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Abstract—The software monoculture favors attackers over defenders, since it makes all target environments appear similar.
Code-reuse attacks, for example, rely on target hosts running identical software. Attackers use this assumption to their advantage
by automating parts of creating an attack. This article presents large-scale automated software diversification as a means to shore
up this vulnerability implied by our software monoculture. Besides describing an industrial-strength implementation of automated
software diversity, we introduce methods to objectively measure the effectiveness of diversity in general, and its potential to
eliminate code-reuse attacks in particular.
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1 MOTIVATION

Time and again, attackers have demonstrated that they hold
the high ground over defenders in the perennial struggle of
cybersecurity. Current studies [1] estimate that defenders
spend at least an order of magnitude more in defense against
cyberattacks than attackers profit. Unfortunately, our primary
defenses against attackers are mostly passive.

We employ monitoring techniques and heuristics to
identify malicious behavior, yet, with all the advances in
those fields, attackers always develop another 0-day attack
to circumvent even the newest defense mechanisms. For
example, the Google Chrome browser uses state-of-the-art
security measures to defend against exploits, yet new attacks
of increasing complexity continue to surface [2].

Given these trends, it is doubly illuminating to re-read
Fred Cohen’s seminal paper, “Operating System Protection
Through Program Evolution” [3] published in 1993. This
is an enlightening read and it touches upon many subjects
that remain highly relevant even two decades later. It is
striking that a full two decades after its first publication,
Cohen’s assessment of attacker economics and the potential
of program evolution still hold. Throughout the paper he
asks the research community to conduct further research
into this area. Cohen concludes his paper with the following
paragraph:

Clearly, a great deal of further work is required
for this field to mature. Specifically, more mathe-
matical analysis of attacks and defenses, a better
understanding of what we are trying to conceal
and the degree to which evolution is effective at
concealing it, and results on the tradeoffs of time
and space of techniques are clearly called for.

Unfortunately the research community has not yet fully
addressed these concerns. This article re-examines some

Todd Jackson is employed by Google. All other authors are affiliated with
the University of California, Irvine

of Cohen’s assumptions, particularly in the light of recent
developments [4], and provides updated information on
both the practicality and the security implications of large-
scale automated software diversity. We present our research
on automated software diversification in general, and its
effectiveness against code-reuse attacks in particular.
This article makes the following contributions:

• We describe our implementation of compiler-based,
automated software diversity. To the best of our knowl-
edge, this is the first industrial-strength implementation
of such a system. In particular, we provide details on:

– the implementation itself (Section 4.2),
– achieving high-scalability for compiling in the

cloud (Section 4.1),
• We present a general approach to measure the efficiency

of diversification with respect to concrete security
issues (Section 4.3). Specifically, we demonstrate how
diversification affects code-reuse attacks, such as jump-
oriented and return-oriented programming.

• We provide results of several detailed analyses of
diversified software (Section 5). These results indicate
that our approach:

– has a negligible performance impact (5% geomet-
ric mean),

– protects effectively against code-reuse attacks
(affecting up to 99.99% of gadgets).

2 BACKGROUND: CODE-REUSE ATTACKS
Instead of injecting malicious code into a vulnerable binary,
code-reuse attacks inject data (code addresses) into the
program during execution to redirect control flow away
from regular code paths toward paths chosen by the attacker.
The attacker re-uses existing code in creative ways to execute
arbitrary attack code.

Return-oriented programming (ROP) is one of the most
popular code-reuse attacks currently in use. This attack was
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introduced in 2007 by Shacham [5], who described a Turing-
complete set of Intel binary code sequences that attackers
can use to perform arbitrary computation. Historically,
ROP generalized return-to-lib(c) attacks [6] and evolved
Krahmer’s “borrowed code chunks” technique [7]. Later
flavors of ROP use jumps instead of returns for control flow
(“Return-Oriented-Programming Without Returns” [8] and
JOP—Jump-oriented Programming— [9]).

In a ROP attack, the attacker locates specific code
sequences inside the binary (all ending in a return instruc-
tion), then places their addresses onto the program stack,
using the return instruction itself to transfer control flow
from one gadget to the next. Shacham described several
such instruction sequences implementing various attack
functionality (such as writing to memory) and defined
them as gadgets. In addition, Shacham also found that
any sufficiently large binary contains a Turing-complete set
of gadgets [5], allowing the attacker to completely take over
a program.

In practice, only a subset of this functionality is needed.
ROP is frequently used merely to bypass or disable mea-
sures that prevent code injection (such as Data Execution
Prevention—DEP), allowing the attacker to perform a
classic code injection attack. A Security Intelligence Report
released by Microsoft [10] investigates a large number of
exploits targeting Microsoft products between 2012 and
2014, showing that the overwhelming majority of exploits
that bypass DEP use ROP to do so. Since all current major
operating systems implement some form of DEP, ROP is
now practically required for any arbitrary code execution
attack.

Crucial to all code-reuse attacks is the currently prevalent
software monoculture: all binaries of a given software and
version are identical. A large-scale attack using information
from one binary can succeed only when the target binary is
identical. Attackers discover the necessary gadget addresses
from one binary and can craft a universal attack using these
addresses. If, however, all binaries are sufficiently different,
a gadget catalog inferred from one binary becomes useless,
as gadget addresses in other binaries are different.

3 SYSTEM OVERVIEW: LARGE-SCALE
SOFTWARE DIVERSITY

In 1993, Cohen [3] presented several diversification tech-
niques to achieve security by obscurity, necessary for
creating what he called the ultimate defense. This is of
particular importance, as his motivation was as follows:

The ultimate defense is to drive the complexity
of the ultimate attack up so high that the cost of
attack is too high to be worth performing. [...],
even though it could eventually be successful.

Cohen described the ultimate attack as reverse engineering
any defensive measures built into a program, given physical
access to the underlying machine. If an attacker can change
the machine’s data and redirect control flow at will, they will
do so in such a way that a program passes all security checks
and proceeds as normal. His description of the ultimate
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Fig. 1: By using an “App Store” architecture, the diversifi-
cation process can be made transparent both to developers
and end users.

attack and ultimate defense still hold two decades after
publication, as does his recount of attacker economics.
In fact, we share his assessment that diversity makes
certain attacks economically unviable and think that we
can eliminate code-reuse attacks altogether by using large-
scale automated software diversity. Furthermore, Cohen asks
other researchers to find answers to some of his questions—
which we hope to answer conclusively in this article and to
inspire new research in this direction.

