
tinuously

sent an

les and

, called

tinuously

ilability

runtime

r maintain

 help us

to preserve

d with

olution.

 overall

re: system

ts of the

al role of

 our tool

runtime

On the Role of Software Architectures in Runtime System Reconfiguration

Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425 USA

{peymano,taylor}@ics.uci.edu

Peyman Oreizy Richard N. Taylor
ABSTRACT

Society’s increasing dependence on software-intensive systems is driving the need for dependable, robust, con

available systems. Runtime system reconfiguration is one aspect of achieving continuous availability. We pre

architecture-based approach to runtime software reconfiguration, highlighting the beneficial role of architectural sty

software connectors in facilitating runtime change. We conclude by describing the implementation of our tool suite

ArchStudio, that supports runtime reconfiguration using our architecture-based approach.

1. INTRODUCTION

Society’s increasing dependence on software-intensive systems is driving the need for dependable, robust, con

available systems. The ability to reconfigure a system at runtime is one critical aspect of achieving continuously ava.

Although operating systems and programming languages have provided programmers with the ability to evoke

software changes since the 1960’s, such mechanisms do not guarantee that a change will have the desired effect o

application integrity. It is therefore imperative that we develop approaches to runtime system reconfiguration that

(a) determine what to change, (b) facilitate reasoning about the consequences of a change, and (c) govern change

application integrity. Without this, the risks introduced by runtime reconfiguration may outweigh those associate

shutting down and restarting the system for reconfiguration.

Software architectures [1, 2] have the potential to provide a foundation for systematic runtime software ev

Architectures shift development focus away from lines-of-code toward coarse-grained components and their

interconnection structure. This enables designers to abstract away unnecessary details and focus on the big pictu

structure, interactions among software components, assignment of software components to processing elemen

execution environment, and potentially runtime reconfiguration.

This paper presents an architecture-based approach to runtime software reconfiguration, highlighting the benefici

architectural styles and software connectors in facilitating runtime change. We also describe the implementation of

suite, called ArchStudio, that supports runtime reconfiguration using our approach.

A unique benefit of our approach is that it enables system architects to specify several critical aspects of

perties of

t be

ange to

igh those

stan-

ge by

d bind-

esigner

uration

xample,

 system

lling its

change.

untime

n that
reconfiguration separate from application-specific behavior. Furthermore, our approach does not dictate particular

strategies for implementing or governing runtime reconfigurable systems. Instead, it permits architects to utilize the

strategies most appropriate to the application domain and requirements.

The paper is organized as follows. Section 2 describes key aspects of runtime change management. Section 3

describes our architecture-based approach to runtime software reconfiguration. Section 4 identifies research areas

relevant to this work and Section 5 summarizes the contributions of the paper.

2. MANAGING RUNTIME CHANGE

While runtime software change is commonly available in operating systems (for example, using dynamic link

libraries in UNIX and Microsoft Windows), component object technologies, and programming languages, these

facilities all share a major shortcoming—they do not ensure the consistency, correctness, or other desired pro

runtime change. Change management is a critical aspect of runtime system evolution that: identifies what mus

changed, provides the context for reasoning about, specifying, and implementing change, and controls ch

preserve system integrity. Without change management, the risks engendered by runtime change may outwe

associated with shutting down and restarting a system for reconfiguration.

Our ability to manage change in large, complex systems hinges on several critical factors:

1. Change application policy controls how a change is applied to a running system. A policy, for example, may in

taneously replace old functionality with new functionality. An alternative policy may gradually introduce chan

binding invocations subsequent to the change to the new functionality, while preserving previously establishe

ings to the old functionality. Ideally, change application policy decisions should be made by the application d

based on their intimate knowledge of the application domain and requirements, not by the runtime reconfig

methodology.

2. Change scope is the extent to which different parts of a system are affected by a change. One approach, for e

may stall the entire system during the course of a change. An alternative policy may insulate portions of the

not directly affected by a change. The designer’s ability to localize the effects of runtime change by contro

scope facilitates change management. The designer’s ability to ascertain change scope helps reason about

3. Separation of concerns captures the degree to which issues concerning functional behavior are isolated from r

change. The greater the separation, the easier it becomes to alter one without adversely affecting the other.

4. The level of abstraction at which changes are described impacts the complexity and quantity of the informatio

must be effectively managed.

In the next section, we evaluate our architecture-based approach against these factors.

tion

altered

 software

ided by

r

lication

at guide

s may be

ad data

 the input

used by

nested

ment of

runtime

 of (and

uration.

llowing
3. ARCHITECTURE-BASED RUNTIME SYSTEM RECONFIGURATION

We advocate an architecture-based approach to runtime software reconfiguration. Several direct benefits result when

managing change at the architectural level. First, control over change application policy and scope can be placed in the

hands of the system architect, where decisions can be made based on an understanding of the application requirements

(factor #1 and #2 above). Previous approaches to runtime change either dictate a particular policy or fail to separate

application-specific functionality from runtime modification. As a result, concerns over runtime change permeate

system design. Second, software engineers commonly use the system architecture when describing, understanding, and

reasoning about overall system behavior [1, 2]. Leveraging the engineer’s knowledge at this level of system abstrac

holds promise in helping manage runtime change (factor #4). Third, architectural connectors help separate application-

specific behavior from decisions regarding change application policy and scope, allowing them to be

independently (factor #3).

Each of the following three subsections focuses on one facet of our architecture-based approach to runtime

reconfiguration: architectural style, architectural connectors, and runtime support. We illustrate the benefits prov

each facet using the design of a video game application called KLAX1. Other applications implemented using ou

approach are described in [3] and [4].

