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• Chapter 3: Controllers
– Control input/output: single bit (or just a 

few) representing event or state
– Finite-state machine describes 

behavior; implemented as state register 
and combinational logic

• Chapter 4: Datapath components
– Data input/output: Multiple bits 

collectively representing single entity
– Datapath components included 

registers, adders, ALU, comparators, 
register files, etc. 

• This chapter: custom processors
– Processor: Controller and datapath

components working together to 
implement an algorithm
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Note: Slides with animation are denoted with a small red "a" near the animated items



3
Digital Design
Copyright © 2006
Frank Vahid

RTL Design: Capture Behavior, Convert to Circuit
• Recall

– Chapter 2: Combinational Logic Design
• First step: Capture behavior (using equation 

or truth table)
• Remaining steps: Convert to circuit

– Chapter 3: Sequential Logic Design
• First step: Capture behavior (using FSM)
• Remaining steps: Convert to circuit

• RTL Design (the method for creating 
custom processors)
– First step: Capture behavior (using high-

level state machine, to be introduced) 
– Remaining steps: Convert to circuit

Capture behavior

Convert to circuit
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RTL Design Method
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RTL Design Method: “Preview” Example
• Soda dispenser

– c: bit input, 1 when coin 
deposited

– a: 8-bit input having value of 
deposited coin

– s: 8-bit input having cost of a 
soda

– d: bit output, processor sets to 
1 when total value of 
deposited coins equals or 
exceeds cost of a soda

as

c
d

Soda
dispenser
processor

as

c
d

Soda
dispenser
processor

25

1 0
25

1

1

500

0

0

0
tot: 
25

tot: 
50

a

How can we precisely describe this 
processor’s behavior?



6
Digital Design
Copyright © 2006
Frank Vahid

Preview Example: Step 1 --
Capture High-Level State Machine

• Declare local register tot
• Init state: Set d=0, tot=0
• Wait state: wait for coin

– If see coin, go to Add state
• Add state: Update total value:  

tot = tot + a
– Remember, a is present coin’s 

value
– Go back to Wait state

• In Wait state, if tot >= s, go to 
Disp(ense) state

• Disp state: Set d=1 (dispense 
soda)
– Return to Init state

Inputs: c (bit), a (8 bits), s (8 bits)
Outputs: d (bit)
Local registers: tot (8 bits)

Wait

Add

Disp

Init

d=0
tot=0

c’*(tot<s)

d=1

c

tot=tot+a

8 8
as

c
d

Soda
dispenser
processor

c’*(tot<s)’
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Preview Example: 
Step 2 -- Create Datapath

ld
clr

tot

8-bit
<

8-bit
adder

8

8

8
8

s a

Datapath

tot_ld
tot_clr

tot_lt_s

Inputs : c (bit), a(8 bits), s (8 bits)
Outputs : d (bit)
Local reg isters: tot (8 bits)

Wait

Add

Disp

Init

d=0
tot=0

c‘ (tot<s)‘
c‘ ∗(tot<s)

d=1

c

tot= tot+a

• Need tot register
• Need 8-bit comparator 

to compare s and tot
• Need 8-bit adder to 

perform tot = tot + a
• Wire the components 

as needed for above
• Create control 

input/outputs, give 
them names
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Preview Example:  Step 3 –
Connect Datapath to a Controller

• Controller’s inputs
– External input c

(coin detected)
– Input from datapath

comparator’s output, 
which we named 
tot_lt_s

• Controller’s outputs
– External output d

(dispense soda)
– Outputs to datapath

to load and clear the 
tot register

tot_lt_s

tot_clr

tot_ld

Controller Datapath

s

c

d

a
8 8

ld
clr

tot

8-bit
<

8-bit
adder

8

8

8
8

s a

Datapath

tot_ld
tot_clr

tot_lt_s
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Preview Example: Step 4 – Derive the Controller’s 
FSM

• Same states 
and arcs as 
high-level 
state machine

• But set/read 
datapath
control 
signals for all 
datapath
operations 
and 
conditions

tot_lt_s

tot_clr

tot_ld

C
on

tro
lle

r

D
at

ap
at

h

s

c

d

a
8 8

ld
clr tpt

8-bit
<

8-bit
adder

8

8

8
8

s a

Datapath

tot_ld
tot_clr

tot_lt_s

Inputs::c, tot_lt_s(bit)
Outputs:d, tot_ld, tot_clr (bit)

Wait

Disp

Init

d=0
tot_clr=1

c’* tot_lt_s’

c’*tot_lt_s

d=1

c

tot_ld=1

c

d

tot_ld

tot_clr

tot_lt_s

Controller

Add
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Preview Example: Completing the Design
• Implement the FSM as 

a state register and 
logic
– As in Ch3
– Table shown on right

d
0
0
0
0
0
0
0
0
0

1

0
0
0
0
0
0
0
0
1

0

1
1
1
1
0
0
0
0
0

0

n0
1
1
1
1
1
1
0
0
1

0

n1
0
0
0
0
1
0
1
1
0

0

0
1
0
1
0
1
0
1
0

0

c
0
0
1
1
0
0
1
1
0

0

s1
0
0
0
0
0
0
0
0
1

1

s0
0
0
0
0
1
1
1
1
0

1

tot_lt_s

tot_ld

tot_clr

In
it

W
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t
Ad

d
Di

sp

Inputs::c, tot_lt_s(bit)
Outputs:d, tot_ld, tot_clr (bit)

Wait

Disp

Init

d=0
tot_clr=1

c’* tot_lt_s’

c’*tot_lt_s

d=1

c

tot_ld=1

c

d

tot_ld

tot_clr

tot_lt_s

Controller

Add
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Step 1: Create a High-Level State Machine
• Let’s consider each step of the 

RTL design process in more 
detail

• Step 1
– Soda dispenser example
– Not an FSM because:

• Multi-bit (data) inputs a and s
• Local register tot
• Data operations tot=0, tot<s, 

tot=tot+a.
– Useful high-level state machine:

• Data types beyond just bits
• Local registers
• Arithmetic equations/expressions

Inputs: c (bit), a (8 bits), s (8 bits)
Outputs: d (bit)
Local registers: tot (8 bits)

Wait

Disp

Init

d=0
tot=0

c’ (tot<s)

d=1

c

tot=tot+a

c’(tot<s)’
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Step 1 Example: Laser-Based Distance Measurer

Object of
interest

D

2D = T sec * 3*108 m/sec
sensor

laser

T (in seconds)

• Example of how to create a high-level state machine to 
describe desired processor behavior

• Laser-based distance measurement – pulse laser, 
measure time T to sense reflection
– Laser light travels at speed of light, 3*108 m/sec 
– Distance is thus D = T sec * 3*108 m/sec  / 2
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Step 1 Example: Laser-Based Distance Measurer

sensor

laser

T (in seconds)

Laser-based
distance
measurer16

from button

to display
S

L

D

B
to laser

from sensor

• Inputs/outputs
– B: bit input, from button to begin measurement
– L: bit output, activates laser
– S: bit input, senses laser reflection
– D: 16-bit output, displays computed distance 
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Step 1 Example: Laser-Based Distance Measurer
Laser-
based

distance
measurer16

from button

to display
S

L

D

B
to laser

from sensor

Inputs: B
Outputs:

, S(1 bit each)
L (bit), D (16 bits)

S0 ?

a L = 0 (laser off)
D = 0 (distance = 0)

• Step 1: Create high-level state machine
• Begin by declaring inputs and outputs
• Create initial state, name it S0

– Initialize laser to off (L=0)
– Initialize displayed distance to 0 (D=0)
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Step 1 Example: Laser-Based Distance Measurer
Laser-
based

distance
measurer16

from button

to display
S

L

D

B
to laser

from sensor

Inputs: B, S (1 bit each)
Outputs: L (bit), D (16 bits)

S0

L = 0
D = 0

S1 ?