In 1997, Forrest et al. [11] describe the first (to the best of
our knowledge) practical implementation that uses software
diversity as a security defense, implementing or discussing
several of Cohen’s ideas. Their work focuses on a different
kind of attack (stack buffer overflows), but also introduces
some other diversifying code transformations (basic block
reordering, randomized instruction scheduling) that are now
becoming increasingly important, due to the high popularity
of code reuse attacks. Their experimental results show that
software diversity can be practical and efficient, encouraging
all later work on software diversity, including our own.

Transparency is crucial to our software diversification
approach (see Figure 1). In 2010, Franz [4] anticipated
lasting changes in the software world that enable us to
bring automated software diversity to the people without
them actually noticing. Franz described a paradigm shift
in software delivery: instead of using physical media in
shrink-wrapped boxes, the current scenario uses App Stores,
i.e., users download their binaries from a central repository
on the Web. This step would allow developers/distributors to
provide different binaries to each end user. Cohen referred
to this as program evolution “at the factory,” which he
concluded has the best security aspects but also takes more
effort than simply distributing a single copy to each user.
Since software is moving away from distribution on physical
media, this effort is now significantly reduced.

This leaves us with the problem of actually creating
these unique binaries for all users. In general, there are
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two ways of approaching this problem: diversifying an
existing binary, or creating a diversified binary from source
code. Some implementations use the former approach, which
certainly has benefits. For example, this is the only feasible
approach when source code is not available. Unfortunately,
however, there is also a clear downside to this: disassembling
a binary with perfect accuracy is undecidable [3, p. 578].
The practical consequence of this is that not all parts of a
binary are eligible for diversification, thereby leaving a door
open to attackers. On the other hand, the latter approach—
creating a diversified binary from source code—has the
exact opposite features: it requires source code, and hence
is decidable. In addition, source code provides a plethora of
useful information for diversification, such as the layout of
program data structures and stack frames, and accurate loop
boundaries. Our solution follows this approach and uses a
compiler to generate a diversified binary. Since we want
to repeatedly diversify program binaries for each end-user
we increase the necessary compilation-time with a factor
proportional to the number of software downloads.

The recent trend of cloud computing provides the nec-
essary compute-time at a reasonable cost. Unfortunately,
compilers are not yet effective at scaling to warehouse-
computing. An implementation of compile-time based
software diversity must address this problem to effectively
manage costs. If the approach requires constant, time-
consuming re-compilation from scratch, deployment costs
could grow by several orders of magnitude. At this scale,
the costs of compilation might outweigh the benefits of a
diverse ecosystem.

Compiling and distributing software through cloud-based
“App Stores” ensures transparency in one direction: from
the developers to the end-users. Usually, the software life-
cycle depends on communication in the opposite direction,
too. For example, automatic bug and crash reports from
users are vital to the detection and resolution of software
defects. Franz [4] proposes one possible solution: by
adding a random number seed that drives compilation
to the program itself, the diversifying compiler can re-
create the program and “normalize” the bug reports for
the developers. We could also ship customized patches to
the end users in the same way. To this end, our system allows
transparent operation while simultaneously delivering large-
scale automated software diversity—liberating the world
from the software monoculture.

4 DESIGN AND IMPLEMENTATION

After showing how diversified software can be distributed
in practice, we provide the necessary details on how our
compiler addresses the security goals laid out in the previous
section. We then describe the effectiveness of diversification
at thwarting code-reuse attacks.

We implemented our diversifying compiler by extending
the LLVM compiler [12] infrastructure (version 2.9). Hence,
we enabled automated diversification for all languages
supported by the LLVM front-end. Furthermore, ElWazeer et
al. [13] and Anand et al. [14] have shown how to decompile

large bodies of legacy x86 programs to LLVM’s internal
representation. In consequence, these recent advances enable
us to use our diversifying compiler on binaries that lack
source code and debug information, where sufficiently
accurate disassembly is possible (while perfect disassembly
is undecidable, it is generally feasible to perform a par-
tial disassembly, then complement it with heuristics and
expensive run-time checks to compensate for the missing
information).

4.1 Scalable Compilation in the Cloud
First, we address the practical question of compiler scal-
ability. This is necessary as this drives our selection of
compilation techniques, which we describe afterwards.

The overview section (Section 3) briefly states the
importance of scalability for a diversifying compiler. To
illustrate why scalability matters, consider a naive approach
in which each download requires a full compilation and
linking step to create a diversified binary. Since large
software packages frequently require hours to compile and
link, delivering a million diversified binaries would cost a
five-digit dollar amount—even at today’s affordable cloud
computing rates.

We built a system to compile many variants in parallel on
top of Amazon’s Elastic Compute Cloud, EC2 for short. Our
system implements a classic master-slave work distribution
model. The master server keeps track of the diversified
binaries using a database, while the slave instances start
up automatically to compile new diversified binaries. The
master keeps track of the number of downloads for each
binary and allows the webserver front-end to serve the
undistributed binaries first. In addition, the master also
manages the quotas for each specific program and version,
as well as a priority parameter to set the number of
instances that any queue receives. Our system keeps a
repository of undistributed binaries and automatically adds
more as needed. We upload the completed binaries to
Amazon’s Simple Storage Service (S3) using the reduced
redundancy tier. This allows us to manage costs efficiently,
and does not cause a bottleneck, since we can always
generate more program variants on demand. Currently, our
implementation already builds and distributes diversified
Firefox web browser binaries.

4.1.1 Cost-Effective Provisioning
Cost plays a big role in creating enough compiled versions
to meet the demand of a large project. As an experiment,
we chose to diversify the Firefox browser because it has a
complex build system and is in high demand. For instance,
there were over 7 million downloads within 24 hours of the
release of Firefox 4.

