
Equipping “Smart” Devices With Public Key Signatures

Xuhua Ding
xhding@smu.edu.sg

Daniele Mazzocchi
mazzocchi@ismb.it

Gene Tsudik
gts@ics.uci.edu

Abstract

One of the major recent trends in computing has been towards so-called “smart” devices, such as
PDAs, cell phones and sensors. Such devices tend to have a feature in common: limited computational
capabilities and equally limited power, as most operate on batteries. This makes them ill-suited for
public key signatures. This paper explores practical and conceptual implications of using Server-Aided
Signatures (SAS) for these devices. SAS is a signature method that relies on partially-trusted servers for
generating (normally expensive) public key signatures for regular users. Although the primary goal is
to aid small, resource-limited devices in signature generation, SAS also offers fast certificate revocation,
signature causality and reliable timestamping. It also has some interesting features such as built-in attack
detection for users and DoS resistance for servers. Our experimental results also validate the feasibility
of deploying SAS on smart devices.

1 Introduction

One of the major recent trends in computing has been towards so-called “smart” devices, such as PDAs, cell
phones and sensors. Although these devices come in many shapes and sizes and are used for a variety of
purposes, they tend to have two features in common: limited computational capabilities and equally limited
power, as most operate on batteries. This makes them ill-suited for complex cryptographic computations,
such as large number arithmetic present in virtually all public key constructs. However, their weakness in
computation is offset by their communication strength and operation fashion. For instance, cell phones and
sensors always interact with their base stations; PDAs are regularly synchronized with PCs. Even though
the advances in hardware technology increasingly strengthens the computation power of these devices, they
are still in a demanding situation of resisting attacks from “stronger” adversaries. In fact, the computation
power disparity between the smart devices and the adversary continues to become even larger.

Digital signatures are a basic building block for many secure applications. Two crucial features of digital
signatures are non-repudiation and strong authentication of both origin and data. These features, especially
non-repudiation,) are needed for the signatures to serve as a fair digital witness for commercial transactions
and critical information transfer in general. However, traditional digital signatures are based on asymmetric
(public key) cryptographic techniques which usually incur expensive computations.

Digital signatures are rapidly becoming ubiquitous. At the same time, increased use of digital signatures
accentuates the need for effective revocation of cryptographic credentials and certificates. While this has
been an issue for a long time, the problem is now becoming more evident. For example, in the recent Verisign
fiasco, a wrong certificate was issued (ostensibly to Microsoft) and its subsequent revocation was both slow
and painful. Furthermore, current CRL-based revocation methods scale poorly and are not widely used in
practice.

Effective revocation is not only useful but vital in some organizational settings (e.g., government and mili-
tary) where digital signatures are used on important electronic documents and in accessing critical resources.
Consider a situation where a trusted user, Alice, does something that warrants immediate revocation of her
security privileges. Alice might be fired, transferred or her private key may have been compromised. Ideally,
immediately following revocation, no one should be able to perform any cryptographic operations involving
Alice’s private key.

1

In addition, when a cryptographic certificate is revoked or simply expires, to establish the validity of
digital signatures generated prior to revocation or expiration becomes a difficult issue due to the challenge
of determining the exact generation time. Though a secure timestamping service may provide a means of
distinguishing between pre- and post-revocation signatures, it hasn’t been widely adopted due to its well-
known prohibitive cost. Finally, compromise of a private key can lead to an unlimited number of fraudulent
signatures being generated and distributed by the adversary. Therefore, it is important to find a way to
limit potential damage.

Our Contribution The basic idea of Server-Aided Signatures was introduced in [1] as a non-repudiation
technique. In this paper, we advance the previous results and present a full-fledged signature scheme to
address the aforementioned issues. Its goals are three-fold:

1. Assist small, limited-power devices in computing digital signatures

2. Provide fast revocation of signing capability

3. Limit damage from potential compromise

Moreover, we provide detailed security and performance analysis on both theoretical and application levels.
We implement a prototype of the SAS signature scheme for experimental purposes. The computation and
communication performance from our experiments validates our analysis and proves its feasibility for low-end
devices.

Synopsis

The signature method discussed here, SAS, is based largely on a weak non-repudiation technique developed
by Asokan et al. [1]. The most notable feature of the SAS method is the introduction of an online partially
trusted entity. Specifically, each SAS signature is generated with the aid of a partially-trusted server called
SEM (short for SEcurity Mediator). This feature can be viewed as a mixed blessing. Although the require-
ment for on-line help for each signature is clearly a burden, it offers a number of benefits. We discuss the
pros and cons, both real and perceived, in Section 9. The system model is elaborated in Section 4.

Informally, the basic SAS signature protocol is as follows:

• First, a prospective signer, Alice, contacts her SEM and provides the data to be signed as well as a
one-time token.

• The SEM checks Alice’s certificate validity and, if not revoked, computes a half-signature over the data
as well as other parameters, including the one-time token. SEM then returns the results to Alice.

• Alice verifies the SEM’s half-signature and produces her own half-signature. Put together, the two
respective half-signatures constitute a regular, full SAS signature. This signature is accompanied by
the SEM’s and Alice’s certificates.

The two half-signatures are inter-dependent and each is worthless in and of itself. This is despite the fact that
the SEM’s half-signature is a traditional public key signature: in the context of SAS, a traditional signature
computed by a SEM is not, by itself, a SAS signature. The half-signature computed by a user (Alice, in our
example) is actually a one-time signature [2] over the other half. Note that computing one-time signatures
requires little computation resource.

Verifying a SAS signature is easy: after obtaining the signature, a verifier first verifies the correctness
of the SEM’s public key signature, then checks the link between two halves, i.e, verifies the user’s (Alice’s)
one-time signature.

