
A Flexible Framework for Secret Handshakes

(Multi-party Anonymous and Un-observable Authentication)

Gene Tsudik1 and Shouhuai Xu2

1 Department of Computer Science, University of California, Irvine
gts@ics.uci.edu

2 Department of Computer Science, University of Texas, San Antonio
shxu@cs.utsa.edu

Abstract. In the society increasingly concerned with the erosion of pri-
vacy, privacy-preserving techniques are becoming very important. This
motivates research in cryptographic techniques offering built-in privacy.
A secret handshake is a protocol whereby participants establish a se-
cure, anonymous and unobservable communication channel only if they
are members of the same group. This type of “private” authentication is
a valuable tool in the arsenal of privacy-preserving cryptographic tech-
niques. Prior research focused on 2-party secret handshakes with one-
time credentials.

This paper breaks new ground on two accounts: (1) it shows how to
obtain secure and efficient secret handshakes with reusable credentials,
and (2) it represents the first treatment of group (or multi-party) secret
handshakes, thus providing a natural extension to the secret handshake
technology. An interesting new issue encountered in multi-party secret
handshakes is the need to ensure that all parties are indeed distinct.
(This is a real challenge since the parties cannot expose their identities.)
We tackle this and other challenging issues in constructing GCD – a
flexible framework for secret handshakes. The proposed GCD framework
lends itself to many practical instantiations and offers several novel and
appealing features such as self-distinction and strong anonymity with
reusable credentials. In addition to describing the motivation and step-
by-step construction of the framework, this paper provides a thorough
security analysis and illustrates two concrete framework instantiations.

Keywords: secret handshakes, privacy-preservation, anonymity, creden-
tial systems, unobservability, key management.

1 Introduction

Much of today’s communication is conducted over public networks which natu-
rally prompts a number of concerns about security and privacy. Communication
security has been studied extensively and a number of effective and efficient
security tools and techniques are available.

Unfortunately, privacy concerns have not been addressed to the same extent.
Yet, it is quite obvious to anyone who keeps up with the news that our soci-
ety is very concerned with privacy. At the same time, privacy is being eroded

G. Danezis and P. Golle (Eds.): PET 2006, LNCS 4258, pp. 295–315, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

296 G. Tsudik and S. Xu

by (often legitimate) concerns about crime, terrorism and other malfeasances.
Furthermore, the proliferation of wireless communication (among laptops, cell
phones, PDAs, sensors and RFIDs) drastically lowers the bar for eavesdropping
and tracking of both people and their devices.

Popular techniques to provide communication privacy include email MIX-es,
anonymizing routers and proxy web servers as well as purely cryptographic tools,
such as private information retrieval. Despite important advances, the privacy
continuum has not been fully explored. One particular issue that has not been
widely recognized is the need for unobservable, untraceable and anonymous au-
thentication, i.e., privacy-preserving authentication. Such a notion might
seem counter-intuitive at first, since authentication traditionally goes hand-in-
hand with identification. However, in the context of groups or roles, authenti-
cation identifies not a distinct entity but a collection thereof. To this end, some
advanced cryptographic techniques have been developed, such as group signa-
tures [1] and privacy-preserving trust negotiation [9,25].

We focus on interactive privacy-preserving mutual authentication; more specif-
ically, on secret handshakes. A secret handshake scheme (SHS) allows two or more
group members to authenticate each other in an anonymous, unlinkable and un-
observable manner such that one’s membership is not revealed unless every other
party’s membership is also ensured.1

In more detail, a secure handshake allows members of the same group to
identify each other secretly, such that each party reveals its affiliation to others
if and only if the latter are also group members. For example, in a 2-party setting,
an FBI agent (Alice) wants to authenticate to Bob only if Bob is also an FBI
agent. Moreover, if Bob is not an FBI agent, he should be unable to determine
whether Alice is one (and vice versa). This property can be further extended to
ensure that group members’ affiliations are revealed only to members who hold
specific roles in the group. For example, Alice might want to authenticate herself
as an agent with a certain clearance level only if Bob is also an agent with at
least the same clearance level.

In a more general sense, secret handshakes offer a means for privacy-preserving
mutual authentication with many possible applications, especially, in hostile en-
vironments.

Goals: We set out to develop techniques for supporting efficient multi-party
secret handshakes while avoiding certain drawbacks present in some or all of the
previous 2-party secret handshake solutions. These drawbacks include: (1) use of
one-time credentials or pseudonyms, (2) ability of the group authority to cheat
users, (3) requirement to maintain information about many irrelevant groups
(groups that one is not a member of), and (4) lack of support for handshakes
of three or more parties. Some of these drawbacks are self-explanatory, while
others are clarified later in the paper.

1 This informal definition broadens the prior version [3] which limited secret hand-
shakes to two parties.

A Flexible Framework for Secret Handshakes 297

1.1 Overview and Summary of Contributions

We are interested in multi-party secret handshakes, whereby m ≥ 2 parties es-
tablish a secure, anonymous and unobservable communication channel provided
that they are members of the same group. We achieve this by constructing a
secret handshake framework called GCD. This framework is essentially a com-
piler that transforms three main ingredients – a Group signature scheme, a
Centralized group key distribution scheme, and a Distributed group key agree-
ment scheme – into a secure secret handshake scheme. We formally specify this
framework based on desired functionality and security properties.

From the functionality perspective, existing solutions are only able to support
2-party secret handshakes [3,14,36]. Our framework represents the first result
that supports truly multi-party secret handshakes. Moreover, our work is first to
solve the problem of partially-successful secret handshakes.2

From the security perspective, our framework has two novel features. First,
it can be resolved into concrete schemes that provide the novel and important
self-distinction property which ensures the uniqueness of each handshake
participant. In other words, it guarantees that the protocol is a multi-party com-
putation with the exact number of players that claim to be participating. With-
out self-distinction, a malicious insider can easily impersonate any number
of group members by simultaneously playing multiple roles in a handshake pro-
tocol.3 Thus, an honest participant may be fooled into making a wrong decision
when the number of participating parties is a factor in the decision-making pol-
icy. We also note that self-distinction is trivial for 2-party secret handshakes.
However, it becomes more challenging for handshakes of three or more, since
the parties cannot simply expose their identities; otherwise, anonymity would
be lost.

Second, in contrast with prior work [3,14] which relies on one-time credentials
to achieve unlinkability – this ensures that multiple handshake sessions in-
volving the same participant(s) cannot be linked by an adversary – our approach
provides unlinkability with multi-show (or reusable) credentials. This greatly
enhances its usability. Moreover, our approach does not require users to be aware
of other groups, in contrast with [36].

