21

Such a study is outside the scope of this paper. Previous work on securing
remote storage [7, 8] also placed similar trust on the recipients.

5 Client-Server Interaction

This section describes the various client-server interactions present in the
DataVault architecture.

5.1 At Login

When the user first logs into DataVault, the complete file structure of the
user is retrieved. The server maintains the root file structure chunk for every
user. After the root chunk is retrieved and decrypted, the client applications
will follow the reference nodes (see section 4) and fetch all the chunks that
belong to the file system automatically.

By fetching the complete file structure, the client application can answer
all user navigational requests locally. This improves the usability of the
system, as the user does not have to wait repeatedly while navigating the
file system. Typically, the complete file structure can be fetched in less than
a second. The file structure is fetched in a separate thread, while the client
application is mapping the master password to public/private key pair using
the AKG function. The AKG function is deliberately slowed down to 1
min, and during this time the file structure is fetched. Another advantage
of maintaining the file structure as a set of chunks, is that it saves time in
decryption. If we were to follow an NFS based storage model [21], where
the files and directories are stored as separate data objects at the server, we
would be forced to decrypt each of the nodes individually, instead of doing
it in bulk. This saves us time as most encryption algorithms have a huge
startup time.

5.2 Updates to the file system

One of the drawbacks of our storage model is that handling updates to the file
structure is a bit tricky. Updates operations in DataVault include creating a
directory, renaming a directory, creating a file, renaming a file, etc. We will
explain updates in DataVault under two situations.

Updates to the unshared part of the file system: Consider a situa-
tion where the user creates a new directory. The file structure can be updated
locally to reflect the change. To make the change persistent we need to visit
the server and store the updated file structure. Doing this for every update

22

is expensive. To solve the above problems we use an approach similar in
style to the journaling file systems. Whenever an update is made to the file
system, only the update is stored at the server in the form of a log. If the
application crashes at the user side, when it reboots, it will check if there
any log entries at the server side. If there are, then it will apply the updates
to the file structure. If there are no crashes, then after the user logs off, the
file structure is updated at the server side and the log removed. All the log
entries are encrypted at the server for security purposes. We have not shown
the language for representing the updates in the interest of space, we hope
that the above discussion provides the reader with enough intuition for the
entire procedure.

When the user is updating or creating a file, the contents of the file are
not written to the log, instead a message is inserted into the log that a file
creation or an update is under progress. The contents of the files are updated
immediately at the server side. If the upload of the file contents fails due to
a software crash, then after the application comes back up, DataVault will
look at the log and alert the user. It is up to the user to take the necessary
action.

Updates that involve annotated nodes: Updates that involve anno-
tated nodes are handled immediately. That is we do not delay the update till
the user logs off. Let n; be a annotated node in the user’s file system. Let
us assume that a data owner or a recipient with write access wants to create
a file in the subgraph(n;) region. To execute this operation, the relevant
chunk is fetched from the server and the file node is added at the relevant
place. After the update operation, the chunk is encrypted and it’s integrity
information is calculated. The chunk is then updated at the server.

5.3 Data Sharing

We will now provide some details of how data sharing is achieved in DataVault.
We will discuss this under the following two situations.

Read Sharing: When the data owner O wants to provide read ac-
cess to subgraph(n) of some node n to a user U, O distributes OEK,, to
U. The OFK,, is encrypted with U, the public key of user U to generate
Ey,.(OFK,) which is stored at the server. The public key is fetched from
the PKDC. Now, when required U can fetch Ey ,(OEFK,) from the server
and decrypt it with its private key to reveal OFK,,.

The DataVault interface separates the files that are shared to the user
from the local file system. All the shared files are shown in a different tab
labeled as incoming files. When the user clicks the incoming files tab, all the
chunks shared to the user are fetched and decrypted. The files that belong

23

to the chunks are not fetched at this stage. The user can then navigate the
chunks as she would navigate their local drive. When the user clicks on a
file, the encrypted file is downloaded and decrypted using its FEK, which is
present in the chunk. The readers of a chunk/file will always read the last
committed changes to the chunk/file from an authorized writer.