Amazon offers a variety of virtualized servers—“instances”
in EC2 parlance—which vary in their computing resources
and hourly cost. On-demand instances and reserved instances
are billed at a fixed rate. Spot instances, in contrast, are
priced based on demand through a bidding process. We
report the cost to compile and diversify Firefox using six
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Fig. 2: Caching the redundant compilation steps as bitcode
reduces the computational resources required to diversify
binaries.

types of spot instances in Table 1 using current prices as of
April 22, 2013. The choice of instance matters; for example,
using High-CPU Medium spot instances cost almost half of
using X-Large instances. Since demand for Amazon spot
instances and Firefox downloads varies, we (conservatively)
provision storage resources for a million Firefox variants
as a buffer. Again using current prices, choosing the S3
reduced redundancy tier to buffer 38 TB worth of binaries
costs $103 per day.

Amazon One build Cost Cost of
instance type (Hours) per hour 106 builds

Small 1.19 $0.007 $8,330.00
Medium 0.62 $0.013 $8,060.00
Large 0.37 $0.026 $9,620.00
X-Large 0.26 $0.052 $13,520.00
High-CPU Medium 0.39 $0.018 $7,020.00
High-CPU X-Large 0.18 $0.070 $12,600.00

TABLE 1: Comparison of Amazon EC2 spot instances (as
of April 22, 2013).

4.1.2 Optimized Variant Generation
As it turns out, there is substantial optimization potential
for compiling in the cloud. For example, our compiler-
based diversification process requires no changes to the
program source code. Therefore, the repeated parsing and
optimization of source code is superfluous. Instead, we
parse the source code only once and cache the program’s
intermediate representation rather than re-creating it for each
invocation of the compiler.

A compiler generally consists of separate, decomposed
phases. The compiler needs to linearize those phases to
build an executable. Consequently, the phases themselves
need to be composable. The following two observations
allow us to devise a compilation strategy meeting our
scalability requirements: first, caching the compilation steps
preceding our diversifying transformations eliminates much
of the redundant work required by the simple approach;
second, performing the diversifying transformations as late
as possible minimizes the work for creating each additional
binary (see Figure 2). As a result, we restrict ourselves
to performing diversifying transformations only in the
compiler’s backend.

LLVM intermediate representation—bitcode—is fully
documented and easy to serialize. The compiler produces
bitcode after parsing the source code and performing some
high-level optimizations. Serializing the bitcode eliminates
a substantial part of the compute-time needed to diversify
each binary. This reduces the time to compile Firefox to
a diversified binary by 60%. (The compile times reported
in Table 1 use this type of bitcode caching.)

Even within the backend, we diversify only in the later
stages of compilation after lowering of the bitcode into a
machine-specific representation. Therefore, we can reduce
the compilation time even further by caching machine-
specific intermediate code rather than bitcode. Unfortunately,
however, LLVM does not currently support serialization
of its machine-specific intermediate code. In consequence,
we implemented our diversifying passes as transformations
on assembly code using the MAO framework [15]. Our
preliminary results indicate time reduction of up to 75%
relative to naive recompilation.

4.2 Diversifying Compiler Transformations

This section presents a detailed description of the transfor-
mations implemented in our compiler. Not only do these
transformations displace intended code sequences, they also
have the potential to break up unintended code sequences.
Furthermore, none of these transformations interfere with
program execution and therefore remain compatible with the
widest possible range of programming techniques including
JIT-compilers, interpreters and operating system kernels.
Finally, this list of transformations is not exhaustive and/or
exclusive; in fact, several additional transformations are
possible, and we anticipate future researchers will discover
new diversifying transformations.

There are two main criteria which guide the selection
of transformations: entropy and granularity. Picking a high-
entropy transformation ensures that the attacker must spend
significant resources to undo the randomization by brute
force. The low-entropy of ASLR on 32-bit systems has
confirmed the importance of this factor: ASLR was brute-
forced in 216 seconds [16] on a computer from 2004.
However, high entropy is not sufficient. With ASLR, the base
address of a randomized library gives the attacker access to
all code sequences inside that library (we call this coarse-
grained randomization). Therefore, randomization should be
done on smaller units of code (finer-grained randomization),
so each of those is randomized independently and the
attacker is forced to separately discover the location of
each code sequence of interest, greatly increasing the costs
of the attack.

ASLR performs randomization at library granularity.
There are several other levels at which to randomize code:
function, loop, basic block and instruction level (Larsen
et al. [17] give an overview of these levels and enumerate
all current diversity implementations for each level). In
this paper, we focus on transformations that operate at the
finest granularity—instruction-level diversification. However,
other researchers have used coarser-grained transformations



5

(such as basic block reordering) successfully to randomize
code and thwart attacks [18], [19]. We believe that these
transformations are complementary, and diversification
should be applied at every level for maximum security.

4.2.1 Insertion of NOP Instructions

As a first and simple code transformation, we insert NOP in-
structions between consecutive program instructions. There
are two sources of randomness in this transformation: both
where to insert and what to insert. We introduce a probability
parameter—pNOP—to decide whether to prepend each
instruction with a NOP instruction.

Table 2 shows a list of possible NOP instructions. First of
all, NOP instruction candidates must preserve the processor
state at all times. Second, we chose these instructions
carefully to minimize the likelihood of creating new gadgets.
In the case of the two-byte instructions, the second byte
decodes to an instruction that an attacker is unlikely to use.

Second Byte
Instruction Encoding Decoding

NOP 90 –
MOV ESP, ESP 89 E4 IN

MOV EBP, EBP 89 ED IN

LEA ESI, [ESI] 8D 36 SS:

LEA EDI, [EDI] 8D 3F AAS

TABLE 2: NOP insertion candidate instruction sequences.

Insertion of NOP instructions has desirable performance
and security properties. Performance-wise, inserting NOP
instructions has minimal impact on both space and time.
The added instructions do not interfere with the program’s
working set besides requiring space in instruction memory.
NOP instructions do require hardware resources to fetch and
decode, but do not add computational effort to the program’s
original algorithms; some x86 processors even recognize
and optimize the execution of certain NOPs. Security-
wise, inserting NOP instructions causes displacement of
subsequent program code thereby randomizing gadget
locations. Finally, inserting NOP instructions breaks gadgets
relying on misaligned instructions.

Before
Diversification 

After NOP
Insertion

89 11
MOV [ECX], EDX

01 c3
ADD EBX, EAX

ADC [ECX], EAX RETGadget: 

... ...