3.1 Architectural style

Architectural styles are idiomatic patterns of system organization that characterize a particular app

domain [1,2]. In this way, architectural styles define a vocabulary for describing systems and a set of rules th

their construction. In cases where the descriptions and rules can be expressed formally, overall system propertie

derived from system organization. The pipe-and-filter style, for example, consists of filter components, which re

from input streams and produce data on output streams, and pipes, which bind the output stream of one filter to

stream of another. The pipe-and-filter style emphasizes sequential transformation of data, and is commonly

Unix shell programs and traditional compiler architectures.

Not all architectural styles are equally well suited for runtime system reconfiguration. For example, the

organization of behavior typified by layered systems and main program/subroutine styles complicates replace

deeply nested functionality. In contrast, event-based implicit invocation styles [5] are more amenable to

reconfiguration since (a) components are not directly bound to one another, and (b) a component is unaware

unaffected by) implicitly invoked components.

Our experience indicates that several characteristics of the C2 architectural style facilitate runtime reconfig

Although most of these characteristics are not unique to C2, our approach to combining them is. In the fo
1KLAX is a trademark of Atari Games.

e at the

 of the

tate, it

ow it.

 be
subsections, we briefly summarize the C2-style, present a C2-style architecture for the KLAX video game application,

and highlight characteristics of the C2-style that facilitate runtime reconfiguration.

3.1.1 C2 architectural style

The C2 architectural style2 can be informally summarized as a network of concurrent components bound together by

connectors, i.e., message routing devices, in accordance with a set of style rules. Components and connectors both have

a defined top and bottom. The top of a component may be connected to the bottom of a single connector and the bottom

of a component may be connected to the top of a single connector. No direct component-to-component links are

allowed. A connector may be connected to an unbounded number of other components and connectors. When two

connectors are attached to one another, it must be from the bottom of one to the top of the other (see Figure 1).

Components implement application behavior and may encapsulate functionality of arbitrary complexity, maintain

state information, and utilize multiple threads of control. The style does not place restrictions on the implementation

language or granularity of the components. It does require that all component communication occur by asynchronous

message exchange through connectors3. Furthermore, components cannot assume that they will execute in the same

address space as other components or share a common thread of control.

Central to the architectural style is a principle of limited visibility or substrate independence: a component within the

hierarchy can only be aware of components “above” it and is completely unaware of components which resid

same level or “beneath” it. Notions of above and below are used to support an intuitive understanding

architectural style. A component explicitly utilizes the services of components “above” it by sending a request message.

Communication with components below occurs implicitly; whenever a component changes its internal s

announces the change by emitting a notification message, which describes the state change, to the connector bel
2The description of the C2 architectural style presented here is summarized from [4] — a more detailed description of the style and its benefits can
found therein.
3 While the style does not forbid synchronous communication, the responsibility for implementing synchronous message passing resides with individ-
ual components. Ideally, the most common synchronous communication patterns would be implemented in the C2 class framework and reused across
applications.

C C C

C C

C C C

C

Component

Legend

Connector

Communication
Link

Figure 1. An abstract C2 architecture.
Jagged lines represent portions of the
architecture not shown.

[6]. The

implements

tion and

 override

 focus on

onents

ample, in

classes

inates

cution if

ge before

d. Most

lication,

vides four

to and
Connectors broadcast notification messages to every component and connector connected on its bottom side. Thus,

notification messages provide an implicit invocation mechanism, allowing several components to react to a single

component’s state change.

We have developed an extensible class framework to facilitate the implementation of C2-style applications

framework provides abstract classes for C2 concepts such as components, connectors, and messages, and

default behavior for interconnecting components and connectors, message passing, and component initializa

termination. Application components (and connectors) subclass from the appropriate framework classes and

the default behavior if necessary. This eliminates many repetitive programming tasks and allows developers to

application-specific issues.

The framework simplifies several aspects of supporting runtime reconfiguration in application-specific comp

and connectors. The subset of framework methods used for runtime change are presented in Figure 2. For ex

order to support custom initialization and termination behavior, the component (and connector) framework

implement a start() and finish() method. The start() initiates component execution. The finish() method term

component execution. The default implementation of the finish() method does not interrupt the component’s exe

the component is processing a message; it waits until the component has finished processing the messa

terminating it. Application components inherit these methods, but can replace or augment their behavior if desire

components, for example, override the start() method to synchronize their state with that of the rest of the app

and the handle() methods to respond to messages sent from other components. The C2 connector class pro

additional methods—addTopPort(), removeTopPort(), addBottomPort(), removeBottomPort()—for connecting

Figure 2. The external interfaces of C2
components, connectors, and architectures
that may be invoked during runtime.

Component Interface
start()
finish()
handle(request)
handle(notification)

Connector Interface
start()
finish()
handle(request)
handle(notification)
addTopPort()
removeTopPort()
addBottomPort()
removeBottomPort()

Architecture Interface
start()
finish()
handle(request)
handle(notification)
addComponent(component)
removeComponent(component)
isExistingComponent(component)
enumComponents()
addConnector(connector)
removeConnector(connector)
isExistingConnector(connector)
enumConnectors()
weld(connector, component)
weld(component, connector)
weld(connector, connector)
unweld(connector, component)
unweld(component, connector)
unweld(connector, connector)
isWelded(entity, entity)
entitiesBelow(entity)
entitiesAbove(entity)
enumWelds()

nent’s or

s in the

ponents

eworks

essage

Method

e game

en

.

disconnecting from components (or other connectors) during runtime.

The C2 architecture class is a subclass of the component class, thereby allowing the implementation of a component

to consist of a lower-level architecture. The architecture class also provides several short-hand methods for starting and

stopping all the components and connectors in the architecture, as well as methods for adding, removing, enumerating,

and determining the existence of components and connectors in the architecture. The weld() and unweld() methods

connect and disconnect components and connectors to one another, respectively. The entitiesBelow() and

entitiesAbove() methods enumerate the components and connectors directly connected to a specific compo

connector’s top or bottom port, respectively; and the enumWelds() method enumerates all the connection

architecture. The methods of the architecture class are typically used by architectural tools, but application com

could conceivably invoke the same methods.

