
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO.5, OCTOBER 2003 827

Adaptive Low-Power Address Encoding Techniques
Using Self-Organizing Lists

Mahesh N. Mamidipaka, Daniel S. Hirschberg, and Nikil D. Dutt, Senior Member, IEEE

Abstract—Off-chip bus transitions are a major source of power
dissipation for embedded systems. In this paper, new adaptive
encoding schemes are proposed that significantly reduce transition
activity on data and multiplexed address buses. These adaptive
techniques are based on self-organizing lists to achieve reduction
in transition activity by exploiting the spatial and temporal locality
of the addresses. Also the proposed techniques do not require any
extra bit lines and have minimal delay overhead. The techniques
are evaluated for efficiency using a wide variety of application
programs including SPEC 95 benchmark set. Unlike previous
approaches that focus on instruction address buses, experiments
demonstrate significant reduction in transition activity of up to
54% in data address buses and up to 59% in multiplexed address
buses. The average reductions are twice those obtained using
current schemes on a data address bus and more than twice those
obtained on a multiplexed address bus.

Index Terms—Bus encoding, low power, transition activity.

I. INTRODUCTION

POWER dissipation has become a critical design criterion in
most system designs, especially in portable battery-driven

applications such as mobile phones, personal digitial assistants
(PDAs), laptops, etc., that require longer battery life. Reliability
concerns and packaging costs have made power optimization
even more relevant in current designs. Moreover, with the
increasing drive toward system-on-chip (SOC) applications,
power has become an important parameter that needs to be
optimized along with speed and area. The main sources of
power dissipation in VLSI circuits [18] are leakage currents,
the standby current (due to continuous dc current drawn from

to ground), short-circuit current (due to a dc path between
supply and ground lines during transitions), and capacitive
current (due to charging and discharging of node capacitances
during transitions). Power reduction techniques have been
proposed at different levels of the design hierarchy from algo-
rithmic level [3] and system level [12] to layout level [13] and
circuit level [12]. The dominant source of power dissipation is
due to the capacitive current (referred to as capacitive power
[11], [18]) and is given by

Manuscript received February 19, 2002; revised September 4, 2002. This
work was supported in part by the National Science Foundation under Grant
MIP-9708067, in part by Defense Advanced Research Projects Agency under
Grant F33615-00-C-1632, and in part by the Motorola Corporation.

The authors are with the Center for Embedded Computer Systems, De-
partment of Information and Computer Science, University of California,
Irvine, CA 92697 USA (e-mail: maheshmn@cecs.uci.edu; dutt@cecs.uci.edu;
dan@ics.uci.edu).

Digital Object Identifier 10.1109/TVLSI.2003.814325

where
capacitive power dissipation;
physical capacitance at the output of the node;
supply voltage;
clock frequency;
average number of output transitions per
time.

Most research efforts have focused on reducing the dynamic
power consumption by reducing the number of transitions in the
circuits. In particular, researchers have focused on reduction of
power dissipation on off-chip buses since a significant portion
of total power dissipation is due to the transitions on the off-chip
buses. This is because of the large switching capacitances asso-
ciated with these bus lines. It is estimated that power dissipated
on the I/O pads of an IC ranges from 10% to 80% of the total
power dissipation with a typical value of 50% for circuits op-
timized for low power [15]. Various techniques have been pro-
posed in the literature which encode the data before transmis-
sion on the off-chip buses so as to reduce the average and peak
number of transitions.

However, most techniques have focused on reduction of tran-
sition activity on the instruction address buses, and have not gen-
erated consistent improvement on data address buses without
incurring significant penalty through redundancy in space or
time. In this paper, new encoding techniques are presented that
exploit the notion of self-organizing lists to adaptively encode
data and multiplexed addresses. This approach achieves signifi-
cant and consistent transition activity reduction without adding
redundancy in space or time. The paper is organized as fol-
lows. Section II reviews related work and Section III discusses
techniques for data address buses and their implementations.
The techniques proposed for multiplexed address bus and their
implementation details are discussed in Section IV. Section V
shows the reduction in transition activity obtained by applying
these techniques on various programs. These results are com-
pared with those from existing techniques to demonstrate the ef-
ficacy of these techniques. Finally, conclusions and future work
are presented in Section VI.

