
“Breaking the Code”, Moving between Private and Public
Work in Collaborative Software Development

Cleidson R. B. de Souza1,2 David Redmiles1 Paul Dourish1

1School of Information and Computer Science

University of California, Irvine

Irvine, CA, USA – 92667

2Departamento de Informática

Universidade Federal do Pará

Belém, PA, Brazil - 66075

{cdesouza,redmiles,jpd}@ics.uci.edu

ABSTRACT
Software development is typically cooperative endeavor where a
group of engineers need to work together to achieve a common,
coordinated result. As a cooperative effort, it is especially difficult
because of the many interdependencies amongst the artifacts
created during the process. This has lead software engineers to
create tools, such as configuration management tools, that isolate
developers from the effects of each other’s work. In so doing,
these tools create a distinction between private and public aspects
of work of the developer. Technical support is provided to these
aspects as well as for transitions between them. However, we
present empirical material collected from a software development
team that suggests that the transition from private to public work
needs to be more carefully handled. Indeed, the analysis of our
material suggests that different formal and informal work
practices are adopted by the developers to allow a delicate
transition, where software developers are not largely affected by
the emergent public work. Finally, we discuss how groupware
tools might support this transition.

Categories and Subject Descriptors
H.4.1 [Office Automation]: Groupware; H.5.3 [Group and
Organization Interfaces]: Computer-supported cooperative work;

General Terms
Human Factors

Keywords
Private work, public work, collaborative software development,
qualitative studies.

1. INTRODUCTION
Software engineers have sought for quite some time to understand
their own work of software development as an important instance
of cooperative work, especially seeking ways to provide better

software tools to support developers [6]. Indeed, they created
several different tools, such as configuration management (CM)
and bug tracking systems, to facilitate the coordination of groups
of developers [14]. However, software development is especially
difficult as a cooperative endeavor because of the several
interdependencies that arise in any software development effort.
To minimize these problems, current CM systems adopt design
constructs (like workspaces and branches used in configuration
management systems) to shield each individual from effects of
other developers’ work [5]. These workspaces enforce a
distinction between the private aspects of work developed by a
software engineer and the public aspects that occur when this
developer shares his work with other developers. Similar
approaches have been taken in other categories of collaborative
applications (e.g., collaborative writing and hypermedia systems),
which have adopted this distinction between private and public
work in order to facilitate collaboration. In these applications, this
is usually done through the provision of separate private and
public (or shared) workspaces. Private workspaces allow users to
work in different parts of a document in parallel and contain
information that only one user can see and edit allowing him to
create drafts that later will be shared with the other co-workers
[7]. On the other hand, public workspaces allow all users to share
the same information or document and edit it concurrently.

When support for private and public work is provided, it is also
necessary to support transitions between them. The central issue
in systems maintaining separate workspaces is how information or
activity moves between them, and similarly, the central
mechanism around which CM systems are built is the mechanism
for moving information between public and private conditions –
checking in, checking out, merging. In cooperative working
settings, people selectively choose when and how to disclosure
their private work to others, i.e., they want to be able to control
the emergence of public information [1, 26]. CM tools and
collaborative authoring tools provide support for these transitions.
In collaborative writing, for example, one can basically copy the
content of a private workspace and paste into the public
workspace. On the other hand, in CM systems, more sophisticated
tools involving merging algorithms and concurrency control
policies need to be used because of the aforementioned
interdependencies in the software.

Transitions between private and public work (and vice-versa) are
particularly important in cooperative work and can lead to
problematic situations when overlooked. Indeed, Sellen and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GROUP’03, November 9–12, 2003, Sanibel Island, Florida, USA.

Copyright 2003 ACM 1-58113-693-5/03/0011…$5.00.

Harper [28] describe case studies of companies that had problems
because they underestimated the delicacy of this transition.
Despite that, insufficient analytical attention has been given to
this transition by the CSCW community. In this paper, we will
examine this issue with empirical material collected from a
collaborative software development effort. The team observed
uses mostly three tools for coordination purposes: a configuration
management tool, a bug-tracking system, and e-mail. However,
these tools alone were not sufficient to effectively support the
team; participants needed to adopt a set of formal and informal
work practices to properly support private, public work and
transitions between them. The adoption of these different work
practices suggests that the computational support provided by
these systems to support the emergence of private information is
still unsatisfactory. Based on these results, we draw more general
conclusions about the implications for computer-supported
cooperative work.

The rest of the paper is organized as follow. The next section
discusses the idea of private and public work in computer-
supported cooperative work. Then, sections 3 and 4 present the
settings and the methods that we used to study the software
development team. After that, Section 5 describes the set of work
practices adopted by the team to properly deal with private, public
work and transitions between them. Section 6 presents our
discussion about the data that we collected. After that, Section 7
discusses implications of our findings in the design of CSCW
tools. Finally, conclusions and ideas for future work are
presented.

2. PRIVATE AND PUBLIC WORK
In this paper we examine the distinction between private and
public work in collaborative efforts. The need for this distinction
is widely recognized in CSCW research. According to Ackerman
[1], for example, people “(…) have very nuanced behavior
concerning how and with whom they wish to share information
(…) people are concerned about whether to release this piece of
information to that person at this time (…)”. Another reason that
makes people care about the release of information about them is
that they “(…) are aware that making their work visible may also
open them to criticism or management (…)” (ibid.). Furthermore,
one does not make his entire work visible because he wants to
appear competent in the eyes of colleagues and managers by
making their work more complicated than necessary [26]. Indeed,
people are not interested in all information that is provided to
them. As Schmidt [26] points out:

“(…) in depending on the activities of others, we are ‘not
interested’ in the enormous contingencies and infinitely faceted
practices of colleagues unless they may impact our own work (…)
An actor will thus routinely expect not to be exposed to the
myriad detailed activities by means of which his or her colleagues
deal with the contingencies they are facing in their effort to
ensure that their individual contributions are seamlessly
articulated with the other contributions.”