Our class framework has been implemented in C++, Java, and partially in Ada. The C++ and Ada fram

implement a connector based on the Q interprocess communication (IPC) library [7] to enable distributed m

passing. A similar connector has been implemented in the Java framework using Java’s RMI (Remote

Invocation) mechanism.

3.1.2 Example

Figure 3 illustrates the C2-style architecture for the KLAX video game application. The user interface and th

rules are illustrated in Figure 4. The connectors, Connector1..6, are responsible for routing messages betwe

components. For our example, we assume that the connectors use an interprocess communication mechanism

Clock
Logic

Status
Logic

Tile
Artist

Graphics
Binding

Palette
Artist

Chute
ADT

Well
ADT

Palette
ADT

Relative Pos
Logic

Status
Artist

Well
Artist

Chute
Artist

Layout
Manager

Tile Match
Logic

Next Tile
Placing Logic

Status
ADT

Figure 3. The C2-style architecture for KLAX
in which three new components that
implement a high score list are added
during runtime.

High Score
ADT

High Score
Logic

High Score
Artist

Connector1

Connector2

Connector3

Connector4

Connector5

Connector6

KLAX Chute
Tiles of random colors

KLAX Palette
Palette catches tiles coming
down the Chute and drops
them into the Well.

KLAX Well
Horizontal, vertical, and

fall at random times

diagonal sets of three or
more consecutive tiles of
the same color are removed
and any tiles above them
collapse down to fill in the
newly-created empty spaces.

and locations.

KLAX Status Area

Figure 4. The KLAX user interface and
game rules.

The components that make up the KLAX game can be divided into three logical groups. The game state components

are at the top of the architecture. These components receive no notifications, but respond to requests and emit

notifications of internal state changes. The game logic components request changes of game state in accordance with

game rules and interpret the resulting notifications to determine the state of the game in progress. The artists also

receive notifications of game state changes, causing them to update their depictions. Each artist maintains a set of

abstract graphical objects which, when modified, send state change notifications in hope that lower-level graphics

components (in this case, GraphicsBinding) will render them. GraphicsBinding, in turn, translates user events, such as a

key press, into requests to the artist components.

We demonstrate the benefits of the C2 style for runtime reconfiguration by dynamically adding a high score list to

KLAX. Our high score list implementation adds three new components: a High Score ADT component that maintains a

persistent list of the top ten player scores and names, a High Score Logic component that decides when the high score

list needs to be changed, and a High Score Artist component that provides a user interface for displaying the list. Adding

the three components that implement the high score list feature is straightforward since they do not adversely affect the

other components in the architecture. The High Score Logic component waits until the Status ADT emits an

endOfGame() notification, at which time it queries the Status ADT for the final game score and the High Score ADT for

the list of high scores. If the final game score is greater than the lowest score in the high score list, it sends a

setNewHighScore(finalScore) request to High Score ADT, causing the ADT to update its internal state and broadcast a

state change notification on Connector1. High Score Artist receives this notification (since the notification is also

broadcast on Connector3) and responds by creating a dialog box for retrieving the players name and subsequently

sending a setPlayerName(name) request to the High Score ADT.

Removal of the components is also straightforward, though some care must be taken to ensure that each of the high

score components has the opportunity to complete any necessary processing. In the case of all three components, the

finish() method waits until the component is idle (i.e., it has completed message processing and is not waiting for a

response) before disconnecting the components from their respective connectors and terminating its execution.

In this particular application, removing the high score list components and discarding their state does not violate

application consistency so long as the components are idle. This is because no components in the application depend on

the services or state provided by these components. Such a restriction is clearly inadequate for some of the other

components, such as the Status ADT since several other components depend upon its functionality and internal state. The

other facets of our approach, described in subsequent sections of the paper, address runtime changes involving

components such as the Status ADT.

f, it is

ponent

subset of

ange will

plication

s of our

gely on

n artist

 designed

m [2]. In

 separate

eusable
3.1.3 Summary

The C2-style rules that facilitate runtime reconfiguration include:

• asynchronous message passing—Since all communication between components is achieved by exchanging asynchro-

nous messages through connectors, we avoid several subtle complexities inherent in supporting run-time change

where components utilize synchronous service requests. This restriction has occasionally made it more difficult to

implement particular component interactions, since the component must continue to respond to requests and notifica-

tions from other components while awaiting a notification message from a service request it has initiated. We are cur-

rently investigating strategies for implementing synchronous communication mechanisms on top of our

asynchronous mechanism without negatively impacting runtime change.

• no assumption of shared address space or shared thread of control—Since components cannot assume that they will

execute in the same address space as other components, complex component dependencies resulting from the use of

pointer variables and global variables are avoided. Since components do not share a common thread of control, com-

plexities involving control dependencies are similarly avoided.

• substrate independence—Since a component is unaware of components at the same level and “below” itsel

oblivious to runtime changes that involve these components. Conversely, a runtime change involving a com

can only affect components strictly “below” itself. Thus, substrate independence confines change scope to a

the architecture.

Although these characteristics facilitate runtime change, the C2-style does not, by itself, guarantee that a ch

leave the application in a consistent state. We have avoided adding style rules that ensure particular forms of ap

integrity since such rules would prevent the use of the style in some application domains. The other facet

approach address application integrity.

Generally, determining when, how, or even if a runtime change preserves application integrity depends lar

application-specific requirements. For example, the only constraint governing runtime component removal of a

component is that it be idle. Even this constraint may be unnecessary if the other components in the system are

to tolerate sudden component failures.