In addition, our framework has some interesting flexibility features. In par-
ticular, it is model-agnostic: if the building blocks operate in the asynchronous
communication model (with guaranteed delivery), so does the resulting secret
handshake scheme. Also, it supports a set of selectable properties that can be

2 A partially successful handshake occurs whenever not all parties engaged in a hand-
shake protocol are members of the same group. For example, if 5 parties take part
in a secret handshake and 2 of them are members of group A, while the rest are
members of group B, the desired outcome is for both the former and the latter to
complete the secret handshake protocol and determine that their respective hand-
shakes were performed with 2 and 3 members, respectively. Our scheme achieves this
desired goal.

3 This is reminiscent of the well-known Sybil attack [19], which is nevertheless different
and not addressed in the present paper.

298 G. Tsudik and S. Xu

tailored to application needs and semantics (e.g., the two specific instantiations
have two different sets of properties). Finally, it lends itself to many practical
instantiations: we present two concrete examples where a handshake participant
computes only O(m) modular exponentiations and sends/receives O(m) mes-
sages, where m is the number of handshake participants.

Organization: Section 2 presents our system model and definitions of secret
handshake schemes. Then we proceed to discuss the design space and lay the
foundation for the framework in Section 3. The models and definitions for the
three building blocks are discussed in Sections 4, 5, and 6. Next, Section 7
presents the actual GCD framework and the analysis of its properties, followed
by two concrete instantiations in Section 8. Some practical issues are considered
in Section 9 and related work is overviewed in Section 10. The paper concludes
with the summary and future research directions. Due to space limitation, we
placed some technical material into the full version of the present paper [32].

2 Secret Handshakes: Model and Definition

Let κ be a security parameter and U be a set of all users: U = {Ui | 0 < i < n}
where n is bounded by poly(κ). Let G be a set of groups, where each group4

G ∈ G is a set of members managed by a group authority GA, which is responsible
for admitting members, revoking their membership and updating system state
information. For simplicity’s sake we assume that each user is a member of
exactly one group. (Of course, all results can be easily generalized to the case that
users are allowed to join multiple groups.) An adversary A is allowed to corrupt
various participants. All participants (including A) are modeled as probabilistic
polynomial-time algorithms.

We assume the existence of anonymous channels between all the legitimates
participants, where the term “anonymous” means that an outside attacker can-
not determine identities of the GA, group members, as well as the dynamics
and size of a group, and that a malicious insider cannot determine the iden-
tities of other honest group members as well as the the dynamics and size of
the group. This assumption is necessary in most privacy-preserving authen-
tication schemes; otherwise, anonymity could be trivially compromised. How-
ever, we note that the fact that secret handshake protocols themselves rely on
anonymous channels does not necessarily present a problem. This is because
a typical secret handshake application would be in a wireless setting where
all communication is done via broadcast which offers receiver anonymity as a
“built-in” feature.5 (See Section 9 for further discussion of practical issues.)

4 We use “group” to refer to a set of users, unless explicitly stated otherwise.
5 This does not contradict our claim in Section 1 that wirelessness heightens privacy

concerns. Although eavesdropping is easier in wireless networks, receiver anonymity
is, at the same time, also easier to achieve in wireless (rather than in wired) networks.

A Flexible Framework for Secret Handshakes 299

Definition 1. A secret handshake scheme (SHS) consists of the following algo-
rithms and protocols:

SHS.CreateGroup: executed by GA to establish a group G. It takes as input ap-
propriate security parameters, and outputs a cryptographic context specific to
this group. The context may include a certificate/membership revocation list,
CRL, which is originally empty. The cryptographic context is made public,
while the CRL is made known only to current group members.

SHS.AdmitMember: executed by GA to admit a user to the group under its ju-
risdiction. We assume that GA admits members according to a certain ad-
mission policy. Specification and enforcement of such policy is out the scope
of this paper. After executing the algorithm, group state information has
been appropriately updated, the new member holds some secret(s) as well
as a membership certificate(s), and existing members obtain updated sys-
tem information from GA via the aforementioned authenticated anonymous
channel.

SHS.RemoveUser: executed by GA. It takes as input the current CRL and a user
identity Ui such that Ui ∈ U and Ui ∈ G. The output includes an updated
CRL which includes the newly revoked certificate for Ui. The state update
information is sent to the existing group members through the authenticated
anonymous channel.

SHS.Update: executed by each current group member upon receiving, via the au-
thenticated anonymous channel, system state update information from GA.
It is used to update each member’s system state information.

SHS.Handshake(Δ): executed by a set Δ of m users purporting to be members of
a group G, where Δ = {U1, . . . , Um} and m ≥ 2. The input to this protocol
includes the secrets of all users in Δ, and possibly some public information
regarding the current state of the systems. At the end of a protocol execution,
it is ensured that each Ui ∈ Δ determines that Δ \ {Ui} ⊆ G if and only if
each Uj ∈ Δ (j �= i) discovers Δ \ {Uj} ⊆ G.

SHS.TraceUser: executed by GA. On input of a transcript of a successful secret
handshake protocol SHS.Handshake(Δ), GA outputs the identities of all m
participants involved in the handshake, i.e., U1, ..., Um.

We note that the definition says nothing about the participants establish-
ing a common key following (or during) a successful handshake. It is indeed
straightforward to establish such a key if a secret handshake succeeds. However,
allowing further communication based on a newly established key would require
concealing the outcome of the handshake. (See also Section 9.) The definition
also does not ensure any form of “agreement” in the sense of [20], since the
adversary is assumed to have complete control over all communication, and can
corrupt parties. This also explains why we only achieve a somewhat weak form
of traceability.

Definition 2. Desired security properties are informally specified below (the for-
mal treatment is deferred to [32]).

300 G. Tsudik and S. Xu

* Correctness: If all handshake participants {U1, . . . , Um} belong to the same
group, the protocol returns “1”; otherwise, the protocol returns “0”.

* Resistance to impersonation: an adversary A /∈ G who does not corrupt
any members of G has only a negligible probability in convincing an honest
user U ∈ G that A ∈ G. This remains to be true even if A plays the roles of
multiple participants.

* Resistance to detection: no adversary A /∈ G can distinguish between an
interaction with an honest user U ∈ G and an interaction with a simulator.
This remains to be true even if A plays the roles of multiple participants.

* Full-unlinkability: no adversary A is able to associate two handshakes
involving a same honest user U ∈ G, even if A ∈ G and A participated in
both executions, and U has been corrupt. This remains to be true even if A
plays the roles of multiple participants.

* Unlinkability: no adversary A is able to associate two handshakes involv-
ing a same honest user U ∈ G, even if A ∈ G and A participated in both
executions. This remains to be true even if A plays the roles of multiple
participants.