MOV [ECX], EDX

01 c3
ADD EBX, EAX

90
NOP

... ...
Gadget: Removed  
89 11

Fig. 3: Eliminating a gadget by inserting a NOP instruction.

Figure 3 illustrates this last effect. Before diversification,
an unintentional add-with-carry (ADC) gadget hides in the
intentional move and add instructions. Our NOP insertion
pass could eliminate the gadget by inserting a NOP instruc-
tion between the intended instructions.

4.2.2 Instruction Scheduling
Compilers perform instruction scheduling by rearranging
the order of instructions to decrease pipeline hazards. We
diversify instruction scheduling by making a random choice
instead. Furthermore, we can easily compute a worst-case
instruction schedule, which helps us to evaluate the worst
possible performance impact.

Concerning security, randomizing the instruction schedule
has properties similar to the previous technique. If, and
only if, the gadget contains all intentional instructions of a
schedule, then rearranging will have no effect on the gadget,
since instruction scheduling preserves semantics. Due to the
impracticality of using large gadgets, we believe this case
is infrequent. In all other cases, including unintentional
instructions, changing the order of instructions breaks
gadgets.

After
Scheduling

89 11
MOV [ECX], EDX

01 c3
ADD EBX, EAX

... ...59
POP ECX

Gadget: Removed  

01 c3
MOV [ECX], EDX

89 11
ADD EBX, EAX

... ...59
POP ECX

Before
Diversification 

ADC [ECX], EAX RETGadget: 

Fig. 4: Removing the ADC gadget by exchanging the MOV
and ADD instructions.

For example in Figure 4 we see how randomized in-
struction scheduling removes the unintended add-with-carry
gadget (ADC) by exchanging the intentionally emitted move
and add instructions.

4.3 Measuring Diversification
In our background section (see Section 2), we have described
how code-reuse attacks owe their existence to the software
monoculture. Attackers can more or less conveniently create
gadget catalogs from universally identical binaries and
craft eminently successful attacks. Diversification by itself,
however, does not remove all vulnerabilities. So, directed
attacks where the attacker has access to the binary are still
a possibility. Undirected attacks, on the other hand become
uneconomical in the presence of diversity.

In general, quantifying diversification is an interesting
problem. Traditionally, researchers rely on entropy for this
purpose. We think it makes sense to break with this tradition
for our specific application of automated software diversity,
entropy alone is not sufficient in our scenario. For example,
the entropy introduced by NOP insertion is limited not
by machine architecture, i.e., word size, but rather by
practicality: nothing prevents us from inserting millions
of NOP instructions until hard disk size becomes a limiting
factor. Contrary to intuition, having high entropy in this case
does not imply high security. If we insert any number of
NOP instructions in front of an intended gadget (resulting in
what is frequently referred to as a NOP sled), and the attack
uses the original address of the gadget, then the NOP sled
would not alter attack functionality and the attack would still
succeed. Consequently, we propose an additional way of
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quantifying diversification more precisely. It is worth noting
that Pappas et al. [20] appear to use a similar quantitative
estimate in their evaluation.

Our strategy to quantify successful diversification involves
the concept of surviving diversification. Let us take a look at
jump-oriented and return-oriented programming to explain
this in sufficient detail. We already know that the attacker’s
gadget catalog is a list of gadget addresses for a specific
binary. Subsequently, the attacker uses these addresses to
craft an attack. This relies on the fact that all binaries have
identical gadgets at identical addresses. A diversified binary,
however, contains displaced or altered gadgets. However,
a diversified binary is identical to the original from the
point-of-view of an attacker if both the gadget functionality
and addresses used in an attack are identical in both. Put
differently, diversification did not neutralize a specific gadget
at a specific address, or as we say more colloquially, a gadget
survives diversification.

We scan through the .text sections, looking for com-
mon instruction sequences—candidate gadget matches—
ending in free branches such as returns, indirect calls, or
jumps. A candidate gadget match is a pair of instruction
sequences with identical offsets; one from the original
.text section and one from the diversified one. For each
candidate, we ensure that both sequences decompile to valid
x86 code having no control-flow instructions except a free
branch at the end. We then compensate for the effects of our
diversifying transformations in a multi-step normalization
process:

1) We remove all potentially inserted NOP instructions
from both instruction sequences.

2) We sort the resulting sequences to compensate for
instruction scheduling.

Since the sorting step can produce the same result for two
semantically different instruction sequences, our algorithm
conservatively overestimates the actual number of gadgets
surviving diversification. Notice that if we want a precise
comparison between two instruction sequences, we can
capture the semantics of the instruction sequences—for
instance using expression trees [21]—and verify whether
they have equivalent effects on the processor state. If
the normalized instruction sequences are equivalent, the
algorithm has identified a potentially surviving gadget.

Automated software diversification only prevents attacks
reusing entire functions, such as return-into-lib(c), if the di-
versifying compiler displaces the functions1. We enumerate
each function address, including tables for externally visible
functions, and compute which identically named functions
share the same location in two binaries.

Using this strategy, we determine how many functionally
equivalent gadgets and function entry points remain at the
same location in a pair of executables. These two properties

1. Attackers can use the .plt section in return-into-lib(c) attacks when
the target function is dynamically linked. Our compiler does not currently
diversify the .plt section. We could do so easily, however, by randomly
adding exported “dummy” functions as we compile. The dummy functions
displace the addresses of regular function entries in the .plt without the
need to modify the dynamic linker.

are a requirement for a single code-reuse attack like ROP and
return-into-lib(c) to work on multiple executables without
modification. Because we use .text section offsets and
not absolute addresses, we are able to perform our analysis
in an environment where protections such as address space
layout randomization (ASLR) [22] do not interfere with
results.

5 EVALUATION OF COMPILATION TECH-
NIQUES
5.1 Setup

Performance Evaluation: We evaluated the performance
impact of our transformations using the C benchmarks in
SPEC CPU2006 [23]. Our test system was a 2.50 GHz Intel
Core 2 Quad Q9300 running Linux with kernel version
2.6.32-38. We ran each executable binary three times and
reported the average of those. For each transformation
we built 25 different diversified executables to create a
better representation of the effect of the transformation, and
reported averaged results.

