Fractal Matrix Multiplication: a Case Study on
Portability of Cache Performance

Gianfranco Bilardi!, Paolo D’Alberto?, and Alex Nicolau?

! Dipartimento di Elettronica e Informatica, Universita di Padova, Italy.
bilardi@dei.unipd.it ***
2 Information and Computer Science, University of California at Irvine
{paolo,nicolan}@ics.uci.edu '

Abstract. The practical portability of a simple version of matrix mul-
tiplication is demonstrated. The multiplication algorithm is designed to
exploit maximal and predictable locality at all levels of the memory hi-
erarchy, with no a priori knowledge of the specific memory system orga-
nization for any particular machine. By both simulations and execution
on a number of platforms, we show that memory hierarchies portabil-
ity does not sacrifice floating point performance; indeed, it is always a
significant fraction of peak and, at least on one machine, is higher than
the tuned routines by both ATLAS and vendor. The results are obtained
by careful algorithm engineering, which combines a number of known
as well as novel implementation ideas. This effort can be viewed as an
experimental case study, complementary to the theoretical investigations
on portability of cache performance begun by Bilardi and Peserico.

1 Introduction

The ratio between main memory access time and processor clock cycle has been
continuously increasing, up to values of a few hundreds nowadays. The increase in
Instruction Level Parallelism (ILP) has been a significant feature: current CPUs
can issue four/six instructions per cycle and the cost of a memory access is an
increasingly high toll on overall performance of super-scalar/VLIW processors.
The architectural response has been an increase in the size and number of caches,
with a second level being available on most machines, and a third level becom-
ing now popular. The memory hierarchy helps performance only to the extent to
which the computation exhibits data and code locality. The necessary amount of
locality becomes greater with steeper hierarchies, an issue that algorithm design
and compiler optimization increasingly need to take into account. A number of
studies have begun to explore these issues. An early paper by Aggarwal, Alpern,
Chandra, and Snir [1] introduced the Hierarchical Memory Model (HMM) of
computation, as a basis to design and evaluate memory efficient algorithms (ex-
tended in [35,3]). In this model, the time to access a location z is a function
f(x); the authors observe that optimal algorithms are achieved for a wide family

*** This work was supported, in part, by CNR and MURST of Italy
 Supported by AMRM DABT63-98-C-0045

of functions f. More recently, similar results have been obtained for a different
model, with automatically managed caches [22]. The optimality is established
by deriving a lower bound to the access complexity Q(S), i.e., to the number
of accesses that necessarily miss any given set of S memory locations. Lower
bounds techniques were pioneered in [28] and recently extended in [6,9]; these
techniques are crucial to establish the existence of portable implementations for
some algorithms, such as matrix multiplication. The question whether arbitrary
computations admit optimally portable implementations has been investigated
in [7,8]. Even though the answer is generally negative, the computations that
admit portable implementations do include relevant classes such as linear algebra
kernels ([29, 30]).

This work focuses on matrix multiplications algorithms with complexity
O(n?®) (rather than O(n!°827) [36] or O(n?37%) [14]) investigating the impact
on performance of data layout, latency hiding, register allocation, instruction
scheduling, instruction parallelism, (e.g., [39,10,16-18])! and their interdepen-
dences. The interdependence between tiling and sizes of caches is probably the
most investigated [31,34,41,32,43,23,17]. For example, vendor libraries (such
as BLAS from SGI and SUN) exploit their knowledge of the destination platform
and determine very efficient routines, but non optimally portable across differ-
ent platforms. Automatically tuned packages (see [39,10] matrix multiply and
[21] FFT) measure machine parameters by interactive tests and then produce
machine tuned code. This approach achieves optimal performance and porta-
bility at the level of package, rather than the actual application code. Another
approach, called auto-blocking, has the potential to yield portable performance
for the individual code. Informally, one can think of a tile whose size is not de-
termined by any a priori information but arises automatically from a recursive
decomposition of the problem. This approach has been advocated in [25], with
applications to LAPACK, and its asymptotic optimality is discussed in [22]. Our
fractal algorithms belong to this framework. Recursion-based algorithms often
exploit various features of non-standard layouts, recursive layouts ([13,12, 38, 20,
40, 26,19]). Conversion from and to standard (i.e., row-major and column-major)
layouts introduces O(n?) overheads?. Recursive algorithms are often based on
power of two matrixes (with padding, overlapping, or peeling) because of clo-
sure properties of the decomposition and a simple index computation. In this
paper, we use a non-padded layout for arbitrary square matrices, thus saving
space and maintaining the conceptual simplicity of the algorithm, while devel-
oping an approach to burst the recursion and save index computations. Register
allocation and instruction scheduling are still bottlenecks ([17,39]); for recursive
algorithms the problem is worse because no compiler is capable of unfolding the
calls in order to expose larger sets of operations to aggressive optimizations. We
propose a pruning of the recursion tree to circumvent this problem.