B’ (button not pressed)

B
(button
pressed)

S0

a

• Add another state, call S1, that waits for a button press
– B’ – stay in S1, keep waiting
– B – go to a new state S2

Q: What should S2 do? A: Turn on the laser
a
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Step 1 Example: Laser-Based Distance Measurer

S0 S1 S2

L = 0
D = 0

L = 1
(laser on)

S3

L = 0
(laser off)

B’

B

Laser-
based

distance
measurer16

from button

to display
S

L

D

B
to laser

from sensor

Inputs: B, S (1 bit each)
Outputs: L (bit), D (16 bits)

a

• Add a state S2 that turns on the laser (L=1)
• Then turn off laser (L=0) in a state S3

Q: What do next? A: Start timer, wait to sense reflection
a
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Step 1 Example: Laser-Based Distance Measurer
Laser-based

distance
measurer16

from button

to display
S

L

D

B
to laser

from sensor
Local Registers: Dctr (16 bits)

S0 S1 S2 S3

L = 0
D = 0

L = 1 L = 0
Dctr = Dctr + 1
(count cycles)

Dctr = 0
(reset cycle

count)

B’

B

S’ (no reflection)

S (reflection)
?

Inputs: B, S (1 bit each) Outputs: L (bit), D (16 bits)

a

• Stay in S3 until sense reflection (S)
• To measure time, count cycles for which we are in S3

– To count, declare local register Dctr
– Increment Dctr each cycle in S3
– Initialize Dctr to 0 in S1. S2 would have been O.K. too



18
Digital Design
Copyright © 2006
Frank Vahid

Step 1 Example: Laser-Based Distance Measurer
Laser-based

distance
measurer16

from button

to display
S

L

D

B
to laser

from sensor

S0 S1 S2 S3

L = 0
D = 0

L = 1 L=0
Dctr = Dctr + 1

Dctr = 0

B’ S’

B S
D = Dctr / 2

(calculate D)

S4

Local Registers: Dctr (16 bits)
Inputs: B, S (1 bit each) Outputs: L (bit), D (16 bits)

a

• Once reflection detected (S), go to new state S4
– Calculate distance 
– Assuming clock frequency is 3x108, Dctr holds number of meters, so 

D=Dctr/2

• After S4, go back to S1 to wait for button again
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Step 2: Create a Datapath
• Datapath must

– Implement data storage
– Implement data computations

• Look at high-level state machine, do 
three substeps
– (a) Make data inputs/outputs be datapath

inputs/outputs
– (b) Instantiate declared registers into the 

datapath (also instantiate a register for each 
data output)

– (c) Examine every state and transition, and 
instantiate datapath components and 
connections to implement any data 
computations

Instantiate: to 
introduce a new 
component into a 
design.
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Step 2 Example: Laser-Based Distance Measurer
(a) Make data 

inputs/outputs be 
datapath
inputs/outputs

(b) Instantiate declared 
registers into the 
datapath (also 
instantiate a 
register for each 
data output)

(c) Examine every 
state and 
transition, and 
instantiate 
datapath
components and 
connections to 
implement any 
data computations

Datapath
Dreg_clr

Dctr_clr
Dctr_cnt

Dreg_ld

Local Registers: Dctr (16 bits)

S0 S1 S2 S3

L = 0
D = 0

L = 1 L=0
Dctr = Dctr + 1

Dctr = 0

B‘ S‘

B S
D = Dctr / 2

(calculate D)

S4

load
Q

I
Dreg: 16-bit

register
Q

Dctr: 16-bit
up-counter

16

D

clearclear
count

a

Inputs: B, S (1 bit each) Outputs: L (bit), D (16 bits)
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Step 2 Example: Laser-Based Distance Measurer
(c) (continued) 

Examine every 
state and 
transition, and 
instantiate 
datapath
components and 
connections to 
implement any 
data computations

clear
count

clear
load

Q Q

I
Dctr: 16-bit
up-counter

Dreg: 16-bit
register

16

D

Datapath

Dreg_clr

Dctr_clr
Dctr_cnt

Dreg_ld 16

16

>>1

a

Local Registers: Dctr (16 bits)

S0 S1 S2 S3

L = 0
D = 0

L = 1 L=0
Dctr = Dctr + 1

Dctr = 0

B‘ S‘

B S
D = Dctr / 2

(calculate D)

S4

Inputs: B, S (1 bit each) Outputs: L (bit), D (16 bits)
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Step 2 Example Showing Mux Use

• Introduce mux when one component input can come from 
more than one source

T0

T1

R = E + F

R = R + G

E,F, G, R (16 bits)
Localregisters:

(a)

E F G

A B+

R

add_A_s0
add_B_s0

2⋅ 1 2⋅ 1

(d)

××

a

E F G

A B+

R

(b)

E F G

A B+

R

(c)
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Step 3: Connecting the Datapath to a Controller

• Laser-based distance 
measurer example

• Easy – just connect all 
control signals 
between controller and 
datapath300 MHz Clock

D

B L

S

16
to display

from button
Controller

to laser
from sensor

Datapath

Dreg_clr

Dreg_ld

Dctr_clr

Dctr_cnt

clear
count

clear
load

Q Q

I
Dctr: 16-bit
up-counter

Dreg: 16-bit
register

16
D

Datapath

Dreg_clr

Dctr_clr
Dctr_cnt

Dreg_ld 16

16

>>1
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Step 4: Deriving the Controller’s FSM

• FSM has same 
structure as high-
level state machine
– Inputs/outputs all 

bits now
– Replace data 

operations by bit 
operations using 
datapath

300 MHz Clock

D

B
L

S

16

to display

from button
Controller

to laser

from sensor

Datapath

Dreg_clr

Dreg_ld

Dctr_clr

Dctr_cnt

Inputs: B, S
Outputs: L, Dreg_clr, Dreg_ld, Dctr_clr, Dctr_cnt

S0 S1 S2 S3

L = 0 L = 1 L = 0L = 0

B’ S’

B S
S4

L = 0

Inputs: B, S (1 bit each) Outputs: L (bit), D (16 bits)
Local Registers: Dctr (16 bits)

S0 S1 S2 S3

L = 0
D = 0

L = 1 L=0
Dctr = Dctr + 1

Dctr = 0

B’ S’

B S
D = Dctr / 2

(calculate D)

S4

a

Dreg_clr = 1
Dreg_ld = 0
Dctr_clr = 0
Dctr_cnt = 0
(laser off)
(clear D reg)

Dreg_clr = 0
Dreg_ld = 0
Dctr_clr = 1
Dctr_cnt = 0
(clear count)

Dreg_clr = 0
Dreg_ld = 0
Dctr_clr = 0
Dctr_cnt = 0
(laser on)