Security Evaluation: We evaluated the security impact
of our diversifying compiler by examining how it affects
gadgets in diversified executables. For this analysis, we
considered the C++ tests from SPEC CINT2006 in addition
to the C tests of SPEC CPU2006.

We extracted the .text sections from executables after
diversification and compared them to the .text sections
in unmodified original executables using our survivor
algorithm.

To evaluate the security of our compiler-based automated
software diversity technique, we assumed the following:

• The target environment is protected by all currently de-
ployed defenses (such as address space randomization
and non-executable data), forcing attackers to resort to
code-reuse attacks.

• The attacker cannot create an exact replica of the target
environment. Even though attackers may obtain their
software from the same source as potential victims, we
assume that each of them download and run different
binary variants.

• Downloading of binaries and uploading of error re-
ports preserves the integrity and confidentiality of the
payload.

• Attackers are aware that program binaries are subject to
diversification and have access to both program sources
and the compiler producing the binaries.

• Attackers do not know the randomization seed of a
victim’s binary variant. Combining the diversifying
compiler, the program sources and the seed would let
attackers fully replicate the environments they target.
File Size Evaluation: To examine the effect that our

transformations have on executable size, we compiled
versions of the executables found in SPEC CINT2006
with several randomization parameters. To account for
randomization within the diversifying transformations, we
compiled 25 different versions for each combination of
randomization parameters.
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5.2 Individual Techniques

Performance: NOP insertion with pNOP = 1 (Nop
(1.0) in Figure 5a) showed the largest overhead when
used alone. With pNOP = 1, the compiler inserts a
NOP instruction for each instruction in the executable,
representing the worst case scenario. We report overheads
between 1.3% for 470.lbm and up to 40% for 482.sphinx3.
An alternate setting for NOP insertion uses pNOP = 0.5
(Nop (0.5) in Figure 5a). We measured slowdowns between
1% for 458.sjeng and up to 23% for 482.sphinx3. The
geometric mean performance slowdown over all SPEC
benchmarks is 5%.

Since the reported 40% performance degradation for
482.sphinx3—and 23% respectively for pNOP = 0.5—is
almost twice of what we measure for the second worst
decrease, we investigated why this benchmark is so sensitive
to NOP insertion. We performed a similar experiment with
a prototype diversifying GCC 4.6.2 and pNOP = 1 and
found that it resulted in 20% overhead, which was closer
to the results of the other test programs. In 32 bit mode,
GCC uses x87 instructions by default whereas LLVM
uses scalar SSE2 instructions. While the latter approach
is generally most effective, the use of x87 instructions
allows GCC to compile a performance critical loop body
into a shorter instruction sequence. Since the number of
NOPs inserted is proportional to the number of “regular”
instructions, GCC’s output had fewer NOPs inserted. In
the diversified 482.sphinx3 binaries that we studied by
hand, we identified a secondary effect contributing to the
performance discrepancy: LLVM inserted the same NOP
instruction twice in a row. This introduced (artificial) data-
hazards (between the two consecutive NOPs) leading to
pipeline stalls. We believe this further contributed to the
performance disparity.

Besides NOP insertion, instruction scheduling shows
the biggest performance impact. Randomized instruction
scheduling (ISched (1) in Figure 5a) and worst-case
instruction scheduling (ISched (2)) both show significant
effects on the 464.h264ref, with slowdowns of 9% and 20%
respectively. This is not, however, surprising: the benchmark
relies on the instruction scheduler to properly order the
instructions of the many calculations in one tight loop.
Changing this order results in a suboptimal schedule, causing
many more pipeline stalls. On the other hand, we see that
benchmarks 433.milc and 456.hmmer show performance
improvements. Since these improvements are within the
margin of experimental error, we did not investigate this
matter further.

Security: Our security evaluation (Figure 5b) shows the
results of surviving gadgets, broken down by diversification
technique and probability parameter. Instruction scheduling
is the first technique we evaluate. Both randomized and
worst-case instruction scheduling remove on average more
than 95% of gadgets with respect to the undiversified,
original binary. 429.mcf displays the worst result for
instruction scheduling, having four times more surviving
gadgets for randomized, and still three times more for worst-

case parameters. We attribute this to the comparatively little
importance instruction scheduling plays in this benchmark.

NOP insertion is most successful among all diversifying
compiler transformations. With pNOP = 1.0, i.e., inserting a
NOP instruction before every regularly emitted instruction,
less than 4% of gadgets overall and less than 1% of
gadgets in all but two benchmarks survive. Furthermore, our
measurements indicate that diversifying with pNOP = 0.5
gives almost identical results. This is interesting in so far
as we report an overall lower performance impact of only
5% geometric mean at this setting.

File Size: Unsurprisingly, NOP insertion has the
biggest impact on file size At pNOP = 0.5, the range of file-
size increase is between 3.9% for 445.gobmk and 22.6%
for 429.mcf. Similarly, at pNOP = 1.0, we see the exact
same benchmarks setting the lower limit at about 10% and
the upper limit at a little bit over 40%. This is because most
program instructions are longer than NOP instructions on
architectures with variable-length instructions (such as x86).

Our results for instruction scheduling are inconclusive.
Worst-case instruction scheduling has an outlier with a
15% file size increase for 470.lbm. Randomized instruction
scheduling has only a negligible effect on file size, too.

5.3 Entropy

Surviving gadgets is one important security metric; entropy
is another. When generating a diversified population of
binaries, we must make sure that the binaries are sufficiently
different that an attacker cannot find some common vulner-
ability in a large subset of the population. As experience
with ASLR has shown, having enough entropy is crucial
for a randomization-based defense.

When attacking a binary diversified with NOP insertion
using a ROP attack, the attacker will go through each gadget
in the attack and try to find or guess its new location. The
main variable to look at when analyzing NOP insertion
is the displacement of each instruction. This variable is
independent for each instruction (and consequently each
gadget), which forces the attacker to spend the effort to find
each gadget separately (which means the number of guesses
the attacker needs grows exponentially with the number of
gadgets; alternatively, the probability of success decreases
exponentially).