II. RELATED WORK

Since instruction addresses are mostly sequential, Gray
coding [17] was proposed to minimize the transitions on the
instruction address bus. The Gray code ensures that when the
data is sequential, there is only one transition between two
consecutive data words. However, this coding scheme may not
work for data address buses because the data addresses are
typically not sequential. An encoding scheme called T0 coding

1063-8210/03$17.00 © 2003 IEEE

828 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO.5, OCTOBER 2003

[2] was proposed for the instruction address bus. This coding
uses an extra bit line along with the address bus, which is set
when the addresses on the bus are sequential, in which case
the data on the address bus are not altered. When the addresses
are not sequential, the actual address is put on the address
bus. Bus-invert (BI) coding [15] is proposed for reducing the
number of transitions on a bus. In this scheme, before the data
is put on the bus, the number of transitions that might occur
with respect to the previously transmitted data is computed. If
the transition count is more than half the bus width, the data is
inverted and put on the bus. An extra bit line is used to signal
the inversion on the bus.

Variants of T0 (T0_BI, Dual T0, and Dual T0_BI [16]) are
proposed which combine T0 coding with BI coding. Ramprasad
et al. described a generic encoder–decoder architecture [14],
which can be customized to obtain an entire class of coding
schemes for reducing transitions. The same authors proposed
INC–XORcoding, which reduces the transitions on the instruction
address bus more than any other existing technique. An adaptive
encoding method is also proposed by Ramprasadet al.[14] , but
with huge hardware overhead. This scheme uses a RAM to keep
track of the input data probabilities, which are used to code the
data.

Another adaptive encoding scheme is proposed by Beniniet
al., which does encoding based on the analysis of the previous

data samples [1]. This also has huge computational overhead.
Musoll et al. propose a working zone encoding (WZE) tech-
nique [10], which works on the principle of locality. Although
this technique gives good results for data address buses, there is
a significant delay and hardware overhead involved in encoding
and decoding. Moreover this technique requires extra bit lines
leading to redundancy in space. Recently, Chenget al.proposed
coding techniques for optimizing switching activity on a multi-
plexed DRAM address bus [4].

Although the existing methods give significant improvement
on instruction address buses, none of the encoding methods
yield significant and consistent improvement on the data and
multiplexed address buses without redundancy in space (no
extra bit lines) or time (no extra time slots). This is because
most of the proposed techniques are based on the heuristic
that the addresses on the bus are sequential most of the time.
However, data addresses typically are not sequential and hence,
the existing techniques fail to reduce transition activity. Many
of the existing schemes add redundancy in space or time, which
may be expensive in some applications.

III. D ATA ADDRESS-BUSES

Although data addresses may not be sequential, they still
follow the principles of spatial and temporal locality [6]. That
is, it is more likely that there will be an access to a location
near the currently accessed location (spatial locality) and it
is more likely that the currently accessed location will be
accessed again in the near future (temporal locality). We
propose adaptive encoding techniques that exploit the principle
of locality for reducing the transitions on the data address bus.

We develop heuristics to minimize the number of transitions
between the most frequently accessed address ranges by

assigning them the codes with minimal Hamming distance. To
achieve this, we employ the move-to-front (MTF) and TRans-
pose (TR) methods in self-organizing lists [7] for assigning
codes that reduce transitions on the address bus [9].

MTF is a transformation algorithm that, instead of outputting
the input symbol, outputs the index of the symbol in a table.
The table has all possible symbols stored in it. Thus, the length
of the code is the same as the length of the symbol. Both the
encoder and decoder initialize the table with the same symbols
in the same positions. Once a symbol is processed, the encoder
outputs the code corresponding to its position in the table and
then the symbol is shifted to the top of the table (position 0). All
the codes from position 0 until the position of the symbol being
coded are moved to the next higher position. The TR algorithm
is similar to MTF in that the code assigned to the symbol is the
position of the symbol but, instead of moving the symbol to the
front, the symbol is exchanged in position with the symbol just
preceding it. If the symbol is at the beginning of the list, it is left
at the same position.