! See [41, 42,23, 4,11, 31] for more general locality approaches suitable at compile time
and used for linear algebra kernels.

%2 The overheads are negligible, except for matrices small enough for the n?/n? ratio
to be insignificant, or large enough to require disk access.

Our approach, hereafter fractal approach, combines a number of known ideas
and techniques as well as some novel ones to achieve the following results.

1) There exists a matrix multiplication implementation for modern ILP ma-
chines achieving excellent, portable cache performance, and we show it through
simulations of 7 different machines. 2) The overall performance (FLOPS) is very
good in practice, and we show it by comparison with the upper bound implied
by peak and performance of the best known code (Automatically Tuned Lin-
ear Algebra Software, ATLAS, [39]). 3) While the main motivation to develop
the fractal approach was provided by the goal of portability, at least on some
machines such as the R5000 IP32, the fractal approach yields the fastest known
algorithms. Among the techniques we have developed, those in Sections 2.2 and
2.3 lead to efficient implementations of recursive procedures. They are espe-
cially worth mentioning because they are likely to be applicable to many other
hierarchy-oriented codes. In fact, it can be argued with some generality that re-
cursive code is naturally more conducive to express temporal locality than code
written in the form of nested loops. Numerical stability is not considered in this
paper (Lemma 2.4.1 resp. 3.4 in [24] resp. [27]).

2 Fractal Algorithms for Matrix Multiplication

We use the following recursive layout of an m xn matrix A into a one-dimensional
array a of size mn. If m = 1, then a[h] = agp, for h=10,1,...,n—1. If n =1,
then a[h] = apg, for h =0,1,...,m— 1. Otherwise, a is the concatenation of the
layouts of the blocks Ag, A1, A2, and Az of the following balanced decomposition.
Ag={aij :0<i<[m/2],0<j < [n/2]}, A1 ={ai; : 0<i< [m/2],[n/2] <
j<n} Ay ={ay: [m/2] <I<m,0<j< [n/2]} and Ag = {a : [m/2] <
i <m,[n/2] <j<mn}. Amxn matrix is said near square when |n —m| < 1. If
A is a near-square matrix, so are the blocks Ag, A1, Ao, and A3z of its balanced
decomposition. Indeed, a straightforward case analysis (m =n—1,n,n+1and m
even or odd) shows that, if |n —m| < 1 and S = {|m/2], [m/2], [n/2], [n/2]},
then max(S) — min(S) < 1. The fractal layout just defined can be viewed as
a generalization of the Z-Morton layout for square matrixes [12], [20] or as a
special case of the Quad-Tree [19] layout.

We introduce now the fractal algorithms, a class of procedures all variants
of a common scheme, for the operation of matrix multiply-and-add (MADD)
C = C + AB, also denoted C+ = AB. For near square matrices, the fractal
scheme to perform C+ = AB is recursively defined as follows, with reference to
the above balanced decomposition.

fractal(A4, B, C)

— If |A| = |B| =1, then C = C + A x B (all matrices being scalar).
— Else, execute - in any serial order - the calls fractal(A', B’,C") for
(A’a B’a C’) € {(AO: BO: CO): (Ala B23 CO): (A(], Bla Cl)a (Ala B3: Cl)a
(A2, By, C2), (A3, B2, C2), (A2, B1,Cs), (A3, B3, C3)}

Of particular interest, from the perspective of temporal locality, are those order-
ings where there is always a sub-matrix in common between consecutive calls,

which increases data reuse. The problem of finding such orderings can be formu-
lated by defining an undirected graph. The vertices correspond to the 8 recursive
calls in the fractal scheme. The edges join calls that share exactly one sub-matrix
(observe that no two calls share more than one sub-matrix). This graph is eas-
ily recognized to be a 3D binary cube. An ordering that maximizes data reuse
corresponds to an Hamiltonian path in this cube (See Fig. 1).