Dreg_clr = 0
Dreg_ld = 0
Dctr_clr = 0
Dctr_cnt = 1
(laser off)
(count up)

Dreg_clr = 0
Dreg_ld = 1
Dctr_clr = 0
Dctr_cnt = 0
(load D reg with Dctr/2)
(stop counting)
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• Using 
shorthand of 
outputs not 
assigned 
implicitly 
assigned 0

S0 S1 S2 S3

L = 0 L = 1 L = 0L = 0

B’ S’

B S
S4

L = 0
Dreg_clr = 1
Dreg_ld = 0
Dctr_clr = 0
Dctr_cnt = 0
(laser off)
(clear D reg)

Dreg_clr = 0
Dreg_ld = 0
Dctr_clr = 1
Dctr_cnt = 0
(clear count)

Dreg_clr = 0
Dreg_ld = 0
Dctr_clr = 0
Dctr_cnt = 0
(laser on)

Dreg_clr = 0
Dreg_ld = 0
Dctr_clr = 0
Dctr_cnt = 1
(laser off)
(count up)

Dreg_clr = 0
Dreg_ld = 1
Dctr_clr = 0
Dctr_cnt = 0
(load D reg with Dctr/2)
(stop counting)

S0 S1 S2 S3

L = 0 L = 1 L = 0

B’ S’

B S

(laser on)

S4

Inputs: B, S Outputs: L, Dreg_clr, Dreg_ld, Dctr_clr, Dctr_cnt

Dreg_clr = 1
(laser off)
(clear D reg)

Dctr_clr = 1
(clear count) Dctr_cnt = 1

(laser off)
(count up)

Dreg_ld = 1
Dctr_cnt = 0
(load D reg with Dctr/2)
(stop counting)

a
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Step 4

• Implement 
FSM as state 
register and 
logic (Ch3) to 
complete the 
design

300 MHz Clock

D

B L

S

16
to display

from button

C
on

tro
lle

r to laser
from sensor

D
at

ap
at

h

Dreg_clr

S0 S1 S2 S3

L = 0 L = 1 L = 0

B’ S’

B S

(laser on)

S4

Inputs: B, S Outputs: L, Dreg_clr, Dreg_ld, Dctr_clr, Dctr_cnt

Dreg_clr = 1
(laser off)
(clear D reg)

Dctr_clr = 1
(clear count) Dctr_cnt = 1

(laser off)
(count up)

Dreg_ld = 1
Dctr_cnt = 0
(load D reg with Dctr/2)
(stop counting)

Dreg_ld

Dctr_clr

Dctr_cnt
clear
count

clear
load

Q Q

I
Dctr: 16-bit
up-counter

Dreg: 16-bit
register

16
D

Datapath

Dreg_clr

Dctr_clr
Dctr_cnt

Dreg_ld 16

16

>>1
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RTL Design Examples and Issues

32

4 A

rd
D

Per0 Per1 Per15

Master
processor

Faddr

4

ADrd

Bus interface

Main part

Peripheral

Q
32

to/from processor bus

32 4

• We’ll use several more 
examples to illustrate RTL 
design

• Example: Bus interface
– Master processor can read 

register from any peripheral
• Each register has unique 4-bit 

address 
• Assume 1 register/periph.

– Sets rd=1, A=address
– Appropriate peripheral places 

register data on 32-bit D lines
• Periph’s address provided on 

Faddr inputs (maybe from DIP 
switches, or another register)
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RTL Example: Bus Interface

WaitMyAddress

Inputs: rd (bit); Q (32 bits); A, Faddr (4 bits)
Outputs: D (32 bits)
Local register: Q1 (32 bits)

rd’ rd

SendData

D =  “Z”
Q1 = Q

(A = Faddr)
and rd

((A = Faddr)
and rd’)

D = Q1

• Step 1: Create high-level state machine
– State WaitMyAddress

• Output “nothing” (“Z”) on D, store peripheral’s register value Q into local 
register Q1

• Wait until this peripheral’s address is seen (A=Faddr) and rd=1
– State SendData

• Output Q1 onto D, wait for rd=0 (meaning main processor is done 
reading the D lines)
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RTL Example: Bus Interface

WaitMyAddress

Inputs: rd (bit); Q (32 bits); A, Faddr (4 bits)
Outputs: D (32 bits)
Local register: Q1 (32 bits)

rd’ rd

SendData

D =  “Z”
Q1 = Q

(A = Faddr)
and rd

((A = Faddr)
and rd’)

D = Q1

W W

ZD Z ZQ1 Q1

W W WSD SD SD

clk
Inputs

State
Outputs

rd
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RTL Example: Bus Interface

WaitMyAddress

Inputs: rd (bit); Q (32 bits); A, Faddr (4 bits)
Outputs: D (32 bits)
Local register: Q1 (32 bits)

rd’ rd

SendData

D =  “Z”
Q1 = Q

(A = Faddr)
and rd

((A = Faddr)
and rd)’

D = Q1

• Step 2: Create a datapath
(a) Datapath inputs/outputs
(b) Instantiate declared registers
(c) Instantiate datapath components and 

connections

Datapath
Bus interface

Q1_ld
ld Q1

F Qaddr

4 4 32

A

D_en

A_eq_Faddr
= (4-bit) 32

32

D

a
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RTL Example: Bus Interface

• Step 3: Connect datapath to controller
• Step 4: Derive controller’s FSM

a

WaitMyAddress

Inputs: rd (bit); Q (32 bits); A, Faddr (4 bits)
Outputs: D (32 bits)
Local register: Q1 (32 bits)

rd’ rd

SendData

D =  “Z”
Q1 = Q

(A = Faddr)
and rd

((A = Faddr)
and rd)’

D = Q1
rd

Inputs: rd, A_eq_Faddr (bit)
Outputs: Q1_ld, D_en (bit)

WaitMyAddress

rd‘ rd

SendData

D_en = 0
Q1_ld = 1

D_en = 1
Q1_ld = 0

A_eq_Faddr
and rd

(A_eq_Faddr
and rd)‘

Datapath
Bus interface

Q1_ld
ld Q1

Faddr Q

4 4 32

A

D_en

A_eq_Faddr
= (4-bit) 32

32

D
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RTL Example: Video Compression – Sum of Absolute 
Differences

• Video is a series of frames (e.g., 30 per second)
• Most frames similar to previous frame

– Compression idea: just send difference from previous frame

Digitized
frame 2

1 Mbyte

Frame 2

Digitized
frame 1

Frame 1

1 Mbyte
(a)

Digitized
frame 1

Frame 1

1 Mbyte
(b)

Only difference: ball moving

a
Difference of

2 from 1

0.01 Mbyte

Frame 2

Just send 
difference



33
Digital Design
Copyright © 2006
Frank Vahid

RTL Example: Video Compression – Sum of Absolute 
Differences

Frame 2Frame 1
compare Each is a pixel, assume 

represented as 1 byte
(actually, a color picture 
might have 3 bytes per 
pixel, for intensity of 
red, green, and blue 
components of pixel)

• Need to quickly determine whether two frames are similar 
enough to just send difference for second frame
– Compare corresponding 16x16 “blocks”

• Treat 16x16 block as 256-byte array
– Compute the absolute value of the difference of each array item
– Sum those differences – if above a threshold, send complete frame 

for second frame; if below, can use difference method (using 
another technique, not described)
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RTL Example: Video Compression – Sum of Absolute 
Differences