The displacement of the N th instruction follows a
trinomial instruction, for the following reasons: before that
N instruction, the algorithm makes one of the following
choices N times: insert a 1-byte NOP with probability
0.2pNOP (since one out of five NOPs has length 1, and they
are chosen with equal probability), insert a 2-byte NOP
with probability 0.8pNOP (since four out of the five NOPs
have length 2) we use or insert nothing with probability
1 − pNOP. The total length of the inserted NOPs adds
up to the displacement. This displacement is a random
discrete variable with values between 0 and 2N . Figure 6
shows the distribution of this variable, for N = 1000 and
several values of pNOP. We observe that the distribution
is narrower and taller for very small and very large values
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Fig. 5: Individual Technique Evaluation.
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Fig. 6: Distribution of instruction displacement, after insert-
ing NOPs in a program with N = 1000 instructions, for
several pNOP settings.

of pNOP; once again, the most pNOP setting with the most
diversity is pNOP = 50%. For this value, a large majority
of displacements fall between 0.8N and N (this should
hold true for any value of N ). This implies that for NOP
insertion entropy grows with number of instructions, and
consequently with position of the instruction/gadget; later
gadgets have a much wider displacement interval than earlier
ones. Past the first few kilobytes of the binary, the entropy of
the accumulated displacement should be sufficient to thwart
attacks (since there are at least several hundred possibilities
of non-negligible likelihood).

Due to the myriad of different choices that the scheduler
has during its operation, the entropy of instruction schedul-
ing is much more difficult to measure. We leave this analysis
for future work.

6 EVALUATION OF DIVERSIFICATION EFFI-
CIENCY
Section 5 detailed the results of diversification techniques
and surviving gadgets, for individual techniques and their
combinations. However, the previous evaluation falls short
of diligently measuring diversification itself, since we only
compared the surviving gadgets from the original to the
diversified binaries. This section presents additional details
on measuring diversity.

6.1 Frequently Surviving Gadgets
While it is interesting to analyze diversification techniques
for their potential of removing gadgets with respect to
the original binary, it is necessary to analyze surviving
gadgets among the population of diversified binaries, too.
The rationale for this is simple: if there are surviving gadgets
common among the population of diversified binaries, they
form an attack surface.

Therefore, we built 30 diversified versions of all C and
C++ programs in SPEC CPU2006 with varying pNOP

values. For each binary we compared the surviving gadgets
pairwise among all of those 30 binaries with the same pNOP

parameter, and recorded the offset and frequency of matches.
Figure 7 and Figure 8 display our analysis results

for the 433.milc benchmark. We found 433.milc to be
representative for other programs of SPEC CPU2006. First,
our analysis showed that there is some low-level correlation
in the middle of the binaries. This correlation indicates that
while using pNOP = 0.01 provides a significant amount of
potential diversity, we realize little of it as we insert NOPs
with only a small probability. Therefore, we see that gadgets
frequently survive at lower offsets. Since NOP insertion
displaces gadgets, we see that this correlation tapers off
with increasing pNOP probabilities.
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Figure 7 shows two interesting phenomena. First, there
are frequently surviving gadgets at the beginning and at
the end of the binaries (cf. Figure 8a and Figure 8b).
Upon investigation regarding the surviving gadgets in the
beginning and end, we found that this is due to the C runtime
setup and finalization procedures. Clang relies on crti.o
and crtn.o files to manage the C runtime and links those
files verbatim into the executable, after compilation. Our
implementation of a diversifying compiler did not process
those files at all.

Second, diversity at the extremes—i.e., for pNOP at 0.01
and 1—is low. This is to be expected since pNOP at 0.01
is close to zero which creates no diversity. The same holds
for pNOP = 1, where we always insert a NOP instruction
before every instruction in the binary. This is consistent with
our expectations from the theoretical analysis in Section 5.3
(the number of different versions follows a similar bimodal
distribution to the ones in Figure 6, centered around a
maximum and tapering off for both very low and very high
values of pNOP).

6.2 Determining Optimal Parameters

In the previous section, we found that the probability parame-
ter for NOP insertion shows interesting quirks. Inserting with
a very low or high probability led to predictable insertions,
so we want to insert with some moderate probability. Hence,
we determined the optimal parameter for NOP insertion as
follows.

We used the largest benchmark of SPEC CPU2006,
483.xalancbmk and built 50 samples for every pNOP

value from 0.02 to 1 in 2% increments, with a total of
2500 samples. In addition, we changed compiler settings to
account for function alignment (our compiler defaults to a
16-byte alignment, but we also evaluated 1-byte alignment
for comparison). For each of the two alignment settings,
we used the 2500 samples per setting to build a smoothed
regression curve that approximates the number of surviving
gadgets relative to pNOP.

Figure 9 shows the results of our analysis. Our results
indicate that the NOP insertion setting of pNOP ≈ 0.26
performs best and loses effectiveness at pNOP > 0.4. Also,
function alignment appears to consistently help effectiveness:
a 16-byte alignment disrupts more gadgets. We believe
that this is due to function alignment causing more code
motion—when a function is moved to another 16-byte
offset, following gadgets are moved as well. Note that we
obtained these results for 483.xalancbmk, results from
other programs may vary slightly.

7 RELATED WORK

Since our work addresses large-scale automated software
diversity in general, and its application for protecting against
code-reuse attacks in particular, we focus our discussion of
related work accordingly.

However, we begin by noting that software diversity
has several other applications. The earliest uses originate

from the fault-tolerance community where multiple imple-
mentations by independent teams, possibly using different
implementation languages, are used in the hope that they
fail independently [24]. Software diversity is also closely
related to software obfuscation and watermarking [25], [26]
and substantial overlaps exist between the randomizing
code transformations employed in these fields. Finally,
continuously sending diversified updates to clients in a
distributed system can overwhelm tampering motivated by
social or financial gains [27].

7.1 Diversity-based Defenses
Cohen’s seminal paper [3] on operating system protection
by leveraging program evolution anticipates much of the
development in what we now call artificial software diversity.
Consequently, it is safe to say that this work motivates
subsequent research in automated software diversity in gen-
eral. Cohen describes several program evolution techniques,
which ours derive from with some minor variations and
implementation details, for example, he describes adding
garbage computation to another program using a source-
to-source compiler, which we perform using only NOP
instructions instead.