Write Sharing: When a data owner O wants to provide write access to
subgraph(n) of some node n to a user U, O distributes OIK,, to U. This
is done by encrypting the OI Kp, by the public key of user U. The result
Ey,.(OIK,,) is stored at the server. When U desires access, it will fetch
Ey,,(OIK,,) from the server and decrypt it with its private key to reveal
OIK,,

As stated earlier, in DataVault there is no write access, only read-write
access. As in read access, all the subgraphs to which the U has write access
are shown in incoming tab. The interface separates the subgraphs to which
the users has read access from the subgraphs to which the user has write
access. When the user wants to modify a subgraph, she needs to be acquire
a lock from the server. The lock is a flag that is set at the server. This is
done to prevent data inconsistencies. Only after the user acquires the lock,
the server will allow the updates to propagate.

6 Performance

We have developed an initial prototype of DataVault based on the design and
the techniques described in this paper. We conducted experiments to measure
the performance of the prototype. This section provides the implementation
details and some of the performance results of DataVault. For more detailed
experimental results, please refer to the full version of our paper available at
[20].

Implementation details and experimental setup: The client side
interface for DataVault was implemented using the JAVA 5 SDK. We plan
to map this interface to an applet and distribute such an applet via a web
server. This will allow the users to visit a website and access their files stored
in DataVault. Currently, the users have to download the jar file containing all
the classes and execute the program locally. All the cryptographic operations
were implemented using the Java Security API, which contained most of the
cryptographic techniques required in this architecture. At the server side,
we used a MYSQL database to store and retrieve encrypted content. The
MYSQL server was running on a powerful 32 GB RAM, 8 processor machine.
We implemented the PKDC as another MYSQL database engine running on
a different machine. The PKDC was run on a P4, 2.66GHZ machine. Note,

24

File Size | Network Encryption | Integrity Database | Database
in MB Time in | /Decryp- | Calcula- Insertion Retrieval
secs tion in | tion in | in secs in secs
secs secs
0.5 5.12 0.140 0.094 0.235 0.500
1 10.24 0.172 0.109 0.172 0.187
2 20.48 0.219 0.125 0.438 0.813
) 51.2 0.375 0.203 1.093 1.422
10 102.4 0.594 0.328 2.250 1.406
15 153.6 0.781 0.469 2.906 1.891
18 184.32 0.953 0.531 3.250 7.797

Figure 9: Comparison of cryptographic overhead, network overhead and
database overhead

while we assumed the service provider as one logical entity, in reality the
service provider could maintain a host of machines for both the PKDC and
database server. This will make the server not vulnerable to single of points
of failure.

We conducted some experiments to measure the cost of the techniques
proposed in this model to determine if the system design is practical. User’s
will not tolerate lengthy delays for basic operations in DataVault. This sec-
tion demonstrates that the system is practical.

Performance Results: The purpose of the experiments was to measure
the various delays caused by our techniques. The delays primarily include
a) Network delays caused due to transferring files over the Internet to the
server; b) cryptographic delays caused due to the encryption/decryption of
the files and the data signatures computation; and c¢) delays caused due to
storing and retrieving files using a database, which we will refer to as database
delays. Although, database delays should not be considered as delays, since
we need mechanisms to store and fetch data, we nevertheless measure the
time taken to store and fetch files from a database since the user has to
wait for that amount of time. During the experiments we have assumed the
network transfer speed between the client and the server to be 800 kilo bits
per second(kbps). This speed is much less than what we were getting in
the laboratory, since the server was in close proximity to our client machine.
The 800kbps assumption is made to simulate clients that are geographically
far from the server. Fig 9 states all the delays that are caused due to data
outsourcing in DataVault. The Encryption/Decryption column includes the
cost of encrypting the file using a symmetric key (FCK) and encrypting the
symmetric key with an asymmetric key (client’s public key). The integrity

25

[1200 1 Time (m)
Encryption Time Decryption Time

Encrypted File Structure Size

Figure 10: Encrypted file Figure 11: Encryption Figure 12: Decryption
structure size time time

column states the cost of computing the message digest of the file and signing
it with file/object integrity private key. We varied the sizes of the files being
outsourced to measure the impact of file size in the delays. The values that
we report are the average of a few attempts of transferring and receiving files
from the server. Fig 9 shows that cryptographic and database overhead is
negligible when compared to the network overhead which is unavoidable. This
implies that the client is not paying much of a cost for security. The network
cost is unavoidable for the user if he/she wants the service. This was an
encouraging result for us since most users are patient with downloading and
uploading files.