Note that in both MTF and TR, the most frequent incoming
symbols are moved to the beginning of the list and thus the in-
dices of these locations are closer in terms of Hamming distance.
Therefore, the transition activity between the codes assigned to
most frequent incoming symbols is minimized. These heuristics
are useful in data address buses since there is a greater likelihood
of two different address sequences being sent on the bus (two ar-
rays being accessed alternatively, reads from an address space
and writes to a different address space, etc.). In such cases, it is
desirable to keep the encoding of these address ranges as close
as possible i.e., with minimal Hamming distance. The MTF and
TR heuristics achieve the goal by self-organization. But storage
of all the possible address ranges and managing them in the list
is impractical in terms of area and delay overhead. Hence, the
address bus is partitioned into a set of smaller address buses and
encoding is applied to each of these addresses separately. We
now discuss the architecture and implementation of the self-or-
ganizing lists based encoder and decoder. The delay/area over-
heads for each of these techniques is minimal, as described here
and as demonstrated in our experiments presented in Section V.

A. Encoder Implementation of Self-Organizing Lists

The functional implementation of an encoder based on self-
organizing can be split into two phases. During the first phase,
for every incoming symbol, the index corresponding to it is ex-
tracted from the list and put on the bus. In the second phase, the
list is organized based on the incoming symbol. While the first
phase is common for both MTF and TR techniques, the tech-
niques use different strategies for organizing the lists based on
the incoming symbol.

The straightforward implementation searches for the symbol
in the list, sends the index corresponding to the symbol loca-
tion, and then updates the list by organizing the symbols. This
implementation has huge delay overhead in the critical path
for the symbol search and for encoding the position of the
symbol. A better way to implement this is to keep the location
of the symbol fixed and to vary the coding corresponding
to each symbol. A generic structure for the implementation
of self-organizing lists is shown in Fig. 1 for a bus of width

MAMIDIPAKA et al.: ADAPTIVE LOW-POWER ADDRESS ENCODING TECHNIQUES USING SELF-ORGANIZING LISTS 829

Fig. 1. Generic architecture for self-organizing lists based encoder.

2. Since there are four possible input symbols, the imple-
mentation shows four 2-bit registers that store the encodings
corresponding to a possible input symbol (00, 01, 10, and 11).
Let represent each possible input symbol. represents
the encoding corresponding to symbol “” in current cycle.

represents the encoding for “” in the next cycle. Effec-
tively, represents the current position of the symbol in the
imaginary list and represents the position of the symbol
in the list after the organization of the list, that organization
being based on the encoding of the input symbol. The encoder
works in the following way. For every new incoming address
(), the multiplexer (SEL_MUX) enables the selection of
the corresponding address encoding . The encoding is put
on the bus through a flip-flop indicated by “.” The encoding

is fed back to the combinational logic of each symbol
register for changing its encoding to reflect the new organized
list. The combinational logic also takes the current encoding

as its input. The selection logic is same for both the MTF
and TR techniques, but the combinational logic is different
because of the difference in their organizational strategy.

For the MTF encoder, the combinational logic has the fol-
lowing functionality:

if

if

if

The combinational logic signifies that the next cycle encoding
for “ ” () will be same as it is in the current cycle () if
the symbol encoding () is less than . would be

incremented by 1 if symbol encoding () is greater
than and will be 0 if the symbol encoding is ,
because for MTF, in the imaginary list, the incoming symbol
needs to be moved from its current location to the top of the list
(index 0) and the symbol positions between the current location
and index 0 are incremented by 1.

For the TR encoder, the combinational logic has the following
functionality:

if and

if

otherwise

The encoder inserts a one-cycle delay between arrival of the
address and output of the encoding. As indicated by Benini
et al. [2], this is not an overhead because even if binary code
(without encoding) were used, the flip-flops at the output of the
bus would be needed, because the address would be generated
by a very complex logic circuit that produces glitches and mis-
aligned transitions. The flip-flops filter out the glitches and align
the edges to the clock thereby eliminating excessive power dis-
sipation and signal quality degradation.

The delay induced in the address path due to this encoding
is the delay of the multiplexer (SEL_MUX). The size of the
multiplexer is exponentially proportional to the bus width. Since
the buses are split into buses of smaller widths and the encoding
is applied to each of them independently, the size of multiplexer
and hence the delay overhead due to it is minimized. The other
paths that arise due to the encoding start and terminate within
the module and hence do not add to any timing violations. Some
other minor overheads would be involved at reset because the
registers need to be initialized to appropriate values. Since these
do not appear in the actual address generation path, these paths
are not considered critical.