To summarize, people have several contextualized and different
strategies to release their private information, and they expect that
others will do the same, not overloading them with public
information that is not ‘relevant’ to their current context or

activity. Note that this private information might be
collaboratively constructed [16]. In this case, the information is
public for those involved in its “construction”, but it is private to
the other members of the cooperative effort.

CSCW researchers have already recognized the need to support
these findings. Indeed, a typical approach to address that is to
provide support for private and public (also called shared)
windows, or workspaces, to support the collaboration among users
[30]. Private workspaces allow users to work in different parts of
a document in parallel and contain information that only one user
can see and edit, allowing him to create drafts that later will be
shared with the other co-workers [7]. On the other hand, public
workspaces allow all users to share the same information or
document so that, changes in the document are automatically
visible to all users. The usage of these workspaces mimic
conventions carried over non-technological work, where no one
wants to search or look at anyone’s private desk or drawer, and
conversely wants no one to search theirs, but accepts that when
they occur in public spaces. Indeed, Mark and colleagues [21]
report how conventions about the use of private and public
workspaces implicitly evolved from conventions formed in face-
to-face non-technological work after the introduction of a
groupware tool.

Often, other mechanisms are present in collaborative systems to
make other actions’ visible as well. For example, grey ‘clouds’
were proposed in the collaborative editor Grove to indicate where
other co-writers are editing the text [9]. Furthermore, it is also
well-known that, in some settings, making others’ work public
facilitates the coordination of the activities [16] [17] and enables
learning and greater efficiencies [20]. Examples of tools that
explore such approaches include Portholes [8] and Babble [10].

The underlying distinction between private and public work also
implies that in collaborative efforts transitions between these two
aspects occur. However, while notions of “public” and “private”
have been incorporated into software system design, insufficient
analytical attention has been give to the transitions. Field studies
such as those of Bowers [4] or Sellen and Harper [28]
demonstrate that overlooking these transitions can be problematic.
In Bower’s study, the disclosure of private data brought about
dilemmas of ownership and responsibility among the employees
of the organization studied. In Sellen and Harper’s study, when
the companies tried to go paperless deploying a new information
system, the employees’ ability to control when to disclosure
information was lost and these employees boycotted the system.
This happened because paper, as a medium on which work was
performed, allowed their owners to avoid sharing information
with their co-workers until they felt that the information was
“ready”.

Note that the setting where the collaborative effort takes place is
important. For example, in a control room, all workers are
collocated, which allows them to use intonations in their voice
and/or body language to make their actions visible to other co-
workers [17]. On the other hand, Whittaker and Schwarz [34]
report an ethnographic study where a large wallboard (containing
the schedule of a software development project) is used by the
team, which is spread along different cubicles and offices. The
public location of this wallboard allowed developers to access

information about who was doing which tasks at which times,
among other things. In other words, in this setting, information
about others’ current actions was made public by checking and
updating the schedule displayed in the wallboard.

In collaborative software engineering, this distinction between
private and private work is not only desirable, but necessary and
often enforced by tools. This occurs because of the several
interdependencies that arise in any software development effort.
In other words, each part of the software depends, directly or
indirectly, on many other parts. Furthermore, these
interdependencies are not strictly defined in the artifacts
produced, and often are not even known by the developers. To
handle this problem, software engineers created tools, such as
configuration management (CM) and bug tracking systems, to
facilitate the coordination of groups of developers [14]. Current
CM systems adopt design constructs (like workspaces and
branches) to shield the work of individuals from effects of other
developers’ work [5]. Basically, these workspaces “create a
barrier that prevents developers from knowing which other
developers change which other artifacts” [25]. Therefore, CM
workspaces allow software developers to work privately.
Furthermore, CM systems provide mechanisms to support the
transition from private to public work when developers want to
make this transition. To be more specific, when a developer
finishes his work in his private workspace, he can publicize his
work to other software developers through check-in’s, check-out’s
and merging operations. Despite this support, several problems
arise in any software development effort. Indeed, based on
empirical data that we collected, we identified a set of formal and
informal work practices used by a team of software developers to
handle these problems. The setting where the data was collected
and the methods used to analyze this data are described in the
following section.

3. THE SETTING
The team studied is located at the NASA / Ames Research Center
and develops a software application we will call MVP (not the
real name), which is composed of ten different tools in
approximately one million lines of C and C++. Each one of these
tools uses a specific set of “processes.” A process for the MVP
team is a program that runs with the appropriate run-time options
and it is not formally related with the concept of processes in
operating systems and/or distributed systems. Processes typically
run on distributed Sun workstations and communicate using a
TCP/IP socket protocol. Running a tool means running the
processes required by this tool, with their appropriate run-time
options.

Processes are also used to divide the work, i.e., each developer is
assigned to one or more processes and tends to specialize on it.
For example, there are process leaders and process developers,
who, most of the time, work only with this process. This is an
important aspect because it allows these developers to deeply
understand the process behavior and familiarize with its structure,
therefore helping them in dealing with the complexity of the code.
During the development activity, managers tend to assign work
according to these processes to facilitate this learning process.
However, it is not unusual to find developers working in different
processes. This might happen due to different circumstances. For

example, before launching a new release all workforce is needed
to fix bugs in the code, therefore, developers might be assigned to
fix these bugs.

3.1 The Software Development Team
The software development team is divided into two groups: the
verification and validation (V&V) staff and the developers. The
developers are responsible for writing new code, for bug fixing,
and adding new features. This group is composed of 25 members,
three of whom are also researchers that write their own code to
explore new ideas. The experience of these developers with
software development range between 3 months to more than 25
years. Experience within the MVP group ranges anywhere
between 2½ months to 9 years. This group is spread out into
several offices across two floors in the same building.

V&V members are responsible for testing and reporting bugs
identified in the MVP software, keeping a running version of the
software for demonstration purposes and for maintaining the
documentation (mainly user manuals) of the software. This group
is composed of 6 members. Half of this group is located in the V
& V Laboratory, while the rest is located in several offices located
in the same floor and building as this laboratory. Both, the V&V
Lab and developers’ offices are located in the same building.