* Indistinguishability to eavesdroppers: no adversary A who does not
participate in a handshake protocol can distinguish between a successful hand-
shake between {U1, . . . , Um} ⊆ G and an unsuccessful one, even if A ∈ G.

* Traceability: GA can trace all users involved in the handshake session of
a given transcript.

* No-misattribution: no coalition of malicious parties (including any number
of group members and the GA) is able to frame an honest member as being
involved in a secret handshake.

* Self-distinction: each participant is ensured that all the participants are
distinct.

Remark 1. If needed, our definitions of resistance to impersonation and
resistance to detection can be naturally extended to capture the case when
A corrupts some group members but does not use their secrets in the subsequent
handshake protocols.

We notice that for certain applications full-unlinkability may be desir-
able, while for certain other applications unlinkability and self-distinction
may be desirable. In other words, the framework specifies the important prop-
erties, while leaving the decision on which subset of the properties to satisfy to
the specific applications.

The flavor of traceability achieved in the framework is relatively weak since
the protocol participant who is last to send out the values (to facilitate trace-
ability) can always neglect to do so. However, we observe that this holds in other
schemes, even in those based on one-time credentials [3,14]. The subtle issue is
that the last sender could always use a “fake” token before other (honest) partic-
ipants can verify its validity. This is inevitable because of the basic impossibility
result in [20]. While there are some purely theoretical ways to mitigate this
problem, we are interested in efficient (i.e., practical) solutions. Consequently,
we are prepared to tolerate some unfairness, which, nevertheless, only exists be-

A Flexible Framework for Secret Handshakes 301

tween legitimate users. As a result, the achieved traceability is still valuable for
investigating activities of group members before they become corrupt.

3 Design Space

As mentioned earlier, the GCD framework is essentially a compiler that outputs
a multi-party secret handshake scheme satisfying all desired propertied specified
in Section 2. Its input includes:

– A group signature scheme (GSIG): a scheme that allows any group member
to produce signatures on behalf of the group in an anonymous and unlink-
able manner; only a special entity (called a group manager) is able to revoke
anonymity and “open” a group signature thereby revealing the signer’s iden-
tity. (See Section 4.)

– A centralized group key distribution (broadcast encryption) scheme (CGKD):
a key management scheme for large one-to-many groups that handles key
changes due to dynamic group membership and facilitates secure broadcast
encryption. (See Section 5.)

– A distributed group key agreement scheme (DGKA): a scheme that allows a
group of peer entities to dynamically (on-the-fly) agree on a common secret
key to be used for subsequent secure communication within that group. (See
Section 6.)

We now discuss the choices made in designing GCD. As a first try, one might
be tempted to construct a secret handshake scheme directly upon a CGKD that
enables secure multicast. It is easy to see that m ≥ 2 members can conduct
efficient secret handshakes based on a group key k. However, this approach would
have some significant drawbacks:

(1) No indistinguishability-to-eavesdroppers.A passive malicious (or even honest-
but-curious) group member can detect, by simply eavesdropping, whenever
other members are conducting a secret handshake.

(2) No traceability. A dishonest member who takes part in a handshake (or is
otherwise malicious) can not be traced and held accountable.

(3) No self-distinction. For handshakes of more than two parties, self-distinction
is not attained since a rogue member can play multiple roles in a handshake.

Alternatively, one could employ a GSIG scheme as a basis for a secret handshake
scheme. This would avoid the above drawback (2), however, drawback (1) remains.
Also, resistance to detection attacks would be sacrificed, since (as noted in [3]),
group signatures are verifiable by anyone in possession of the group public key.

A natural next step is to combine a CGKD with a GSIG. This way, the GSIG
group public key is kept secret among all current group members (along with the
CGKD group-wide secret key k), and – during the handshake – group signatures
would be encrypted under the group-wide key k. Although traceability would be
re-gained, unfortunately, drawbacks (1) and (3) would remain.

302 G. Tsudik and S. Xu

In order to avoid (1), we need the third component, an interactive distributed
key agreement protocol. With it, any member who wants to determine if other
parties are members (or are conducting a secret handshake) is forced to par-
ticipate in a secret handshake protocol. As a result, the group signatures are
encrypted with a key derived from both: (a) the group-wide key and (b) the
freshly established key. Moreover, we can thus ensure that, as long as a group
signature is presented by a corrupt member, the traceability feature enables the
group authority to hold that member accountable.

As pertains to drawback (3) above (no self-distinction), we defer the discussion
to later in the paper. Suffice it to say that group signature schemes do not
provide self-distinction by design, since doing so undermines their version of the
unlinkability property. (Unlinkability in group signatures is different from that
in group secret handshakes; see Section 8.2.) To remedy the situation, we need
some additional tools, as described in Section 8 below.

Since our approach involves combining a group signature scheme with a
centralized group key distribution scheme, it is natural to examine potentially
redundant components. In particular, both GSIG and CGKD schemes include a
revocation mechanism. Furthermore, revocation in the former is quite expensive,
usually based on dynamic accumulators [12]. Thus, it might seem worthwhile to
drop the revocation of component of GSIG altogether in favor of the more efficient
revocation in CGKD. This way, a revoked member would simply not receive the
new group-wide key in CGKD but would remain un-revoked as far as the underly-
ing GSIG is concerned. To illustrate the problem with this optimization, consider
an attack whereby a malicious but unrevoked member reveals the CGKD group-
wide key to a revoked member. The latter can then take part in secret handshakes
and successfully fool legitimate members. Whereas, if both revocation compo-
nents are in place, the attack fails since the revoked member’s group signature
(exchanged as part of the handshake) would not be accepted as valid.

4 Building Block I: Group Signature Schemes

Let U be the universe of user identities. In a group signature scheme, there is
an authority called a group manager (GM) responsible for admitting users and
identifying the actual signer of a given group signature6. There is also a set of
users who can sign on behalf of the group. In addition, there is a set of entities
called verifiers. All participants are modeled as probabilistic polynomial-time
algorithms.

A group signature scheme, denoted by GSIG, consists of the following algo-
rithms.

Setup: a probabilistic polynomial-time algorithm that, on input of a security
parameter κ, outputs the specification of a cryptographic context including
the group manager’s public key pkGM and secret key skGM. This procedure
may be denoted by (pkGM, skGM)← Setup(1κ).

6 Sometimes, the two functionalities are assigned to two separate entities.

A Flexible Framework for Secret Handshakes 303

Join: a protocol between GM and a user (conducted over a private and authen-
ticated channel) that results in the user becoming a group member U . Their
common output includes the user’s unique membership public key pkU , and
perhaps some updated information that indicates the current state of the sys-
tem. The user’s output includes a membership secret key skU . This procedure
may be denoted by (pkU , skU , certificateU ; pkU , certificateU)← Join[U ↔
GM], where Join[U ↔ GM] denotes an interactive protocol between U and
GM, pkU , skU , certificateU is the output of U , and pkU , certificateU is the
output of GM. Besides, there may be some system state information that is
made public to all participants.