Forrest et al. [11] describe the first practical security-
focused implementation of software diversity, demonstrating
the practical feasability and performance of this approach.
They implement and evaluate one diversification technique
that defends against buffer overflow exploits, stack frame
randomization, with very small performance and memory
overhead. In addition, they discuss many other options for
compiler-level diversification, such as basic block reordering
and randomized instruction scheduling (which we also
investigate), which have become even more important with
the increase in the frequency of code reuse attacks.

Currently Deployed Randomization-based Techniques
Most mobile and desktop operating systems now employ
address space layout randomization (ASLR) [22], [28], [29]
which provides probabilistic protection against certain kinds
of attacks. It does so by randomizing the positions of an
application’s memory regions (typically including the heap,
stack and dynamically loaded libraries).

The diversification techniques presented in this paper are
conceptually similar to a fine-grain version of ASLR. With
ASLR already deployed, it is relevant to ask if and how our
diversification techniques are an improvement. First, we note
that the address space for 32-bit processes is so small that
the Linux implementation [22] of ASLR only offers 16 bits
of entropy, opening the door to brute force attacks [16]. Next,
ASLR only applies to applications and libraries compiled
to allow loading at arbitrary offsets. Unfortunately, the
performance overhead of position-independent code (about
10% on average in 32-bit mode [30]) is high enough that
executables themselves are often not position-independent.
Finally and most importantly, ASLR shifts all objects
inside a single memory region around by the same amount.
Attackers can then infer the locations of all objects as soon
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Fig. 7: Overall distribution of gadgets surviving diversification from the .text section. Colored shapes indicate pNOP

setting in percent.
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Fig. 8: Frequencies of gadgets surviving diversification by
location in 433.milc. Colored shapes indicate pNOP setting
in percent.

as a single object inside the region leaks. With fine-grain
diversity, such inferences are much more difficult.

Binary-based Diversification Techniques
In 2012, Pappas et al. [20], Hiser et al. [31] and Wartell
et al. [19] presented their approaches to introduce artificial
software diversity. In contrast to our approach (which
diversifies at compile time), the other approaches add
diversity directly to binaries. The advantage of operating
on binaries is that there is no need for source code.
Unfortunately, however, there is also a major downside:
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Fig. 9: Plot of NOP insertion effectiveness for different
function alignment settings, including smoothed regression
curves (the red/blue lines) and confidence intervals (the grey
bars).

disassembling is undecidable in general.2

This has two implications that manifest themselves in
the different approaches. Pappas et al. [20] approach this
problem by restricting a) the set of instructions eligible
for diversification, b) performing only single instruction
substitutions on those instructions, and c) relying on unsafe
assumptions such as basic block boundaries being correctly
discovered [20, p. 6]. The first requirement ensures that all
possible jump targets remain untouched, whereas the second
rule ensures that no jumps need relocation. This implies
that all resulting binaries share a common topology. This
topological identity minimizes the available attack surface
to those blind spots. In numbers this means that whereas
our approach eliminates up to 99.99% of all gadgets, this
approach eliminates up to 80% of all gadgets.

Hiser et al. [31] solved the disassembly problem by using
heuristics-driven disassembling and a virtual machine that
has all relevant information to correct mistakes at runtime.

Since the heuristics only minimize the problem of
undecidable disassembling, Hiser et al. used a virtual

2. We refer the interested reader to Cohen [3], who uses a simple and
elegant reduction to the halting problem to prove this.
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machine—named Strata—to execute diversified binaries.
The Strata VM needs to add computation to the existing
program, in the form of verifying jump targets and indirect
branches. Using this approach, they successfully eliminated
over 99.96% of all gadgets in their evaluation programs.
One problem with using a virtual machine for diversification
is that this approach is not viable for certain programs,
such as programs using self-modifying code—including
JIT compilers and program obfuscators. Finally, the virtual
machine itself becomes part of the attack surface.

Wartell et al. [19] took yet another approach to work
around the undecidability of disassembly: “binary stirring”.
Since code and data cannot be fully separated, stirring
duplicates program code such that one copy is treated as
code and another one as non-executable data. The executable
copy is diversified at load time by disassembling the code
and instrumenting computed jumps and memory loads, while
potential jump targets in the data copy are redirected to
the proper code targets. The advantage of such load time
diversification is that all clients download the same binary,
while still breaking the software monoculture. Similar to
Pappas et al., the approach is unsound in that it depends
critically on being able to correctly identify features of the
binary code such as all possible jump targets. Consequently,
the rewritten programs may crash when the heuristics fail.
From a security perspective, this approach is comparable to
our own, successfully eliminating over 99.99% of gadgets.

Many compile- and load-time diversification techniques
leave diversification of dynamically-generated code (e.g.,
code generated by just-in-time compilers—JITs) as future
work. Homescu et al. [32] described an implementation
of run-time diversity targeting JITs (and dynamic code
generators in general)—librando. They applied the binary
stirring approach to code emitted at run-time, mainly
targeting JIT compilers for dynamically-typed languages
(like JavaScript), in addition to Java compilers. librando is a
complementary solution to static diversification techniques,
covering the latter’s weakness to dynamic code generation.

We expect that all techniques protect against ROP and
JOP, with minor disadvantages for Pappas et al. [20] due
to its blind spots. Hiser et al. [31], Wartell et al. [19], and
our system protect against certain forms of return-into-lib(c)
attacks, too. Our evaluation shows that using full-system
scale diversification is an effective tool for protecting against
return-into-lib(c) attacks. At this scale, hosting the whole
operating system in a virtual machine is probably not viable.

Compiler-based Diversification Techniques

In 2008, Jacob et al. [33] introduced the idea of a “superdi-
versifier,” a compiler that performs superoptimization [34],
[35] for the purposes of increasing computer security. They
focused on the potential for security, but do not evaluate the
performance/security tradeoff in a real-world environment.

We previously described our experiments with NOP
insertion [36]. Our earlier experiments focused solely on
NOPs and showed the significant security benefits of these
techniques on real-world applications (such as Apache and

Chromium). Besides the evaluation of multiple diversifi-
cation strategies, we also addressed scalability concerns
and measured the security impact in context of return-into-
lib(c) attacks in this work. Larsen et al. [37] addressed
the schism between compilation and binary rewriting by
combining our compiler-based approach with a static binary
rewriting framework. This enables diversification of source
code as well as legacy and proprietary binaries in a single
framework.