3.2 The Software Development Process
The MVP group adopts a formal software development process
that prescribes the steps that need to be performed by the
developers during their activities. For example, all developers,
after finishing the implementation of a change, should integrate
their code with the main baseline. In addition, each developer is
responsible for testing its code to guarantee that when he
integrates his changes, he will not insert bugs in the software, or,
“break the code”, as informally characterized by the MVP
developers. Another part of the process prescribes that, after
checking-in files in the repository, a developer must send e-mail
to the software development mailing list describing the problem
report associated with the changes, the files that were changed,
the branch where the check-in will be performed among other
pieces of information.

The MVP software process also prescribes the usage of code
reviews before the integration of any change, and design reviews
for major changes in the software. Code reviews are performed by
the manager of each process. Therefore, if a change involves, e.g.
two processes, a developer’s code will be reviewed twice: one by
each manager of these two processes. On the other hand, design
reviews are recommended for changes that involve major
reorganizations of the source code. Their need is decided by the
software manager usually during the bi-weekly software
developers meeting (called pre-design meetings).

3.3 Software Development Tools: CM and Bug
tracking
MVP developers employ two software development tools for
coordinating their work: a configuration management system and
a bug tracking system. Of course, other tools are used such as
CASE tools, compilers, linkers, debuggers and source-code
editors, but the CM and bug-tracking tools are the primary means

of coordination [5] [12] [14]. These tools are integrated so that
there is a link between the PR’s (in the bug tracking system) and
the respective changes in the source-code (in the CM tool). Both
tools are provided by one of the leader vendors in the market.

A CM tool supports the management of source-code dependencies
through its embedded building mechanisms that indicate which
parts of the code need to be recompiled when one file is modified.
To be more specific, CM tools support both compile-time
dependencies, i.e., dependencies that occur when a sub-system is
being compiled; and build-time dependencies that occur when
several sub-systems or the entire system is being linked [12]. A
bug tracking tool, when associated with the CM tool, supports the
tracking of changes performed in the source code during the
development effort.

It is important to mention that the MVP team employs several
advanced features of the CM tool such as triggers, techniques to
reduce compilation time, labeling and branching strategies.
Indeed, the branching strategy employed is one of the most
important aspects of a CM tool because it affects the work of any
group of software developers. This strategy is a way of deciding
when and why to branch, which makes the task of coordinating
parallel changes easier or more difficult [33]. According to the
nomenclature proposed by Walrad and Strom [33], the following
branching strategies are used by the MVP team: (1) branch-by-
purpose, where all bug fixes, enhancements and other changes in
the code are implemented on separated branches; (2) branch-by-
project, where branches are created for some of the development
projects; and (3) branch-by-release, where the code branches
upon a decision to release a new version of the product. The
branch-by-purpose strategy is employed by MVP developers in
their daily work, while the other strategies are only used by the
CM manager. In other words, developers create new branches for
each new bug fix or enhancement, while branches for projects and
releases are created by the manager only. The branch-by-purpose
strategy supports a high degree of parallel development but at the
cost of more complex and frequent integration work [33].
According to this strategy, each developer is responsible for
integrating his changes into the main code. This approach is often
called “push integration” [2]. After that, the changes are available
to all other developers. Therefore, if one bug is introduced, other
developers will notice this problem because their work will be
disrupted. Indeed, we observed and collected reports of different
instances of this situation. When one developer suspects that there
is a problem introduced by recent changes, he will contact the
author of the changes asking him or her to check the change, or
for more information about it.

4. METHODS
The first author spent eight weeks during the summer of 2002 as a
member of the MVP team. As a member of this team, he was able
to make observations and collect information about several
aspects of the team. He also talked with his colleagues to learn
more about their work. Additional material was collected by
reading manuals of the MVP tools, manuals of the software
development tools used, formal documents (like the description of
the software development process and the ISO 9001 procedures),
training documentation for new developers, problem reports
(PR’s), and so on.

All the members of the MVP team agreed with the author’s data
collection. Furthermore, some of the team members agreed to let
the intern shadow them for a few days so that he could learn about
their functions and responsibilities better. These team members
belonged to different groups and played diverse roles in the MVP
team: the documentation expert, some V&V members, leaders,
and developers. We sampled among MVP “processes”,
developers’ experience in software development and with MVP
tools (and processes) in order to get a broader overview of the
work being performed at the site. A subset of MVP group was
interviewed according to their availability. We again sampled
them according to the dimensions explained above. Interviews
lasted between 45 and 120 minutes. To summarize, the data
collected consists in a set of notes that resulted from
conversations, documents and observations based on shadowing
developers. These notes have been analyzed using grounded
theory techniques [31].

5. PRIVATE AND PUBLIC WORK IN
SOFTWARE DEVELOPMENT
As mentioned before, software development tools like
configuration management systems support private, public work,
and transitions between them. Despite using a CM system the
MVP team faced several problems when dealing with these
aspects. In this section, we present the formal and informal
approaches adopted by this team in order to properly perform their
work, i.e. develop software. In the sections that follow, we will
explore these situations separately: private work, the transition
from private to public, public work, and the transition from public
to private.

5.1 Private Work
Configuration management tools allow developers to work
privately through the implementation of workspaces and branches
[5]. These workspaces isolate the changes being created by one
developer from other parts of the code. In this case, a developer’s
‘work-in-progress’ is not shared with other developers.
Furthermore, these workspaces allow a developer to work without
being affected by the changes of other developers. Indeed, when
new changes are committed in the repository by other developers,
the CM tool lets the user decide if he or she wants to grab these
changes. In case one wants to incorporate the changes, he may
recompile the software using the embedded building mechanisms
on these tools. In case a developer does not want to incorporate
the changes, one can continue working and, if necessary,
recompile the software with the appropriate run-time options that
do not grab these new changes. Of course, this is a risky course of
action because it might lead the developer to work with an
outdated version of the files, which might potentially make his
work less ineffective.