Revoke: an algorithm that, on input of a group member’s identity (and perhaps
her public key pkU), outputs updated information that indicates the current
state of the system after revoking the membership of a given group member.

Update: a deterministic algorithm that may be triggered by any Join or Revoke
operation. It is run by each group member after obtaining system state
information from the group manager.

Sign: a probabilistic algorithm that, on input of: key pkGM, (skU , pkU) and
a message M , outputs a group signature σ of M . This procedure may be
denoted by σ ← Sign(pkGM, pkU , skU , M).

Verify: an algorithm that, on input of: pkGM, an alleged group signature σ and
a message M , outputs a binary value true/false indicating whether σ is a
valid group signature (under pkGM) of M . This procedure may be denoted
by true/false← Verify(pkGM, M, σ).

Open: an algorithm executed by the group manager GM. It takes as input of
a message M , a group signature σ, pkGM and skGM. It first executes Verify
on the first three inputs and, if the output of Verify is true, outputs some
incontestable evidence (e.g., a membership public key pkU and a proof) that
allows anyone to identify the actual signer. This procedure may be denoted,
without loss of generality, by U ← Open(pkGM, skGM, M, σ) if true ←
Verify(pkGM, M, σ).

Informally, we require a group signature scheme to be correct, i.e., any sig-
nature produced by an honest group member using Sign is always accepted by
Verify.

Following notable prior work [4,7,23], we say a group signature scheme is se-
cure if it satisfies the following three properties (see[32] for a formal definition):
(1) full-traceability – any valid group signature can be traced back to its
actual signer, (2) full-anonymity – no adversary can identify the actual signer
of a group signature, even if the actual signer’s secret has been compromised,
and (3) no-misattribution – no malicious group manager can misattribute a
group signature to an honest group member.

In order to achieve secret handshakes of self-distinction, we may also
adopt group signature schemes achieving a somewhat weaker privacy notion.
Specifically, we can substitute the following weaker notion of anonymity for
the above full-anonymity: (2’) anonymity – no adversary can identify the
actual signer of a group signature, as long as the actual signer’s secret has not

304 G. Tsudik and S. Xu

been compromised. As we will see, our specific handshake scheme achieving
self-distinction is based on the variant group signature scheme of [22], which
fulfills the above anonymity rather than full-anonymity.

5 Building Block II: Centralized Group Key Distribution
Scheme

Let κ be a security parameter, and ID be the set of possible group members
(i.e., users, receivers, or principals) such that |ID| is polynomially-bounded in
κ. There is a special entity called a Group Controller (i.e., key server, center,
server, or sender), denoted by GC, such that GC /∈ ID.

Since a (stateful) group communication scheme is driven by “rekeying” events
(because of joining or leaving operations below), it is convenient to treat the
events occur at “virtual time” t = 0, 1, 2, . . ., because the group controller is
able to maintain such an execution history. At time t, let Δ(t) denote the set of
legitimate group members, k(t) = k

(t)
GC = k

(t)
U1

= . . . the group (or session) key,

K
(t)
GC the set of keys held by GC, K

(t)
U the set of keys held by U ∈ Δ(t), acc

(t)
U the

state indicating whether U ∈ Δ(t) has successfully received the rekeying mes-
sage. Initially, ∀ U ∈ ID, t ∈ N, set acc

(t)
U ← false. We assume that GC treat

joining and leaving operation separately (e.g., first fulfilling the leaving operation
and then immediately the joining one), even if the requests are made simulta-
neously. This strategy has indeed been adopted in the group communication
literature.

To simplify the presentation, we assume that during system initialization (i.e.,
Setup described below) GC can communicate with each legitimate member U
through an authenticated private channel. In practice, this assumption can be
implemented with a two-party authenticated key-exchange protocol. Further, we
assume that GC can establish a common secret, if needed, with a joining user,
and that after the system initialization GC can communicate with any U ∈ ID

through an authenticated channel.
A centralized group key distribution scheme (CGKD) is specified below. It is

adopted from [35].

Setup: The group controller GC generates a set of keys K
(0)
GC , and distributes them

to the current group members (that may be determined by the adversary),
Δ(0) ⊆ ID, through the authenticated private channels. (If some users were
corrupted before this setup procedure, we may let the adversary select the
keys held by the corrupt users.) Each member Ui ∈ Δ(0) holds a set of keys
denoted by K

(0)
Ui
⊂ K

(0)
GC , and there is a key, k(0) that is common to all the

current members, namely k(0) ∈ K
(0)
GC ∩K

(0)
U1
∩ . . . ∩K

(0)
U|Δ(0)|

.
Join: This algorithm is executed by the group controller GC at certain time t

following a join request by a prospective member. (We abstract away the out-
of-band authentication and establishment of an individual key for each new
member). It takes as input: (1) a set of identities of current group members

A Flexible Framework for Secret Handshakes 305

– Δ(t−1), (2) identities of newly admitted group member, Δ′ ⊆ ID \Δ(t−1),
(3) keys held by the group controller, K

(t−1)
GC , and (4) keys held by group

members, {K(t−1)
Ui

}Ui∈Δ(t−1) = {K(t−1)
Ui

: Ui ∈ Δ(t−1)}.
It outputs updated system state information, including: (1) identities of

new group members, Δ(t) ← Δ(t−1)∪Δ′, (2) new keys for GC itself, K
(t)
GC , (3)

new keys for new group members, {K(t)
Ui
}Ui∈Δ(t) , which are somehow sent to

the legitimate users through the authenticated channels (depending on con-
crete schemes), (4) new group key k(t) ∈ K

(t)
GC∩K

(t)
U1
∩. . .∩K

(t)
U|Δ(t)|

. Denote it

by (Δ(t), K
(t)
GC , {K(t)

Ui
}Ui∈Δ(t))← Join(Δ(t−1), Δ′, K(t−1)

GC , {K(t−1)
Ui

}Ui∈Δ(t−1)).

Leave: This algorithm is executed by the group controller GC at time, say, t
due to leave or revocation operation(s). It takes as input: (1) identities of
previous group members, Δ(t−1), (2) identities of leaving group members,
Δ′ ⊆ Δ(t−1), (3) keys held by the controller, K

(t−1)
GC , and (4) keys held by

group members, {KUi}(t−1)

Ui∈Δ(t−1) .
It outputs updated system state information, including: (1) identities of

new group members, Δ(t) ← Δ(t−1) \Δ′, (2) new keys for GC, K
(t)
GC , (3) new

keys for new group members, {K(t)
Ui
}Ui∈Δ(t) , which are somehow sent to the

legitimate users through the authenticated channels (depending on concrete
schemes), (4) new group key k(t) ∈ K

(t)
GC ∩K

(t)
U1
∩ . . .∩K

(t)
U|Δ(t)|

. Denote it by

(Δ(t), K
(t)
GC , {K(t)

Ui
}Ui∈Δ(t))← Leave(Δ(t−1), Δ′, K(t−1)

GC , {K(t−1)
Ui

}Ui∈Δ(t−1)).