The main idea is that a SEM, albeit only partially trusted, is more secure and much more capable in terms
of CPU and power consumption than an average user. It can therefore serve a multitude of users. Moreover,
because of its “superior” status, a SEM is much less likely to be revoked or compromised. (An organization’s

2

certificate usually has much longer life length than a personal certificate). Since a signer (Alice) is assumed
to have much less computing power than a SEM, the latter performs the bulk of the computation, whereas
Alice does comparatively little work. In the event that Alice’s certificate is revoked, the SEM simply refuses
to compute any further signatures on Alice’s behalf. Thus, revocation is both implicit and fast. However, this
does not obviate the need for Certificate Revocation Lists (CRLs) since Alice’s certificate may be revoked
after some fraudulent signatures have already been generated. A CRL may still be necessary to convey to
all verifiers the exact time of revocation and hence to sort out pre- and post-revocation signatures.

The challenge is to offload the computation to an untrusted server without undermining users’ security.
We emphasize that utilizing a fully-trusted server to assist the low-end devices has several drawbacks. First,
full trust usually implies poor scalability. Therefore the fully-trusted server, being a single point of failure
in terms of security and availability, becomes an attractive target for various attacks. Second, in many
applications, it is impractical to establish a centralized fully-trusted entity. Third, a fully-trusted server
actually puts the users’ security at risk, as a server compromise exposes all users’ secret information.

2 Related Work

In this section, we review some related work and make comparisons against our scheme.
Offloading expensive computation from weak devices is a main functionality of SAS. A well-known related

approach is online/offline signatures proposed by Even et al. [3]. The notion of an online/offline signature
means that the signing process is broken into two phases. The first phase, performed offline, is independent
of the particular message to sign while the second phase, performed online, is per message. An ordinary
signature scheme S can be transformed into its online/offline variant by combining: 1) The said signature
scheme S; 2) A fast one-time signature scheme σ; and 3) A fast strong collision-free hash function H, for
which it is infeasible to find two inputs having the same hash value. The underlying idea is to use the S
to sign offline a random construction of information which is later signed online using σ. This signature
scheme is well suited for chip-card applications, where the expensive public key signature part is computed
offline by a server, independent from the messages, while the cheap one-time signature is computed online
by the chipcard. Its main disadvantage is that the resulted signature length is much longer than a normal
one, even though Shamir made an improvement in [4]. Modadugu et al. [5], instead of targeting signature
computation, proposed a method which helps handhelds generate RSA keys by using an untrusted server.

In terms of architecture, the SAS method is an example of a mediated cryptographic protocol. Recent
work by Boneh et al. [6] on mediated RSA (mRSA) and Ding et al. [7] on mediated group signatures are
other examples. Mediated cryptographic protocols share the feature of utilizing a partially trusted online
server which, coupled with individual endusers, operates under a two-party computation model. With a
similar model, Reiter and McKenzie proposed in [8] a technique to improve the security for portable devices
where the private-key operations are password-protected. They also proposed another scheme for the more
challenging problem of mediated (2-party) DSA signatures [9]. Earlier, in 1996, Ganesan [10] also exploited
the same idea for improving Kerberos security as part of the Yaksha system.

Certificate revocation, another main feature of SAS, is a well-recognized problem in all current PKI-s.
The main existing approaches are based on Certificate Revocation Lists (CRLs) or Online Certificate Status
Protocol (OCSP).

CRLs and their variants are the most common way to handle certificate revocation. A Validation Au-
thority (VA) periodically posts a signed list of all revoked certificates. These lists are placed on designated
servers . Since these lists can get quite long, the VA may alternatively post a signed ∆-CRL which only
contains the list of revoked certificates since the last CRL was issued. When verifying a signature on a
message, the verifier checks that, at the time the signature was issued, the signer’s certificate was not on any
CRLs.

Compared with CRLs-based solutions, the approach using OCSP avoids the transmission of long CRLs
to every user and provides more timely revocation information. When verifying a signature, the verifier
sends an OCSP (certificate status request) query to the VA to check if the enclosed certificate is currently
valid. The VA answers with a signed response indicating the certificate revocation status. Note that OCSP

3

prevents one from implementing stronger semantics: it is impossible to ask an OCSP VA whether a certificate
was valid at some time in the past. To improve the protocol scalability and remove the single point of failure,
Kocher proposed Certificate Revocation Trees (CRT)[11] for OCSP. His idea is to have a single highly secure
VA periodically post a signed CRL-like hash tree to many insecure VA servers. Users then query these
insecure VA servers, which correspondingly produce a convincing proof that the certificate is (or is not) on
the CRT. Further improvement on CRT include Naor and Nissim’s 2-3 tree [12] and Goodrich’s skip-lists
[13]. Both of them enable the secure VA to issue efficient updates, instead of re-computing and distributing
the entire CRT.

Both CRL-based and OCSP-based revocation approaches have essential drawbacks. Both approaches ask
the verifier to take the risk and burden of checking the signer’s certificate status. Besides the tremendous
overhead, the verifier has difficulty in determining the exact signature generation time, which, in certain
scenarios, is a vital issue . Furthermore, even though a signer’s certificate has been revoked, she is still free
to compute signatures and leaves the verifier to validate them. In practice, many users, including security
professionals, simply ignore CRLs or are not willing to query an OCSP server.

The key cryptographic component in SAS systems is hash chains, which have been exploited in many
protocols, e.g., Lamport’s method [14] for password authentication and Perrig et al.’s protocol [15, 16] for
packet stream authentication in multicast/broadcast settings. In [17], Bickaci et al. claim several improve-
ments on our previous work [18]. Instead of using a hash chain as outlined in our scheme, they employ a
one-time signature chain, which brings three major benefits. First, the user does not make any large num-
ber operations. Second, the resulted signature is exactly a traditional public key signature. Third, only one
round of communication is required. However, due to the inefficiency of one-time signature size, its expensive
communication cost offsets the benefits above.1 The bit length of messages sent by the user is larger than
the square of the hash length. Recent attacks on MD5 and SHA-1 [20] demand that hash functions have
larger bit length. For instance, SHA-224 produces a 224-bit message digest and SHA-256 generates 256 bits.
Using SHA-256 in [17] will result in user requests of more than 64K bits. Unfortunately, most low-end mobile
devices have upstream channels with limited bandwidth. (Even in the forthcoming 3G cellular network, the
upper bound of upstream bandwidth is only 64kbps.) It takes several hundreds milliseconds to one second
to send a request. The incurred power consumption is even higher than regular public key operations, which
takes less than one hundred milliseconds. Thus, our approach is more practical for a wide range of low-end
devices whereas [17] is only fit for low-end devices with sufficient communication capability.