Mechanisms embedded in CM tools are able to identify syntactic
conflicts between the developer’s ‘work-in-progress’ and the
changes committed into the repository, reporting whether or not
the ‘work-in-progress’ is affected by these changes. However,
because CM systems rely on syntactic features of the domain such
as files, suffixes and lines of code, they can not identify semantic
conflicts [11]. This means that except for these conflicts, current
configuration management systems provide extensive and

automated support for maintaining the isolation between the work
performed by one person from other’s work [5].

However, when software developers engage in parallel
development, problems arise in the CM tool. Parallel
development happens when more than one developer needs to
make changes in the same file. This means that the same file is
checked-out by different developers and all of them are making
changes in the different copies of this file in their respective
workspaces. As one might imagine, parallel development might
lead to conflicts. They might occur when one developer checks-in
his changed version of the file back in the repository, because the
versions of the other developers will become outdated. In this
case, the changes of these developers might become inappropriate
because they are based on a code that is not the latest. To solve
this problem, a developer needs to update his version of the file
by merging the other developer’s changes into his code. The
developers term this operation “back merging”; in CM
terminology, it is named “synchronization of workspaces” or
“import of the changes”. Conflicting changes are more likely to
occur in files that are accessed by several developers at the same
time. Indeed, in the MVP software some files are used to describe
programming language structures that are used all over the code.
This means that several different developers often change these
files. In this case, “back merges” are problematic because CM
tools face difficulties when they need to perform several merges at
the same time. To overcome this problem not avoiding parallel
development, MVP developers adopted a strategy to deal with
these files: they perform “partial check-in’s”, which consist of
checking-in some of the files back in the repository, even when
the developers have not finished all their changes yet. This
strategy reduces the number of “back merges” needed, therefore
overcoming the limitations of CM tools. In addition, they
minimize the likelihood of conflicting changes.

In addition to “partial check-in’s”, MVP developers adopt a
different practice during their private work: they “speed-up” to
finish some of their activities during the development process to
avoid merging. This does not happen all the time though, it occurs
only when MVP developers are testing their changes. This activity
is performed right before the check-in operations. As one
developer plainly pointed out: “This is a race!”. According to the
software development process, this testing is necessary to
guarantee that the changes will not introduce bugs into the
system. We observed that, this testing is very informal: developers
will sit on the V&V laboratory and compare the current version of
MVP with the one with changes. MVP developers do not use
more formal techniques, such as regression testing techniques, at
this moment. These will be used by the V&V staff before creating
a new release of the software.

In contrast, the bug tracking tool does not provide support for the
private work of software developers. All the operations made in
the problem reports managed by this tool are publicly accessible
to all other software developers. For example, when a developer
is assigned a bug, he needs to fill some information about the bug
indicating how he will proceed to fix that bug. MVP developers
usually write the information to be added to the bug tracking
system outside the tool in a private file only accessible by
themselves. Eventually, this information is added to the bug-
tracking tool by the developer, which will automatically make it

available to all members of the MVP team. Furthermore, the tool
does not avoid that two developers work on the same PR, as
reported by one of the developers. Developers themselves have to
deal with this problematic situation. The MVP group tries to
avoid this problem through the software development process,
which prescribes that the software manager is the one responsible
for assigning PR to developers. Any assignment needs the
approval of the manager. Organizational rules however interact
with this process. According to these rules, the software manager
can not assign work to the contractors working for the MVP
group. This assignment has to be done to the manager of the
contracting company, who will be responsible for assigning the
work to the developers.

5.2 Moving from Private to Public Work
In this section we discuss the work practices used by the MVP
team to support the transition from private to public work, as well
as how the software development tools used by the MVP team
support this transition. This transition might occur in two
situations: when a developer asks for code reviews, or informal
comments, in his code; or when a developer commits his work
(source-code changes) into the CM repository.

In the first case, MVP developers want to grant others access to
their code, meaning that the work will be visible to them so that
they can comment on it. In this case, MVP developers simply
need to change a setting in their CM workspaces. Although their
work is now public, it is not shared by the other developers,
meaning that it will not impact other developers work.

In the second case, after a developer commits his work into the
CM repository, this work is made public and shared meaning that
it is visible and might impact the work of the other developers. In
order to publicize his work, the author of the changes has to
perform, at least, four different operations1:

1. Check-in the files that he wants to publish in his own
branch;

2. Check-out the same set of files from the baseline;
3. Merge his changed files with the checked-out files

available in the baseline; and
4. Check-in the new files generated by the merging

operation into the baseline.

From the technical point of view, these tasks are not difficult
since check-in’s, check-out’s and merges are typical operations in
CM systems and, therefore, supported by nearly every tool in the
market. This means that CM systems provide adequate support
for these operations. However, this support is problematic when a
developer is, or was, engaged in parallel development. As
mentioned in the previous section, MVP developers adopt “partial
check-in’s” to deal only with files with high levels of parallel
development. Other files are not “partially checked-in”. In this
case, if a developer is engaged in parallel development and other
developers had checked-in the same files in the baseline before
him, then he will need to perform “back merges” before merging

1 These operations might be different in other software

development teams since they depend on the branching strategy
adopted by the team.

his code into the baseline. “Back merges” are supported by the
CM tool through the presentation of version trees of the files
being merged, which allows developers to identify the need for
this task through the observation of the versions on this tree. After
that, the operation is a simple merge. Again, the situation
becomes problematic only if several “back merges” need to be
performed.

During the transition from private to public, there is nothing that
other developers need, or are able to do to facilitate this process.
The work of performing the transition needs to be done by the
author of the changes that will be publicized. However, because of
the several inter-dependencies that exist among the several parts
of the software (e.g., source-code, manuals, specifications, design
documents, and so on), this does not mean that these developers
will not be affected by the transition. Indeed, in order to minimize
these effects, the developer who is going to perform the transition
follows a set of formal and informal practices to facilitate the
management of the interdependencies. These practices need to be
adopted because the tool support to the developers affected by the
private work being publicized is minimal. These formal and
informal practices are described below.