Rekey: This algorithm is executed by the legitimate group members at some time
t, namely all Ui ∈ Δ(t) where Δ(t) is derived from a Join or Leave event. In
other words, Ui ∈ Δ(t) runs this algorithm upon receiving the message from
GC over the authenticated channel. The algorithm takes as input the received
message and Ui’s secrets, and is supposed to output the updated keys for
the group member. If the execution of the algorithm is successful, Ui sets:
(1) acc

(t)
Ui
← true, (2) K

(t)
Ui

, where k
(t)
Ui
∈ K

(t)
Ui

is supposed to be the new
group key.

If the rekeying event is incurred by a Join event, every Ui ∈ Δ(t) erases
K

(t−1)
Ui

and any temporary storage after obtaining K
(t)
Ui

. If the rekeying event

is incurred by a Leave event, every Ui ∈ Δ(t) erases K
(t−1)
Ui

and any tempo-

rary storage after obtaining K
(t)
Ui

, and every honest leaving group member

Uj ∈ Δ′ erases K
(t−1)
Uj

(although a corrupt one does not have to follow this
protocol).

We require for a CGKD scheme to be correct, meaning that after each rekey
process, all the group members share a common key with the group controller,
and secure, meaning that no adversary learns any information about a group
key at time t1, even if there are corrupt users at time t2 > t1. This is the
strongest notion, called strong-security in the active outsider attack model in [35]
(somewhat surprisingly, existing popular group communication schemes do not

306 G. Tsudik and S. Xu

achieve this property, but many of them can be made secure in this sense without
incurring any significant extra complexity [35]). We defer formal definition and
discussions to [32].

6 Building Block III: Distributed Group Key Agreement

Let κ be a security parameter. We assume a polynomial-size set ID of potential
players. Any subset of ID may decide at any point to invoke distributed group
key agreement. A distributed group key agreement scheme, DGKA, is specified
below; it follows the results in [5] and [21].

Environment: Since each principal can take part it many runs of the GroupKeyA-
greement protocol (described below), we denote an instance i of U ∈ ID as
Πi

U . Each instance Πi
U is associated with variables acci

U , sidi
U , pidi

U , ski
U . Ini-

tially, ∀ U ∈ ID and i ∈ N, acci
U ← false and sidi

U , pidi
U , ski

U ← undefined.
GroupKeyAgreement: a protocol that performs distributed unauthenticated (or

“raw”) group agreement between any set of m ≥ 2 parties. After exe-
cuting the protocol, each party outputs an indication of the protocol out-
come (success or failure), and some secret information, in case of success. In
more detail, the protocol is executed by m instances: Πi1

U1
, . . . , Πim

Um
, where

{U1, . . . , Um} ⊆ ID. If the execution of Π
ij

Uj
is successful, it sets:

1. acc
ij

Uj
← true,

2. sid
ij

Uj
as the session id of instance Π

ij

Uj
, namely a protocol-specific func-

tion of all communication sent and received by Π
ij

Uj
(e.g., we can simply

set sid
ij

Uj
as the concatenation of all messages sent and received by Π

ij

Uj

in the course of its execution),
3. pid

ij

Uj
as the session id of instance Π

ij

Uj
, namely the identities of the

principals in the group with whom Π
ij

Uj
intends to establish a session

key (including Uj itself), and (4) sk
ij

Uj
as the newly established session

key.
Remark: We stress that this definition does not offer any authentication,
i.e., it does not capture authenticated group key agreement. For example,
the above definition can be satisfied (instantiated) with a straight-forward
extension to any of the several group Diffie-Hellman protocols, such as BD
or GDH [11,30]. Of course, we are aware that unauthenticated key agree-
ment protocols are susceptible to man-in-the-middle (MITM) attacks; this
is addressed later, through the use of our second building block – CGKD.

Informally speaking (see [32] for a formal definition), we require for a scheme
to have correctness and security. Correctness means that all participants
must obtain the same new session secret (key), and security means that a
passive adversary – who does not compromise any principal during protocol
execution – does not learn any information about the new group session key.

A Flexible Framework for Secret Handshakes 307

7 GCD Secret Handshake Framework

The GCD framework has the following components:

GCD.CreateGroup: The group authority (GA) plays the roles of both group
manager in GSIG and group controller in CGKD.
– GA executes GSIG.Setup. This initializes a group signature scheme.
– GA executes CGKD.Setup. This initializes a centralized group key distri-

bution (broadcast encryption) scheme.
– GA generates a pair of public/private keys (pkT , skT) with respect to

an IND-CCA2 secure public key cryptosystem. This pair of keys enables
GA to identify handshake participants in any handshake transcript.

– Note that no real group-specific setup is required for initializing the dis-
tributed group key agreement component – DGKA. We assume that there
is a set of system-wide (not group-specific) cryptographic parameters for
the DGKA scheme, e.g., all groups use the same group key agreement
protocol with the same global parameters. (More on this below.)

GCD.AdmitMember: GA executes CGKD.Join and GSIG.Join.
CGKD.Join results in a new group key and GSIG.Join causes an update to
GSIG state information. The updated GSIG state information is encrypted un-
der the new CGKD group key and distributed to all group members through
an authenticated anonymous channel, e.g., posted on a public bulletin board.

GCD.RemoveUser: GA executes CGKD.Leave and GSIG.Revoke, except: (1) the
updated system state information corresponding to GSIG is encrypted under
CGKD’s new group session key, and distributed as part of CGKD’s state
information updating message, and (2) the update messages are distributed
via an authenticated anonymous channel.

GCD.Update: All non-revoked members execute GSIG.Update and CGKD.Rekey,
except: (1) the updated system state information is obtained from an au-
thenticated anonymous channel, and (2) if CGKD.Rekey succeeds, the update
information corresponding to GSIG is decrypted using CGKD’s new group
key.

GCD.Handshake: Suppose m (≥ 2) users want to determine if they belong to the
same group. We denote their group keys with respect to CGKD as: k1, . . . , km,
respectively. Note that, if they belong to the same group, then k1 = . . . = km.

Phase I: Preparation: All m parties jointly execute
DGKA.GroupKeyAgreement. We denote the resulting keys as: k∗

1 , . . . , k∗
m,

respectively. If the execution is successful, then k∗
1 = . . . = k∗

m, and each
party computes k′

i = k∗
i ⊕ ki.