3.2 Architectural connectors4

Connectors are explicit architectural entities that bind components together and act as mediators between the

this way, connectors separate a component’s interfacing requirements from its functional requirements [8], and

component behavior from component interaction. This is especially important when constructing systems from r
4The roles connectors play in supporting runtime architectural change are summarized from [3].

off-the-shelf components, since the component designers cannot anticipate every context in which the component will

be used.

Connectors have been used for a wide variety of purposes, including: ensuring a particular interaction protocol

between components [9]; specifying communication mechanism independent of functional behavior, thereby enabling

components written in different programming languages and executing on different hosts to transparently

interoperate [8]; visualizing and debugging system behavior by monitoring messages between components [10]; and

integrating tools by using connectors as message broadcast buses [11].

Connectors play a central role in supporting several aspects of runtime change management. They can implement

different change application policies by altering the conditions under which newly added components are invoked. For

example, to support immediate component replacement, a connector can direct communication away from the old

component to the new component. To support a more gradual component replacement policy, a connector can direct new

service requests to the new component, while directing previously established service requests to the original

component. To support a policy based on replication, a connector can direct service requests to any member of a known

set of functionally redundant components.

Connectors can also be used as a means of localizing change. For example, if a component becomes unavailable

during the course of a runtime change, the connectors mediating its communication can queue service requests until the

component becomes available. As a result, other components are insulated from the change. Encapsulating change

application policy decisions within connectors lets designers specify the most appropriate policy based on application

requirements and in a manner independent of component behavior.

In the following subsections, we illustrate how a connector can implement a gradual change application policy within

the context of the KLAX application, and summarize the benefits of utilizing architectural connectors to support runtime

reconfiguration.

3.2.1 Example

Figure 5 depicts a subset of the C2-style architecture for the KLAX application in which a new Chute ADT

component, Chute ADT’, is to replace the existing Chute ADT component during runtime. Our example illustrates one

Figure 5. A subset of the KLAX architecture
illustrating the gradual replacement of the
Chute ADT component with Chute ADT’
component during runtime.

Clock
Logic

Chute
ADT

Well
ADT

Palette
ADT

Relative Pos
Logic

Tile Match
Logic

Next Tile
Placing Logic

Status
ADT

Connector1

Chute
ADT’

possible technique for replacing the component using a connector to implement a gradual change application policy.

Many other change application policies and implementation techniques are possible. In our example, we assume that

Connector1 has been specifically implemented to support this policy by the application designer. The general problem of

designing parameterized connectors that may be customized by different change application policies is a topic of future

work.

When Chute ADT’ is added and connected to the top of Connector1 as a replacement for Chute ADT, Connector1

directs subsequent addTile(tile) requests emitted from the Next Tile Placing Logic component to Chute ADT’. In this

way, new tiles are added to Chute ADT’ without affecting the other components in the architecture. Once the Chute ADT

is empty, Connector1 can safely disconnect and remove Chute ADT from the architecture.

3.2.2 Summary

Although other architectural styles and architecture description languages represent connectors as explicit entities in

the design, they have traditionally been implemented as indiscrete entities in the implementation. For example,

procedure call and data access connectors in UniCon are reified as linker instructions during system generation [12].

Similarly, component binding decisions, while malleable during design, are typically fixed during system generation. As

a result, modifying binding decisions during runtime becomes difficult. C2 connectors, in contrast, are explicit runtime

entities in the implementation [13]. Consequentially, C2 connectors facilitate runtime reconfiguration by encapsulating:

1. the identity of the component receiving a particular message;

2. the number of components receiving a particular message;

3. the particular runtime change application policy used when adding, removing, or altering component-connector bind-

ings;

4. the policy used to determine which components (from a set of eligible components) receive a message. If two or more

components provide similar functionality, the connector may determine the most appropriate component to receive a

given message. Such a decision may be based upon communication latency, machine load, etc.;

5. the particular interprocess communication mechanism used for message passing. The connector can isolate the par-

ticular communication mechanism used to pass messages from one component to another (e.g., direct procedure

calls, Unix sockets, RPC, CORBA, etc.);

6. the component’s location in the network. Since components are not statically bound to one another, a component may

migrate from one host to another without notifying other components;

7. the mapping from messages sent to message received. Since the connector acts as a conduit for communication, it can

act as a domain translator [14] between components;

itec-

d in the

systems

tem to

icular

oader set

 several

tion 4). It

 several

t cer-

untime
8. the message to method mapping. If a component does not process C2 messages directly, the connector can provide a

message to method mapping. This mapping, like the dynamic dispatch mechanism in Lisp, can potentially be altered

during runtime. In fact, the binding does not have to be one-to-one. The connector may map a single message to sev-

eral methods and combine the results in an appropriate manner.

The distinction between C2 connectors and software buses, such as Polylith [8] and Field [11], is that an application

may utilize multiple C2 connectors, each one of which may implement a different change application policy. A software

bus, in contrast, implements one policy and requires all application components to utilize it. In this respect, C2

connectors are more flexible than software buses.

3.3 Runtime architectural support

The third facet of our approach consists of runtime architectural support for reconfiguration. Four interrelated

mechanism implement this facet of our approach. They are:

• an explicit architectural model—In order to effectively reconfigure a system during runtime, an accurate arch

tural model must be available. Since changes specified in terms of the architectural model must be reifie

implementation, a mapping from the model to the implementation must also be provided. Several other

described in the literature, such as Conic [15] and DEIMOS [16], also maintain an explicit model of the sys

support runtime reconfiguration.