3 Preliminaries

Before proceeding to the core protocol description, we recall two cryptographic primitives which are utilized
in constructing the SAS protocol.

Cryptographic Hash Function

A hash function h() operates on arbitrary-length input to produce a fixed-length digest. If y = h(x), y is
commonly referred to as the hash of x and x is referred to as the pre-image of y. A cryptographic hash
function is usually required to be one-way and collision-resistant. Informally, a function f() : X → Y is
one-way if, given an input element x ∈R X, it is easy to compute y = f(x), meanwhile, given a randomly
chosen y ∈R Y , it is computationally infeasible to find an x such that f(x) = y. Thus, a one-way hash
function ensures that it is hard to compute a pre-image of a given value.

Since the domain of a hash function is much larger than its range, collisions do exist. However, for
collision-resistant hash functions, it is difficult to find out a collision. More formally, h() is collision-resistant
if it is computationally intractable to find any two distinct input strings x, x′ such that h(x) = h(x′). A
collision-resistant one-way hash function can be recursively applied to an input string. We refer to hi(x) as

1Goyal proposed in [19] to use a seed to generate a one-time key pair, so that the memory cost at both the server and user
ends is significantly reduced.

4

the result of applying h() i times starting with the input x, that is:

hi(x) = h(h(. . . h(h(x)) . . .))︸ ︷︷ ︸
i times

Recursive application results in a hash-chain beginning with the original input:

x = h0(x), h1(x), . . . , hn(x)

Several secure and efficient collision-resistant one-way hash functions have been proposed. Due to the
recent attack on hash functions [20], MD5 and SHA-1 have become insecure. SHA-224 and SHA-256 from
the SHA family are promising candidates for SHA-1 and MD5. SHA-224 digests an arbitrary-sized message
into a 224 bits string while SHA-256 produces a 256 bits string for any input. Both are much faster than
large number computation.

Public Key Signatures

Digital signatures serve as a means for providing data integrity and non-repudiation. A public key based
digital signature scheme SIG consists of three algorithms, namely SIG = (Gen, Sign, Ver). On inputting
an array of security parameters, a user U runs the probabilistic Gen to obtain a pair of public and private
keys (pk, sk). On inputting a private key sk and a message m, U runs the probabilistic Sign to produce
a signature σ = SignU (m). On inputting a public key pk, a message m and a tag σ, anyone can run the
deterministic Ver to check whether σ is a valid signature. We require a signature scheme to be existentially
unforgeable under the adaptive chosen-message attack model.2 Many signature schemes, such as probabilistic
RSA signatures [22, 23] and Schnorr[24] signatures, satisfy the security requirement of the SAS protocol.

Usually Sign and Ver have different computation complexity. For example, the RSA signature verification
is much cheaper than RSA signature generation if its public exponent is particularly chosen, e.g., 65537.
This fact will be exploited in the SAS protocol where the users will perform signature verification as shown
in following sections.

4 Model and Notation

System Model

We now show the details of the whole architecture. It involves three entities:

• Regular Users – entities who sign messages using the SAS signature protocol. Some regular users may
have limited computational resources and are incapable of executing expensive large-number operations.

• Security Mediators (SEMs) – partially-trusted entities assisting a set of regular users in generating
SAS signatures.

• Certification Authorities (CAs) – trusted off-line entities that issue certificates and associate each
regular user with one or multiple SEMs.

SEMs and CAs are high-end workstations or servers equipped with abundant computation and communica-
tion resources so that they are capable of handling heavy computation and communication load. Furthermore,
they are better protected and less likely to be compromised than regular users.

As in common PKIs, a CA in the SAS protocol issues public key certificates for SEMs and regular users3.
In addition, a CA binds each regular user with one (or several) SEM(s). A user can request signature
generation assistance from the assigned SEM(s).

2Informally [21], the adaptive chosen-message attack model allows an adversary to access a signature oracle, which returns
signatures on a polynomial number of messages chosen by the adversary, except the one he is challenged to sign.

3Regular users have a new form of public key certificates which is explained in Section 5.

5

Communication Channel

We do not assume that the communication channels between users and SEMs are private or authentic.
Instead, they are assumed to be reliable. This implies that the underlying communication system provides a
sufficient error handling mechanism to detect, with overwhelming probability, all benignly corrupted packets.
Furthermore, timeouts and retransmissions are likewise handled by the communication system with the
assumption that a packet eventually gets through. We assume that all communication channels connected
with CAs are secure. The assumption is reasonable considering that a CA is an offline entity and any
communication can be physically protected.

Trust Model

A remarkable feature of a SEM is that she is partially trusted. A SEM is trusted to honestly execute
instructions from the administrator, e.g., helping in computing signatures for certain users or rejecting
requests from others. However, a SEM may maliciously attempt to attack regular users. For instance, she
may try to forge users’ signatures or deny her contribution of a given signature. A SEM may even collude
with other adversaries (including other dishonest SEMs, users, or external attackers) to mount attacks.

The trust model of CAs follows those in standard public key infrastructures. A CA is trusted not to
introduce any phantom users and not to attack users or SEMs. We also assume the security of a CA’s private
key which is used to sign certificates.

Notation

Throughout the rest of the paper, we use the notations listed in Table 1.

Ui Regular user Ui

SEM Security mediator
Certi User Ui’s public key certificate
PKi User Ui’s public key
SKk

i User Ui’s k-th private key
Certsem SEM’s public key certificate
esem SEM’s RSA public key
dsem SEM’s RSA private key
Hui() A cryptographically secure hash function used by Ui.
SIGk() A signing function using key k.
V FYk() A signature verification function using key k .