Phase II: Preliminary Handshake: Each party publishes a tag MAC(k′
i, s, i)

corresponding to a message authentication code MAC (e.g., HMAC-
SHA1), where s is a string unique to party i, e.g., the message(s) it
sent in the DGKA.GroupKeyAgreement execution.7

Phase III: Full Handshake: There are two cases:
7 If a broadcast channel is available, the tag is sent on it; else, it is sent point-to-point.

308 G. Tsudik and S. Xu

CASE 1: If all message authentication tags are valid (i.e., they belong
to the same group), each party executes the following:
1. Encrypt k′

i to obtain ciphertext δi under the group authority’s
tracing public key pkT ; δi ← ENC(pkT , k′

i).
2. Generate a group signature σi on δi via GSIG.Sign.
3. Encrypt σi using a symmetric key encryption algorithm and key

k′
i to obtain a ciphertext θi; θi ← SENC(k′

i, σi).
4. Publish (θi, δi).
5. Upon receiving (θi, δi), execute the following:

– Obtain the group signature by performing symmetric key de-
cryption algorithm using k′

i; σi ← SDEC(k′
i, θi).

– Run GSIG.Verify to check if σi is a valid group signature. If all
group signatures are deemed valid, the party concludes that the
corresponding parties all belong to the same group and stores
the transcript including {(θi, δi)}1≤i≤m.

CASE 2: If at least one message authentication tag is invalid, each
of party picks and publishes a pair (θi, δi) randomly selected from
the ciphertext spaces corresponding to the symmetric key and public
key cryptosystems, respectively.

GCD.TraceUser: Given a transcript of a secret handshake instance:
{(θi, δi)}1≤i≤m, the group authority GA decrypts all δi’s to obtain the corre-
sponding session keys: k′

1, . . . , k
′
m. In the worst case, the authority needs to

try to search the right session key and decrypt all θi’s to obtain the cleart-
ext group signatures. Then, it executes GSIG.Open to identify the handshake
parties.

Remark 2. In order to enable modular construction, we specify the handshake
protocol as a three-phase protocol. Thus, the resulting framework is flexible, i.e.,
tailorable to application semantics. For example, if traceability is not required,
a handshake may only involve Phase I and Phase II.

The following theorems are proved in [32].

Theorem 1. Assume GSIG possesses the properties specified in Section 4,namely
correctness, full-traceability, full-anonymity,and no-misattribution.
Assume also that DGKA and CGKD are secure with respect to their corresponding
definitions in Sections 5-6. Then, the GCD framework possesses the properties
specified in Section 2, namely correctness, resistance to impersonation,
resistance to detection, full-unlinkability, indistinguishability to
eavesdroppers, traceability, and no-misattribution.

Theorem 2. Assume GSIG possesses the properties specified in Section 4, namely
correctness, full-traceability, anonymity, and no-misattribution. As-
sume DGKA and CGKD are secure with respect to their corresponding definitions
in Sections 5-6. Then, the GCD framework possesses the properties specified in
Section 2, namely correctness, resistance to impersonation, resistance
to detection, unlinkability, indistinguishability to eavesdroppers,
traceability, and no-misattribution.

A Flexible Framework for Secret Handshakes 309

Extension: A natural extension of the above framework can fulfill the afore-
mentioned partially-successful secret handshakes, namely that all such Δ ⊂
{1, . . . , m} that consists of |Δ| > 1 members of a same group can always succeed
in their handshakes without incurring any extra complexity. Each participant i
can immediately tell the Δ such that i ∈ Δ as i knows which message authenti-
cation tags are valid.

8 Two Concrete Instantiations

We now present two concrete secret handshake schemes. The first scheme em-
ploys “raw” (unauthenticated) contributory group key agreement, and the sec-
ond scheme ensures that all handshake participants are distinct.

8.1 Example Scheme 1

This is a straight-forward instantiation of the GCD framework. We simply plug
in unauthenticated group key agreement (DGKA) derived from any of [11,30,21],
CGKD based on [34,26], and GSIG based on [1,12]. Theorem 1 immediately im-
plies that this instantiation satisfies all properties specified in Section 2, exclud-
ing self-distinction.

Computational complexity for each party is the sum of the respective com-
plexities incurred in each of the three building blocks. Note that, in an m-party
handshake, each party only needs to compute O(m) modular exponentiations in
total. Moreover, the communication complexity is O(m) per-user in number of
messages.

8.2 Example Scheme 2

As mentioned above, the first instantiation does not offer self-distinction, i.e.,
some of the m parties in a handshake protocol could in fact be “played” by
the same party. We now discuss the basic idea for attaining the self-distinction
property. Naturally, neither group key agreement nor centralized key distribution
(i.e., the CGKD and DGKA components) can provide self-distinction. Thus, we
turn to group signatures to obtain it. However, group signature schemes do
not natively offer self-distinction since it runs against one of their basic tenets,
informally summarized as:

Given any two group signatures it should be impossible to determine with
any certainty whether the same signer (or two distinct signers) generated
both signatures

Nonetheless, the need for self-distinction in group signatures (not in secret hand-
shakes) has been recognized prior to this paper. In particular, the work in [2]
introduces the concept of subgroup signatures motivated by certain applications,
such as anonymous petitions. (In an anonymous petition, t group members want
to sign a document in a way that any verifier can determine with certainty that

310 G. Tsudik and S. Xu

all t signers are distinct.) The example technique for constructing sub-group
signatures in [2] involves slight modifications to the underlying group signature
scheme. This is very similar to what we need to achieve self-distinction in the
proposed framework.

Unfortunately, we cannot use the example in [2] since it is based on a group
signature scheme [13] which is inefficient and not provably secure. However, we
can modify a more recent (as well as much more efficient and provably secure)
group signature scheme by Kiayas and Yung [22]. In this scheme each group
signature is accompanied by a pair: 〈T6 = gβα, T7 = gα〉, where β is the signer’s
secret, and α is the signer’s randomness for this specific signature. This structure
has a nice feature that T7 serves only as an “anonymity shield” in the sense that
the signer does not even need to prove the knowledge of α. Instead, it is crucial
that T6 = T β

7 . Intuitively, this allows us to obtain self-distinction if we
let each handshake participant use the same T7, since they should all provide
distinct T6’s. This can be achieved by simply utilizing an idealized hash function
[6]H : {0, 1}∗ → R to the input of, for instance, the concatenation of all messages
sent by the handshake participants.8 This ensures that, as long as there is at
least one honest participant, the resulting T7 is uniformly distributed over R,
and the security proof in [22] remain sufficient for our purposes.