• describing runtime change—Modifications are expressed in terms of the architectural model, and include operations

for adding and removing components and connectors, replacing components and connectors, and changing the archi-

tectural topology. Operations for querying the architectural model should also be included since modifications may

be dependent upon the particular configuration of the system. Several languages for describing change at the archi-

tectural level have been described in the literature (see Section 4).

• governing runtime change—Although architectural style rules and connectors may be used to prevent part

classes of runtime reconfigurations that would compromise system integrity, a mechanism that governs a br

of application-specific changes is necessary. Constraints play a natural role in governing change, and

approaches that apply constraints to software architectures have been described in the literature (see Sec

should also be noted that during the course of a complex reconfiguration, the system may “move” through

invalid configurations before reaching a final valid configuration. Although constraints may legitimately restric

tain modification “paths”, doing so solely based on intermediate invalid configurations prevents some valid r

changes. As a result, a mechanism that supports transactional modifications should ultimately be provided.

rrent

tions for

e model

etween

query and

cture:

called
• reusable runtime architecture infrastructure—The runtime architecture infrastructure (a) maintains the consistency

between the architectural model and implementation as reconfigurations are applied, (b) reifies changes in the archi-

tectural model to the implementation, and (c) ensures that architectural constraints are not violated.

In the following subsections, we describe our implementation of these mechanisms, illustrate how they support

component replacement in the KLAX video game application, and summarize their benefits.

3.3.1 ArchStudio tool suite5

Our initial prototype of a tool suite that supports runtime reconfiguration is called ArchStudio. The tools it comprises

are implemented in the Java programming language and can modify applications written using the Java-C2 class

framework (described in Section 3.1.1). Figure 6 depicts a high-level view of ArchStudio’s architecture.

The architectural model6 represents an up-to-date model of the application’s architecture. Our cu

implementation encapsulates the architectural model in an abstract data type (ADT). This ADT provides opera

querying and changing the application’s architectural model and is kept up-to-date during system execution. Th

is stored in an ASCII file when the application is not executing. The model consists of the interconnections b

components and connectors and their mapping to Java classes. Runtime modifications consist of a series of

change requests to the architectural model and may generally arrive from several different sources.

The Architecture Evolution Manager (AEM) maintains the correspondence between the architectural model and the

implementation. Attempts to modify the architectural model invoke the AEM, which determines if the modification is

valid. The current implementation of the AEM uses two mechanisms to constrain runtime changes to the archite

(1) implicit knowledge of C2-style rules, and (2) an external architectural constraint analysis module

Armani [17]. If a change violates any C2-style rules or any of the constraints specified in Armani, the AEM rejects the
5The description of the ArchStudio tool suite is based upon the one that appears in [3].
6Italicized text in this section denote graphical entities in Figure 6.

changes
applied to
model

changes
implicitly affect
implementation

Architectural
Model

Implementation

Sources of
Architectural Change

Change scripts

Design
environment

External
Analysis
Modules

Architecture
Evolution Manager

Figure 6. High-level architecture diagram for the ArchStudio tool suite.

stance,

r tearing

ctly

 from a

re removed

altered by

ve,

es and

for

ification

e same

ates, e.g.

untime

owser to

, locates

ies the

change. Otherwise, the architectural model is altered and the implementation mapping is used to make corresponding

changes to the implementation.

Each change to the architectural model corresponds to a change in the implementation. For simplicity, our current

implementation assumes a one-to-one mapping between components in the architectural model and implementation

modules written as Java classes. This has enabled us to focus on dynamism independently of issues concerning

mappings between architectures and their implementations, which is an open research problem in itself [18, 19]. For

example, the addition of a new model component (or connector) corresponds to dynamically loading the Java class

implementing the component (or connector), creating an instance of the class, and invoking its start() method (see

Figure 2). The removal of a model component corresponds to invoking the finish() method on the component’s in

and deallocating its instance. Adding (or removing) a connection from the model corresponds to establishing (o

down) a communications channel between the components and connectors involved.

ArchStudio currently includes three tools that act as sources of architectural modification: Argo, ArchShell, and

Extension Wizard Scripts. Argo [20] provides a graphical depiction of the architectural model that may be dire

manipulated by the architect and is similar to ConicDraw [21]. New components and connectors are selected

palette and added to the architecture by dragging them onto the design canvas. Components and connectors a

by selecting them and issuing a delete command. Interconnections between component and connectors are

directly manipulating the links between them. ArchShell [22] provides a similar set of commands using an interacti

textual, command-line interface as opposed to the graphical one of Argo.

Argo and ArchShell are interactive tools meant for use by software architects to describe architectur

architectural modifications. Extension Wizard Scripts, in contrast, provide a greatly simplified end-user interface

enacting runtime change. The Extension Wizard is deployed as a part of the application and executes mod

scripts designed by architects. Modification scripts can query and alter the architectural model using th

mechanisms as Argo and ArchShell. End-users use a Web browser to display a list of available system upd

provided on the application vendor’s Web site. A system update is a compressed file containing a r

reconfiguration script and any new implementation modules. Selecting a system update causes the Web br

download the file and invoke the Extension Wizard to process it. The Extension Wizard uncompresses the file

the reconfiguration script contained within, and executes it. The reconfiguration script queries and modif

architectural model as necessary, and like other tools, is prevented from violating the constraints enforced by theAEM.

Hall et al. [23] use a similar approach for deploying software updates.

itectural

o” the

orporate

hitecture
3.3.2 Example

As in the previous example, we demonstrate how the Chute ADT component can be replaced during runtime (refer to

Figure 5). In contrast to the gradual component replacement policy described in the previous section, this example

illustrates an instantaneous component replacement policy whereby the internal state of the original Chute ADT is

transferred to its replacement. For the purposes of this example, we use the component replacement strategy described

by Hofmeister [24] in which each component exposes two additional methods: one for divulging state information, and

the another for performing special initialization when replacing a component. Alternative approaches for preserving

component state during runtime replacement have been proposed in the literature [25,26].