We also wanted to measure the overhead of our cryptographic access
control model. Due to the specifications of the annotations, the file system
structure is broken into a set of encrypted file chunks that are stored at the
server. We wanted to measure: a) the size of the encrypted file chunks; b) the
time required to enforce the access control as specified by the annotations;
and c¢) the time required to obtain the plaintext form of the file structure
from encrypted chunks. For these experiments, we used a local file system
of one of the authors.

Size of the encrypted file chunks: Due to the specifications of anno-
tations, the size encrypted file chunks tend to be larger than the plaintext file
system structure. This is due to the injection of the guard nodes which carry
the required encryption keys. Fig 10 plots the increase in such a size when
1% and 3% nodes ¢ are annotated. As it can be seen from the figure, the
increase is minimal and therefore, the user does not have to pay a significant
amount of network cost in transferring the encrypted chunks to the server
side.

Enforcing access control: Fig 11 plots the time required to enforce
the access control specified by the annotations. Even when 3% of the nodes

6Most users do not share a large part of their file system

26

Operation Time in secs
Total Login Cost 1.5

AKG function 1.0590
Reading the file structure 0.0084205
Decryption of the file structure 0.0008687
Initialization of the file structure 0.4095802
Checking if the masterpassword is correct | 0.0231397

Figure 13: Login Cost

Operation Time in secs
Adding a file 0.0142464
Deleting a file 0.0001290

Deleting a Directory | 0.0006919

Creating a Directory | 0.0001998

Figure 14: Operations to the internal file structure

are annotated for a fairly large file system, it takes only about 2 secs for the
enforcement. This is a delay that most users are unlikely to notice.

Decryption of the file chunks: When the data owner first logs in,
he/she fetches all the file chunks, decrypt them locally and stich them back
to original file structure. Fig 12 shows the time required when 1% and 3%
of the nodes are annotated. This process in the worst case takes less than 2
secs.

In the next experiment we tried to measure the total time the user needs
to wait before he/she can log into the server. We will term this time as the
login cost. Please refer to the section 5 to see the various steps involved
in logging in. Fig 13 states the respective costs involved. The client has
to wait for 1.5 secs to login to the DataVault. This is primarily due to our

Operation | Time in
secs

Encryption | 0.0008687
of the

Structure

Storing 0.0080949
the struc-

ture

Figure 15: Costs paid by the client during logoff

27

deliberate slowing down of the asymmetric key generation function to achieve
added security. We feel waiting 1.5 secs should be acceptable for most users.
Although, this time can be tuned down for individual tastes albeit with a
reduction in security. After the file structure is fetched from the server it is
instantiated as a XML document locally. We then measured the time taken
by different file system operations that manipulate the file structure or the
XML documents. Fig 14 illustrates the performance costs for some of the
file system operations. We did not report the cost for all the file system
operations, since they followed the similar pattern. As it can be seen from
the figure, such costs take negligible amount of time and the user is unlikely
to notice the time. Finally, we measured the time taken for the user to log
off from the DataVault service. Fig 15 shows the results. In keeping with the
above experiments, the time taken is negligible and unlikely to be noticed by
the user. In summary, the experimental results show that there is negligible
overhead due to cryptographic and database operations, which makes this
architecture practical.

In summary, the cryptographic costs of our technique pale in comparison
to the network costs that are unavoidable. Also, the network speeds are
improving and that will decrease the time the user needs to wait. Therefore,
we believe that DataVault is a feasible practical architecture.

7 Related Work

The two research areas that come close to our work are cryptographic file
systems and database as a service architectures.

Cryptographic file systems [7, 8, 10, 11] provide file management to users
when the underlying storage is untrusted. This is typically the case when
data is stored at remote untrusted servers. Two examples of cryptographic
file systems related to our work are Sirius [7] and Plutus [8]. Sirius layers a
security mechanism on an underlying file system, insisting that no changes be
made to it. The goal of Sirius is to provide the user with data confidentiality
and integrity when the data is stored at an untrusted storage. Plutus file
system is also based on the goals of Sirius. Additionally, Plutus introduces
the concepts of lazy revocation and novel group sharing strategies.