Table 1: SAS Protocol Notations

5 SAS Description

The SAS system consists of five component algorithms: Setup, Sign, Verify, Handoff, Renew. Setup initializes
the settings for SEMs and regular users; Sign computes SAS signatures on given messages, which can later
be validated by running Verify. Handoff algorithm allows a regular user to switch from one SEM to another.
Renew algorithm allows a user to use new one-time private keys (a hash chain as shown below) without
applying for a new certificate. We now proceed to describe each algorithm.

5.1 Setup

The system administrator sets up a CA and initializes a system-wide cryptographic setting. Specifically,
the administrator selects a collision-resistant one-way hash function H() for the users. The choices of H()

6

include SHA-224 and SHA-256, which are assumed to be secure. A public key signature scheme, which is
secure against adaptive chosen message attacks, is selected for SEMs. In order to minimize computation
overhead for regular users, the chosen public key signature scheme should be efficient for verifiers. (This is
because, as will be seen below, verification is done by regular users, whereas, signing is done by much more
powerful SEMs.) Therefore, we choose RSA signature scheme [22, 23] with a small public exponent, such as
3 and 65,537 for SEMs.

To become a SAS signer, Ui customizes H() into Hui(). In essence, Hui() is a keyed hash (e.g., [25]) with
a known key set to the identity of the signer. Then, Ui generates a secret random element SK0

i and chooses
n as the number of messages to sign. Starting with this value, Ui computes:

{ SK0
i , SK1

i , . . . SKn−1
i , SKn

i } where

SKj
i = Hui(SKj−1

i) = Hj
ui

(SK0
i) for 1 ≤ j ≤ n

The hash chain of (SK0
i , SK1

i , . . . SKn
i) is called Ui’s key chain. Each SKj

i , for 0 < j < n is Ui’s j-th
(one-time) private key. It subsequently enables Ui to produce (n−1) SAS signatures, since as shown below,
each of them will be used only once. The first value, SK0

i , is referred to as Ui’s seed private key. The last
value, SKn

i , together with n, are referred to as Ui’s root public key PKi.
Each SEM initializes its own secret/public RSA key-pair (dsem, esem) of sufficient length. (We use the

notation [x]dsem to denote SEM’s signature on string x.) Each CA also has its own key-pair much like any
traditional CA. In addition to its usual role of issuing and revoking certificates, a CA also assigns associations
between users and SEMs by listing SEMs in users’ certificates. Each user has a unique Registration SEM in
her home domain. Roaming users are allowed to have associations with Alternative SEMs in other domains,
as shown in Section 5.4. One SEM serves a multitude of users. We expect the number and placement of
SEMs in an organizational network to closely resemble that of OCSP Validation Agents (VAs) [26].

In order to obtain a SAS certificate Certi, Ui composes a certificate request and submits it to the CA
via some (usually off-line) channel. Ui’s SAS certificate has, for the most part, the same format as any
other public key certificate; it includes values such as the holder’s distinguished name, organizational data,
expiration/validity dates, serial number and so forth. Additionally, a SAS certificate contains two other
fields:

1. Ui’s root public key PKi, i.e < SKn
i , n >

2. a pair of distinguished name and certificate serial number for each SEM associated with Ui.

Once issued, Ui’s SAS certificate Certi can be made publicly available via a directory service such as LDAP
[27].

5.2 SAS Signature Protocol

To get the first signature from the SEM, Ui needs to register herself with her assigned SEM either off- or
on-line. In the off-line case, the SEM obtains Ui’s SAS certificate via manual (local or remote) installation
by an administrator or by fetching it from the directory service. To register online, Ui simply includes her
SAS certificate as an optional field in the initial SAS signature request to the SEM. Before processing the
request as described above, the SEM checks if the same certificate is already stored. If not, it installs it in
the certificate database and creates a new user entry.

We present below the signature protocol run by Ui and her registration SEM. (To run the same protocol
with an alternative SEM, Ui must run a handoff protocol presented in Section 5.4.) In the initial run of the
protocol, the signature counter k is set to n − 1. Both the SEM and Ui consistently maintain the counter
by decrementing it after each run. The protocol is illustrated in Figure 1.
Step 1. Ui starts by sending a request containing: {Ui,m, k, SKk

i } to its assigned SEM. If for privacy
reasons Ui does not wish to reveal the message to the SEM, m can be replaced with h(m). Ui may optionally
enclose her SAS certificate.

7

Algorithm SAS.sign (executed by User Ui and SEM)

USER Ui SEM

(1) Ui,m,k,SKk
i−−−−−−−−−−−−−−−−−−−−−−−−→

[Ui,m,k,SKk
i]dsem←−−−−−−−−−−−−−−−−−−−−−−−− (2)

(3) Issue < SKk−1
i , [Ui,m, k, SKk

i]dsem > as the final
SAS signature.

Figure 1: SAS Signature Algorithm

Step 2. On receiving Ui’s request, the SEM obtains Certi (either from the request or from local storage)
and checks its status. If revoked, the SEM replies with an error message and halts the protocol. Otherwise,
the SEM compares the signature counter in the request to its own signature counter. In case of a mismatch,
the SEM replies to Ui with the half-signature produced in the last protocol run and aborts. (Note that the
SEM keeps a record of all previously generated half-signatures.)

Then, the SEM proceeds to verify the received k-th “private” key (SKk
i) with Ui’s root public key in

Certi. Specifically, the SEM checks that Hn−k
ui

(SKk
i) = PKi. In case of a mismatch, the SEM replies to Ui

with the last recorded half-signature and aborts the protocol.
Otherwise, the SEM signs the requested message with its RSA private key dsem using the RSASSA-PSS

scheme specified in [23]. For simplicity, the result is denoted as SIGi = [Certi, m, k, SKk
i]dsem . Other

attributes may also be included in the SEM’s half-signature, e.g., a timestamp. the SEM decrements Ui’s
signature counter, records the half-signature and returns the latter to Ui.

In the above, the SEM assures that for a given SAS certificate, exactly one signature is created for each
SKk

i . We refer to this property as the SAS Invariant. This concept enables non-repudiation for SAS
signatures and protects users from being framed by SEMs.

