
Assumptions in the Normal Linear Regression Model 
 

A1: There is a linear relationship between X and Y. 
 
A2: The error terms (and thus the Y’s at each X) have constant variance. 
 
A3: The error terms are independent. 
 
A4: The error terms (and thus the Y’s at each X) are normally distributed.  
Note: In practice, we are looking for a fairly symmetric distribution with no 
major outliers. 
 
Other things to check (Questions to ask): 
 
Q5: Are there any major outliers in the data (X, or combination of (X,Y))? 
 
Q6: Are there other possible predictors that should be included in the model? 
 



Useful Plots for Checking Assumptions and Answering These Questions 
 

Reminders:  
Residual = ei = ii YY ˆ−  = observed Yi – predicted Yi 
Predicted Yi = iŶ  = b0 + b1Xi , also called “fitted Yi” 

Definition: The semi-studentized residual for unit i is MSE
ee i

i =*
 

 
Plot Useful for 

Dotplot, stemplot, histogram of X’s Q5 Outliers in X; range of X values 
Residuals ei versus Xi or predicted iŶ A1 Linear, A2 Constant var., Q5 outliers 
SS resids e* versus Xi or predicted iŶ As above, but a better check for outliers 
Dotplot, stemplot, histogram of ei A4 Normality assumption 
Residuals ei versus time (if measured) A3 Dependence across time 
Residuals ei versus other predictors Q6 Predictors missing from model 
“Normal probability plot” of residuals A4 Normality assumption 
 



Example: Highway sign data 
 
Graph of residuals versus predicted (“fitted”) values and residuals vs Age 
Stata (following regress command): rvfplot, yline(0) and rvpplot Age, yline(0) 
 
NOTE: Plot of residuals versus predictor variable X should look the same except 
for the scale on the X axis, because fitted values are linear transform of X’s. 
However, when the slope is negative, one will be a mirror image of the other. 
 

Residuals vs fitted values Residuals vs age 
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Comments: These are good “residual plots.” Points look randomly scattered 
around 0. No evidence of nonlinear pattern or unequal variances. 



Some other plots of the residuals: 
 
Normal probability plot of semi-studentized residuals (to check normality 
assumption, A4): 

-2
-1

0
1

2
S

Sr
es

id
s

-2 -1 0 1 2
Inverse Normal

 
 
This is a pretty good plot. There is one point at each end that is slightly off, that 
might be investigated, but no major problems. 
Stata command (following regress): qnorm name where “name” is what you 
named the semi-studentized residuals. 



Stemplot of semi-studentized residuals (to check normality assumption): 
 
stem SSresids 
 
Stem-and-leaf plot for SSresids 
 
SSresids rounded to nearest multiple of .01 
plot in units of .01 
 
 -1** | 57,55 
 -1** | 45,42 
 -0** | 99,96,91,87,75,59,59 
 -0** | 25,23 
  0** | 05,13,17,20,23,30,35,48 
  0** | 60,70,78,86,99 
  1** | 30,32,48 
  1** |  
  2** | 19 
 
 
This is further confirmation that the residuals are relatively symmetric with no 
major outliers. The 2.19 is for a driver with X = 75 years, Y = 460 feet. 



What to do when assumptions aren’t met 
 
Assumption 1:  
Relationship is linear.  
 
How to detect a problem:  
Plot residuals versus fitted values. If you see a pattern, there is a problem with the 
assumption. 
 
What to do about the problem:  
Transform the X values, X' = f(X). Then do the regression using X' instead of X: 
 

Y = β0 + β1 X' + ε 
 

where we still assume the ε are N(0, σ2). 
 
NOTE: Only use this “solution” if non-linearity is the only problem, not if it also looks 
like there is non-constant variance or non-normal errors. For those, we will transform Y.  
 
REASON: The errors are in the vertical direction. Stretching or shrinking the X-axis 
doesn’t change those, so if they are normal with constant variance, they will stay that 
way. 
 
Let’s look at what kinds of transformations to use. (Also see page 130 in textbook.) 



Residuals are inverted U, use X' = X  or log10 X 
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Residuals are U-shaped and association between X and Y is positive: Use X' = X2   
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Residuals are U-shaped and association between X and Y is negative:  
Use X' = 1/X    or    X' = exp(-X) 
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Assumption 2: Constant variance of the errors across X values. 
 
How to detect a problem:  
Plot residuals versus fitted values. If you see increasing or decreasing spread, there is a 
problem with the assumption. 
 
Example: Real estate data set C7 in Appendix C for n = 522 homes sold in a Midwestern 
city. Y = Sales price (thousands); X = Square feet (in hundreds).  
 
Original data: 
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Residual plot: 
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Clearly, the variance is increasing as house size increases. 



 
NOTE: Usually increasing variance and skewed distribution go together. Here is a 
histogram of the residuals, with a superimposed normal distribution. Notice the residuals 
extending to the right. 
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What to do about the problem:  
 
Transform the Y values, or both the X and Y values. See page 132 for pictures. 
 
Example: Real estate sales, transform Y values to Y' = ln (Y) 
 
Scatter plot of ln(Price) vs Square feet 
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Residuals versus Square feet: 
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Looks like one more transformation might help – use square root of size. But we 
will leave it as this for now. See histogram of residual on next page. 
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This looks better – more symmetric and no outliers. 



Using models after transformations 
 

Transforming X only: 
 
Use transformed X for future predictions: X' = f(X).  
Then do the regression using X' instead of X: 
 

Y = β0 + β1 X' + ε 
 

where we still assume the ε are N(0, σ2). 
 