The Software Development Process

As mentioned before, the software development process adopted
by the MVP team prescribes the usage of code and design
reviews. One of the reasons reported by the MVP developers for
using these formal reviews is the possibility of evaluating the
impact that the changes under review will have on the rest of the
code. The most experienced software developer of the team, for
example, reported that design reviews are used to guarantee that
changes in the code do not “break the architecture” of the MVP
software. By breaking the architecture, she means writing code
that violates some of the design decisions embedded in the MVP
software. Code reviews, on the other hand, are responsibility of
process leaders, who can evaluate the impact that the changes will
introduce in their processes before they were committed in the
main repository. This helps each and every process leader to
coordinate the work of other developers working in the same
process.

E-mail Conventions

In addition to formal reviews, the MVP process prescribes that
after checking-in code in the repository, a developer needs to send
an e-mail about the new changes being introduced in the system to
the software developers’ mailing list (see section 3.2). However,
we found out that MVP developers send this e-mail before the
check-in. Moreover, MVP developers add a brief description of
the impact that their work (changes) will have on other’s work in
this e-mail sent to the software developers’ mailing list. By
adopting these practices, MVP developers allow their colleagues
to prepare for and reflect about the effect of their changes. This is
possible because all MVP developers are aware of some of the
interdependencies in the source-code, but not all of them. As an
example of this ‘preparation’, developers might send e-mail to the
author of the changes asking him to delay their check-in, walk to
the co-worker’s office to ask about these changes or, if the
changes have already been committed, browse the CM and bug
tracking systems to understand them. The following list presents
some comments sent by MVP developers:

“No one should notice.”
“[description of the change]: only EDP users will notice
any change.”
 “Will be removing the following [x] files. No effect on
recompiling.”
“Also, if you recompile your views today you will need
to start your own [z] daemon to run with live data.”
“The changes only affect [y] mode so you shouldn't
notice anything.”
“If you are planning on recompiling your view this
evening and running a MVP tool with live [z] data you
will need to run your own [z] daemon.”

These e-mails are also important because they tell (or remind)
developers that they have been engaged in parallel development.
Often, developers do not know that this is happening2. The
information in the e-mail is usually enough to tell the developer if
he needs to incorporate these changes right away in order to
continue his work, or if he can wait until he is ready for check-in.
In both cases, the developer needs to “merge back” the latest
changes into his version of the file.

Sending e-mail before a check-in is also used by other developers
to support expertise identification, and as a learning mechanism.
Developers associate the author of the e-mails describing the
changes with the “process” where the changes are being
performed. In other words, MVP developers assume that if one
developer constantly and repeatedly performs check-ins in a
specific process, it is very likely that he is an expert on that
process. Therefore, if another developer needs help with that
process he will look for him for help:

“[talking about a bug in a process that he is not expert]
(…) I don’t understand why this behaves the way it
does. But, most of these PR’s seem to have John’s name
on it. So you go around to see John. So, by just by
reading the headline of who does what, you kind of get
the feeling of who’s working on what (…).So they [e-
mails] tend to be helpful in that aspect as well. If you’ve
been around for ten years, you don’t care, you already
know that [who works with what], but if you’ve been
here for two years that stuff can really make difference
(…)”

On the other hand, the fact that developers read e-mails sent by
other developers to assess the impact of others’ changes in their
code contributes to their learning experience within MVP. Note
that developers who reported the aspects described in this section
had little experience working at MVP: the first with 2 years and
the second with 2 ½ months.

Problem Reports

The problem reports (PRs) of the bug-tracking tool are used by
different members of the MVP team who play diverse roles in the
software development process. Basically, when a bug is

2 Differently than the developers reported by Grinter [14], before

checking-out a file, they do not check the version tree that
displays information about other developers working on the
same file.

identified, it is associated with a specific PR. The tester who
identified the problem is also responsible for filling in the PR the
information about ‘how to repeat’ it. This description is then used
by the developer assigned to fix the bug to learn and repeat the
circumstances (adaptation data, tools and their parameters) under
which the bug appears. In other words, the information provided
by the tester is then used by the MVP developer to locate, and
eventually fix the bug. After fixing the bug, this developer must
fill a field in the PR that describes how the testing should be
performed to properly validate the fix. This field is called ‘how to
test’. This information is used by the test manager, who creates
test matrices that will be later used by the testers during the
regression testing. The developer who fixes the bug also indicates
in another field of the PR if the documentation of the tool needs to
be updated. Then, the documentation expert uses this information
to find out if the manuals need to be updated based on the
changes the PR introduced. Finally, another field in the PR
conveys what needs to be checked by the manager when closing it.
Therefore, it is a reminder to the software manager of the aspects
that need to be validated.

In other words, PR’s provide information that is useful for
different members of the MVP team according to the roles they
are playing. They facilitate the management of interdependencies
because they provide information to MVP developers that help
them in understanding how their work is going to be impacted by
the changes that are going to be checked-in the repository.

Holding check-in’s

As mentioned earlier, MVP developers add a brief description of
the impact of their changes to the e-mail sent to the developers
before checking-in any code. Two types of impact statements are
used more often than others: changes in run-time parameters of a
process, and the need to recompile parts or the whole source code.
The former case is important because other developers might be
running the process that will be changed with the check-in. The
latter case is used because when a file is modified, it will be
recompiled, as well as, the other files that depend on it and this
recompilation process is time-consuming, up to 30 to 45 minutes.
Developers are aware of the delay that they might cause to others.
Therefore, they hold check-in’s until the evening to minimize the
disturbance that they will cause. According to one of the
developers:

 “(…) people also know that if they are going to check-in a
file, they will do in the late afternoon … You’re gonna do a
check-in and this is gonna cause anybody who recompiles that
day have to watch their computer for 45 minutes (…) and
most of the time, you’re gonna see this coming at 2 or 3 in the
afternoon, you don’t see folks (….) you don’t see people doing
[file 1] or [file 2] checking-in at 8 in the morning, because
everybody all day is gonna sit and recompile.”

The transition from private work, then, is recognized as a point at
which the work of a single developer can impact the work of
others. Developers’ orientation is not simply towards the artifacts
but towards the work of the group. The subtlety with which the
transition is managed reflects this consideration.