Step 3. Ui (who is assumed to be in possession of the SEM’s certificate) verifies the SEM’s half-signature,
records it and decrements her signature counter. If the SEM’s half-signature fails verification or its attributes
are wrong (e.g., it signs a different message than m or includes an incorrect signature counter j 6= k), Ui

aborts the protocol and concludes that a hostile attack has occurred.4

In the end, Ui’s SAS signature on message m has the following format:

[Certi,m, k, SKk
i]dsem , SKk−1

i

The second part, namely SKk−1
i , is Ui’s half-signature. As mentioned earlier, it is actually a one-time sig-

nature since Hui(SKk−1
i) = SKk

i .
¤

Note that Ui must use her one-time keys strictly in the reverse order of key generation, i.e. starting from
SKn−1

i , SKn−2
i , SKn−3

i and so on. In particular, Ui must not request a SEM half-signature using SKk−1
i

unless, in the last protocol run, she obtained SEM’s half-signature containing SKk
i .

4Our communication channel assumption rules out non-malicious packets errors.

8

5.3 SAS Signature Verification

SAS signature verification comes in two flavors: light and full. The particular choice depends on the verifier’s
trust model. If a verifier trusts a SEM to honestly check user requests and verify user certificate status, he
can choose light verification. Otherwise, he chooses full verification.

Light verification involves the following steps:

1. Obtain and verify5 Certsem;

2. Verify the SEM’s RSA half-signature: [Certi,m, k, SKk
i]dsem ;

3. Verify Ui’s half-signature: Hui
(SKk−1

i) ?= SKk
i .

Full verification requires, in addition:

4. Verify Certi and obtain n from Certi;

5. Check that k < n, otherwise abort;

6. Verify Ui root public key: Hn−k
ui

(SKk
i) ?= SKn

i

Note that light verification does not involve checking Ui’s SAS certificate. Although this may seem counter-
intuitive, we claim that the SAS signature format (actually the SEM’s half-signature) already includes Certi
as a signed attribute. Therefore, for a verifier who trusts the SEM, step 2 above implicitly verifies Certi.

It is easy to see that, owing to the trusted nature of a SEM and the SAS Invariant, light verification
is usually sufficient. However, if a stronger property such as non-repudiation is desired, full verification may
be used.

5.4 SAS Handoff

The SAS protocol users could be low-end devices, which trade off their computational resource for better
mobility. Binding the user to a single SEM impedes their mobility. The SAS handoff protocol addresses
this problem by allowing users to switch their SAS service providers during roaming. A roaming user’s SAS
certificate contains a list of SEMs, among which one is designated as the Registration SEM to handle the
user’s first SAS request. Other SEMs on the list, referred to as the Alternative SEM, will not provide service
unless an authorization token is presented.

The handoff protocol is similar to those in secure mobile IP networks. Their main idea is that the home
server issues authorization tokens that helps the foreign server to authenticate the guest users’ requests. In
SAS, the user obtains a SAS signature on a pre-defined macro message from the current SEM before moving
to a foreign domain. Suppose the next token for Ui to use is SKk

i and Ui wants to switch service from the
current server, SEMa, to SEMb. The following protocol is executed by Ui, SEMa and SEMb:
Step 1. Ui starts by sending a request containing: {M(a, b, i, k), SKk

i } to SEMa. The enclosed M(a, b, i, k)
is a pre-defined macro message of Ui’s request for handoff from SEMa to SEMb starting with token SKk

i .
M(a, b, i, k) also contains other necessary information required by SEMa to make an approval.
Step 2. SEMa checks Ui’s request integrity as in Step 2 in Section 5.2. In addition, SEMa checks whether
SEMb is listed in Ui’s certificate. If so, SEMa returns a normal half SAS signature and stops the normal SAS
signature service for Ui; otherwise a signed error message is returned to Ui and SEMa halts the protocol.
Step 3. Ui receives the half signature from SEMa and constructs a full SAS signature

TK(Ui, SEMa, SEMb, k) = {[M(a, b, i, k), SKk
i]dSEMa , SKk−1

i }

as in Step 3 in Section 5.2. Ui presents TK(Ui,SEMa,SEMb, k) to SEMb as an authorization token. SEMb

checks that: (1) both SEMa and herself are listed on Ui’s certificate; and (2) TK(Ui, SEMa, SEMb, k) is a
5This may be done infrequently.

9

Algorithm SAS.handoff (executed by User Ui, SEMa and SEMb)

SEMb USER Uk SEMa

(1) M(a,b,i,k),SKk
i−−−−−−−−−−−−−−−→

[M(a,b,i,k),SKk
i]dSEMa←−−−−−−−−−−−−−−−−(2)

[M(a,b,i,k),SKk
i]dSEMa ,SKk−1

i←−−−−−−−−−−−−−−−−−−−−−−(3)

(4) [[M(a,b,i,k),SKk
i]dSEMa ,SKk−1

i]dSEMb−−−−−−−−−−−−−−−−−−−−→
Figure 2: SAS Handoff Algorithm

valid SAS signature with respect to SEMb and SEMa. If both hold, SEMb deposits TK(Ui,SEMa,SEMb, k)
to a secure database and returns to an RSA signature on it to Ui. In case of dispute, TK(Ui,SEMa,SEMb, k)
should be presented to prove the handoff authorization from SEMa. Ui constructs a SAS signature:

< [TK(Ui, SEMa, SEMb, k)]dSEMb , SKk−2
i >

which enables Ui to prove SEMb’s approval on handoff. To sign future messages, Ui starts from SKk−2
i .

5.5 SAS Renewal

A renewal is needed when the messages to sign outnumber the length of the key chain or the states between
the SEM and the user are inconsistent due to attacks or system failures. The renewal protocol allows a user
to use a new chain of private keys without applying for a new certificate, on the condition that her seed
private key is not compromised.