!(i<256)

B

A

go

SAD

sad

256-byte array

integer
256-byte array

• Want fast sum-of-absolute-differences (SAD) component
– When go=1, sums the differences of element pairs in arrays A and 

B, outputs that sum
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RTL Example: Video Compression – Sum of Absolute 
Differences

!(i<256)

• S0: wait for go
• S1: initialize sum and index
• S2: check if done (i>=256)
• S3: add difference to sum, 

increment index
• S4: done, write to output 

sad_reg

B

A

go

SAD

sad

Inputs: A, B (256 byte memory); go (bit)
Outputs: sad (32 bits)
Local registers: sum, sad_reg (32 bits); i (9 bits)

!goS0
go

S1 sum = 0
i = 0

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S4 sad_reg = sum

S2

i<256

(i<256)’

a
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RTL Example: Video Compression – Sum of Absolute 
Differences

• Step 2: Create datapath

!(i<256)

!(i<256) (i_lt_256)

i_lt_256

i_inc

i_clr

sum_ld

sum_clr

sad_reg_ld

Datapath

sum

sad_reg

sad

AB_addr A_data B_data

<256
9

32

8

8

8 8

3232

32

i –

+

abs

Inputs: A, B (256 byte memory); go (bit)
Outputs: sad (32 bits)
Local registers: sum, sad_reg (32 bits); i (9 bits)

!goS0
go

S1 sum = 0
i = 0

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S4 sad_reg=sum

S2

i<256

(i<256)’

a
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RTL Example: Video Compression – Sum of Absolute 
Differences

!(i<256)

!(i<256) (i_lt_256)

S0

S1

S2

S3

S4

go’
go

go AB_rd

sum=0
i=0

i<256

!(i<256) (i_lt_256)

?

sum=sum+abs(A[i]-B[i])

i=i+1
sad_reg=sum

Controller

i_lt_256

i_inc

i_clr

sum_ld

sum_clr

sad_reg_ld

sum

sad_reg

sad

AB_addr A_data B_data

<256
9

32

8

8

8 8

3232

32

i –

+

abs

a

sum_ld=1; AB_rd=1

sad_reg_ld=1

i_inc=1

i_lt_256

i_clr=1
sum_clr=1

• Step 3: Connect to controller
• Step 4: Replace high-level state machine by FSM
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RTL Example: Video Compression – Sum of Absolute 
Differences

• Comparing software and custom 
circuit SAD 
– Circuit: Two states (S2 & S3) for 

each i, 256 i’s 512 clock cycles
– Software: Loop (for i = 1 to 256), but 

for each i, must move memory to 
local registers, subtract, compute 
absolute value, add to sum, 
increment i – say about 6 cycles per 
array item 256*6 = 1536 cycles

– Circuit is about 3 times (300%) 
faster

– Later, we’ll see how to build SAD 
circuit that is even faster

!(i<256)

!(i<256) (i_lt_256)

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S2

i<256

(i<256)’
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RTL Design Pitfalls and Good Practice
• Common pitfall: Assuming 

register is update in the 
state it’s written
– Final value of Q?
– Final state?
– Answers may surprise you

• Value of Q unknown
• Final state is C, not D

– Why?
• State A: R=99 and Q=R

happen simultaneously
• State B: R not updated with 

R+1 until next clock cycle, 
simultaneously with state 
register being updated

A B

C

D

R>=100

R<100

R=R+1R=99
Q=R

?

?

99
A

99

?

100
B

100

?

C
R<100

clk

R

Q

(a)

(b)

Local registers: R, Q (8 bits)
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RTL Design Pitfalls and Good Practice

BA B2

C

D

R>=100

R<100

R=R+1
Q=R

R=99
Q=R

?

?

99
A

99

?

100
B

100 100

99 99

B2 D
R<100 R>=100

clk

R

Q

(a)

(b)

Local registers: R, Q (8 bits)• Solutions
– Read register in 

following state (Q=R)
– Insert extra state so that 

conditions use updated 
value

– Other solutions are 
possible, depends on 
the example
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RTL Design Pitfalls and Good Practice
• Common pitfall: 

Reading outputs
– Outputs can only be 

written
– Solution: Introduce 

additional register, 
which can be written 
and read

Inputs: A, B (8 bits)
Outputs: P (8 bits)

Inputs: A, B (8 bits)
Outputs: P (8 bits)
Local register: R (8 bits)

TS

P=P+BP=A

S T

R=A
P=A

P=R+B

(a) (b)
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RTL Design Pitfalls and Good Practice
• Good practice: Register 

all data outputs
– In fig (a), output P would 

show spurious values as 
addition computes

• Furthermore, longest 
register-to-register path, 
which determines clock 
period, is not known until 
that output is connected 
to another component

– In fig (b), spurious outputs 
reduced, and longest 
register-to-register path is 
clear

+

R
B

P

+

R

Preg

B

P
(b)

(a)
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Control vs. Data Dominated RTL Design
• Designs often categorized as control-dominated or data-

dominated
– Control-dominated design – Controller contains most of the 

complexity
– Data-dominated design – Datapath contains most of the complexity
– General, descriptive terms – no hard rule that separates the two 

types of designs
– Laser-based distance measurer – control dominated
– Bus interface, SAD circuit – mix of control and data
– Now let’s do a data dominated design
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Data Dominated RTL Design Example: FIR Filter
• Filter concept

– Suppose X is data from a 
temperature sensor, and 
particular input sequence is 
180, 180, 181, 240, 180, 181 
(one per clock cycle)

– That 240 is probably wrong!
• Could be electrical noise

– Filter should remove such 
noise in its output Y

– Simple filter: Output average 
of last N values

• Small N: less filtering
• Large N: more filtering, but 

less sharp output

1212

Y

clk

X

digital filter
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Data Dominated RTL Design Example: FIR Filter
• FIR filter

– “Finite Impulse Response”
– Simply a configurable weighted 

sum of past input values
– y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2) 

• Above known as “3 tap”
• Tens of taps more common
• Very general filter – User sets the 

constants (c0, c1, c2) to define 
specific filter

– RTL design
• Step 1: Create high-level state 

machine
– But there really is none!  Data 

dominated indeed.
• Go straight to step 2

1212

Y

clk

X

digital filter

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2)
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Data Dominated RTL Design Example: FIR Filter
• Step 2: Create datapath

– Begin by creating chain 
of xt registers to hold past 
values of X

1212
Y

clk

X
digital filter

xt0 xt1 xt2

12 12 12 12

x(t-2)x(t-1)x(t)
3-tap FIR filter

X Y

clk

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2)

180 180181 180181240

Suppose sequence is: 180, 181, 240

a
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Data Dominated RTL Design Example: FIR Filter
• Step 2: Create datapath

(cont.)
– Instantiate registers for 

c0, c1, c2
– Instantiate multipliers to 

compute c*x values

1212
Y

clk

X
digital filter

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2)

xt0 xt1 xt2

x(t-2)x(t-1)x(t)
3-tap FIR filter

X

Y

clk

c1c0 c2

∗∗ ∗

a
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Data Dominated RTL Design Example: FIR Filter
• Step 2: Create datapath

(cont.)
– Instantiate adders

1212
Y

clk

X
digital filter

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2)

xt0 xt1 xt2

x(t-2)x(t-1)x(t)

3-tap FIR filter

X

Y

clk

c0 c1 c2

∗ ∗ ∗

+ +

a
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Data Dominated RTL Design Example: FIR Filter
• Step 2: Create datapath (cont.)