5.3 Public Work
The work of one developer becomes public when it is visible to
all other co-workers. This happens in two different circumstances:
when a developer changes the settings of his workspaces to grant
others access to his code and after a developer commits his
changes into the repository of the CM tool. These situations raise
the question of how the MVP developers handle the new public
work (changes)?

In the former case, the work is public but not shared, which
means that it is not going to affect other developers’ work.
Therefore, MVP developers do not need to take any step in order
to handle the public work, because it will not affect them.
However, in the second case, MVP developers might need to
adapt their work based on these changes. Indeed, MVP developers
might need to recompile their changes (work) in case they choose
to incorporate the new public work or they might need to change
the run-time parameters of a process that was altered by the
changes. Based on our data, we found out that the configuration
management tool provides some help to MVP developers handle
this situation. As mentioned before, these tools have building
mechanisms that help MVP developers, upon request, to
incorporate the new changes and identify syntactic conflicts
between the developer’s ‘work-in-progress’ and the new changes.
However, these tools are not able to detect semantic conflicts
since they are purposely created to be independent of
programming languages [11].

The bug tracking tool, on the other hand, provides support for
public work because all the operations performed in the problem
reports are automatically visible to all MVP developers. In
addition, this tool implements some accounting features that
record the history of a PR including all operations performed on
each one of them.

5.4 Moving from Public to Private Work, or
“Breaking the code”
According to Walrad and Strom [33], the branch-by-purpose
strategy adopted by the MVP team (see section 3.3) assures
continual integration of the code, therefore minimizing problems.
However, this strategy needs to be complemented by some form of
notification that informs all developers that a check-in happened
(and therefore that some integration took place). As mentioned
before, this is achieved in the MVP team through the e-mail
notification sent before the check-in’s. Therefore, whenever a new
change is introduced in the repository, all developers are notified
about it. This affords an easy detection of problems caused by the
introduced changes. In other words, if a change introduces a bug
in the software, other developers might be able to detect it
because: (i) they are aware that a change was introduced in the
code by another developer; and (ii) they usually integrate the new
introduced changes in their own work. If any abnormal behavior is
identified in the software after a check-in, whoever identified that
will contact the author of the check-in to verify if the problem is
happening because of the check-in. If that is the case, the software
is called “broken” and the code that was checked-in must be
removed from the repository, corrected, and checked-in again
later. In other words, the publicly available work needs to be
made private again. The CM tool supports this transition because

it provides rollback facilities that allow one to remove committed
changes from the repository.

6. DISCUSSION
The notions of private and public work and workspaces are well
known ones in the design of collaborative systems. However, our
empirical observations draw attention to the complex set of
practices that surround the transition between public and private.
Private information has public consequences, and vice versa.

The different formal and informal work practices arise in the
MVP team, especially, because of the interdependencies among
the different artifacts created during the software development
process. Indeed, these interdependencies make the process of
publicizing work so important. A developer can not simply
carelessly publicize his work, because this will cause a large
impact in other developers’ work: some of them will need to go
through their testing again, others will spend a lot of time
recompiling their changes, others can need to change their own
code in order to adapt the new checked-in code, and so on.

Since the MVP developers are aware of some of these
interdependencies, they explicitly work to minimize problems that
emerge in the relationship between their different working needs.
Artifacts such as problem reports facilitate the management of
interdependencies of developers from the different groups and
with different roles. Problem reports are “boundary objects” in the
sense of Star and Griesemer [29]; objects whose common identity
is robust enough to support coordination, but whose internal
structure, meaning, and consequences emerge from local
negotiations between groups. Viewing PR’s as boundary objects
draws attention to their role in managing loosely-coupled
coordination, and how each developer is able to interpret the
information in the PR’s that is useful to their current work.
Critically, this is achieved without changing the identity of each
PR along the whole software development process. Indeed, each
PR keeps the same unique identifier.

Interestingly, these formal and informal work practices require
that the author of the changes performs most of the additional
work. However, this author will not get any benefit from that.
Indeed, sending e-mail notifications, holding check-in’s, and
filling the appropriate PR’s fields during the implementation are
all operations performed by the author of the changes and none of
them facilitate or improve his work. There is one developer
performing the extra-work who does not gain any benefit of this
extra work, and fifteen other developers who benefit from his
work3. That is exactly one of the situations that lead groupware
applications to fail [15]. In this particular software development
team though, this does not happen. MVP developers are aware of
the extra-work that they need to perform, but they are also aware
that this same extra-work is going to be performed by the other
developers when necessary, and this is going to help each and
every one of them in performing their tasks.

On the other hand, MVP developers also adopt informal practices
during their private work. The first one, called “partial check-

3 The MVP group is composed of 16 developers. One of them is

performing the check-in; therefore 15 others are being helped by
the extra-work.

in’s”, is especially important because it is used to handle files
with a high degree of parallel development and changes in these
files positively correlate with the number of defects [23]. “Partial
check-in’s” are variations of the formal software development
process, which establishes that check-ins only will be performed
when the entire work is done. They are necessary because of the
software development tools adopted are unable to properly handle
merging in these files. This is the same reason, according to
Grinter [14], that led other team of software developers to either
avoid parallel development or rush to finish their work. On the
other hand, MVP developers rush because they do not want to
repeat their testing when another developer checks-in some code
into the repository. In both studies, developers describe their
dilemma: they want to produce high-quality code, but they also
want to finish fast their changes.

 Holding onto check-in’s is another informal approach adopted by
the MVP developers during their private work. It is adopted
because they are aware of some of the existing interdependencies
in the software and they want to minimize the impact that their
changes will cause on others’ work. To be more specific, they
understand that some changes cause a lot of recompilation, which
might lead other developers to spend time “watching” the
recompilation.

All this extra-work performed by the different members of the
MVP team is another form of articulation work [27] that occurs in
cooperative software development. It is different from the
recomposition work [13], which is the coordination required to
assemble software development artifacts from their parts.
Recomposition work focuses on choosing the right components to
create a software artifact due to source-code dependencies, while
this extra work that we report focuses on the management of all
interdependencies that exist in a software development effort.