We now present a scheme based on the modified version of [22]. In what follows
we only illustrate the handshake protocol since it is the only distinctive feature
of this scheme.

GCD.Handshake: Assume m (≥ 2) users are taking part in the protocol. We
denote their group keys with respect to the CGKD by k1, . . . , km, respectively.
As before, if they belong to the same group, k1 = . . . = km.

Phase I: Preparation: m parties jointly execute DGKA.GroupKeyAgreement.
Let the resulting keys be denoted as: k∗

1 , . . . , k∗
m, respectively. (After a

successful run k∗
1 = . . . = k∗

m.) Then, each party computes k′
i = k∗

i ⊕ ki

Phase II: Preliminary Handshake: Each party publishes a pair MAC(k′
i, s, i),

where s is a string unique to i.
Phase III: Full Handshake: We consider two cases:

Case 1: If all message authentication tags are valid (i.e., they belong
to the same group), each party executes as follows:
1. Encrypt k′

i under the public key pkT to obtain ciphertext δi.
2. Generate a variant group signature σi on δi on s via GSIG.Sign,

which is the same as in [22] except that T7 is chosen using an ideal
hash function as discussed above, and the same T7 is common to
all handshake participants. (We stress that self-distinction
is obtained from requiring all participants to use the same T7

which forces them to compute distinct T6 values.)
3. Encrypt σi using a symmetric key encryption algorithm and key

k′
i to obtain ciphertext θi ← SENC(k′

i, σi).

8 While it would suffice for R to be QR(n), what is needed in [22] is in fact that
g ∈ QR(n) and α is chosen from an appropriate interval, i.e., R ⊂ QR(n).

A Flexible Framework for Secret Handshakes 311

4. Publish (θi, δi).
5. Upon receiving (θi, δi), execute as follows:
(a) Obtain σi ← SDEC(k′

i, θi)
(b) Run GSIG.Verify to check if each σi is a valid group signature

(if all group signatures are valid, it concludes that they all
belong to the same group and records the transcript).

Case 2: If at least one message authentication tag is invalid, each
party simulates the above execution of the Pederson protocol and
then picks a pair of (θi, δi) randomly selected from the ciphertext
spaces corresponding to the symmetric key and public key cryp-
tosystems, respectively.

A proof sketch of the following theorem can be found in [32].

Theorem 3. Assume that GSIG possesses the properties specified in Section 4,
namely correctness, full-traceability, anonymity, and
no-misattribution. Assume also that DGKA and CGKD are secure with re-
spect to their corresponding definitions in Sections 5-6. Then, the above instanti-
ation possesses the properties of correctness, resistance to impersonation,
resistance to detection, unlinkability, indistinguishability to
eavesdroppers, no-misattribution, traceability, and self-distinction
specified in Section 2.

Computational complexity in number of modular exponentiations (per-user) re-
mains O(m) and communication complexity (also per-user) in number of mes-
sages also O(m), where m is the number of participants.

9 Discussion

There are several practical issues that need to be addressed. First, if there is only
a single group that uses a secret handshake scheme, an adversary can simply
figure out that the handshake peers belong to that group. In fact, if a secret
handshake scheme is implemented as a TLS or IKE cipher suite, then the parties
will exchange a cipher suite designator that clearly shows that they wish to
engage in a secret handshake. Second, in any secret handshake scheme, utilizing
one-time or reusable credentials alike, it is assumed that there is no easy way to
identify the party who sent or received a certain message; otherwise, it is easy for
an adversary to discover who is interacting with whom. This assumption is also
true in privacy-preserving authentication mechanisms [24,8,16,17,28,27]. Third,
if an adversary observes that handshake participants continue communicating
after finishing the handshake protocol, it can deduce that they belong to the
same group. (This applies to any secret handshake scheme utilizing one-time or
reusable credentials.)

The above issues can be mitigated by various means. First, it is reasonable to
assume that there are many groups, as long as it is not illegal to conduct secret
handshakes. Second, there may be settings where the identity (for the purpose

312 G. Tsudik and S. Xu

of authentication) of a party is not directly derivable from the address that
must appear in the clear in protocol messages. A common example is the case
of mobile devices wishing to prevent an attacker from correlating their (chang-
ing) locations with the device’s logical identity [24]. Furthermore, some form
of anonymous communication could make it hard to decide exactly who is en-
gaging in a secret handshake. Third, protection against traffic analysis (e.g., an
adversary simply observing continued communication after a handshake) can be
achieved by utilizing mechanisms such as steganographic techniques, or anony-
mous communication channels.

In summary, if all assumptions are satisfied, then our secret handshake schemes
(as well as [3,24,8]) can provide provable privacy-preserving authentication,
whereby two (or in our case, more) participants authenticate each other’s member-
ship simultaneously. Otherwise, all schemes attain heuristic or best-effort
anonymity.

10 Related Work

The first secret handshake scheme [3] is based on the protocol of Sakai et al.
[29], which targets the key exchange problem. Indeed, a secret handshake can be
appropriately turned into an authenticated key exchange, but an authenticated
key exchange does not necessarily imply a secret handshake, e.g., the two-party
Diffie-Hellman key agreement scheme [18] does not lend itself to solving the secret
handshake problem; see [3]. The scheme in [3] is based on bilinear maps in the
setting of elliptic curves and its security is based on the associated assumptions.
This scheme uses one-time pseudonyms to achieve unlinkability and does not
offer the No-misattribution property.

A more recent result is due to Castelluccia, et al. [14]. This work constructs
several handshake schemes in more standard cryptographic settings (avoiding
bilinear maps) and provides some extensions for satisfying No-misattribution.
However, it still relies on one-time pseudonyms to satisfy unlinkability. Another
recent result by [36] requires each player to be aware of the information of other
groups and offers weaker anonymity (referred to as k-anonymity).

11 Conclusions and Future Work

To summarize, we present GCD– a flexible secret handshake framework. GCD
is a compiler that can transform a group signature scheme, a centralized group
key distribution scheme, and a distributed group key agreement scheme into
a secure secret handshake scheme. As illustrated by three concrete examples,
GCD lends itself to actual practical instantiations and offers several interesting
new features. GCD avoids the use of one-time pseudonyms and, unlike prior
techniques, supports handshakes among an arbitrary number of parties. Fur-
thermore, GCD can be instantiated to support the important new property of
self-distinction important in handshakes of more than two participants.

A Flexible Framework for Secret Handshakes 313

We believe that the work described in this paper is a first step towards achiev-
ing practical anonymous interactive multi-party authentication protocols. Much
remains to be done. First, the GCD framework needs to be implemented and
experimented with. Second, we have made no attempt to optimize the efficiency
of the framework. Further investigation is clearly called for. Third, efficient con-
structions are needed for those settings where the GCD framework does not
apply (because, e.g., the lack of a centralized group key distribution scheme).