When the replacement operation is invoked to replace Chute ADT with Chute ADT’, the runtime infrastructure

(1) invokes any external analysis tools to determine if the replacement preserves application integrity, (2) directs

Connector1 to temporarily queue incoming messages for Chute ADT, (3) invokes the Chute ADTs special method to

divulge state information, (4) disconnects Chute ADT from Connector1, (5) invokes the special initialization method of

Chute ADT’ with the state of the original component, (6) connects Chute ADT’ to Connector1, and (7) directs

Connector1 to forward all queued and future messages for Chute ADT to Chute ADT’.

3.3.3 Summary

Notably missing from the interface to the architectural model (see Figure 2) are methods to support component

replacement. Our current implementation does not directly support component replacement, though the implementation

allows currently available approaches to be adopted. For example, we could adopt Hofmeister’s approach by adding two

methods to each component, one for divulging state and the other for initializing state. A new replace(old, new) method

on the architectural model’s ADT would direct the AEM to utilize the additional methods during replacement.

4. RELATED ISSUES

This section briefly outlines a number of cross cutting research issues that are pertinent to runtime arch

modification.

Architecture Description Languages (ADLs)—ADLs provide a formal basis for describing software architectures by

specifying the syntax and semantics for modeling components, connectors, and configurations [27]. Since a majority of

existing ADLs have focused on design issues, their use has been limited to static analysis and system generation. As

such, existing ADLs support a static description of a system, but provide no facilities for specifying runtime

architectural changes. Although a few ADLs, such as Darwin [28], Rapide [29], and LILEANNA [30], can express

runtime modification to architectures, they require that the modifications be specified and “compiled int

application. Our approach, in contrast, can accommodate unplanned modifications of an architecture and inc

behavior unanticipated by the original developers. Our approach does not attempt to replace static arc

he

h

l models.

[32],
description languages. In fact, our tools can utilize current ADLs instead of our own for the static portion of the

architectural model.

Architectural modification languages (AMLs)—While ADLs focus on describing software architectures for t

purposes of analysis and system generation, AMLs focus on describing changes to architecture descriptions. Suc

languages are useful for introducing unplanned changes to deployed systems by changing their architectura

Examples include Clipper [31], Extension Wizard’s modification scripts (described in Section 3.3.1), C2’s AML

and Gerel [33]. All of these languages are operational and utilize many similar constructs.

Architectural constraint languages—Several approaches for specifying architectural constraints have been proposed.

Constraint languages have been used to restrict system structure using imperative [34] as well as declarative [17, 28]

specifications. Others advocate behavioral constraints on components and their interactions [29]. Configuration graphs

that explicitly represent component dependencies have also been proposed [35]. Finding appropriate mechanisms for

governing architectural change using constraints is an active area of ongoing research.

5. CONCLUSIONS

We have described and illustrated the beneficial role of software architectural styles and connectors in supporting

runtime software reconfiguration. We have identified several rules of the C2 style that facilitate runtime reconfiguration.

We have also demonstrated the utility of preserving explicit architectural connectors in system implementation as well

as using connectors to encapsulate different runtime change application policies. While previous approaches either

dictate a particular policy or fail to separate application-specific functionality from runtime modification, our approach

enables the architect to choose or design the most appropriate runtime change application policy based on application-

specific requirements. As a result, concerns over runtime reconfiguration do not permeate system design.

We have also described a prototype tool suite that enables architects to specify, invoke, and govern runtime change at

the architectural level. The unique aspects of our implementation include: an explicit architectural model deployed and

kept up-to-date with the implementation as runtime changes are applied; a mechanism whereby software

reconfigurations specified in terms of the architectural model are reified in changes to the implementation; and a flexible

mechanism for governing runtime architectural changes.

6. ACKNOWLEDGMENTS7

We are grateful to David Hilbert, Andre van der Hoek, Nenad Medvidovic, Jason Robbins, and David Rosenblum for

providing valuable insights on this work. The anonymous referees provided valuable suggestions and criticism.
7The material is based on work sponsored by the Defense Advanced Research Projects Agency, and Rome Laboratory, Air Force Materiel Command,
USAF, under agreement number F30602-97-2-0021. The views and conclusions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorsements, either expressed or implied, of the Defense Advanced Research Projects
Agency, Rome Laboratory or the U.S. Government. Approved for Public Release - Distribution Unlimited.

 1992.

f the

ES,
’ IEEE

 25(6)

ms:
rlin, Ger-

p. 151-

 and

tional

7.
oft-

Soft-
iversity

ceed-
Portland,

ering,

rence

anual
r 1998.
ISAW-

s on

esign,’

65.
epar

fig-
ltimore,

puter

eering

ystems

es,’
 on the

dations

ering

’93

d sys-

SAW-

of the

 Fran-

rable
7. REFERENCES
[1] PERRY, D. E. and WOLF, A. L: ‘Foundations for the study of software architecture,’ Software Engineering Notes, 17(4),

[2] SHAW, M. and GARLAN, D: ‘Software Architecture: Perspectives on an Emerging Discipline’ , (Prentice-Hall, New York,1996)
[3] OREIZY, P. and MEDVIDOVIC, N. and R. N. TAYLOR: ‘Architecture-based Runtime Software Evolution,’ Proceedings o

20th International Conference on Software Engineering (ICSE-20), April 1998, Kyoto, Japan, pp. 177-186.
[4] TAYLOR, R. N. and MEDVIDOVIC, N. and ANDERSON, K. M. and WHITEHEAD, E. J. and ROBBINS, J. E. and NI

K. A. and OREIZY, P. and DUBROW, D. L.: ‘A component- and message-based architectural style for GUI software,
Transactions on Software Engineering, 1996, 22(6) pp. 390-406.