After any code is checked-in into the CM repository, the other
MVP developers are able to detect problems, or, detect if the
MVP software is “broken”. As noted in other settings such as ship
bridges [19] or aircraft cockpits [20], this can be achieved because
work artifacts and activities are visible to all. By creating a public
space, the CM repository supports collective error detection and
correction.

7. IMPLICATIONS FOR TOOLS
Software engineers have been developing tools to help co-workers
in analyzing the impact of others’ work in their own work. In this
case, the support is provided to the developers after the transition
from private to public work has been made. This approach, called
change impact analysis [3], uses several techniques. One example
is dependency graph approaches, which focus on determining the
impact of the changed code (product) in other’s part of the source
code. These approaches are usually based on program
dependences, which are syntactic relationships between the
statements of a program representing aspects of the program’s
control flow and data flow [24]. In other words, they focus only in
determining the impact of the changes in the product in the rest of
the cooperative effort. Although powerful, these techniques are
also computationally expensive and very time-consuming to be
used by developers in their daily work. Consequently, they do not
completely support the transition from private to public work, and
as we’ve seen, this is a very subtle step in cooperative software

development. Although these techniques have their limitations,
they are evidence that the dependencies between developers'
working activities are a cause for concern and attention. We argue
that other cooperative efforts, especially those with several
interdependencies, could greatly benefit from such approaches, if
they were arranged to support the emergence of public
information.

Recent approaches in software engineering attempt to provide
useful information to developers so that they can better
coordinate. In other words, these approaches try to increase the
awareness [7] of software engineers about the work of their
colleagues. They differ, however, on the type of information that
is provided. A first approach is based on the idea of facilitating
the dissemination of public information by collocating software
developers in warrooms [32]. In this case, companies expect to
achieve the same advantages that the public availability of others’
actions has brought to other settings such as ship bridges [19],
aircraft cockpits [20], transportation control rooms [17] and city
dealing rooms [16]. Indeed, early results of this approach have
been encouraging [32]. However, there are practical limitations in
the size of the teams that can be collocated, which suggests that
tool support is still necessary. Indeed, new tools like Palantir [25]
and Night Watch [22] adopt a different approach that focuses on
constantly publicizing information(like CM commands) collected
from a CM workspace to other workspaces that are accessing the
same files. In this case, instead of focusing in the transition
between private and public aspects of work, these tools basically
eliminate the private work by making all aspects of the work
publicly available to others. However, as discussed in section 2,
the need for privacy and for controlling the release of private
information is an important aspect in any social setting; which
therefore needs to be addressed in the design of cooperative tools.

Finally, our data suggests that a software developer might use
different sources of information at different times in order to
assess the current status of the work. As mentioned before, the
MVP team uses information from e-mail messages, the
configuration management tool and the bug tracking system. By
reading e-mail, MVP developers are aware of future changes in
the CM tool because somebody else is going to check-in
something. By inspecting only the CM tool, a developer can be
aware of partial check-ins in the repository that are not reported
by e-mail. And finally, the bug-tracking tool, through its PR’s,
provides information about how a developer’s work is going to be
impacted by the problem report associated with the check-in.
These are three different tools that a MVP developer has to use.
We believe that a possible improvement is to use event
mechanisms (such as event-notification servers) to integrate these
different sources of information, and then provide a unique
interface and tool to assess the relevant information. Furthermore,
abstraction techniques [18] could be employed to generate high-
level information (e.g., status of the work) from low-level
information like recent check-ins and check-outs, e-mails
exchanged among software developers, information added to the
bug-tracking tool, etc. This is an interesting research area that we
plan to explore.

8. CONCLUSIONS AND FUTURE WORK
This paper examined the transitions between private and public
work based on empirical material collected from a large-scale
software development effort. The team studied, called MVP, uses
mostly three tools to coordinate their work: a configuration
management (CM) tool, a bug-tracking system, and e-mail. These
tools provide support for private and public work, as well as some
technical support that facilitates the transition from the former
aspect to the latter. However, MVP developers also adopted a set
of formal and informal work practices to manage this transition.
These transitions are necessary to facilitate the management of the
interdependencies among the different software artifacts. The
following practices were identified and described in the paper:
partial check-in’s, holding onto check-in’s, problems reports
crossing team boundaries, code and design reviews, “speeding-
up” the process, and finally, the convention of adding the
description of the impact of the changes in the e-mail sent to the
group. These practices suggest that analytical attention needs to
be given to these transitions in order to enhance our
understanding of cooperative work. Furthermore, computational
support also needs to be provided so that this task can occur
properly.

We plan to study other software development teams in order to
understand how they deal with the aforementioned transition and
their work practices to perform that. By doing that, we expect to
learn important characteristics that can help us in understand
other cooperative efforts.

9. ACKNOWLEDGMENTS
The authors thank CAPES (grant BEX 1312/99-5) and
NASA/Ames for the financial support. Effort sponsored by the
Defense Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory, Air Force Materiel Command, USAF,
under agreement number F30602-00-2-0599. Funding also
provided by the National Science Foundation under grant numbers
CCR-0205724, 9624846, IIS-0133749 and IIS-0205724. The U.S.
Government is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research Projects
Agency (DARPA), the Air Force Laboratory, or the U.S.
Government.

10. REFERENCES
[1] Ackerman, M. S., "The Intellectual Challenge of CSCW:

The Gap Between Social Requirements and Technical
Feasibility," Human-Computer Interaction, vol. 15, pp.
179-204, 2000.

[2] Appleton, B., Berczuk, S., et al., "Streamed Lines:
Branching Patterns for Parallel Software Development,"
vol. 2002, 1998.

[3] Arnold, R. S. and Bohner, S. A., "Impact Analysis -
Towards a Framework for Comparison," International
Conference on Software Maintenance, pp. 292-301,
Montréal, Quebec, CA, 1993.

[4] Bowers, J., "The Work to Make the Network Work:
Studying CSCW in Action," Conference on Computer-
Supported Cooperative Work, pp. 287-298, Chapel Hill,
NC, USA, 1994.