– Add circuitry to allow loading of 
particular c register

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2)

a

1212
Y

clk

X
digital filter

xt0 xt1 xt2

x(t-2)x(t-1)x(t)

3-tap FIR filter

X

Y

clk

c0 c1 c2

* *

+

*

+

3
2
1
0

2x4

yreg

e
Ca1

CL

C

Ca0
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Data Dominated RTL Design Example: FIR Filter
• Step 3 & 4: Connect to controller, Create FSM

– No controller needed
– Extreme data-dominated example
– (Example of an extreme control-dominated design – an FSM, with no 

datapath)
• Comparing the FIR circuit to a software implementation

– Circuit
• Assume adder has 2-gate delay, multiplier has 20-gate delay
• Longest past goes through one multiplier and two adders

– 20 + 2 + 2 = 24-gate delay
• 100-tap filter, following design on previous slide, would have about a 34-gate 

delay: 1 multiplier and 7 adders on longest path
– Software

• 100-tap filter: 100 multiplications, 100 additions. Say 2 instructions per 
multiplication, 2 per addition. Say 10-gate delay per instruction. 

• (100*2 + 100*2)*10 = 4000 gate delays
– Circuit is more than 100 times faster (10,000% faster). Wow. 

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2)
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Determining Clock Frequency
• Designers of digital circuits 

often want fastest 
performance
– Means want high clock 

frequency
• Frequency limited by longest 

register-to-register delay
– Known as critical path
– If clock is any faster, incorrect 

data may be stored into register
– Longest path on right is 2 ns

• Ignoring wire delays, and 
register setup and hold times, 
for simplicity

a

+

b

c

2 ns
delay

clk
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Critical Path
• Example shows four paths

– a to c through +: 2 ns
– a to d through + and *: 7 ns
– b to d through + and *: 7 ns
– b to d through *: 5 ns

• Longest path is thus 7 ns
• Fastest frequency

– 1 / 7 ns = 142 MHz

+ *

c d

7 ns7 ns

5 ns
delay

2 ns
delay

Max
(2,7,7,5)
= 7 ns

a b

5 
ns

7 
ns

7 
ns2 
ns
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Critical Path Considering Wire Delays
• Real wires have delay too

– Must include in critical path
• Example shows two paths

– Each is 0.5 + 2 + 0.5 = 3 ns
• Trend

– 1980s/1990s: Wire delays were tiny 
compared to logic delays

– But wire delays not shrinking as fast as 
logic delays

• Wire delays may even be greater than 
logic delays!

• Must also consider register setup and 
hold times, also add to path

• Then add some time to the computed 
path, just to be safe
– e.g., if path is 3 ns, say 4 ns instead

a

+

b

c

2 ns

3 ns

3 
ns

0.5 ns
0.5 ns

0.5 ns

clk

3 
ns
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A Circuit May Have Numerous Paths
• Paths can exist

– In the datapath
– In the controller
– Between the 

controller and 
datapath

– May be 
hundreds or 
thousands of 
paths

• Timing analysis 
tools that evaluate 
all possible paths 
automatically very 
helpful

Combinational logic

c

tot_lt_s

clk

n1

d

tot_ld

tot_lt_s

tot_clr

s0s1

n0

State register

s

8 8

8

8

a

ld

clr
tot

Datapath

8-bit
<

8-bit
adder

(c)

(b) (a)



5.5

55
Digital Design
Copyright © 2006
Frank Vahid

Behavioral Level Design: C to Gates

!goS0
go

S1 sum = 0
i = 0

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S4 sad_reg = sum

S2

i<256

(i<256)’

a

int SAD (byte A[256], byte B[256]) // not quite C syntax
{

uint sum; short uint I;
sum = 0;
i = 0;
while (i < 256) {

sum = sum + abs(A[i] – B[i]);
i = i + 1;

}
return sum;

}

C code

• Earlier sum-of-absolute-differences example
– Started with high-level state machine
– C code is an even better starting point -- easier to understand
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Behavioral-Level Design: Start with C (or Similar 
Language)

• Replace first step of RTL design method by two steps
– Capture in C, then convert C to high-level state machine
– How convert from C to high-level state machine?

Step 1A: Capture in C

Step 1B: Convert to high-level state machine
a
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Converting from C to High-Level State Machine
• Convert each C construct to 

equivalent states and 
transitions

• Assignment statement
– Becomes one state with 

assignment

• If-then statement
– Becomes state with condition 

check, transitioning to “then”
statements if condition true, 
otherwise to ending state

• “then” statements would also 
be converted to states

target=
expression

atarget = expression;

(then stmts)

!cond

cond

(end)

if (cond) {
// then stmts

}

a
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Converting from C to High-Level State Machine
• If-then-else

– Becomes state with condition 
check, transitioning to “then”
statements if condition true, or 
to “else” statements if condition 
false

• While loop statement
– Becomes state with condition 

check, transitioning to while 
loop’s statements if true, then 
transitioning back to condition 
check

!cond

cond

(end)

(then stmts) (else stmts)

if (cond) {
// then stmts

}
else {

// else stmts
}

a

!cond

cond
(while stmts)

(end)

while (cond) {
// while stmts

}
a
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Simple Example of Converting from C to High-
Level State Machine

• Simple example: Computing the maximum of two numbers
– Convert if-then-else statement to states (b)
– Then convert assignment statements to states (c)

(end)

(c)

X>Y

!(X>Y)

(end)

(then stmts) (else stmts)

(b)

X>Y

!(X>Y)

Max=X Max=Y

(a)

Inputs: uint X, Y
Outputs: uint Max

if (X > Y) {

}
else {

}

Max = X;

Max = Y;

a a
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Example: Converting Sum-of-Absolute-Differences C 
code to High-Level State Machine

• Convert each construct to 
states
– Simplify when possible, 

e.g., merge states
• From high-level state 

machine, follow RTL design 
method to create circuit

• Thus, can convert C to 
gates using straightforward 
automatable process
– Not all C constructs can be 

efficiently converted
– Use C subset if intended 

for circuit
– Can use languages other 

than C, of course

sum = sum + abs(A[i] - B[i]);

(a)

Inputs: byte A[256, B[256]
bit go;

Output: int sad
main()
{

uint sum; short uint I;
while (1) {

sum = 0;
i = 0;

while (!go);

while (i < 256) {

i = i + 1;
}
sad = sum;}

}

(d)

!go go

sum=0
i=0

(g)

!go go

sum=0
i=0

!(i<256)

i<256

sad =
sum

sum=sum
+ abs
i = i + 1

sum=0

i=0

(b)

!(!go)

!go

(c)

!go go

(e)

!go go

sum=0
i=0

while stmts

!(i<256)

i<256

sad =
sum

(f)

!go go

sum=0
i=0

!(i<256)

i<256

sum=sum
+ abs
i = i + 1

a
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Memory Components
• Register-transfer level 

design instantiates datapath
components to create 
datapath, controlled by a 
controller
– A few more components are 

often used outside the 
controller and datapath

• MxN memory
– M words, N bits wide each

• Several varieties of memory, 
which we now introduce

N-bits
wide each

M×N memory

M
 w

or
ds
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Random Access Memory (RAM)
• RAM – Readable and writable memory