B. Decoder Implementation of Self-Organizing Lists

The decoding for the self-organizing lists based encoding is
achieved by maintaining another list at the decoder end. The list
at the decoder maintains consistency with that at the encoder by
organizing itself as per the encodings received at the decoder.
We assume that the initial positioning of the symbols in the lists
at both encoder and decoder are the same. Similar to the encoder,
the functionality of the decoder can be split into two phases. In
the first phase, the symbol corresponding to the code is extracted
from the list and, in the second phase, the list is organized based
on the symbol coding. Fig. 2 shows the architecture for the MTF
based decoder.

Unlike the encoder where the codes are stored in the list, for
the decoder the symbols are stored in the list. The incoming code
() is fed to the multiplexer (SEL_MUX) to extract the cor-
responding symbol () from the list. Since the encoding
symbol () reflects the index of the symbol, it is then fed
back to organize the list based on the strategy used. The inputs
to the multiplexers in front of the registers shown in Fig. 2 de-
termine the symbol that will replace the corresponding location.
For MTF, the symbol at the index needs to be moved to the top
of the list. The multiplexer at the top of the list has four inputs
because the symbol at any index can move to the top of the list.
The remaining multiplexers have have two inputs because for
MTF the corresponding registers either retain the value or obtain
the value from the preceding position. The decoder for the TR
based implementation is similar to the MTF based implementa-
tion except that the inputs to these multiplexers are different.

Similar to the encoder, the critical path in the decoder is
the multiplexer (SEL_MUX) for extracting the symbol corre-
sponding to the code. All other paths start and terminate within
the module and hence are not considered critical. The actual
delay and area overhead for self-organizing lists based encoder
and decoder are presented in Section V.

830 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO.5, OCTOBER 2003

Fig. 2. Architecture for MTF-based decoder.

IV. M ULTIPLEXED ADDRESSBUSES

In a multiplexed address bus, both instruction and data ad-
dresses are sent on the same bus. So while the addresses still
exhibit the principle of locality, they are often sequential be-
cause of the characteristic of instruction addresses [6]. We pro-
pose heuristics that make use of both the sequential nature and
the locality principle to reduce the transition activity on the mul-
tiplexed address bus. When the addresses are sequential, most
of the transitions occur on a few of the least significant bits. Ac-
cordingly, we use techniques related to sequential data on the
least significant bits and techniques that exploit the principle of
locality on the higher significant bits.

When the addresses are sequential, the least significant
bits account for most of the transitions. More specifically,
the four least significant bits contribute to approximately
93.75% of the total transitions in sequential addresses. So we
propose a heuristic to use self-organizing lists based techniques
(MTF/TR) on the higher significant bits to reduce transitions by
exploiting the principle of locality in address streams, and use
Delta-TS/INC-XOR techniques on the least significant bits to
reduce the transitions in sequential addresses. We describe the
INC-XOR and Delta-TS techniques as follows. While INC-XOR

technique is proposed by Ramprasadet al., we propose an
alternative technique, Delta-TS in this paper. This heuristic
would not be applicable to data address buses because data
addresses typically are nonsequential and hence Delta-TS and
INC-XOR would not yield any reductions.

• The INC-XOR encoding technique [14] best reduces the
transition activity in an instruction address stream. In this
scheme, the data transmitted is the EXclusive-OR of the
current address and previous address incremented by a
constant. The technique was proposed to be applied on the
whole address bus. However, by applying this technique
to only the least significant bits, we still obtain signifi-
cant reductions in transition activity. The comparison of
reductions for INC-XOR (applied on four least significant
bits) along with MTF/TR, against INC-XOR applied on the
whole address bus is shown in Section V.

Fig. 3. Delta-TS encoder.

• The Delta-TS encoding technique transmits the difference
between the previous address incremented by a constant
and the current address with transition signaling (TS),
TS being the exclusive or of the previous transmitted
vector and the current input vector. Since the subtractor
involved in delta calculation is only four bits wide,
efficient look-up-table (LUT) based implementations can
be used to lower delay overhead. The structure of a 4-bit
Delta-TS based encoder is shown in Fig. 3.

The actual delay and area overheads for encoding/decoding
of these techniques, along with the reductions obtained by using
these techniques are presented in Section V.