[5] Conradi, R. and Westfechtel, B., "Version Models for
Software Configuration Management," ACM Computing
Surveys, vol. 30, pp. 232-282, 1998.

[6] Curtis, B., Krasner, H., et al., "A field study of the
software design process for large systems,"
Communications of the ACM, vol. 31, pp. 1268-1287,
1988.

[7] Dourish, P. and Bellotti, V., "Awareness and Coordination
in Shared Workspaces," Conference on Computer-
Supported Cooperative Work (CSCW '92), pp. 107-14,
Toronto, Ontario, Canada, 1992.

[8] Dourish, P. and Bly, S., "Portholes: Supporting Distributed
Awareness in a Collaborative Work Group," ACM
Conference on Human Factors in Computing Systems (CHI
'92), Monterey, CA, 1992.

[9] Ellis, C. A., Gibbs, S. J., et al., "Groupware: Some issues
and experiences," Communications of the ACM, vol. 34,
pp. 38-58, 1991.

[10] Erickson, T. and Kellogg, W. A., "Social Translucence: An
Approach to Designing Systems that Support Social
Processes," Transactions on HCI, vol. 7, pp. 59-83, 2000.

[11] Estublier, J., "Software Configuration Management: A
Roadmap," Future of Software Engineering, pp. 279-289,
Limerick, Ireland, 2001.

[12] Grinter, R., "Supporting Articulation Work Using
Configuration Management Systems," Computer Supported
Cooperative Work, vol. 5, pp. 447-465, 1996.

[13] Grinter, R. E., "Recomposition: Putting It All Back
Together Again," Conference on Computer Supported
Cooperative Work (CSCW'98), pp. 393-402, Seattle, WA,
USA, 1998.

[14] Grinter, R. E., "Using a Configuration Management Tool to
Coordinate Software Development," Conference on
Organizational Computing Systems, pp. 168-177, Milpitas,
CA, 1995.

[15] Grudin, J., "Why CSCW applications fail: Problems in the
design and evaluation of organizational interfaces," ACM
Conference on Computer-Supported Cooperative Work, pp.
85-93, Portland, Oregon, United States, 1988.

[16] Heath, C., Jirotka, M., et al., "Unpacking Collaboration:
the Interactional Organisation of Trading in a City Dealing
Room," Third European Conference on Computer-
Supported Cooperative Work, pp. 155-170, Milan, Italy,
1993.

[17] Heath, C. and Luff, P., "Collaboration and Control: Crisis
Management and Multimedia Technology in London
Underground Control Rooms," Computer Supported
Cooperative Work, vol. 1, pp. 69-94, 1992.

[18] Hilbert, D. and Redmiles, D., "An Approach to Large-scale
Collection of Application Usage Data over the Internet,"
20th International Conference on Software Engineering
(ICSE '98), pp. 136-45, Kyoto, Japan, 1998.

[19] Hutchins, E., Cognition in the Wild. Cambridge, MA: The
MIT Press, 1995.

[20] Hutchins, E., "How a Cockpit Remembers its Speeds,"
Cognitive Science, vol. 19, pp. 265-288, 1995.

[21] Mark, G., Fuchs, L., et al., "Supporting Groupware
Conventions through Contextual Awareness," European
Conference on Computer-Supported Cooperative Work
(ECSCW '97), pp. 253-268, Lancaster, England, 1997.

[22] O'Reilly, C., Morrow, P., et al., "Improving Conflict
Detection in Optimistic Concurrency Control Models,"
11th International Workshop on Software Configuration
Management (SCM-11), Portland, Oregon, 2003 (to
appear).

[23] Perry, D. E., and, H. P. S., et al., "Parallel Changes in
Large-Scale Software Development: An Observational
Case Study," ACM Transactions on Software Engineering
and Methodology, vol. 10, pp. 308-337, 2001.

[24] Podgurski, A. and Clarke, L. A., "The Implications of
Program Dependencies for Software Testing, Debugging,
and Maintenance," Symposium on Software Testing,
Analysis, and Verification, pp. 168-178, 1989.

[25] Sarma, A., Noroozi, Z., et al., "Palantír: Raising Awareness
among Configuration Management Workspaces," Twenty-
fifth International Conference on Software Engineering, pp.
444-453, Portland, Oregon, 2003.

[26] Schmidt, K., "The critical role of workplace studies in
CSCW," in Workplace Studies : Recovering Work Practice
and Informing System Design, P. Luff, J. Hindmarsh, and
C. Heath, Eds.: Cambridge University Press, 2000, pp.
141-149.

[27] Schmidt, K. and Bannon, L., "Taking CSCW Seriously:
Supporting Articulation Work," Journal of Computer
Supported Cooperative Work, vol. 1, pp. 7-40, 1992.

[28] Sellen, A. J. and Harper, R. H. R., The Myth of the
Paperless Office. Cambridge, Massachusetts: The Mit
Press, 2002.

[29] Star, S. L. and Griesemer, J. R., "Institutional Ecology,
Translations and Boundary Objects: Amateurs and
Professionals in Berkeley's Museum of Vertebrate
Zoology.," Social Studies of Science, vol. 19, pp. 387-420,
1989.

[30] Stefik, M., Foster, G., et al., "Beyond the Chalkboard:
Computer Support for Collaboration and Problem Solving
in Meetings," Communications of the ACM, vol. 30, pp.
32-47, 1987.

[31] Strauss, A. and Corbin, J., Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded
Theory, Second. ed. Thousand Oaks: SAGE publications,
1998.

[32] Teasley, S., Covi, L., et al., "How Does Radical
Collocation Help a Team Succeed?," Conference on
Computer Supported Cooperative Work, pp. 339-346,
Philadelphia, PA, USA, 2000.

[33] Walrad, C. and Strom, D., "The Importance of Branching
Models in SCM," IEEE Computer, vol. 35, pp. 31-38,
2002.

[34] Whittaker, S. and Schwarz, H., "Meetings of the Board:
The Impact of Scheduling Medium on Long Term Group
Coordination in Software Development," Computer
Supported Cooperative Work, vol. 8, pp. 175-205, 1999.