– “Random access memory”
• Strange name – Created several decades ago to 

contrast with sequentially-accessed storage like 
tape drives

– Logically same as register file – Memory with 
address inputs, data inputs/outputs, and control

• RAM usually just one port; register file usually two 
or more

– RAM vs. register file
• RAM typically larger than roughly 512 or 1024 

words
• RAM typically stores bits using a bit storage 

approach that is more efficient than a flip flop
• RAM typically implemented on a chip in a square 

rather than rectangular shape – keeps longest 
wires (hence delay) short

32

4

32

4
W_data

W_addr

W_en

R_data

R_addr

R_en
16×32

register file

Register file from Chpt. 4

32

10
data

addr

rw

en

1024× 32
RAM

RAM block symbol
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RAM Internal Structure
32

10
data

addr

rw

en

1024x32
RAM

addr0
addr1

addr(A-1)

clk
en
rw

addr

Let A = log2M

to all cells

wdata(N-1)

rdata(N-1)

wdata(N-2)

rdata(N-2)

wdata0

rdata0

bit storage
block
(aka “cell”)

word

word

RAM cell

word
enable

word
enable

rw

data cell

data

a0
a1

d0

d1

d(M-1)

a(A-1)

e

AxM
decoder

enable

• Similar internal structure as register file
– Decoder enables appropriate word based on address 

inputs
– rw controls whether cell is written or read
– Let’s see what’s inside each RAM cell
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Static RAM (SRAM)

• “Static” RAM cell
– 6 transistors (recall inverter is 2 transistors)

– Writing this cell
• word enable input comes from decoder
• When 0, value d loops around inverters

– That loop is where a bit stays stored
• When 1, the data bit value enters the loop

– data is the bit to be stored in this cell
– data’ enters on other side
– Example shows a “1” being written into cell

addr0
addr1

addr(A-1)

clk
en
rw

ad
d

r

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A ⋅ M
decoder

word
enable

to all cells

wdata(N-1)

rdata(N-1)

wdata(N-2)

rdata(N-2)

wdata0

rdata0

bit storage
block
(aka cell  )

word

,,,,

cell

word
enable

word
enable

rw

data

data

SRAM cell
data data’

d’d
cell

0word
enable

1

1

1

0

0

32

10
data

addr

rw

en

1024x32
RAM

SRAM cell
data data’

d

word
enable

data data’

d’d cell

0word
enable

1 0 a

a

a
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Static RAM (SRAM)

• “Static” RAM cell
– Reading this cell

• Somewhat trickier
• When rw set to read, the RAM logic sets 

both data and data’ to 1
• The stored bit d will pull either the left line or 

the right bit down slightly below 1
• “Sense amplifiers” detect which side is 

slightly pulled down
– The electrical description of SRAM is really 

beyond our scope – just general idea here, 
mainly to contrast with DRAM...

addr0
addr1

addr(A-1)

clk
en
rw

ad
d

r

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A ⋅ M
decoder

word
enable

to all cells

wdata(N-1)

rdata(N-1)

wdata(N-2)

rdata(N-2)

wdata0

rdata0

bit storage
block
(aka cell  )

word

,,,,

cell

word
enable

word
enable

rw

data

data

SRAM cell

32

10
data

addr

rw

en

1024x32
RAM

data data’

d

1

1 1

word
enable

To sense amplifiers

1 0

1 <1
a
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Dynamic RAM (DRAM)

• “Dynamic” RAM cell
– 1 transistor (rather than 6)
– Relies on large capacitor to store bit

• Write: Transistor conducts, data voltage 
level gets stored on top plate of capacitor

• Read: Just look at value of d
• Problem: Capacitor discharges over time

– Must “refresh” regularly, by reading d and 
then writing it right back

addr0
addr1

addr(A-1)

clk
en
rw

ad
d

r

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A ⋅ M
decoder

word
enable

to all cells

wdata(N-1)

rdata(N-1)

wdata(N-2)

rdata(N-2)

wdata0

rdata0

bit storage
block
(aka cell  )

word

,,,,

cell

word
enable

word
enable

rw

data

data DRAM cell

32

10
data

addr

rw

en

1024x32
RAM

word
enable

data

cell

(a)

(b)

data

enable

d discharges

d
capacitor
slowly
discharging
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Comparing Memory Types
• Register file

– Fastest
– But biggest size

• SRAM
– Fast
– More compact than register file

• DRAM
– Slowest

• And refreshing takes time
– But very compact

• Use register file for small items, 
SRAM for large items, and DRAM 
for huge items
– Note: DRAM’s big capacitor requires 

a special chip design process, so 
DRAM is often a separate chip

MxN Memory
implemented as a:

register
file

SRAM

DRAM

Size comparison for same
number of bits (not to scale)
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Reading and Writing a RAM
clk

addr

data

rw

en

1 2

9 913

999 Z 500500

• Writing
– Put address on addr lines, data on data lines, set rw=1, en=1

• Reading
– Set addr and en lines, but put nothing (Z) on data lines, set rw=0
– Data will appear on data lines

• Don’t forget to obey setup and hold times
– In short – keep inputs stable before and after a clock edge

valid

valid

Z 500

access
time

setup
time

hold
time

setup
time

clk

addr

data

rw

3

1 means write

RAM[9]
now equals 500

RAM[13]
now equals 999

(b)
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RAM Example: Digital Sound Recorder

• Behavior
– Record: Digitize sound, store as series of 4096 12-bit digital values in RAM

• We’ll use a 4096x16 RAM (12-bit wide RAM not common)
– Play back later
– Common behavior in telephone answering machine, toys, voice recorders

• To record, processor should read a-to-d, store read values into 
successive RAM words
– To play, processor should read successive RAM words and enable d-to-a 

wire

speaker

microphone

wire
analog-to-

digital
converter

digital-to-
analog

converter
ad_ld da_ld

Rrw RenRa
12

16

processor

ad_buf

da
ta

ad
dr

rw en

4096⋅ 16
RAM
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RAM Example: Digital Sound Recorder

ad_ld=1
ad_buf=1
Ra=a
Rrw=1
Ren=1

S

a=0

a=a+1

a=4095

a<4095
T

U

Local register: a (12 bits)

analog-to-
digital

converter

digital-to-
analog

converter
ad_ld da_ld

Rw RenRa12

16

processor

ad_buf

4096x16
RAM• RTL design of processor

– Create high-level state 
machine

– Begin with the record behavior
– Keep local register a

• Stores current address, 
ranges from 0 to 4095 (thus 
need 12 bits)

– Create state machine that 
counts from 0 to 4095 using a

• For each a
– Read analog-to-digital conv.

» ad_ld=1, ad_buf=1
– Write to RAM at address a

» Ra=a, Rrw=1, Ren=1

Record behavior

a
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RAM Example: Digital Sound Recorder
– Now create play behavior
– Use local register a again, 

create state machine that 
counts from 0 to 4095 again

• For each a
– Read RAM
– Write to digital-to-analog conv.