V. EXPERIMENTS

We now present results of our low-power address encoding
techniques. The SPEC95 benchmark set is used for evaluating
the encoding techniques. Also experimental results are pre-
sented over a set of typical application programs, denoted by
TAP, contains the UNIX compression and mpeg audio decoder
utilities (gzip and mpg123), commonly used UNIX commands
(ls, who, and date), and standard C programs (factorial and
sort). The address traces of the programs were obtained by
executing them on an instruction-level simulator, SHADE [5]
on a SUN Ultra-5 workstation. The comparison is made in
terms of the total number of toggles on the bus before and after
the encoding is applied. We also present the actual area and
delay overhead of the encoding and decoding through synthesis
using the synopsys design compiler.

Tables I and II show the percentage reduction in transition
activity for the self-organizing lists based encodings applied to
the data addresses for SPEC95 and TAP programs, respectively.
While the address trace length for SPEC95 programs were in
the range of 12.4 to 106.6 million addresses, for TAP programs
the trace lengths were in the range of 31 000 to 4 400 000 ad-
dresses. As indicated in Section III, the address bus is split into
smaller bus widths and the encoding is applied to each of these
buses independently. In the results shown, “” indicates the
width of the smaller buses. The first column indicates the pro-
grams to which the encodings have been applied. Column two,
“%Seq” indicates the percentage of addresses which are sequen-
tial. Column three, “actual (Tr/Ad)” indicates the average tran-
sitions per address that occur on the bus without any application
of bus encoding on the address stream. Columns four through
eight indicate the percentage reductions obtained when the MTF
and TR techniques are applied for different values of. It was
observed that when transition signaling (XOR ,
where is the outgoing bit stream and is the incoming bit
stream) is applied on top of these encodings, a greater reduction

MAMIDIPAKA et al.: ADAPTIVE LOW-POWER ADDRESS ENCODING TECHNIQUES USING SELF-ORGANIZING LISTS 831

TABLE I
TRANSITION ACTIVITY REDUCTIONSUSING MTF AND TR FOR SPEC95 BENCHMARKS ON DATA ADDRESSBUS

TABLE II
TRANSITION ACTIVITY REDUCTIONSUSING MTF AND TR FOR TYPICAL APPLICATION PROGRAMS ONDATA ADDRESSBUS

in transition activity is often achieved. The results shown in the
table indicate the reductions before and after TS. The value in
the brackets are the reductions when TS is applied on top of the
corresponding encoding scheme.

Note that the reductions increase with increasing bus width
in both program sets. However, with increasing bus-widths, the
delay overhead due to the encoding/decoding increases rapidly.
So a configuration could be selected based on the desired
transition activity reduction and tolerable delay overhead. For
applications with tight delay constraints, the configuration with
minimum delay overhead, could be used. Importantly,
it can be observed that the reduction in transition activity
obtained on the data address buses is consistent for both the
larger benchmarks and smaller application programs. Also the
reductions were observed to be more than average for programs
with higher average transitions per address. This could be
because of frequent switching between different data address
zones with higher Hamming distance between them. Since
this kind of data address bus activity moves the frequently
accessed address spaces to the top of the self organizing lists,
the reductions seem to be higher. A maximum reduction of 54%
was achieved by TR TS with for the gzip program.
Except for few cases, the use of TS on top of MTF/TR yielded
further reductions. This reduction on average for , is
considerable in case of TR(8%), but is less significant for
MTF (5%).

Fig. 4 shows the comparison of these reductions with those
obtained using existing techniques. The bars indicate the re-
duction in transition activity for MTF TS , TR
TS , Gray coding, INC-XOR, and bus-invert coding
(). Since bus-invert coding would be effective on smaller
buses, the 32-bit address bus is split into four 8-bit buses and ap-
plied to them independently. As expected, since the addresses

Fig. 4. Comparison of transition activity reductions for various encodings on
data address bus.

are not sequential, the INC-XOR technique fails to give any re-
duction. While bus-invert coding gives the best reduction among
the existing techniques, this technique needs four extra bit lines
for implementation which may not be tolerable. It is observed
that the self-organizing lists based techniques are consistent and
outperform the existing techniques. On average, the reduction
with self-organizing lists based encoding is twice that of the
best existing technique. Also, the self-organizing lists based en-
coding does not add any redundancy in space or time (no extra
bit-lines or time slots are needed for implementation).