CAB-fractal ABC-fractal

Fig. 1. The cube of calls of the fractal scheme: the Hamiltonian path defining CAB-
fractal and ABC-fractal.

Even when restricting our attention to Hamiltonian orderings, there are many
possibilities. The exact performance of each of them depends on the specific
structure and policy of the machine cache(s) in a way too complex to eval-
uate analytically and too time consuming to evaluate experimentally. In this
paper, we shall focus on two orderings: one reducing write misses and one reduc-
ing read misses. We call CAB-fractal the algorithm obtained from the fractal
scheme when the recursive calls are executed in the following order: (Ag,Bo,Co),
(A1,B2,Co), (A1,Bs,Ch), (Ao, Bi1, C1), (A2, B1, C3), (As, Bs, C3), (As,B2,C2), (As,
By, C>). The label “CAB” underlines the fact that sub-matrix sharing between
consecutive calls is maximum for C' (4 cases), medium for A (2 cases), and
minimum for B (1 case). It is reasonable to expect that CAB-fractal will tend
to better reduce write misses, since C' is the matrix being written. In a simi-
lar vein, but with a stress on reducing read misses, we consider the algorithm
ABC-fractal obtained from the fractal scheme when the recursive calls are ex-
ecuted in the following order: (Ao, By, Co), (Ao, B, Cl), (AQ, By, Cg), (Az, By, Cz),
(AS, B2, 02), (A3, B3, 03), (Al, B3, Cl), (Al, Bz, CO).

2.1 Cache Performance

Fractal multiplication algorithms can be implemented with respect to any mem-
ory layout of the matrices. For an ideal fully associative cache with least recently
used replacement policy (LRU) and with cache lines holding exactly one matrix
entry, the layout is immaterial to performance. The fractal approach exploits
temporal locality for any cache independently of its size s (in matrix entries).
Indeed, consider the case when at the highest level of recursion all calls use ma-
trix blocks that fit in cache simultaneously. Approximately, the matrix blocks
are of size s/3. Each call load will cause about s misses. Each call computes up to
(V/3/3)® = 5y/5/3+/3 scalar MADDs. The ratio misses per FLOP is estimated
as = (3v/3(/(2v/s) ~ 2.6/+/s. (This is within a constant factor of optimal,
Corollary 6.2 [28].)

For a real machine, the above analysis needs to be refined, keeping into ac-
count the effects of cache-line length ¢ (in matrix entries) and a low degree of
associativity. Here, the fractal layout, which stores relevant matrix blocks in con-
tiguous memory locations, takes full advantage of cache-line effects and has no
self interference for blocks that fit in cache. The misses per flop is estimated as
= 2.6v/¢+/s, where v accounts for cross interference between different matri-
ces and other fine effects not captured by our analysis. In general, for a given
fractal algorithm, v will depend on matrix size (n), relative fractal arrays posi-
tions in memory, cache associativity and, sometimes, register allocation. When
interference is negligible, we can expect v = 1.

2.2 The Structure of the Call Tree

Pursuing efficient implementations for the fractal algorithms we face the usual
performance drawbacks of recursion: overheads and poor register utilization (due
to lack of code exposure to the compiler). To circumvent such drawbacks, we
carefully study the structure of the call tree.

Definition 1. Given a fractal algorithm A, its call tree T = (V, E) w.r.t. input
(A, B,C) is an ordered, rooted tree defined as follows. V' contains one node for
each call. The root of T corresponds to the main call fractal(A,B,C). The or-
dered children vi,va,...,vs of an internal node v correspond to the calls made
by v in order of execution.