Suppose user Ui is currently using the hash chain seeded with SK0
i and the SEM is expecting SKk

i . To
shift to a new chain seeded with SK ′0

i , Ui and SEM run the following protocol shown in Figure 3:

Algorithm SAS.Renewal (executed by User Ui and SEM)

USER Ui SEM

(1) REN(Ui),SKk
i ,α−−−−−−−−−−−−−−−−−−−−→

[REN(Ui),SKk
i ,α]dSEM←−−−−−−−−−−−−−−−−−−− (2)

(3) SK ′w
i ,SK0

i−−−−−−−−−−−−−−−−→
[SK0

i ,SK ′w
i]dSEM

←−−−−−−−−−−−−−−−− (4)

Figure 3: SAS Hash-Chain Renewal Protocol

Step 1: In order to sign w messages in the future, Ui generates a new hash chain of length w + 1:
SK ′0

i . . . SK ′w
i , and computes α = Hui(SK0

i , SK ′w
i). In the protocol message, REN(Ui) is a pre-defined

macro message indicating Ui’s hash-chain renewal request; w is the index of new root public key SK ′w
i ; SKk

i

10

is a current hash token to use in the current hash chain; α serves as a commitment to the seed private key
of the old chain and the root public key of the new chain.
Step 2: SEM checks the authenticity of SKk

i and Ui’s certificate status as in the SAS signature protocol. If
the renewal is approved, SEM returns a signature on the request as a normal SAS signature. Meanwhile, the
state is updated so that any future SAS signature requests using this chain will be rejected and an attack
alarm should be signalled.
Step 3: If SEM’s signature in the second round is verified as valid, Ui reveals to SEM the SK ′w

i and SK0
i .

Step 4: SEM checks if Hui
(SK0

i , SK ′w
i) equals α received in the first round. If true, SEM replies with an

RSA signature on the SK0
i and SK ′w

i . The signature acts as a special “certificate” which, together with the
certificate from CA, are attached with Ui’s future SAS signatures.

6 Analysis

We now consider the efficiency and security aspects of the SAS signature method.

6.1 Security Analysis

We argue that the SAS signature protocol described in Section 5 is as secure as RSASSA-PSS, which is
secure against adaptive chosen message attacks in the random oracle model. Namely, it is infeasible for an
adversary, including a user, to forge a SAS signature on any message without the aid of a SEM mounting
adaptive chosen message attacks. Moreover, it is infeasible for a SEM to frame a user without being held
accounted. The security against existential forgery is informally discussed below, with a formal version
presented in Appendix A. Section 6.3 shows how to identify a malicious SEM.

Intuitively, to forge one Ui’s SAS signature, an adversary may attempt to:

TYPE I: forge a SEM’s half-signature (i.e., an RSA signature) or

TYPE II: find a quantity SK∗ such that Hui(SK∗) = SKk
i . Recall that SKk

i is signed by the SEM with
the message.

Clearly, a TYPE I attack is on the underlying public key signature scheme, i.e., RSA, and, as such, is not
specific to the SAS method. Therefore, we only consider TYPE II attacks. We observe that, in any practical
digital signature scheme, a collision-resistant one-way hash function is first applied to the message in order
to produce a fixed-length digest which is then signed. Thus, the security of the signatures is dependent
not only on the strength of the cryptographic algorithm, but also the hash algorithm. Breaking the hash
function results in signature forgeries. In TYPE II attacks, finding SK∗ essentially implies breaking either
the collision-resistance or the one-wayness property of the underlying hash function Hui(). Such an attack
is, at the same time, an attack on the digital signature scheme, which leads to the conclusion that SAS
signatures are virtually as secure as the public key signatures used by SEM.

Caveat We observe that malicious users may employ SEM as a signature oracle to answer their queries.
Hence, the SAS protocol requires SEM’s signature scheme be secure against adaptive chosen message attacks,
so that SAS queries will not be abused to forge SEM’s signatures.

6.2 State Maintenance

As follows from the protocol description above, both users and the SEM maintain state. User Ui’s SAS state
amounts to the following:

Certi, Certsem, SK0
i , k, {SIGn, ..., SIGn−k−1}

The first three values are self-explanatory. The fourth is Ui’s signature counter k, and the rest is the list of
previously received signatures from SEM for the same Certi. Among the values, it is straightforward that
SK0

i should be kept secret. Though other information can be publicly readable, the list of signatures should
be protected from unauthorized deletion which will nullify the non-repudiation of the SAS signature.

11

The state for Ui kept by the SEM is similar:

Certi, k, {SIGn, ..., SIGn−k−1}
Note that the Ui’s key index k (i.e., the number of signatures) is critical in authenticating Ui’s requests.
Hence, the integrity of relevant values should be protected by SEM against illegal tampering.

The amount of state might seem excessive at first, especially considering that some users might be on
small limited-storage devices. There are some optimizations, however. First, we note that Ui can periodically
off-load her prior signatures to some other storage (e.g., to a workstation or a PC when the PDA is charging).
Also, it is possible to drastically reduce state maintenance for both users and SEMs if successive signatures
are accumulated. For example, each SEM’s half-signature can additionally contain the hash of the last
prior SAS signature. This optimization results in storage requirements comparable to those of a traditional
signature scheme.

6.3 Disputes

In case of a dispute between a signer (Ui) and a verifier (V) on the origin of a SAS signature, V submits
the disputed SAS signature {[Certi,m, k, SKk

i]dsem , SKk−1
i } to an unbiased arbitrator A. A first executes

a full SAS signature verification as described earlier. If the signature is false, A rules that Ui is not the
originator and dismisses the case. Otherwise, Ui is asked to produce a different SAS signature with the same
one-time key (i.e., same one-time signature). If Ui can come up with such a signature (meaning that the
signed message is different from the one in the disputed signature), the arbitrator concludes that Ui’s SEM
cheated or was compromised. This conclusion is based on the apparent violation of the SAS Invariant. If
Ui fails to provide a different version, the arbitrator concludes that Ui is the originator of this signature. For
roaming users using multiple SEMs, the arbitrator can construct a chain of authorization rooted from Ui’s
Registration SEM. The arbitrator can detect a collusion between Ui and an Alternative SEM if the latter
produced SAS signatures for Ui without an authorization token.