Tables III and IV show the reduction in transition activity
for various combination of encoding techniques on the mul-
tiplexed address bus in SPEC95 and TAP programs, respec-
tively. Column two in these tables indicates the percentage of

832 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO.5, OCTOBER 2003

TABLE III
TRANSITION ACTIVITY REDUCTIONS OFVARIOUS ENCODING TECHNIQUES FORSPEC95 BENCHMARKS ON MULTIPLEXED ADDRESSBUS

TABLE IV
TRANSITION ACTIVITY REDUCTIONS OFVARIOUS ENCODING TECHNIQUES FORTYPICAL APPLICATION PROGRAMS ONMULTIPLEXED ADDRESSBUS

instruction addresses in the total number multiplexed addresses.
As expected, the percentage of instruction addresses dominate
the data addresses in the multiplexed address stream. While
the Delta-TS and INC-XOR are applied on the least significant
4-bits, the MTF and TR are applied on the higher significant
bits. As in the data address bus, the multiplexed address bus is
split into smaller buses () and the encodings are applied
on each of them independently.

It can be noticed that MTF based encodings give better re-
ductions than TR based encodings. Also, Delta based encodings
give marginally better reductions than the INC-XOR ones. In all
cases in which the encodings have been applied, the Delta
MTF combination gave the best results. The best reduction ob-
tained with these encodings was 59% on the gzip program. But
if delay overhead is a major concern, then INC-XOR MTF
could be used which gives reductions marginally less than that
of Delta MTF. Fig. 5 shows the comparison of these reduc-
tions with the existing techniques: Gray, INC-XOR, and bus-in-
vert coding. Among the existing techniques Gray coding gives
the best reductions. The reduction for INC-XOR is mainly due to
the instruction addresses in the multiplexed address bus which
are sequential. On average, DeltaMTF gives a reduction of
51% which is more than twice that of the best existing technique
(Gray, 23%). Similar to the data address bus, the reductions on
multiplexed address bus due to the encoding techniques seem to
be greater for applications with a greater number of transitions
per address.

Each encoding scheme incurs some area and delay overhead.
Table V compares the area (number of library cells) and the
delay (ns) of encoders and decoders that are based on MTF
and TR techniques with those based on other techniques. The
designs were synthesized using synopsys design compiler on
a 0.6 m LSI_10K library and the synthesis was done for a

Fig. 5. Comparison of transition activity reductions for various encodings on
multiplexed address bus.

32-bit address bus. For MTF and TR the synthesis was done
for , and for bus-invert, synthesis was done for
(i.e., the same parameters used in the previous experiments).

The asterisk for bus-invert indicates that the area overhead
due to extra bit lines was not considered in its area evaluation. As
can be noted, the delay overhead in the critical path for MTF/TR
is comparable to that for the existing techniques, but the area
overhead of these techniques is considerably more than that of
other techniques. Considering the fact that the reduction in tran-
sition activity obtained with this technique is consistently more
than twice obtained using existing techniques, we believe that
this extra overhead in area is acceptable. If the area overhead is
a concern, it can be substantially reduced by applying this tech-
nique on a fewer number of bits (say). Another overhead

MAMIDIPAKA et al.: ADAPTIVE LOW-POWER ADDRESS ENCODING TECHNIQUES USING SELF-ORGANIZING LISTS 833

TABLE V
AREA AND CRITICAL PATH DELAY OVERHEADS FORSELF-ORGANIZING

LISTS BASED ENCODER AND DECODER

TABLE VI
AREA AND CRITICAL PATH DELAY OVERHEADS FORDELTA-TS AND

INC-XOR ENCODING/DECODING

that needs analysis is the power dissipation due to encoder and
decoder. For TR, because of the structure of the implementa-
tion, for any given input, there can be a change in encoding for
at most two out of 16 symbols. So, approximately, only 1/8th
of the gates could be active in any cycle for any input. Similarly
for MTF, on average 1/2 of the gates would be active. Assuming
a transition activity of 0.5, the possible number of transitions is
approximately 600 for MTF and 150 for TR. Note that the I/O
capacitance is at least three orders of magnitude more than that
of the internal capacitance [10]. Hence, the overhead due to in-
ternal power dissipation is still considerably less than the reduc-
tion obtained.