If Aism xn and B is n x p, we shall say that the input is of type < m,n,p >.
If one among m, n, and p is zero, then we shall say that the type is empty and
use also the notation < () >. The structure of T is uniquely determined by type
of the root. We focus on square matrices, i.e. type < n,n,n > for which the tree
has depth [logn] + 1 and it has 8M°871 leaves. n® leaves have type < 1,1,1 >
and correspond (from left to right) to the n® MADDs of the algorithm. The
remaining leaves have empty type. Internal nodes are essentially responsible for
performing the problem decomposition; their specific computation depends on
the way matrices are represented. An internal node has typically eight non-
empty children, except when its type has at least one components equal to 1,
eg., < 2,1,1 > or < 2,2,1 >, in which the non empty children are 2 and 4,
respectively. While the call tree has about n® nodes, most of them have the
same type. To deal with this issue systematically, we introduce the concept of
type DAG. Given a fractal algorithm A, an input type < m,n,p >, and the
corresponding call tree T = (V, E), the call type DAG D = (U, F) is a DAG,
where the arcs with the same source are ordered, such that: 1) U contains exactly
one node for each type occurring in 7', the node corresponding to < m,n,p >
is called the root of D; 2) F contains, for each u € U, the ordered set of arcs
(u,w1),- .., (u,wg), where wy, ..., ws are the types of the (ordered) children of
any node in T" with type u. See Figure 2 for an example. Next, we study the size
of the call-type DAG D for the case of square matrix multiplication. We begin
by showing that there are at most 8 types of input for the calls of a given level
of recursion.

<17,17,17>

<9,9,9> <9,8,9> <9,Q,8> <8,8,9> <89,

8> <9,88> <899> <888> Level 1

<555> <545> <554> <44,5> <454> <5

<222> <21,2> <2,2,1> <1;i,2><1,2,1> <211> <122> <1,11> Level 4

Fig. 2. Example of call-type DAG for Matrix Multiplication < 17,17,17 >

Proposition 1. For any integersn > 1 and d > 0, let ng be defined inductively
asng =n and ngr1 = [nq/2]. Also, for any integer ¢ > 1, define the set of types
Y(g) = {< r,s,t> rs,te€{qq—1} }. Then, in the call tree corresponding
to a type < n,n,n >, the type of each call-tree node at distance d from the root
belongs to the set Y(ng), for d =0,1,...,[logn].

Proof. The statement trivially holds for d = 0 (the root), since < n,n,n >€
Y(n) = Y(ng). Assume now inductively that the statement holds for a given
level d. From the closure property of the balance decomposition and the recursive
decomposition of the algorithm, it follows that all matrix blocks at level d+1 have
dimensions between |(ng — 1)/2| and [ng4/2]. From the identity |(ng—1)/2] =
[ng/2] — 1, we have that all types at level d + 1 belong to Y ([n4/2]) = Y (ngt1)-

Now, we can give an accurate size estimate of the call-type DAG.

Proposition 2. Let n be of the form n = 2Fs, with s odd. Let D = (U, F)
be the call-type DAG corresponding to input type < n,n,n >. Then, |U| <
k+1+8([logn] — k).

Proof. 1t is easy to see that, at level d = 0,1, ...,k of call tree nodes have type
< ng,ng,ng >, with ng = n/2%. For each of the remaining ([logn] — k) levels,
there are at most 8 types per level, according to Proposition 1.

Thus, we always have |U| = O(logn), with |U| =logn + 1 when n is a power of
two, with |U| = 8[logn] when n is odd, and with |U| somewhere in between for
general n.

