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What is an Operating System?

An OS is a program that acts an intermediary 
between the user of a computer and computer 
hardware.

Major cost of general purpose computing is 
software.

OS simplifies and manages the complexity of running 
application programs efficiently.
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Operating System Views

Resource allocator
to allocate resources (software and hardware) of the 
computer system and manage them efficiently.

Control program
Controls execution of user programs and operation of I/O 
devices.

Kernel 
The program that executes forever (everything else is an 
application with respect to the kernel).
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Operating System Spectrum

Monitors and Small Kernels

Batch Systems 
• Polling vs. interrupt

Multiprogramming

Timesharing Systems
• concept of timeslice

Parallel and Distributed Systems
• symmetric vs. asymmetric multiprocessing

Real-time systems
• Hard vs. soft realtime
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Computer System Structures

Computer System Operation

I/O Structure

Storage Structure

Storage Hierarchy

Hardware Protection

General System Architecture

System Calls and System Programs

Command Interpreter
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Operating System Services

Services that provide user-interfaces to OS
Program execution - load program into memory and run it

I/O Operations - since users cannot execute I/O operations directly

File System Manipulation - read, write, create, delete files

Communications - interprocess and intersystem

Error Detection - in hardware, I/O devices, user programs

Services for providing efficient system operation
Resource Allocation - for simultaneously executing jobs 

Accounting - for account billing and usage statistics

Protection - ensure access to system resources is controlled
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Process Management

Process - fundamental concept in OS
Process is a program in execution.

Process needs resources - CPU time, memory, files/data and 
I/O devices.

OS is responsible for the following process 
management activities.

Process creation and deletion

Process suspension and resumption

Process synchronization and interprocess communication

Process interactions - deadlock detection, avoidance and 
correction
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Process Concept

An operating system executes a variety of programs

batch systems - jobs

time-shared systems - user programs or tasks

job and program used interchangeably

Process - a program in execution

process execution proceeds in a sequential fashion

A process contains

program counter, stack and data section

Process States

e.g. new, running, ready, waiting, terminated.
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Process Control Block

Contains information associated with each 
process

• Process State - e.g. new, ready, running etc.

• Program Counter - address of next instruction to be executed

• CPU registers - general purpose registers, stack pointer etc. 

• CPU scheduling information - process priority, pointer

• Memory Management information - base/limit information

• Accounting information - time limits, process number

• I/O Status information - list of I/O devices allocated
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Schedulers

Long-term scheduler (or job scheduler) -
• selects which processes should be brought into the ready 

queue. 

• invoked very infrequently (seconds, minutes); may be slow.

• controls the degree of multiprogramming

Short term scheduler (or CPU scheduler) -
• selects which process should execute next and allocates CPU.

• invoked very frequently (milliseconds) - must be very fast

Medium Term Scheduler
• swaps out process temporarily

• balances load for better throughput
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Process Creation

Processes are created and deleted dynamically

Process which creates another process is called 
a parent process; the created process is called a 
child process.

Result is a tree of processes 
e.g. UNIX - processes have dependencies and form a 
hierarchy.

Resources required when creating process
CPU time, files, memory, I/O devices etc.
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Process Termination

Process executes last statement and asks the 
operating system to delete it (exit).

• Output data from child to parent (via wait).

• Process’ resources are deallocated by operating system.

Parent may terminate execution of child 
processes.

• Child has exceeded allocated resources.

• Task assigned to child is no longer required.

• Parent is exiting

– OS does not allow child to continue if parent terminates

– Cascading termination
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Threads

Processes do not share resources well 
• high context switching overhead

A thread (or lightweight process) 
• basic unit of CPU utilization; it consists of:

– program counter, register set and stack space

A thread shares the following with peer threads:
– code section, data section and OS resources (open files, signals)

Collectively called a task.

Heavyweight process is a task with one thread.

Thread support in modern systems 
User threads vs. kernel threads, lightweight processes

1-1, many-1 and many-many mapping
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Producer-Consumer Problem

Paradigm for cooperating processes; 

producer process produces information that is 
consumed by a consumer process.

We need buffer of items that can be filled by 
producer and emptied by consumer.