• Note: Must write d-to-a one 
cycle after reading RAM, when 
the read data is available on 
the data bus

– The record and play state 
machines would be parts of a 
larger state machine controlled 
by signals that determine when 
to record or play

a

da_ld=1

ad_buf=0
Ra=a
Rrw=0
Ren=1

V

a=0

a=a+1

a=4095

a<4095
W

X

Local register: a (12 bits)

Play behavior

data bus

analog-to-
digital

converter

digital-to-
analog

converter
ad_ld da_ld

Rw RenRa12

16

processor

ad_buf

4096x16
RAM
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Read-Only Memory – ROM
• Memory that can only be read from, not 

written to
– Data lines are output only
– No need for rw input

• Advantages over RAM
– Compact: May be smaller
– Nonvolatile: Saves bits even if power supply 

is turned off
– Speed: May be faster (especially than 

DRAM)
– Low power: Doesn’t need power supply to 

save bits, so can extend battery life
• Choose ROM over RAM if stored data won’t 

change (or won’t change often)
– For example, a table of Celsius to Fahrenheit 

conversions in a digital thermometer

32

10
data

addr

rw

en

1024× 32
RAM

RAM block symbol

32

10
data

addr

en

1024x32
ROM

ROM block symbol
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Read-Only Memory – ROM
32

10
data

addr

en

1024x32
ROM

ROM block symbol

ROM cell

addr0
addr1

addr(A-1)

clk
en

addr

Let A = log2M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

AxM
decoder

word
enable

rdata(N-1) rdata(N-2) rdata0

bit storage
block
(aka “cell”)

word

word
enable

word
enable

data

data

• Internal logical structure similar to RAM, without the data 
input lines
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ROM Types
• If a ROM can only be read, how 

are the stored bits stored in the 
first place?
– Storing bits in a ROM known as 

programming
– Several methods

• Mask-programmed ROM
– Bits are hardwired as 0s or 1s 

during chip manufacturing
• 2-bit word on right stores “10”
• word enable (from decoder) simply 

passes the hardwired value 
through transistor

– Notice how compact, and fast, this 
memory would be

cell cell

word
enable

data line data line01

addr0
addr1

addr(A-1)

en

ad
dr

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A ⋅ M
decoder

word
enable

data(N-1) data(N-2) data0

bit storage
block
(a cell  )

word

,,,,

cell
word

enable
word

enable

data

data
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ROM Types
• Fuse-Based Programmable 

ROM
– Each cell has a fuse
– A special device, known as a 

programmer, blows certain fuses 
(using higher-than-normal voltage)

• Those cells will be read as 0s 
(involving some special electronics) 

• Cells with unblown fuses will be read 
as 1s

• 2-bit word on right stores “10”
– Also known as One-Time 

Programmable (OTP) ROM

cell cell

word
enable

data line data line11

blown fusefuse

addr0
addr1

addr(A-1)

en

ad
dr

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A ⋅ M
decoder

word
enable

data(N-1) data(N-2) data0

bit storage
block
(a cell  )

word

,,,,

cell
word

enable
word

enable

data

data

a
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ROM Types
• Erasable Programmable ROM 

(EPROM)
– Uses “floating-gate transistor” in each cell
– Special programmer device uses higher-

than-normal voltage to cause electrons to 
tunnel into the gate

• Electrons become trapped in the gate
• Only done for cells that should store 0
• Other cells (without electrons trapped in 

gate) will be 1
– 2-bit word on right stores “10”

• Details beyond our scope – just general 
idea is necessary here

– To erase, shine ultraviolet light onto chip
• Gives trapped electrons energy to escape
• Requires chip package to have window 

addr0
addr1

addr(A-1)

en

ad
dr

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A ⋅ M
decoder

word
enable

data(N-1) data(N-2) data0

bit storage
block
(a cell  )

word

,,,,

cell
word

enable
word

enable

data

data

cell cell

word
enable

data line data line

eÐeÐ
a

ting

g

a

t

e t

r

t

or

trapped electrons

01
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at

in
g-
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ROM Types
• Electronically-Erasable Programmable ROM 

(EEPROM)
– Similar to EPROM

• Uses floating-gate transistor, electronic programming to 
trap electrons in certain cells

– But erasing done electronically, not using UV light
– Erasing done one word at a time

• Flash memory
– Like EEPROM, but all words (or large blocks of 

words) can be erased simultaneously
– Become common relatively recently (late 1990s)

• Both types are in-system programmable
– Can be programmed with new stored bits while in the 

system in which the ROM operates
• Requires bi-directional data lines, and write control input
• Also need busy output to indicate that erasing is in 

progress – erasing takes some time

a

ting

g

a

t

e t

r

t

or

32

10
data

addr

en

write

busy

1024x32
EEPROM
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ROM Example: Talking Doll
4096x16 ROM

processor

d

a

Ra

16

Ren

da_ld

digital-to-
analog

converter

v

speaker

vibration
sensor

“Hello there!”

“Hello there!” audio 
divided into 4096 
samples, stored
in ROM

“H
ello there!”

a

• Doll plays prerecorded message, trigger by vibration
– Message must be stored without power supply Use a ROM, not a RAM, 

because ROM is nonvolatile
• And because message will never change, use a mask-programmed ROM or 

OTP ROM
– Processor should wait for vibration (v=1), then read words 0 to 4095 from 

the ROM, writing each to the d-to-a
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ROM Example: Talking Doll

d

a

4096x16 ROM

processor

Ra

16

Ren

da_ld

digital-to-
analog

converter

v

Sa=0

da_ld=1
a=a+1a=4095

a<4095
T

U

Ra=a
Ren=1

Local register: a (12 bits)

v

v’
a

• High-level state machine
– Create state machine that waits for v=1, and then counts from 0 to 

4095 using a local register a
– For each a, read ROM, write to digital-to-analog converter
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ROM Example: Digital Telephone Answering Machine 
Using a Flash Memory

• Want to record the outgoing 
announcement

– When rec=1, record digitized 
sound in locations 0 to 4095 

– When play=1, play those 
stored sounds to digital-to-
analog converter

• What type of memory?
– Should store without power 

supply – ROM, not RAM
– Should be in-system 

programmable – EEPROM 
or Flash, not EPROM, OTP 
ROM, or mask-programmed 
ROM

– Will always erase entire 
memory when 
reprogramming – Flash 
better than EEPROM

analog-to-
digital

converter
digital-to-

analog
converterad_ld

da_ld

Rrw Rener buRa
12

16

processor

ad_buf

busy

4096x16 Flash

rec
playrecord

microphone speaker

“We’re not home.”
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ROM Example: Digital Telephone Answering Machine 
Using a Flash Memory

• High-level state machine
– Once rec=1, begin 

erasing flash by setting 
er=1

– Wait for flash to finish 
erasing by waiting for 
bu=0

– Execute loop that sets 
local register a from 0 to 
4095, reading analog-to-
digital converter and 
writing to flash for each a

en

analog-to-
digital

converter
digital-to-

analog
converterad_ld

da_ld

Rrw Ren er buRa
12

16

processor

ad_buf

4096x16 Flash

rec
playrecord

microphone speaker

a

w

d r

T
er=0

bu

bu’

er=1
rec

S

Local register: a (13 bits)

a=4096

a<4096
U

V

ad_ld=1
ad_buf=1
Ra=a
Rrw=1
Ren=1
a=a+1

a=0

a
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Blurring of Distinction Between ROM and RAM
• We said that