2.3 Bursting the Recursion

If v is an internal node of the call tree, the corresponding call receives as input a
triple of blocks of A, B, and C, and produces as output the input for each child
call. When matrices A, B, and C are fractally represented by the corresponding
one-dimensional arrays a, b, and ¢, the input triple is uniquely determined by
the type < r,s,t > and by the initial positions 4, j, and k of the blocks in their
respective arrays. Specifically, the block of A is stored in afi,...,i + rs — 1],
the block of B is stored in b[j,...,j + st — 1], and the block of C' is stored in
clk,...,k + rt — 1]. The call at v is then responsible for the computation of
the type and initial position of the sub-blocks processed by the children. For
example, for the A-block r x s starting at i, the four sub-blocks have respective
dimensions [r/2] x [s/2], [r/2] x |s/2], [r/2] x [s/2], and |r/2] x |s/2]. They also
have respective starting points ig, i1, iz, and iz, of the form i, = i + Aip, where:
Aig = 0, Aiy = [r/2][s/2], Aia = [r/2]s, Ais = Ais + |r/2]|[s/2]. In a similar
way, one can define the analogous quantities j, = j + Ajp for the sub-blocks
of B and k = k + Ak for the sub-blocks of C, for h = 0,1,2,3. During the
recursion and in any node of the call tree, every A value is computed twice.
Hence, a straightforward implementation of the fractal algorithm is bound to be
rather inefficient. Two avenues can be followed, separately or in combination.
First, rather than executing the full call tree down to the n® leaves of type <
1,1,1 >, one can execute a pruned version of the tree. This approach reduces the
recursion overheads and the straight-line coded leaves are amenable to aggressive
register allocation, a subject of the next section. Second, the integer operations
are mostly the same for all calls. Hence, these operations can be performed in
a preprocessing phase, storing the results in an auxiliary data structure built
around the call-type DAG D, to be accessed during the actual processing of the
matrices. Counting the number of instructions per node, we can see a reduction
of 30%.

3 Register Issues

The impact of register management on overall performance is captured by the
number p of memory (load or store) operations per floating point operation, re-
quired by a given assembly code. In a single-pipeline machine with at most one
FP or memory operation per cycle, 1/(1+ p) is an upper limit to the achievable
fraction of FP peak performance. The fraction lowers to 1/(1+ 2p) for machines
where MADD is available as a single-cycle instruction. For machines with paral-
lel pipes, say 1 load/store pipe every f FP pipes, an upper limit to the achievable
fraction of FP peak performance becomes max(1, fp), so that memory instruc-
tions are not a bottleneck as long as p < 1/f. In this section, we explore two
techniques which, for the typical number of registers of current RISC processors,
lead to values of p approximately in the range 1/4 to 1/2. The general approach
consists in stopping the recursion at some point and formulating the correspond-
ing leaf computation as a straight-line code. All matrix entries are copied into a
set of scalar variables, whose number R is chosen so that any reasonable compiler

will permanently keep these variables in registers (scalarization). For a given R,
the goal is then to choose where to stop the recursion and how to sequence the
operations so as to minimize p, i.e., to minimize the number of assignments to
and from scalar variables.

We investigated and implemented two different scalar replacements: Fractal
Sequence “inspired” by [20] and C-tiling sequence inspired by [39] (see [5, 33] for
a full description).

4 Experimental Results

We have studied experimentally both the cache behavior of fractal algorithms,
in terms of misses, and the overall performance, in terms of running time.

4.1 Cache Misses

The results of this section are based on simulations performed (on an SPARC Ul-
tra 5) using the Shade software package for Solaris, of Sun Microsystems. Codes
are compiled for the SPARC Ultra2 processor architecture (V8+, no MADD op-
eration available) and then simulated for various cache configurations, chosen to
correspond to those of a number of commercial machines. Thus when we refer,
say, to the R5000 IP32, we are really simulating a ultra2 CPU with the memory
hierarchy of the R5000 IP32.

In fractal codes, (i) the recursion is stopped when the size of the leaves is
strictly smaller than problem < 32,3232 >; (ii) the recursive layout is stopped
when a sub-matrix is strictly smaller than 32x 32; (iii) the leaves are implemented
with C-tiling register assignment using R = 24 variables for scalarization (this
leaves the compiler 8 of the 32 registers to buffer multiplication outputs before
they are accumulated into C-entries). The leaves are compiled with cc WorkShop
4.2 and linked statically (as suggested in [39]). The recursive algorithms, i.e.
ABC-Fractal and C AB-Fractal, are compiled with gce 2.95.1.

We have also simulated the code for ATLAS DGEMM obtained by instal-
lation of the package on the Ultra 5 architecture. This is used as another term
of reference, and generally fractal has fewer misses. However, it would be unfair
to regard this as a competitive comparison with ATLAS, which is meant to be
efficient by adapting to the varying cache configuration. We have simulated
7 different cache configurations (Table 1); we use the notation: I= Instruction
cache, D=Data cache, and U=Unified cache. We have measured the number
u(n) of misses per flop and compared it against the value of the estimator (Sec-
tion 2.1) p(n) = 2.6v(n)/(£y/s), where s and £ are the number of (64 bit) words
in the cache and in one line, respectively, and where we expect values of v(n)
not much greater than one. In Table 1, we have reported the value of ©(1000)
measured for CAB-fractal and the corresponding value of y(1000) (last column).
More detailed simulation results are given in [5]. We can see that v is generally
between 1 and 2; thus, our estimator gives a reasonably accurate prediction of
cache performance. This performance is consistently good on the various config-
urations, indicating efficient portability. For completeness, in [5], we have also

Table 1.