The delay induced in the critical path due to the encoding/de-
coding and the area overhead for the Delta-TS and INC-XOR

techniques are shown in Table VI for a 4-bit address bus. The
delay overhead of Delta-TS is higher than that of the INC-XOR

technique because of the 4-bit subtractor needed for calculating
the difference between the current address and the previous ad-
dress. However, the reduction in transition activity by using the
Delta-TS technique is marginally more than that obtained by
using INC-XOR technique. Also, note that the area overhead of
these modules is minimal.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we presented self-organizing list based en-
coding techniques (MTF and TR) for data address buses.
For multiplexed address buses, we employ a combination
of encoding techniques: while the Delta and INC-XOR are
applied to the least significant bits, the self-organizing lists
based encoding are applied to the more significant bits of the
multiplexed address bus. This enables exploitation of both the
sequential nature of instruction addresses as well as the locality
of addresses in multiplexed address buses. The proposed
techniques consistently outperform the existing techniques in
both data address and multiplexed address bus without adding
the overhead of redundancy in space or time. Results show that
TR with TS applied to various data address streams gives up to
54% reduction in transition activity. On a multiplexed address
bus, Delta MTF yields a reduction of up to 59%. An analysis

of the synthesized encoder and decoder show that the delay
overhead of the proposed encoding techniques is comparable
to that of existing techniques, but the area overhead and power
overhead seem to be more for the proposed techniques than
for the existing techniques. However, the huge reductions
in transition activity compared to the existing techniques
compensates for the overhead in power. Future work will
involve more efficient design of encoder and decoder with
smaller area and power overheads. To quantify the reduction
in power dissipation on address buses using different encoding
techniques for a given application, it is necessary to have power
models for the encoders/decoder. We plan to develop such
models which can estimate power dissipation in address bus
encoders and decoders. We also plan to look at the applicability
of the proposed techniques to data buses.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for their
helpful comments on the manuscript.

REFERENCES

[1] L. Benini, A. Macii, E. Macii, M. Poncino, and R. Scarsi, “Architec-
tures and synthesis algorithms for power-efficient bus interfaces,”IEEE
Trans. Computer-Aided Design, vol. 19, pp. 969–980, 2000.

[2] L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano, “Asymp-
totic zero-transition activity encoding for address buses in low-power
microprocessor-based systems,” inProc. Great Lakes Symp. VLSI, Ur-
bana, IL, 1997, pp. 77–82.

[3] A. P. Chandrakasan and R. W. Broderson, “Minimizing power consump-
tion in digital CMOS circuits,”Proc. IEEE, vol. 83, p. 498, 523, 1995.

[4] W.-C. Cheng and M. Pedram, “Low power techniques for address en-
coding and memory allocation,” inProc. Asia and South Pacific Design
Automation Conf. (ASP-DAC), 2001, pp. 245–250.

[5] R. F. Cmelik and D. Keppel, “Shade: A fast instruction-set simu-
lator for execution profiling,” Univ. Washington, Seattle, Tech. Rep.
UW-CSE-93-06-06, 1993.

[6] J. L. Hennessy and D. A. Patterson,Computer Architecture: A Quanti-
tative Approach. San Mateo, CA: Morgan Kaufmann, 1996.

[7] J. Hester and D. S. Hirschberg, “Self-organizing linear search,”Com-
puting Surveys, vol. 17, p. 295, 311, 1985.

[8] M. Mamidipaka, D. Hirschberg, and N. Dutt. (2001) Encoding tech-
niques for low power address buses. Univ. Calif. Irvine, Irvine, CA.
[Online] Tech. Rep. #01-22, http://www.ics.uci.edu/~maheshmn/en-
coding_tr.doc.

[9] , “Low power address encoding using self-organizing lists,” in
Proc. Int. Symp. Low-power Electron. and Design (ISLPED), 2001.

[10] E. Musoll, T. Lang, and J. Cortadella, “Working-zone encoding for re-
ducing the energy in microprocessor address buses,”IEEE Trans. VLSI
Syst., vol. 6, pp. 568–572, Dec. 1998.

[11] F. Najm, “Transition density, a stochastic measure of activity in digital
circuits,” in Proc. Design Automation Conf., 1991, pp. 644–649.

[12] M. Pedram, “Power minimization in IC design: Principles and applica-
tions,” ACM Trans. Design Automation Electron. Syst., vol. 1, pp. 3–56,
1996.

[13] M. Pedram and H. Vaishnav, “Power optimization in VLSI layout: A
survey,”The J. VLSI Signal Process. Syst. Signal, Image, Video Technol.,
vol. 15, pp. 221–232, 1997.

[14] S. Ramprasad, N. R. Shanbag, and I. N. Hajj, “A coding framework for
low power address and data busses,”IEEE Trans. VLSI Syst., vol. 7, pp.
212–221, 1999.