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In Proc. CRYPTO 2000, pages
255–270. Springer, 2000. Lecture Notes in Computer Science No. 1880.

2. G. Ateniese and G. Tsudik. Some Open Issues and New Directions in Group
Signatures. In Financial Cryptography’99. Lecture Notes in Computer Science No.
1880.

3. D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon, and H. Wong. Se-
cret handshakes from pairing-based key agreements. In 24th IEEE Symposium on
Security and Privacy, May 2003.

4. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general
assumptions. In E. Biham, editor, Advances in Cryptology - EUROCRYPT 2003,
volume 2656 of Lecture Notes in Computer Science, pages 614–629. Springer, 2003.

5. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In Proc. EUROCRYPT 2000, pages 139–155. Springer,
2000. Lecture Notes in Computer Science No. 1807.

6. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In First ACM Conference on Computer and Communications
Security, pages 62–73, Fairfax, 1993. ACM.

7. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The
case of dynamic groups. Cryptology ePrint Archive, Report 2004/077, 2004.
http://eprint.iacr.org/.

8. C. Boyd, W. Mao, and K. Paterson. Deniable authenticated key establishment for
internet protocols.

9. R. Bradshaw, J. Holt, and K. Seamons. Concealing complex policies with hid-
den credentials. In Proceedings of the 11th ACM conference on Computer and
communications security (CCS’04), pages 146–157. ACM Press, 2004.

10. E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic group Diffie-Hellman key
exchange under standard assumptions. In L. R. Knudsen, editor, Proc. of Eurocrypt
02, volume 2332 of LNCS, page 321–336.

11. M. Burmester and Y. Desmedt. A secure and efficient conference key distribution
system. In A. D. Santis, editor, Proc. EUROCRYPT 94, pages 275–286. Springer,
1994. Lecture Notes in Computer Science No. 950.

12. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In M. Yung, editor, Proc. CRYPTO
2002, volume 2442 of Lecture Notes in Computer Science, pages 61–76.

13. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In B.S. Kaliski Jr., editor, Proc. CRYPTO 1997, volume 1294 of Lecture Notes in
Computer Science, pages 410–424. Springer-Verlag, 1997.

http://eprint.iacr.org/

314 G. Tsudik and S. Xu

14. C. Castelluccia, S. Jarecki, and G. Tsudik. Secret handshakes from ca-oblivious
encryption. In Advances in Cryptology - ASIACRYPT 2004, volume 3329 of Lecture
Notes in Computer Science, pages 293–307. Springer, 2004.

15. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24:84–88, Feb. 1981.

16. D. Chaum. Blind signatures for untraceable payments. In R. L. Rivest, A. Sherman,
and D. Chaum, editors, Proc. CRYPTO 82, pages 199–203.

17. D. Chaum and E. V. Heyst. Group signatures. In D. W. Davies, editor, Advances in
Cryptology — Eurocrypt ’91, pages 257–265, Berlin, 1991. Springer-Verlag. Lecture
Notes in Computer Science No. 547.

18. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. Inform.
Theory, IT-22:644–654, Nov. 1976.

19. J. Douceur. The sybil attack. In Proceedings of the First International Workshop
on Peer-to-Peer Systems (IPTPS’01), pages 251–260, 2002. Springer-Verlag.

20. M. Fischer, N. Lynch, and M. Patterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

21. J. Katz and M. Yung. Scalable protocols for authenticated group key exchange. In
D. Boneh, editor, Proc. CRYPTO 2003, volume 2729 of Lecture Notes in Computer
Science, pages 110–125. Springer-Verlag, 2002.

22. A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In C. Cachin and
J. Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, volume 3027
of Lecture Notes in Computer Science, pages 571–589. Springer, 2004.

23. A. Kiayias and M. Yung. Group signatures: Provable security, efficient construc-
tions and anonymity from trapdoor-holders. Cryptology ePrint Archive, Report
2004/076, 2004. http://eprint.iacr.org/.

24. H. Krawczyk. Sigma: The ’sign-and-mac’ approach to authenticated diffie-hellman
and its use in the ike-protocols. In D. Boneh, editor, Proc. CRYPTO 2003, volume
2729 of Lecture Notes in Computer Science, pages 400–425. Springer-Verlag, 2002.

25. N. Li, W. Du, and D. Boneh. Oblivious signature-based envelope. In Proceedings
of 22nd ACM Symposium on Principles of Distributed Computing (PODC), pages
182–189. ACM, 2003.

26. D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless
receivers. In J. Kilian, editor, Proc. CRYPTO 2001, volume 2139 of Lecture Notes
in Computer Science, pages 41–62. Springer-Verlag, 2001.

27. M. Naor. Deniable ring authentication. In M. Yung, editor, Proc. CRYPTO 2002,
volume 2442 of Lecture Notes in Computer Science, pages 481–498. 2002.

28. R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In Advances in
Cryptology–ASIACRYPT ’2001, pages 552–565.

29. R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In
Proceedings of the Symposium on Cryptography and Information Security (SCIS),
2002.

30. M. Steiner, G. Tsudik, and M. Waidner. Key agreement in dynamic peer groups.
IEEE Trans. on Parallel and Distributed Systems, 11(8):769–780, 2000.

31. Y. Sun and K. Liu. Securing dynamic membership information in multicast com-
munications. In IEEE Infocom’04.

32. G. Tsudik and S. Xu. A Flexible Framework for Secret Handshakes. Full version
of the present paper (available from the authors).

33. D. Wallner, E. Harder, and R. Agee. Key management for multicast: Issues and
architectures. Internet Draft, Sept. 1998.

http://eprint.iacr.org/

A Flexible Framework for Secret Handshakes 315

34. C. Wong, M. Gouda, and S. Lam. Secure group communication using key graphs.
IEEE/ACM Transactions on Networking (Preliminary version in SIGCOMM’98),
8, 2000.

35. S. Xu. On the security of group communication schemes based on symmetric key
cryptosystems. In Proceedings of the Third ACM Workshop on Security of Ad Hoc
and Sensor Networks (SASN’05), 2005.

36. S. Xu and M. Yung. k-anonymous secret handshakes with reusable credentials. In
Proceedings of the 11th ACM conference on Computer and communications security
(CCS’04), pages 158–167. ACM Press, 2004.

	Introduction
	Overview and Summary of Contributions

	Secret Handshakes: Model and Definition
	Design Space
	Building Block I: Group Signature Schemes
	Building Block II: Centralized Group Key Distribution Scheme
	Building Block III: Distributed Group Key Agreement
	GCD Secret Handshake Framework
	Two Concrete Instantiations
	Example Scheme 1
	Example Scheme 2

	Discussion
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

