
1

ICS 143 - Principles of

Operating Systems

Operating Systems - Review

Prof. Nalini Venkatasubramanian

nalini@ics.uci.edu

2

What is an Operating System?

An OS is a program that acts an intermediary
between the user of a computer and computer
hardware.

Major cost of general purpose computing is
software.

OS simplifies and manages the complexity of running
application programs efficiently.

3

Operating System Views

Resource allocator
to allocate resources (software and hardware) of the
computer system and manage them efficiently.

Control program
Controls execution of user programs and operation of I/O
devices.

Kernel
The program that executes forever (everything else is an
application with respect to the kernel).

4

Operating System Spectrum

Monitors and Small Kernels

Batch Systems
• Polling vs. interrupt

Multiprogramming

Timesharing Systems
• concept of timeslice

Parallel and Distributed Systems
• symmetric vs. asymmetric multiprocessing

Real-time systems
• Hard vs. soft realtime

5

Computer System Structures

Computer System Operation

I/O Structure

Storage Structure

Storage Hierarchy

Hardware Protection

General System Architecture

System Calls and System Programs

Command Interpreter

6

Operating System Services

Services that provide user-interfaces to OS
Program execution - load program into memory and run it

I/O Operations - since users cannot execute I/O operations directly

File System Manipulation - read, write, create, delete files

Communications - interprocess and intersystem

Error Detection - in hardware, I/O devices, user programs

Services for providing efficient system operation
Resource Allocation - for simultaneously executing jobs

Accounting - for account billing and usage statistics

Protection - ensure access to system resources is controlled

7

Process Management

Process - fundamental concept in OS
Process is a program in execution.

Process needs resources - CPU time, memory, files/data and
I/O devices.

OS is responsible for the following process
management activities.

Process creation and deletion

Process suspension and resumption

Process synchronization and interprocess communication

Process interactions - deadlock detection, avoidance and
correction

8

Process Concept

An operating system executes a variety of programs

batch systems - jobs

time-shared systems - user programs or tasks

job and program used interchangeably

Process - a program in execution

process execution proceeds in a sequential fashion

A process contains

program counter, stack and data section

Process States

e.g. new, running, ready, waiting, terminated.

9

Process Control Block

Contains information associated with each
process

• Process State - e.g. new, ready, running etc.

• Program Counter - address of next instruction to be executed

• CPU registers - general purpose registers, stack pointer etc.

• CPU scheduling information - process priority, pointer

• Memory Management information - base/limit information

• Accounting information - time limits, process number

• I/O Status information - list of I/O devices allocated

10

Schedulers

Long-term scheduler (or job scheduler) -
• selects which processes should be brought into the ready

queue.

• invoked very infrequently (seconds, minutes); may be slow.

• controls the degree of multiprogramming

Short term scheduler (or CPU scheduler) -
• selects which process should execute next and allocates CPU.

• invoked very frequently (milliseconds) - must be very fast

Medium Term Scheduler
• swaps out process temporarily

• balances load for better throughput

11

Process Creation

Processes are created and deleted dynamically

Process which creates another process is called
a parent process; the created process is called a
child process.

Result is a tree of processes
e.g. UNIX - processes have dependencies and form a
hierarchy.

Resources required when creating process
CPU time, files, memory, I/O devices etc.

12

Process Termination

Process executes last statement and asks the
operating system to delete it (exit).

• Output data from child to parent (via wait).

• Process’ resources are deallocated by operating system.

Parent may terminate execution of child
processes.

• Child has exceeded allocated resources.

• Task assigned to child is no longer required.

• Parent is exiting

– OS does not allow child to continue if parent terminates

– Cascading termination

13

Threads

Processes do not share resources well
• high context switching overhead

A thread (or lightweight process)
• basic unit of CPU utilization; it consists of:

– program counter, register set and stack space

A thread shares the following with peer threads:
– code section, data section and OS resources (open files, signals)

Collectively called a task.

Heavyweight process is a task with one thread.

Thread support in modern systems
User threads vs. kernel threads, lightweight processes

1-1, many-1 and many-many mapping

14

Producer-Consumer Problem

Paradigm for cooperating processes;

producer process produces information that is
consumed by a consumer process.