[15] M. R. Stan and W. P. Burleson, “Bus-invert coding for low-power I/O,”
, vol. 3, pp. 49–58, 1995.

[16] , “Low-power encodings for global communications in CMOS
VLSI,” IEEE Trans. VLSI Syst., vol. 5, pp. 444–455, 1997.

[17] C. L. Su, C. Y. Tsui, and A. M. Despain, “Saving power in the control
path of embedded processors,”IEEE Des. Test Comput., vol. 11, pp.
24–30, 1994.

[18] N. Weste and K. Eshragian,Principles of CMOS VLSI Design, A Systems
Perspective. Reading, MA: Addison-Wesley, 1998.

834 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO.5, OCTOBER 2003

Mahesh N. Mamidipaka received the B.Tech. degree in electronics and
communication engineering from the Regional Engineering College, Andhra
Pradesh, India, in 1997 and the M.E. degree from the Indian Institute of
Sciences, Bangalore, in 1999. He is currently working toward the Ph.D. degree
at the University of California, Irvine.

From 1999 to 2000, he was an IC Design Engineer with the Digital Signal
Processing Group of Texas Instruments, Bangalore, India. His research interests
include high-level power estimation of VLSI circuits and low-power architec-
tures for embedded systems.

Mr. Mamidipaka is a Student Member of ACM and SIGDA. He received the
Best Student Paper Award at the International Conference on VLSI Design in
1999.

Daniel S. Hirschbergreceived the B.E. degree in electrical engineering from
City College of New York in 1971, and the M.S.E., M.A., and Ph.D. degrees
from Princeton University, Princeton, NJ, in 1973, 1973, and 1975, respectively.

From 1975 through 1981, he was an Assistant Professor in the Department
of Electrical Engineering at Rice University, Houston, TX. Since 1981, he has
been with the University of California, Irvine, where he is currently Professor
in both the Department of Information and Computer Science (ICS) and the De-
partment of Electrical and Computer Engineering. For several years, he served
as Associate Chair of Graduate Studies and then of Undergraduate Studies with
the ICS Department. His research interests include the design and analysis of
combinatorial algorithms, and data structures. He is author of numerous articles
in these research areas and has been a Consultant for public and private industry.
From 1988 to 1990, he was an Associate Editor of theACM Transactions on
Mathematical Software. In 1996, he served as Program Co-chair for the Combi-
natorial Pattern Matching Conference. He has served on the technical program
committees for Data Commpression Conference (DCC), Combinational Patern
Matching (CPM), and String Processing and Information Retrieval (SPIRE).

Dr. Hirschberg is a Member of the Association of Computing Machinery
(ACM) and Special Interest Group on Algorithms and Computing Theroy
(SIGACT).

Nikil D. Dutt (S’82–M’84–SM’96) received the Ph.D. in computer science
from the University of Illinois at Urbana-Champaign in 1989.

He is currently a Professor in the Center for Embedded Computer Systems
at the University of California, Irvine, with academic appointments in the De-
partment of Information and Computer Science (ICS) and the Department of
Electrical and Computer Engineering (ECE). His research interests include em-
bedded computer systems design automation, computer architecture, and opti-
mizing compilers. He is coauthor ofHigh-Level Synthesis: Introduction to Chip
and System Design(Norwell, MA: Kluwer, 1992),Memory Issues for Embedded
Systems-on-Chip(Norwell, MA: Kluwer, 1999), andMemory Architecture Ex-
ploration for Programmable Embedded Systems(Norwell, MA: Kluwer, 2002).

Dr. Dutt has served as an Associate Editor for IEEE TRANSACTIONS ONVERY

LARGE SCALE INTEGRATION SYSTEMSand currently serves as an Associate Ed-
itor for ACM Transactions on Design Automation of Electronic Systems. He has
served as Topic Chair for architectural synthesis for DATE and ICCAD, and
has served on the program committees of several design automation and em-
bedded systems conferences, including the International Federation for Infor-
mation Processing Working Group (ICCAD), DATE, ASPDAC, International
Symposium on System Synthesis (ISSS), Languages, Compilers, and Tools for
Embedded Systems (LCTES) and CASES. He currently serves on the Advisory
Board of ACM-SIGDA and also serves as Vice Chair of IFIP WG 10.5.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