Summary of simulated configurations

Simulated |Conf. Size (Bytes/s)|Line (Bytes,e) |Assoc./writePol|p(1000)/
~(1000)

SPARC 1 U1|64KB / 8K |16B / 2 1 / through |(2.65e-2 / 1.84
SPARC 5 I11{16KB 16B 1/

D1|8KB / 1K 16B / 2 1 / through |[5.96e-2 / 1.47
Ultra 5 I11{16KB 32B 2/

D1|16KB / 2K |32B / 4 1 / through |2.51e-2 / 1.75

U2|2MB / 256K |64B / 8 1 / back 1.05e-3 / 1.66
R5000 TP32 11|32KB 32B 2 / back

D1|32KB /4K |32B / 4 2 / back 1.06e-2 / 1.04

U2|512KB / 64K |32B / 4 1 / back 3.61e-3 / 1.42
Pentium II I1|16KB 32B 1/

D1|16KB / 2K |32B / 4 1 / through |(2.50e-2 / 1.74

U2|512KB / 64K |32B / 4 1 / back 3.98e-3 / 1.57
HAL Station 11{128KB 128B 4 / back

D1|128KB / 16K|128B / 16 4 / back 2.65e-3 / 2.09
ALPHA 11|8KB 32B 1/
21164 D1|8KB / 1K 32B / 4 1 / through |(3.75e-2 / 1.85

U2|96KB / 12K |32B / 4 3 / back 5.81e-3 / 0.99

reported simulation results for code misses: although these misses do increase
due to the comparatively large size of the leaf procedures, they remain negligible
with respect to data misses.

4.2 MFLOPS

While portability of cache performance is desirable, it is important to explore the
extent to which it can be combined with optimizations of CPU performance. We
have tested the fractal approach on four different processors listed in Table 2. We
always use the same code for the recursive decomposition (which is essentially
responsible for cache behavior). We vary the code for the leaves, to adapt the
number of scalar variables R to the processor: R = 24 for Ultra 5, R = 8 for
Pentium II, and R = 32 for SGI R5K IP32 and HAL Station. We compare
the MFLOPS of fractal algorithms in double precision with peak performance
and with the performance of ATALS-DGEMM, if available. Fractal achieves
performances comparable to those of ATLAS, being at most 2 times slower
on PentiumII (which is not a RISC) and a little faster on SGI R5K. Since no
special adaptation to the processor has been performed on the fractal codes,
except for the number of scalar variables, we conclude that the portability of
cache performance can be combined with overall performance. More detailed
running time results are reported in [5]

5 Conclusions

In this paper, we have developed a careful study of matrix multiplication im-
plementations, showing that suitable algorithms can efficiently exploit the cache

Table 2. Processor Configurations

Processor Ultra 2i (uitra 5) |PentiumII R5000 (IP32) |HAL Station
Registers 32 64-bit 8 80-bit 32 64-bit 32 64-bit
Structure register file stack file register file register file
Multiplier Adder distinct distinct single FU single FU
FP Lat.(cycles)y |3 8 2 4

Peak (mrLoPS) 666 400 360 200

Peak of CAB-Fr. /

matrix size

425 [444 x 444

187 /400 x 400

133 / 504 x 504

168 / 512 x 512

Peak of ATLAS / ma-

455 / 220 x 220

318 / 848 x 848

113 / unknown

not available

trix size

hierarchy without taking cache parameters into account, thus ensuring porta-
bility of cache performance. Clearly, performance itself does depend on cache
parameters and we have provided a reasonable estimator for it. We have also
experimentally shown that, with a careful implementation of recursion, high
performance is achievable. We hope the present study will motivate extension in
various directions, both in terms of results and in terms of techniques. In [15], we
have already used the fractal multiplication codes and recursive code optimiza-
tions of this paper to obtain implementation of other linear algebra algorithms,
such as those for LU decomposition of [37], with overall performance higher than
other multiplication-based algorithms.