For example, if X' = X  then the predicted values are: 
 

XbbY 10
ˆ +=  

 
Transforming Y (and possibly X): 
 
Everything must be done in transformed values. For confidence intervals and 
prediction intervals, get the intervals first and then transform the endpoints back 
to original units. 
 



Example: Predicting house sales price using square feet. Regression equation is: 
 
Predicted Ln(Price) = 11.2824 + 0.051(Square feet in hundreds) 
 
For a house with 2000 square feet = 20 hundred square feet: 
 

)20(051.02824.11'ˆ +=Y = 12.3024 
 
So predicted price = exp(12.3024) = $220,224. 
 
95% prediction interval for Ln(Price) is 11.8402, 12.7634. Transform back to 
dollars: 
 
Exp(11.8402) = $138,718 
Exp( 12.7634) = $349,200 
 
95% confidence interval for the mean Ln(Price) is 12.2803, 12.3233 
 
Exp(12.2803) = $215,410 
Exp(12.3233) = $224,875 



Assumption 3: Independent errors 
 
1. The main way to check this is to understand how the data were collected. For 
example, suppose we wanted to predict blood pressure from amount of fat 
consumed in the diet. If we were to sample entire families, and treat them as 
independent, that would be wrong. If one member of the family has high blood 
pressure, related members are likely to have it as well. Taking a random sample 
is one way to make sure the observations are independent. 
 
2. If the values were collected over time (or space) it makes sense to plot the 
residuals versus order collected, and see if there is a trend or cycle. See page 109 
for examples. 
 



OUTLIERS 
 

Some reasons for outliers: 
 
1. A mistake was made. If it’s obvious that a mistake was made in recording the 

data, or that the person obviously lied, etc., it’s okay to throw out an outlier 
and do the analysis without it. For example, a height of 7 inches is an obvious 
mistake. If you can’t go back and figure out what it should have been (70 
inches? 72 inches? 67 inches?) you have no choice but to discard that case. 

 
2. The person (or unit) belongs to a different population, and should not be part 

of the analysis, so it’s okay to remove the point(s). An example is for 
predicting house prices, if a data set has a few mansions (5000+ square feet) 
but the other houses are all smaller (1000 to 2500 square feet, say), then it 
makes sense to predict sales prices for the smaller houses only. In the future 
when the equation is used, it should be used only for the range of data from 
which it was generated. 

 
3. Sometimes outliers are simply the result of natural variability. In that case, it 

is NOT okay to discard them. If you do, you will underestimate the variance. 
 



Story Name: Alcohol and Tobacco  
Story Topics: Consumer , Health  
Datafile Name: Alcohol and Tobacco  
Methods: Correlation , Dummy variable , Outlier , Regression , Scatterplot  
Abstract: Data from a British government survey of household spending may be used to examine the 
relationship between household spending on tobacco products and alcholic beverages. A scatterplot of 
spending on alcohol vs. spending on tobacco in the 11 regions of Great Britain shows an overall positive 
linear relationship with Northern Ireland as an outlier. Northern Ireland's influence is illustrated by the 
fact that the correlation between alcohol and tobacco spending jumps from .224 to .784 when Northern 
Ireland is eliminated from the dataset. 

This dataset may be used to illustrate the effect of a single influential observation on regression results. 
In a simple regression of alcohol spending on tobacco spending, tobacco spending does not appear to be 
a significant predictor of tobacco spending. However, including a dummy variable that takes the value 1 
for Northern Ireland and 0 for all other regions results in significant coefficients for both tobacco 
spending and the dummy variable, and a high R-squared.  

Image: Scatterplot of Alcohol vs. Tobacco, with Northern Ireland marked with a blue X. 
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Notice Northern Ireland in lower right corner – a definite outlier, based on the 
combined (X,Y) values. 
 
Why is it an outlier? It represents a different religion than other areas of Britain. 
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In the plot of residuals versus fitted values, it’s even more obvious that the 
outlier is wreaking havoc. 
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The plot of residuals versus the X variable is very similar to residuals vs fitted 
values. Again the problem is obvious. 



 
 

Tobacco

A
lc

oh
ol

4.54.03.53.02.5

6.5

6.0

5.5

5.0

4.5

Scatterplot of Alcohol vs Tobacco

 
 

Here is a plot with Northern Ireland removed. 



Tobacco

R
es

id
ua

l

4.54.03.53.02.5

0.75

0.50

0.25

0.00

-0.25

-0.50

Residuals Versus Tobacco
(response is Alcohol)

 
 
 
Here is a residual plot with Northern Ireland removed. 



Notice how much the analysis changes when the outlier is removed: 
 
With Outlier (Northern Ireland) 
 
The regression equation is 
Alcohol = 4.35 + 0.302 Tobacco 
 
Predictor    Coef  SE Coef     T      P 
Constant    4.351    1.607  2.71  0.024 
Tobacco    0.3019   0.4388  0.69  0.509 
 
S = 0.819630   R-Sq = 5.0%   R-Sq(adj) = 0.0% 
 
Without Outlier 
 
The regression equation is 
Alcohol = 2.04 + 1.01 Tobacco 
 
Predictor    Coef  SE Coef     T      P 
Constant    2.041    1.001  2.04  0.076 
Tobacco    1.0059   0.2813  3.58  0.007 
 
S = 0.446020   R-Sq = 61.5%   R-Sq(adj) = 56.7% 