[5] GARLAN, D. and KAISER, G. E. and NOTKIN, D.: ‘Using tool abstraction to compose systems,’ IEEE Computer. 1992,
pp. 30-38.

[6] MEDVIDOVIC, N. and OREIZY, P. and TAYLOR, R. N.: ‘Reuse of Off-the-Shelf Components in C2-Style Architectures,’ Pro-
ceedings of the 1997 Symposium on Software Reusability (SSR’97), May 17-19, 1997, Boston, MA, pp. 190-198.

[7] MAYBEE, M. J. and HEIMBIGNER, D. H. and OSTERWEIL, L. J.: ‘Multilanguage Interoperability in Distributed Syste
Experience Report,’ Proceedings of the Eighteenth International Conference on Software Engineering, March 1996, Be
many.

[8] PURTILO, J.: ‘The Polylith software bus,’ ACM Transactions on Programming Languages and Systems, 1994, 16(1), p
174.

[9] ALLEN, R. and GARLAN, D.: ‘A formal basis for architectural connection,’ ACM Transactions on Software Engineering
Methodology, 1997, 6(3) pp. 213-249.

[10] PURTILO, J.: ‘MINION: An environment to organize mathematical problem solving,’ Proceedings of the 1989 Interna
Symposium on Symbolic and Algebraic Computation, July 1989.

[11] REISS, S. P.: ‘Connecting tools using message passing in the FIELD environment,’ IEEE Software, 1990, 7(4), pp. 57-6
[12] SHAW, M. and DELINE, R. and KLIEN, D. V. and ROSS, T. L. and YOUNG, D. M. and ZELESNIK, G.: ‘Abstractions for s

ware architecture and tools to support them,’ IEEE Transactions on Software Engineering, 1995, 20(4) pp. 314-335.
[13] OREIZY, P. and ROSENBLUM, D. S. and TAYLOR, R. N.: ‘On the Role of Connectors in Modifying and Implementing

ware Architectures,’ UC Irvine Technical Report UCI-ICS-98-04. Department of Information and Computer Science, Un
of California, Irvine. February 1998.

[14] YELLIN, D. M. and STROM, R. E.: ‘Interfaces, Protocols, and Semi-Automatic Construction of Software Adaptors,’ Pro
ings of the ACM Conference on Object-Oriented Programming: Systems, Languages, and Applications, October 1994,
OR, USA, pp. 176-190.

[15] KRAMER, J. and MAGEE, J.: ‘Dynamic Configuration for Distributed Systems,’ IEEE Transactions on Software Engine
April 1985, 11(4) pp. 424-436.

[16] CLARKE, M. and COULSON, G.: ‘An Architecture for Dynamically Extensible Operating Systems,’ International Confe
on Configurable Distributed Systems, May 1998, Baltimore, MA.

[17] MONROE, R. T.: ‘Capturing Software Architecture Design Expertise with Armani: The Armani Language Reference M
version 1.0,’ CMU Technical Report CMU-CS-98-163, School of Computer Science, Carnegie Mellon University, Octobe

[18] GARLAN, D. ‘Style-based refinement for software architecture,’ Second International Software Architecture Workshop (
2). San Francisco, CA, October 1996.

[19] MORICONI, M. and QIAN, X. and RIEMENSCHNEIDER, R. A.: ‘Correct architecture refinement,’ IEEE Transaction
Software Engineering, 1995, 21(4), pp. 356-372.

[20] ROBBINS, J. E. and REDMILES, D. F. and HILBERT, D. M.: ‘Extending design environments to software architecture d
11th Knowledge-Based Software Engineering Conference (KBSE'96), Syracruse, New York. Sept. 1996.

[21] KRAMER, J. and MAGEE, J. and NG, K.: ‘Graphical configuration programming,’ IEEE Computer, 1989, 22(10), pp. 53-
[22] OREIZY, P.: ‘Issues in the runtime modification of software architectures,’ UC Irvine Technical Report UCI-ICS-96-35, Dt-

ment of Information and Computer Science, University of California, Irvine, August 1996.
[23] HALL, R. S. and HEIMBIGNER, D. and VAN DER HOEK, A. and WOLF, A. L.: ‘An architecture for post-development con

uration management in a wide-area network,’ 17th International Conference on Distributed Computing Systems, Ba
Maryland, May 1997.

[24] HOFMEISTER, C. R.: ‘Dynamic Reconfiguration of Distributed Applications,’ Ph.D. Thesis. University of Maryland, Com
Science Department, 1993.

[25] BLOOM, T. and DAY, M.: ‘Reconfiguration and module replacement in Argus: Theory and practice,’ IEE Software Engin
Journal, 8(2), March 1993.

[26] FRIEDER, O. and SEGAL, M.: ‘On dynamically updating a computer program: From concept to prototype,’ Journal of S
and Software, 1991, 14(2) pp. 111-128.

[27] MEDVIDOVIC, N. and TAYLOR, R. N. ‘A Framework for Classifying and Comparing Architecture Description Languag
Proceedings of the Sixth European Software Engineering Conference together with the Fifth ACM SIGSOFT Symposium
Foundations of Software Engineering, September 22-25, 1997, Zurich, Switzerland, pp. 60-76.

[28] MAGEE, J. and KRAMER, J.: ‘Dynamic structure in software architectures,’ Fourth SIGSOFT Symposium on the Foun
of Software Engineering, San Francisco, October 1996.

[29] LUCKHAM, D. and VERA, J.: ‘An event-based architectural definition language,’ IEEE Transactions on Software Engine,
1995, 21(9) pp. 717-734.