References

1. A. Aggarwal, B. Alpern, A.K. Chandra and M. Snir: A model for hierarchical
memory. Proc. of 19th Annual ACM Symposium on the Theory of Computing,
New York, 1987,305-314.

2. A. Aggarwal, A.K. Chandra and M. Snir: Hierarchical memory with block transfer.
1987 IEEE.

3. B. Alpern, L. Carter, E. Feig and T. Selker: The uniform memory hierarchy model
of computation. In Algorithmica, vol. 12, (1994), 72-129.

4. U. Banerjee, R. Eigenmann, A. Nicolau and D. Padua: Automatic program paral-
lelization. Proceedings of the IEEE vol 81, n.2 Feb. 1993.

5. G. Bilardi, P. D’Alberto, and A. Nicolau: Fractal Matrix Multiplication: a Case
Study on Portability of Cache Performance, University of California at Irvine, ICS
TR+#00-21, 2000.

6. G. Bilardi and F.P. Preparata: Processor-time tradeoffs under bounded-speed mes-
sage propagation. Part II: lower bounds. Theory of Computing Systems, Vol. 32,
531-559, 1999.

7. G. Bilardi, E. Peserico: An Approach toward an Analytical Characterization of
Locality and its Portability. IWIA 2000, International Workshop on Innovative
Architectures, Maui, Hawai, January 2001.

8. G. Bilardi, E. Peserico: A Characterization of Temporal Locality and its Portability
Across Memory Hierarchies. ICALP 2001, International Collogquium on Automata,
Languages, and Programming, Crete, July 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

G. Bilardi, A. Pietracaprina, and P. D’Alberto: On the space and access complexity
of computation DAGs. 26th Workshop on Graph-Theoretic Concepts in Computer
Science, Konstanz, Germany, June 2000.

J. Bilmes, Krste Asanovic, C. Chin and J. Demmel: Optimizing matrix multiply
using PHIiPAC: a portable, high-performance, Ansi C coding methodology. Inter-
national Conference on Supercomputing, July 1997.

S. Carr and K. Kennedy: Compiler blockability of numerical algorithms. Proceed-
ings of Supercomputing Nov 1992, pg.114-124.

S. Chatterjee, V.V. Jain, A.R. Lebeck and S. Mundhra: Nonlinear array layouts
for hierarchical memory systems. Proc. of ACM international Conference on Su-
percomputing, Rhodes,Greece, June 1999.

S. Chatterjee, A.R. Lebeck, P.K. Patnala and M. Thottethodi: Recursive array
layout and fast parallel matrix multiplication. Proc. 11-th ACM SIGPLAN, June
1999.

D. Coppersmith and S. Winograd: Matrix multiplication via arithmetic progres-
sion. In Poceedings of 9th annual ACM Symposium on Theory of Computing pag.1-
6, 1987.

P. D’Alberto, G. Bilardi and A. Nicolau: Fractal LU-decomposition with partial
pivoting. Manuscript.

M.J. Dayde and IS. Duff: A Dblocked implementation of level
3 BLAS for RISC processors. TR_PA_96_06, available on line
http://www.cerfacs.fr/algor/reports/TR_PA_96_06.ps.gz Apr. 6 1996

N. Eiron, M. Rodeh and I. Steinwarts: Matrix multiplication: a case study of algo-
rithm engineering. Proceedings WAE’98, Saarbricken, Germany, Aug.20-22, 1998
Engineering and Scientific Subroutine Library.
http://www.rs6000.ibm.com/resource/aix_resource/sp_books/essl/

P. Flajolet, G. Gonnet, C. Puech and J.M. Robson: The analysis of multidimen-
tional searching in Quad-Tree. Proceeding of the second Annual ACM-SIAM sym-
posium on Discrete Algorithms, San Francisco, 1991, pag.100-109.

J.D. Frens and D.S. Wise: Auto-blocking matrix-multiplication or tracking BLAS3
performance from source code. Proc. 1997 ACM Symp. on Principles and Practice
of Parallel Programming, SIGPLAN Not. 32, 7 (July 1997), 206—216.