We need buffer of items that can be filled by
producer and emptied by consumer.

• Unbounded-buffer places no practical limit on the size of the
buffer. Consumer may wait, producer never waits.

• Bounded-buffer assumes that there is a fixed buffer size.
Consumer waits for new item, producer waits if buffer is full.

Producer and Consumer must synchronize.

17

CPU Scheduling

Scheduling Objectives

Levels of Scheduling

Scheduling Criteria

Scheduling Algorithms

Multiple Processor Scheduling

Real-time Scheduling

18

Scheduling Policies

FCFS (First Come First Serve)
• Process that requests the CPU FIRST is allocated the CPU

FIRST.

SJF (Shortest Job First)
• Associate with each process the length of its next CPU burst.

Use these lengths to schedule the process with the shortest
time.

Priority
• A priority value (integer) is associated with each process. CPU

allocated to process with highest priority.

Round Robin
• Each process gets a small unit of CPU time

MultiLevel
• ready queue partitioned into separate queues

• Variation: Multilevel Feedback queues.

19

Process Synchronization

The Critical Section Problem

Synchronization Hardware

Semaphores

Classical Problems of Synchronization

Critical Regions

Monitors

20

The Critical Section Problem

Requirements
• Mutual Exclusion

• Progress

• Bounded Waiting

Solution to the 2 process critical section problem

Bakery Algorithm

Solution to the n process critical section problem

Before entering its critical section, process receives a
number. Holder of the smallest number enters critical
section.

21

Synchronization Hardware

Test and modify the content of a word
atomically - Test-and-set instruction

function Test-and-Set (var target: boolean): boolean;

begin

Test-and-Set := target;

target := true;

end;

Mutual exclusion using test and set.

Bounded waiting mutual exclusion using test and set.

“SWAP” instruction

22

Mutual Exclusion with Test-

and-Set

Shared data: var lock: boolean (initially false)

Process Pi
repeat

while Test-and-Set (lock) do no-op;
critical section

lock := false;
remainder section

until false;

23

Bounded Waiting Mutual

Exclusion with Test-and-Set

var j : 0..n-1;
key : boolean;

repeat
waiting [i] := true; key := true;
while waiting[i] and key do key := Test-and-Set(lock);
waiting [i] := false;

critical section
j := i+1 mod n;
while (j <> i) and (not waiting[j]) do j := j + 1 mod n;
if j = i then lock := false;

else waiting[j] := false;
remainder section

until false;

24

Semaphore

Semaphore S - integer variable
• used to represent number of abstract resources.

• Binary vs. counting semaphores.

Can only be accessed via two indivisible (atomic)
operations

wait (S): while S <= 0 do no-op

S := S-1;

signal (S): S := S+1;

• P or wait used to acquire a resource, decrements count

• V or signal releases a resource and increments count

• If P is performed on a count <=0, process must wait for V or
the release of a resource.

Block/resume implementation of semaphores

25

Classical Problems of

Synchronization

Bounded Buffer Problem

Readers and Writers Problem

Dining-Philosophers Problem

26

Readers-Writers Problem

Shared Data
var mutex, wrt: semaphore (=1);

readcount: integer (= 0);

Reader process
wait(mutex);

readcount := readcount +1;
if readcount = 1 then wait(wrt);

signal(mutex);
...

reading is performed
...

wait(mutex);
readcount := readcount - 1;
if readcount = 0 then signal(wrt);

signal(mutex);

Writer Process
wait(wrt);
…
writing is performed
...

signal(wrt);

27

Critical Regions

High-level synchronization construct

A shared variable v of type T is declared as:
var v: shared T

Variable v is accessed only inside statement
region v when B do S

where B is a boolean expression.

While statement S is being executed, no other process
can access variable v.

28

Monitors

High-level synchronization construct that allows the safe sharing of an
abstract data type among concurrent processes.

type monitor-name = monitor
variable declarations
procedure entry P1 (…);

begin … end;
procedure entry P2 (…);

begin … end;
.
.
.

procedure entry Pn(…);
begin … end;

begin
initialization code

end.

Hoare vs. Mesa Monitors