7 Denial of Service

The SAS signature protocol, unlike traditional signature schemes, involves multiple parties and communica-
tions. Although it resists forgery attacks, it is subject to Denial of Service (DoS) attacks. Since we assume
that the communication channel is reliable, only hostile DoS attacks are of interest. Also, our channel as-
sumption states that all messages eventually get through; thus, attacks on the communication infrastructure,
e.g., bandwidth and routing, are ruled out. In general, we consider two types of DoS attacks on SAS service:
user attacks and SEM attacks. The purpose of a user attack is to thwart a particular user from getting
services whereas a SEM attack attempts to block the SEM from providing services to regular users.

7.1 User Attacks

User attacks can be further divided into request and reply attacks. Request attacks involves tampering with
(or injecting) a user’s signature request and a reply attack, basically modifying a SEM’s reply. Suppose
that an adversary, Eve, intercepts6 the signature request from Ui and substitutes the original message with
her own choice. In this case, the SEM receives a request that is perfectly legitimate (well-formed) from its
point of view. It proceeds to sign and return it to Ui, via Eve again. Clearly, Ui will detect Eve’s attack
and discard the reply because it contains a signature for a different message. If Eve prevents the reply from
reaching Ui, she gains no advantage since, as explained above, forging a signature requires Eve to come up
with a one-time key which contradicts our assumption on the hash function.

A slight variation on the above occurs when Eve has in her possession the last SAS signature generated
by Ui. In this case, Eve can contact Ui’s SEM with a well-formed request and without Ui’s knowledge, i.e.,

6This does not contradicts our assumption on the communication channel. Eve could be a router sitting between users and
a SEM. She is able to manipulate all packets passing through her without changing their routes.

12

Ui is off-line. However, this attack results in the same outcome as the above. This is because of the SAS
Invariant. Eventually, Ui requests a new signature and SEM replies with the last (signed) reply since a
duplicated hash is used. Ui, once again, detects an attack. We note that this type of attack can be prevented:
one way to do so is for Ui not to reveal her i-th signature until (i + 1)-st signature is computed.

All in all, request attacks, while possible, are detected by the SAS signature protocol due to its “fail-stop”
property: any manipulation of the signature request is detected by the user, who can then invalidate her
own certificate.

User reply attacks are comparatively less effective. If Eve modifies the SEM’s reply, short of forging an
RSA signature, Ui can detect that the reply is not what she expected and continues re-transmitting her
signature request.

7.2 SEM Attacks

Serving a multitude of regular users, a SEM is a natural DoS attack target. This is not unique to SAS.
For instance, it is easy to mount an effective DoS attack against an OCSP [26] (or even worse, a TSP [28])
server. It suffices for the adversary to flood the victim server with well-formed requests, i.e., requests for
which the server is “authoritative” in OCSP. Since the server must digitally sign all replies, it will slowly
grind to a halt.

In SAS, it is appreciably more difficult for the adversary to launch this type of an attack. The stateful
nature of the SEM requires each signature request to be well-formed: it must contain the expected value of
the current one-time hash token, i.e., the pre-image of the previously used one-time token. All other requests
will not incur any signature computation.

Therefore, in order to force the SEM to perform any heavy-weight tasks (of which signing is really the
only one), the adversary must mount simultaneous user request attacks on as many users as possible, thus
hoping to flood the SEM. However, even if this were possible, the attack would quickly subside since the
SEM will only perform a single signature operation per user before demanding to see a pre-image (next
one-time public key). As we already established, finding the pre-image of the last signed one-time public key
is computationally infeasible.

7.3 Loss of State

As SAS requires non-trivial state to be maintained by both users and SEMs, we need to consider the potential
disaster scenarios that result in a loss of state.

Suppose that Ui loses all records of her prior signatures along with the signature counter. We further
assume that she still has possession of her SAS certificate and the secret hash chain seed. Since these two
values are fairly long-term, it is reasonable for Ui to store them in more permanent storage. Because of her
“amnesia,” Ui will attempt to obtain the initial signature from the SEM. Since SEM has retained all relevant
state, it will reply with the last half-signature (including SEM’s signature counter) generated for Ui’s SAS
certificate. Once she verifies the reply, Ui will realize her loss of state and resort to off-line means.

If Ui loses her entire storage, including the SAS certificate, the consequences are not particularly dire.
The SEM will simply keep state of Ui’s “orphan” certificate until it eventually expires.

Any loss of SEM’s state is much more serious. Most importantly, if the SEM loses all state pertaining
to Ui, the SAS Invariant property can no longer be guaranteed. (Consider, for example, malicious Ui

re-establishing the state of her SAS certificate on the SEM and then obtaining n signatures with the same
hash chain.) Note that a regular user’s state can be recovered from the SEM’s state whereas the inverse
is not secure, as a malicious user can cheat the SEM by hiding the last part of the signature list while a
dishonest SEM can be detected by the user.

7.4 SEM Compromise

SEM compromise is clearly the greatest risk in SAS. The adversary who gains control of a SEM can unrevoke
or refuse to revoke SAS user certificates. Moreover, it becomes possible to produce fraudulent user signatures:

13

since state is kept of all prior SAS signatures (corresponding to active SAS certificates), the adversary can
sign on behalf of Ui for each (SKk

i , SKk−1
i) pair found in SEM’s storage.

Nonetheless, a defrauded SEM user can still have recourse if she faithfully keeps state of all prior SAS
signatures. Referring to the SAS dispute resolution procedure, when an arbitrator is presented with two
distinct and verifiable SAS signatures for the same (SKk

i , SKk−1
i) pair, he concludes that the SEM has

attempted to cheat.

7.5 Suicide in SAS

In order to provide rapid and effective response to potential attacks, SAS includes a way for the user to
“self-revoke” a SAS certificate. This is easily obtained by placing a new value (X.509 extension) in the
SAS certificate. This value, referred to as the “suicide hash,” is the hash of a randomly selected secret
quantity generated by Ui when composing her certificate request. To self-revoke the certificate, Ui simply
communicates the corresponding suicide pre-image to the SEM and the CA. As a result, the former simply
stops honoring any further signature requests pertaining to Ui’s certificate while the latter places a reference
to the said certificate on the next CRL.