M. Frigo and S.G. Johnson: The fastest Fourier transform in the west. MIT-LCS-
TR-728 Massachusetts Institute of technology, Sep. 11 1997.

M. Frigo, C.E. Leiserson, H. Prokop and S. Ramachandran: Cache-oblivious al-
gorithms. Proc. 40th Annual Symposium on Foundations of Computer Science,
(1999)

E.D. Granston, W. Jalby and O. Teman: To copy or not to copy: a compile-
time technique for assessing when data copying should be used to eliminate cache
conflicts. Proceedings of Supercomputing Nov 1993, pg.410-419.

G.H. Golub and C.F. van Loan: Matrix computations. Johns Hopkins editor 3-rd
edition

F.G. Gustavson: Recursion leads to automatic variable blocking for dense linear
algebra algorithms. Journal of Research and Development Volume 41, Number 6,
November 1997

F. Gustavson, A. Henriksson, I. Jonsson, P. Ling, and B. Kagstrom: Recursive
blocked data formats and BLAS’s for dense linear algebra algorithms. In B.
Kagstrom et al (eds), Applied Parallel Computing. Large Scale Scientific and In-
dustrial Problems, PARA’98 Proceedings. Lecture Notes in Computing Science,
No. 1541, p. 195-206, Springer Verlag, 1998.

27.
28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

N.J. Higham: Accuracy and stability of numerical algorithms ed. SIAM 1996
Hong Jia-Wei and T.H. Kung: I/O complexity :The Red-Blue pebble game. Proc.of
the 13th Ann. ACM Symposium on Theory of Computing Oct.1981,326-333.
B.Kéagstrom, P. Ling and C. Van Loan: Algorithm 784: GEMM-based level 3 BLAS:
portability and optimization issues. ACM transactions on Mathematical Software,
Vol24, No.3, Sept.1998, pages 303-316

B.Kagstrom, P. Ling and C. Van Loan: GEMM-based level 3 BLAS: high-
performance model implementations and performance evaluation benchmark.
ACM transactions on Mathematical Software, Vol24, No.3, Sept.1998, pages 268-
302.

M. Lam, E. Rothberg and M. Wolfe: The cache performance and optimizations of
blocked algorithms. Proceedings of the fourth international conference on archi-
tectural support for programming languages and operating system, Apr.1991,pg.
63-74.

S.S. Muchnick: Advanced compiler design implementation. Morgan Kaufman

P. D’Alberto: Performance Evaluation of Data Locality Exploitation. Techincal
Report UBLCS-2000-9. Department of Computer Science, University of Bologna.
P.R. Panda, H. Nakamura, N.D. Dutt and A. Nicolau: Improving cache perfor-
mance through tiling and data alignment. Solving Irregularly Structured Problems
in Parallel Lecture Notes in Computer Science, Springer-Verlag 1997.

John E. Savage: Space-Time tradeoff in memory hierarchies. Technical report Oct
19, 1993.

V.Strassen: Gaussian elimination is not optimal. Numerische Mathematik
14(3):354-356, 1969.

S. Toledo: Locality of reference in LU decomposition with partial pivoting. STAM
J.Matrix Anal. Appl. Vol.18, No. 4, pp.1065-1081, Oct.1997

M. Thottethodi, S. Chatterjee and A.R. Lebeck: Tuning Strassen’s ma-
trix multiplication for memory efficiency. Proc. SC98, Orlando,FL, nov.1998
(http://www.supercomp.org/sc98).

R.C.Whaley and J.J.Dongarra: Automatically Tuned Linear Algebra Software.
http://www.netlib.org/atlas/index.html

D.S. Wise: Undulant-block elimination and integer-preserving matrix inversion.
Technical Report 418 Computer Science Department Indiana University August
1995

M. Wolfe: More iteration space tiling. Proceedings of Supercomputing, Nov.1989,
pg. 655-665.

M. Wolfe and M. Lam: A Data locality optimizing algorithm. Proceedings of the
ACM SIGPLAN’91 conference on programming Language Design and Implemen-
tation, Toronto, Ontario,Canada,June 26-28, 1991.

M. Wolfe: High performance compilers for parallel computing. Addison-Wesley
Pub.Co0.1995