The fundamental differences between our work and cryptographic file sys-
tems previously proposed are: a) cryptographic files systems build a security
layer over legacy systems. Therefore no changes can be made to the un-
trusted server; b) the systems were built for sophisticated users; c) access
control model is limited only to the level of files. For instance, in Plutus the
users were expected to do all the key management. In Sirius, the users are

28

expected to purchase a public/private key pair and securely transport it when
mobile access is desired. We are not concerned with legacy systems. We are
exploring/building a service architecture that allows data sharing require-
ments of the clients to be outsourced. Hence, while the previous solutions
insisted on no changes to the server, in DataVault we design a server that is
optimized for data sharing. Our architecture is catered to average computer
users and is easy to use. We also propose a new access control model that
allows the data owner to grant privileges at the level of directories as well.

DAS [3, 4] architectures allow clients to outsource structured databases
to a service provider. The service provider now provides data management
tasks to the client. The work on DAS architecures mainly concentrated on
executing SQL queries over encrypted data. The clients of DAS architectures
are mainly organizations that require database support. We are concerned
with providing mobility and data sharing to personal information mainly
belonging to individuals, although our architecture is not restricted only
to individuals and can be easily extended to organizational usage as well.
Mobility and data sharing were not handled in DAS, which is the primary
focus of this work.

Miklau et. al. [12] propose a framework for enabling access control over
published data. In their model, the data owner encrypts the relevant parts of
an XML document in such a fashion that all the access control requirements
are preserved. The data owner publishes the information to a public server
and by key distribution access control is enforced. In their model, the un-
trusted model is just responsible for storage and the data owner is left to do
a lot of work, primarily key distribution. In many respects this architecture
is similar to Plutus, but deals with a different data model. On similar lines,
Bertino et. al. [24] propose an architecture to publish XML documents se-
curely via third party servers. This work mainly concentrated on exploiting
a Merkle tree approach to ensure data integrity.

Jungle disk [25] is a commercial software that layers a security mechanism
over the Amazon S3 storage service. Jungle disk also provides a file system
like interface to the user and preserves data confidentiality of the user by
encrypting the data stored remotely. The user can provide a password as the
key to encrypt the data. We cannot evaluate the encrypted storage model
of the Jungle disk, as there is no documentation available. The data sharing
model is also not as advanced as DataVault.

29

8 Conclusions

We have introduced and presented the design of DataVault, an architecture
that provides users mobile access to their personal data and also allows them
to share their data with other peers on the Web. DataVault is catered to av-
erage users who are are not cognizant of security technologies and are largely
incapable of making security related decisions. Users have to remember only
one password to use DataVault, that controls the overall security provided
by DataVault. DataVault is based on a outsourced database model (ODB)
where the data is outsourced to a remote service provider. Since the service
provider is untrusted, clients encrypt the data before outsourcing. The ser-
vice provider now provides data services over the top of encrypted data. We
proposed novel cryptographic access control model and a PKI infrastructure
that allow data sharing to take place via an untrusted server. We have imple-
mented an initial version of DataVault and measured its performance, much
to our satisfaction. A beta version of DataVault is available for download
[20].

As part of future work, we plan to incorporate search techniques on en-
crypted data into DataVault [22, 23]. This will allow the user to fetch all
the required files which contain a particular keyword. In the current avatar,
DataVault allows users to outsource their file system. There are many data
services that can be built on top of such framework. For instance, consider
autofill information of browsers. Such information is typically maintained as
a file in the local hard drive. If the user allows DataVault to outsource such
files, then DataVault can fetch the autofill information and install it at the
appropriate place without bothering the user. Thereby, the user can now
have his passwords, usernames, etc, automatically filled out wherever he/she
goes. We will exploring such applications in the context of DataVault.

References

[1] A.Briney. The 2001 Information Security In-
dustry Survey 2001 [cited October 20 2002].
http://www.infosecuritymag.com/archives2001.shtml

[2] G. Dhillon and S. Moores. 2001. Computer crimes: theorizing about
the enemy within. Computers & Security 20 (8):715-723.