[30] TRACZ, W.: ‘Parameterized programming in LILEANNA,’ Proceedings of ACM Symposium on Applied Computing SAC,
February 1993.

[31] AGNEW, B. and HOFMEISTER, C. R. and PURTILO, J.: ‘Planning for change: A reconfiguration language for distribute
tems,’ Proceedings of the International Workshop on Configurable Distributed Systems, March 1994.

[32] MEDVIDOVIC, N.: ‘ADLs and dynamic architecture changes,’ Second International Software Architecture Workshop (I
2), San Francisco, October 1996.

[33] ENDLER, M. and WEI, J.: ‘Programming Generic Dynamic Reconfigurations for Distributed Applications,’ Proceedings
International Workshop on Configurable Distributed Systems, March 1992, London, UK, pp. 68-79.

[34] BALZER, R.: ‘Enforcing architectural constraints,’ Second International Software Architecture Workshop (ISAW-2), San
cisco, October 1996.

[35] HILTUNEN, M. A.: ‘Configuration Management for Highly-Customizable Services,’ International Conference on Configu
Distributed Systems, May 1998.

	ABSTRACT
	1. INTRODUCTION
	2. MANAGING RUNTIME CHANGE
	1. Change application policy controls how a change...
	2. Change scope is the extent to which different p...
	3. Separation of concerns captures the degree to w...
	4. The level of abstraction at which changes are d...

	3. ARCHITECTURE-BASED RUNTIME SYSTEM RECONFIGURATI...
	3.1 Architectural style
	3.1.1 C2 architectural style
	Figure 1. An abstract C2 architecture. Jagged line...
	Figure 2. The external interfaces of C2 components...

	3.1.2 Example
	Figure 3. The C2-style architecture for KLAX in wh...
	Figure 4. The KLAX user interface and game rules.

	3.1.3 Summary
	3.2 Architectural connectors

	3.2.1 Example
	Figure 5. A subset of the KLAX architecture illust...

	3.2.2 Summary
	1. the identity of the component receiving a parti...
	2. the number of components receiving a particular...
	3. the particular runtime change application polic...
	4. the policy used to determine which components (...
	5. the particular interprocess communication mecha...
	6. the component's location in the network. Since ...
	7. the mapping from messages sent to message recei...
	8. the message to method mapping. If a component d...
	3.3 Runtime architectural support

	3.3.1 ArchStudio tool suite
	Figure 6. High-level architecture diagram for the ...

	3.3.2 Example
	3.3.3 Summary

	4. RELATED ISSUES
	5. CONCLUSIONS
	6. ACKNOWLEDGMENTS
	7. REFERENCES
	[1] PERRY, D. E. and WOLF, A. L: ‘Foundations for ...
	[2] SHAW, M. and GARLAN, D: ‘Software Architecture...
	[3] OREIZY, P. and MEDVIDOVIC, N. and R. N. TAYLOR...
	[4] TAYLOR, R. N. and MEDVIDOVIC, N. and ANDERSON,...
	[5] GARLAN, D. and KAISER, G. E. and NOTKIN, D.: ‘...
	[6] MEDVIDOVIC, N. and OREIZY, P. and TAYLOR, R. N...
	[7] MAYBEE, M. J. and HEIMBIGNER, D. H. and OSTERW...
	[8] PURTILO, J.: ‘The Polylith software bus,’ ACM ...
	[9] ALLEN, R. and GARLAN, D.: ‘A formal basis for ...
	[10] PURTILO, J.: ‘MINION: An environment to organ...
	[11] REISS, S. P.: ‘Connecting tools using message...
	[12] SHAW, M. and DELINE, R. and KLIEN, D. V. and ...
	[13] OREIZY, P. and ROSENBLUM, D. S. and TAYLOR, R...
	[14] YELLIN, D. M. and STROM, R. E.: ‘Interfaces, ...
	[15] KRAMER, J. and MAGEE, J.: ‘Dynamic Configurat...
	[16] CLARKE, M. and COULSON, G.: ‘An Architecture ...
	[17] MONROE, R. T.: ‘Capturing Software Architectu...
	[18] GARLAN, D. ‘Style-based refinement for softwa...
	[19] MORICONI, M. and QIAN, X. and RIEMENSCHNEIDER...
	[20] ROBBINS, J. E. and REDMILES, D. F. and HILBER...
	[21] KRAMER, J. and MAGEE, J. and NG, K.: ‘Graphic...
	[22] OREIZY, P.: ‘Issues in the runtime modificati...
	[23] HALL, R. S. and HEIMBIGNER, D. and VAN DER HO...
	[24] HOFMEISTER, C. R.: ‘Dynamic Reconfiguration o...
	[25] BLOOM, T. and DAY, M.: ‘Reconfiguration and m...
	[26] FRIEDER, O. and SEGAL, M.: ‘On dynamically up...
	[27] MEDVIDOVIC, N. and TAYLOR, R. N. ‘A Framework...
	[28] MAGEE, J. and KRAMER, J.: ‘Dynamic structure ...
	[29] LUCKHAM, D. and VERA, J.: ‘An event-based arc...
	[30] TRACZ, W.: ‘Parameterized programming in LILE...
	[31] AGNEW, B. and HOFMEISTER, C. R. and PURTILO, ...
	[32] MEDVIDOVIC, N.: ‘ADLs and dynamic architectur...
	[33] ENDLER, M. and WEI, J.: ‘Programming Generic ...
	[34] BALZER, R.: ‘Enforcing architectural constrai...
	[35] HILTUNEN, M. A.: ‘Configuration Management fo...

	On the Role of Software Architectures in Runtime S...
	Peyman Oreizy
	Richard N. Taylor
	Information and Computer Science
	University of California, Irvine
	Irvine, CA 92697-3425 USA
	{peymano,taylor}@ics.uci.edu