• Unbounded-buffer places no practical limit on the size of the 
buffer. Consumer may wait, producer never waits.

• Bounded-buffer assumes that there is a fixed buffer size. 
Consumer waits for new item, producer waits if buffer is full.

Producer and Consumer must synchronize.
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CPU Scheduling

Scheduling Objectives

Levels of Scheduling

Scheduling Criteria

Scheduling Algorithms

Multiple Processor Scheduling

Real-time Scheduling
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Scheduling Policies

FCFS (First Come First Serve)
• Process that requests the CPU FIRST is allocated the CPU 

FIRST.

SJF (Shortest Job First)
• Associate with each process the length of its next CPU burst. 

Use these lengths to schedule the process with the shortest 
time. 

Priority 
• A priority value (integer) is associated with each process. CPU 

allocated to process with highest priority.

Round Robin
• Each process gets a small unit of CPU time

MultiLevel
• ready queue partitioned into separate queues

• Variation: Multilevel Feedback queues.
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Process Synchronization

The Critical Section Problem

Synchronization Hardware

Semaphores

Classical Problems of Synchronization

Critical Regions

Monitors
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The Critical Section Problem 

Requirements
• Mutual Exclusion

• Progress

• Bounded Waiting

Solution to the 2 process critical section problem

Bakery Algorithm

Solution to the n process critical section problem

Before entering its critical section, process receives a 
number.  Holder of the smallest number enters critical 
section.
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Synchronization Hardware

Test and modify the content of a word 
atomically - Test-and-set instruction

function Test-and-Set (var target: boolean): boolean;

begin

Test-and-Set := target;

target := true;

end;

Mutual exclusion using test and set.

Bounded waiting mutual exclusion using test and set.

“SWAP” instruction 
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Mutual Exclusion with Test-

and-Set

Shared data: var lock: boolean (initially false)

Process Pi
repeat

while Test-and-Set (lock) do no-op;
critical section

lock := false;
remainder section

until false;
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Bounded Waiting Mutual 

Exclusion with Test-and-Set

var j : 0..n-1;
key : boolean;

repeat
waiting [i] := true; key := true;
while waiting[i] and key do key := Test-and-Set(lock);
waiting [i ] := false;

critical section
j := i+1 mod n;
while (j <> i )  and (not waiting[j]) do j := j + 1 mod n;
if j = i then lock := false;

else waiting[j] := false;
remainder section

until false;
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Semaphore

Semaphore S - integer variable
• used to represent number of abstract resources.

• Binary vs. counting semaphores.

Can only be accessed via two indivisible (atomic) 
operations

wait (S):       while S <= 0 do no-op 

S := S-1;

signal (S):    S := S+1;

• P or wait used to acquire a resource, decrements count 

• V or signal releases a resource and increments count

• If P is performed on a count <=0, process must wait for V or 
the release of a resource.

Block/resume implementation of semaphores
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Classical Problems of 

Synchronization

Bounded Buffer Problem

Readers and Writers Problem

Dining-Philosophers Problem
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Readers-Writers Problem

Shared Data
var mutex, wrt: semaphore (=1);

readcount: integer (= 0);

Reader process
wait(mutex);

readcount := readcount +1;
if readcount = 1 then wait(wrt);

signal(mutex); 
...

reading is performed
... 

wait(mutex);
readcount := readcount - 1;
if readcount = 0 then signal(wrt);

signal(mutex); 

Writer Process
wait(wrt);
…
writing is performed
... 

signal(wrt);
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Critical Regions

High-level synchronization construct

A shared variable v of type T is declared as:
var v: shared T

Variable v is accessed only inside statement
region v when B do S

where B is a boolean expression.

While statement S is being executed, no other process 
can access variable v.
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Monitors

High-level synchronization construct that allows the safe sharing of an 
abstract data type among concurrent processes.

type monitor-name = monitor
variable declarations
procedure entry P1 (…);

begin … end; 
procedure entry P2 (…);

begin … end; 
.
.
.

procedure entry Pn(…);
begin … end;

begin
initialization code

end.

Hoare vs. Mesa Monitors