[3] H. Hacigumus, B.Iyer, C.Li, and S.Mehrotra. Executing SQL over En-
crypted Data in the Database-Service-Provider Model. 2002 ACM SIG-
MOD Conference on Management of Data, Jun, 2002.

30

[4]

[10]

[11]

[12]

[13]

[14]

E.Damiani, S. De Capitani Vimercati, S.Jajodia, S. Paraboschi,
P.Samarati. Balancing confidentiality and efficiency in untrusted rela-
tional DBMSs. Proceedings of the 10th ACM conference on Computer
and communications security.

S. Ross, J. Hill, M. Chen, A. Joseph, D. Culler, E. Brewer. A Com-
posable Framework for Secure Multi-Modal Access to Internet Services
from Post-PC Devices, Proceedings of the 3rd IEEE Workshop on Mo-
bile Computing Systems and Applications, December 2000. Page(s):171
- 182

J.Jeff, Y. Alan, B.Ross, and A. Alasdair. The memoribility and security
of passwords - some empirical results, 2000.

E. Goh, H. Shacham, N. Modadugu, and D. Boneh, ”SiRiUS: Securing
remote untrusted storage,” in Proc. Network and Distributed Systems
Security (NDSS) Symposium 2003.

M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, ”Plu-
tus: Scalable secure file sharing on untrusted storage,” in Proc. 2nd
USENIX Conference on File and Storage Technologies (FAST), 2003.

J.Shanmugasundaram, K.Tufte, C.Zhang, G.He, D. J. DeWitt, J. F.
Naughton: Relational Databases for Querying XML Documents: Lim-

itations and Opportunities. International Conference on Very Large
Databases (VLDB 1999): 302-314

M.Blaze. A cryptographic file system for UNIX. Proceedings of the 1st
ACM conference on Computer and communications security.

E.Zadok, I.Badulescu, and A.Shender. Cryptfs: A Stackable vnode
level encryption file system. Technical Report CUCS-021-98, Columbia
University, 1998.

G. Miklau, D.Suciu. Controlling Access to Published Data Using Cryp-
tography. VLDB 2003: 898-909

D. Balfanz, G. Durfee, and D. K. Smetters. Making the Impossi-
ble Easy: Usable PKI. In Security and Usability, L. Crannor and S.
Garfinkel, editors. Chapter 16, pp. 319-333. O’Reilly Media, Inc., Au-
gust 2005

G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi,
R. Motwani, U. Srivastava. D.Thomas, Y.Xu. Two Can Keep a Secret:

31

A Distributed Architecture for Secure Database Services.2nd Biennial
Conference on Innovative Data Systems Research, CIDR 2005.

XML Encryption Syntax and Processing.
http://www.w3.org/TR/xmlenc-core/.

A Silberschatz, P.Baer, G.G.Gagne. Operating System Concepts. John
Wiley and Sons, Inc. ISBN 0-471-69466-5.

J.P.Anderson. Computer security planning study. Technical Report 73-
51, Air Force Electronic System Division, 1972. Computer Science,
1997.

A.Harrington, C.Jensen. Cryptographic access control in a distributed
file system. Symposium on Access Control Models and Technologies,
2003.

V. Kher and Y. Kim. Securing Distributed Storage: Challenges, Tech-
niques, and Systems . In Proceedings of the first ACM International
Workshop on Storage Security and Survivability (StorageSS 05).

The DataVault project. http://www.ics.uci.edu/ “rjam-
mala/DataVault/.

S.Shepler, B.Callaghan, D.Robinson, R.Thurlow, C.Beame, M. Eisler,
and D. Noveck. NFS version 4 protocol. RFC 3530, April 2003.

D.Song, D.Wagner and A. Perrig. Practical Techniques for Searches on
Encrypted Data. In 2000 IEEE Symposium on Research in Security
and Privacy.

E.J.Goh. Secure Indexes. In submission.

E.Bertino, B.Carminati, E.Ferrari, B.Thuraisingham and A.Gupta. Se-
lective and authentic third party distribution of XML documents.

http://www.JungleDisk.com

Alfred J. Menezes, Scott A. Vanstone, Paul C. Van Oorschot. Hand-
book of Applied Cryptography. CRC Press, Inc.

32