Giuffrida et al. [18] used a diversifying compilation
scheme to protect operating systems from kernel level
exploits by transforming both the code and data layout
of processes. Their code transformations included function
shuffling and basic-block reordering inside functions. Their
approach collects meta-data during compilation to optionally
allow live re-randomization of kernel components while the
remainder of the operating system keeps running. Similar to
our system, the authors made use of the LLVM compiler and
reported similar performance overheads from ahead-of-time
diversification of SPEC 2006 (4.8%).

Homescu et al. [38] extend our present approach to
compile-time diversity and show that the cost of soft-
ware diversification becomes insignificantly small when
combined with profile-guidance. The latter is a well-
known compiler technique to focus optimization efforts
on frequently executed code. Unlike optimization, diversity
affects performance negatively, so Homescu et al. focus
diversification efforts on infrequently executed code. Profile-
guided diversity was only evaluated for NOP insertion but
we believe it applies to all the techniques we presented here.

Hiding Randomized Code
Code randomization defenses rely on the memory secrecy
assumption, i.e., that the attacker cannot read code after ran-
domization. However, attacks such as JIT-ROP [39] violate
this assumption by reading code during program execution,
after it has been randomized. JIT-ROP targets programs
that allow the attacker to execute arbitrary sandboxed code
written in some high-level language (such as JavaScript or
Python). Browsers such as Firefox and Chrome that execute
malicious JavaScript are prime examples of applications
exposed to JIT-ROP. Using a JavaScript memory leak, the
attacker reads program code at run-time and relocates the
gadget payload to match the diversified code layout. This
attack successfully defeats software diversity that perform
one-time randomization, such as during compilation or
program load time. For this reason, code hiding has become
a required component of any practical implementation of
software diversity.

Several possible defenses have been proposed: runtime
re-randomization [18], control-flow randomization [40],
and execute-only memory. Execute-only memory imple-
mentations for x86 include XnR [41], HideM [42], and
Readactor [43]. Execute-only memory, an idea that traces
back to Multics, prevents read acccesses to code pages
and therefore JIT-ROP. The most comprehensive approach—
Readactor—also prevents code pointers in readable memory
from indirectly leaking information about the code layout.
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7.2 Non-diversified Defenses

Szekeres et al. [44] survey non-diversifying protections
against exploitable memory errors inherent to systems
programming languages.

Onarlioglu et al. present a set of techniques that “de-
generalize the [ROP] threat to a traditional return-into-lib(c)
attack.” [45] Their technique allows for comprehensive
protection against (jump-) and return-oriented programming
attacks at the expense of adding run-time checks to the
secured programs. While this technique also relies on the
insertion of NOP instructions, the purposes differ: We insert
NOPs to diversify whereas Onarlioglu et al. use NOP-sleds
to enforce aligned execution of instructions critical to their
protection mechanism. They report an average overhead
of about 3% on the presented programs (however, they
used different benchmarks, so their results are not directly
comparable to ours).

The main alternative to diversity against code reuse attacks
is to restrict program control flow to intended code paths
(or to a secured region of program code), an approach
known as control-flow integrity (CFI) [46], [47]; control
flow locking [48] and software-fault isolation (SFI) [49],
[50], [51] operate in a similar way. In contrast to our
approach of reducing predictability of a program, these
implementations keep the program predictable but impose
significant restrictions in its behavior. For example, CFI
restricts control flow paths exclusively to allowed intended
targets, preventing the attacks from exploiting unintended
paths. While these techniques are very powerful against
code reuse attacks, they still leave the program open to
vulnerabilities in the defenses themselves. If the attacker
discovers a vulnerability that bypasses SFI/CFI protection,
they can use this vulnerability on all programs protected by
these techniques. In fact, recent research [52], [53] shows
that certain implementations of CFI can be easily bypassed
by a ROP attack, using only gadgets that branch to targets
allowed by CFI3. In contrast to the CFI-based approaches,
discovering a vulnerability in a diversified program would
allow the attacker to target only a subset of the diversified
population. Additionally, our diversity-based approaches
tackle a strictly greater set of attacks, such as return-into-
lib(c), and micro-architectural attacks [54].

Another approach to defending against ROP attacks
is detection. Implementations of this approach (such as
DROP [55]) attempts to detect when the processor executes
many return instructions in a short period of time, which is a
common marker of ROP attacks. Later implementations take
advantage of hardware support for this approach, in the form
of a history of the most recently taken branches provided
by the processor (called the Last Branch Record—LBR).
Two anti-ROP defenses (kBouncer [56] and ROPecker [57])
use this information to detect ROP attacks, by checking

3. CFI presents a trade-off between security and performance: its strictest
versions also have a significant performance overhead (Abadi et al. [47]
report an average overhead of 21%); faster implementations of CFI relax
some of the restrictions on control flow to gain some performance (so-
called coarse-grained CFI), which renders them vulnerable to anti-CFI
ROP attacks [52], [53].

for gadgets pointed by the entries in the LBR. However,
novel attacks [58], [59] defeat this approach by overwriting
the entire LBR contents with values that pass the security
checks.

8 CONCLUSION
The software monoculture benefits attackers by simulta-
neously widening the applicability of any single attack
vector as well as enabling attackers to re-create a target
environment while developing an exploit. We investigated
the effectiveness of introducing artificial software diversity
at compile-time. The code diversification methods we
have developed focus on thwarting return-oriented and
jump-oriented programming. These attacks have proven
to be surprisingly difficult to protect against, and many
existing defenses either restrict program generality, hinder
performance, or both.

We evaluated the performance implications of using
diversified software and reported only a minor run-time
overhead of 5% (geometric mean with pNOP = 0.5). This
result applies to CPU-intensive standard benchmarks and we
anticipate that real-world applications will show significantly
less overhead. In addition to our performance results, we
analyzed the security implications of diversified software,
using surviving gadgets as a metric. Our results indicate
that a combination of our techniques shifts or removes up to
99.99% of potentially usable gadgets. The probability of a
required set of gadgets chosen by the attacker to be present
in predictable locations in any diversified binary therefore
becomes vanishingly small.

Summing up, we believe that our techniques demonstrate
the power of introducing artificial software diversity at
compile-time, and we think that our results conclusively
make the case for further investigation.
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