– RAM is readable and writable
– ROM is read-only

• But some ROMs act almost like RAMs
– EEPROM and Flash are in-system programmable

• Essentially means that writes are slow
– Also, number of writes may be limited (perhaps a few million times)

• And, some RAMs act almost like ROMs
– Non-volatile RAMs: Can save their data without the power supply

• One type: Built-in battery, may work for up to 10 years
• Another type: Includes ROM backup for RAM – controller writes RAM contents to 

ROM before turning off
• New memory technologies evolving that merge RAM and ROM benefits

– e.g., MRAM
• Bottom line

– Lot of choices available to designer, must find best fit with design goals

EEPROM
ROM Flash

NVRAM

RAM
a
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Queues
• A queue is another component 

sometimes used during RTL 
design

• Queue: A list written to at the 
back, from read from the front
– Like a list of waiting restaurant 

customers
• Writing called a push, reading 

called a pop
• Because first item written into a 

queue will be the first item read 
out, also called a FIFO (first-in-
first-out)

frontback

read (and
remove) items
from front of
the queue

write items
to the back
of the queue
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Queues

r f

01234567

fr

0

A

1234567

A

fr

0

AB

1234567

B

fr

0

B

1234567

A

• Queue has addresses, and two 
pointers: rear and front
– Initially both point to 0

• Push (write)
– Item written to address pointed to 

by rear
– rear incremented

• Pop (read)
– Item read from address pointed 

to by front
– front incremented

• If front or rear reaches 7, next 
(incremented) value should be 0 
(for a queue with addresses 0 to 
7)

a

a

a
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Queues
• Treat memory as a circle

– If front or rear reaches 7, next (incremented) 
value should be 0 rather than 8 (for a queue 
with addresses 0 to 7)

• Two conditions of interest
– Full queue – no room for more items

• In 8-entry queue, means 8 items present
• No further pushes allowed until a pop occurs
• Causes front=rear

– Empty queue – no items
• No pops allowed until a push occurs
• Causes front=rear

– Both conditions have front=rear
• To detect whether front=rear means full or 

empty, need state machine that detects if 
previous operation was push or pop, sets full 
or empty output signal (respectively)

fr

0

B

1234567

A

B

1 7

2 6

3 5

4

0

f
rr

a
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Queue Implementation
8⋅ 16 register file

clr

3-bit
up counter

3-bit
up counter

inc
clr

inc

rear front

=

wr

rd

reset

wdata rdata16 16

33

wdata

waddr
wr

rdata

raddr

rd

eq

Co
nt

ro
lle

r

full

empty
8-word 16-bit queue

• Can use register file for 
item storage

• Implement rear and front
using up counters
– rear used as register file’s 

write address, front as read 
address

• Simple controller would 
set control lines for 
pushes and pops, and 
also detect full and empty 
situations
– FSM for controller not 

shown
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Common Uses of a Queue
• Computer keyboard

– Pushes pressed keys onto queue, meanwhile pops and sends to 
computer

• Digital video recorder
– Pushes captured frames, meanwhile pops frames, compresses 

them, and stores them

• Computer network routers
– Pushes incoming packets onto queue, meanwhile pops packets, 

processes destination information, and forwards each packet out 
over appropriate port
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Queue Usage Example

r f

01234567

fr

0123456

9585723

7

fr

01234567

f r

01234567

9585723

95857236

r f

01234567

data:
9

full35857236

ERROR! Pushing a full queue
results in unknown state

Initially empty
queue

1. After pushing
9, 5, 8, 5, 7, 2, 3

2. After popping

3. After pushing 6

4. After pushing 3

5. After pushing 4

• Example series of pushes 
and pops
– Note how rear and front 

pointers move
– Note that popping doesn’t 

really remove the data from the 
queue, but that data is no 
longer accessible

– Note how rear (and front) 
wraps around from address 7 
to 0

• Note: pushing a full queue is 
an error
– As is popping an empty queue
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Hierarchy – A Key Design Concept

• Hierarchy
– An organization with a few items at the 

top, with each item decomposed into other 
items

– Common example: A country
• 1 item at the top (the country)
• Country item decomposed into 

state/province items
• Each state/province item decomposed into 

city items
• Hierarchy helps us manage complexity

– To go from transistors to gates, muxes, 
decoders, registers, ALUs, controllers, 
datapaths, memories, queues, etc. 

– Imagine trying to comprehend a controller 
and datapath at the level of gates

P
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P
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P
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c
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CityB

CityC

Country A



90
Digital Design
Copyright © 2006
Frank Vahid

Hierarchy and Abstraction

• Abstraction
– Hierarchy often involves not just grouping 

items into a new item, but also associating 
higher-level behavior with the new item, 
known as abstraction

• e.g., an 8-bit adder has an understandable 
high-level behavior – it adds two 8-bit binary 
numbers

– Frees designer from having to remember, 
or even from having to understand, the 
lower-level details P

r

o

vin

c

e 3
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vin
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e 2

P
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o

vin

c

e 1

vin
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e 1

vin

P
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P

r

o

a7.. a0 b7.. b0

s7.. s0co

ci8-bit adder

vin

c c

e 2 e 3
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Hierarchy and Composing Larger Components 
from Smaller Versions

• A common task is to compose smaller components 
into a larger one

– Gates: Suppose you have plenty of 3-input AND gates, 
but need a 9-input AND gate

• Can simple compose the 9-input gate from several 3-input 
gates

– Muxes: Suppose you have 4x1 and 2x1 muxes, but 
need an 8x1 mux

• s2 selects either top or bottom 4x1
• s1s0 select particular 4x1 input
• Implements 8x1 mux – 8 data inputs, 3 selects, one output

vin
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d
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Hierarchy and Composing Larger Components 
from Smaller Versions

• Composing memory very common
• Making memory words wider

– Easy – just place memories side-by-side until desired width obtained
– Share address/control lines, concatenate data lines
– Example: Compose 1024x8 ROMs into 1024x32 ROM
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Hierarchy and Composing Larger Components 
from Smaller Versions

• Creating memory with more words 
– Put memories on top of one another until the 

number of desired words is achieved
– Use decoder to select among the memories

• Can use highest order address input(s) as 
decoder input

• Although actually, any address line could be 
used

– Example: Compose 1024x8 memories into 
2048x8 memory
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1  0  0  0  0  0  0  0  0  0  0
1  0  0  0  0  0  0  0  0  0  1
1  0  0  0  0  0  0  0  0  1  0

1  1  1  1  1  1  1  1  1  1  0
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a0a10a9a8

a10 just chooses 
which memory 
to access

a
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ROM
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ROM
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en data

8

1024x8
ROM

addr

en data

8

a9..a0

a10 d0
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1x2
dcdi0
e

a

To create memory with more 
words and wider words, can first 
compose to enough words, then 
widen.
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Chapter Summary
– Modern digital design involves creating processor-level components
– Four-step RTL method can be used

• 1. High-level state machine   2. Create datapath 3. Connect datapath
to controller   4. Derive controller FSM

– Several example
• Control dominated, data dominated, and mix

– Determining fastest clock frequency
• By finding critical path

– Behavioral-level design – C to gates
• By using method to convert C (subset) to high-level state machine

– Additional RTL components
• Memory: RAM, ROM
• Queues

– Hierarchy: A key concept used throughout Chapters 2-5
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