A similar technique, with the value revealed by the CA instead, has been suggested by Micali [29] as part
of a proposal for an efficient revocation scheme.

8 Performance and Experiments

To better understand the implications of using SAS and to obtain valuable experimental and practical
data, we implemented the SAS scheme, first as a limping proof-of-concept prototype, and later as a fully
functional and publicly available package. We first analyze the protocol performance and then provide
numerical experimental data.

8.1 Efficiency

The overall time cost for Ui to generate a SAS signature can be broken up as follows:

1. Network overhead: round-trip delay between Ui and the SEM. Ui needs to send less than one hundred
bytes and receive a few hundred bytes (up to a few kilobytes if the SEM’s public key certificate is
attached). The traffic load is trivial in wired networks. Even in a wireless setting, modern wireless
technology can easily handle such amount of data.

2. SEM computation: public key signature computation plus other overhead (including hash verification
of user’s one-time public key, database processing, etc.) Note that SEMs are high-end servers. If
needed, they might even be equipped with specialized cryptographic hardware/firmware. An RSA
signature generation only takes a few milliseconds.

3. User computation: verification of the SEM half-signature and other overhead, e.g., commitment to
storage. Note that SEMs use an RSA signature scheme with a small public exponent so that the
verification computation is considerably light. Hash computations are negligible.

Heuristically SEM’s computation dominates the overall signature generation cost. Compared with public key
signatures, regular users pay much fewer CPU cycles while they are well protected with the same security
strength. The speed-up will be higher when SEM’s computation power is stronger. To support our analysis,
we provide below numerical results from our experiments.

8.2 Experimental Results

As emphasized in the introduction, one of the main goals of SAS is to off-load the bulk of signature com-
putation from the weak user to the powerful SEM. To validate the goals and experiment with the SAS
implementation, we ran a number of tests with various hardware platforms and different RSA key sizes.

14

All experiments were conducted over a 100Mbps Ethernet LAN in a lab setting with little, if any, extra-
neous network traffic. All test machines ran Linux version 2.2 with all non-essential services turned off. The
hardware platforms ranged from a 233-MHz PI (Pentium I) to a respectable 1.2-GHz PIV (Pentium IV).
Note that we selected the lowest-end platform conservatively: only high-end PDAs and palmtops approach
200-MHz processor speed. Our choice of the SEM platform is similarly conservative: a 933-MHz PIII. (At
the time of this experiment, 1.7-GHz platforms were available and affordable.)

Processor Key length (bits)
1024 2048 4096 8192

PI-233 MHz 40.3 252.7 1741.7 12,490.0
PIII-500 MHz 14.6 85.6 562.8 3,873.3
PIII-700 MHz 9.2 55.7 377.8 2,617.5
PIII-933 MHz 7.3 43.9 294.7 2,052.0
PIV-1.2 GHz 9.3 58.7 401.2 2,835.0

Table 2: Plain RSA signature timings (ms)

First, we present in Table 2 plain RSA timings conducted with OpenSSL on the five hardware platforms.
It is interesting that the 1.2-GHz PIV is not the fastest platform for RSA operations after all. The explanation
for this oddity rests with the chip maker. A possible explanation could be that the skimpy L1 cache in PIV
results in more cache misses for cryptographic operations than PIII.

Table 3 illustrates the SAS timing measurements on the four user platforms with the SEM daemon
running on a 933-MHz PIII. All SAS timings in Table 3 include the SEM and user processing time as well
as network transmission cost. The size of the signature request is determined by the digest size of the hash
function, whereas the SEM’s replies vary from roughly 164 bytes for 1024-bit RSA key to around 1, 060 bytes
for an 8K-bit RSA key. Although the network delay varies with the packet size, its effect on performance is
negligible when compared to the corresponding computation cost.

Processor Key length (bits)
1024 2048 4096 8192

PI-233 MHz 13.3 52.4 322.5 2,143.4
PIII-500 MHz 9.1 46.3 302.0 2,070.2
PIII-700 MHz 8.5 45.1 299.0 2,059.6
PIV-1.2 GHz 8.5 45.4 299.0 2,061.0

Table 3: SAS signature timings (ms)

Despite large variances in the four clients’ CPU speeds shown in Table 2, the difference in SAS sign time
is very small, as shown in Table 3. Moreover, the SAS sign time is only slightly higher than the corresponding
value for the SEM (PIII-933 MHz) in Table 2, meaning that – communication delay aside – a SAS client
can sign almost as fast as the SEM. The reason is that, to obtain a SAS signature, a user’s cryptographic
computation (which dominates the overall time) amounts to message hashing and signature verification.
Hashing is almost negligible as compared to public key operations. RSA signature verification is also quite
cheap in comparison to signing since we use small public exponents. A decomposition of the SAS signature
cost for PI-233 is shown in Figure 4. It shows the percentage of SEM computation, communication cost and
user computation in computing a SAS signature. The dominance of SEM’s computation cost becomes more
significant when stronger security is demanded, which matches our analysis in Section 8.1. This performance
characteristic motivates an organization to invest in a high-speed SEM to enhance its security.

The performance speed-up for all clients is shown in Figure 5, where data items in Table 2 are divided
by their counterparts in Table 3. It is not surprising that the client with 233-MHz CPU obtains a factor 3

15

SAS Signature Cost Breakdown

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8

Signature Key Size (Kbit)

P
er

ce
n

ta
g

e

SEM Computation Cost Network Delay User Computation Cost

Figure 4: Decomposition of SAS signature cost

SAS Speed-Up Chart

0

1

2

3

4

5

6

7

1 2 4 8

Signature Key size (Kbit)

S
p

ee
d

-u
p PI-233

PII-500
PIII-700
PIV-1.2G

Figure 5: SAS Performance Speed-up

to 6 speed-up depending on the key size. When compared against clients with faster CPU, computational
resource-constrained devices benefit more from the SEM’s presence. The SAS signature scheme is not helpful
for the purpose of improving performance for high-end devices.

8.3 SAS Application Example: Eudora Plug-in

To demonstrate the ease and utility of the SAS signatures, we developed a plug-in [30] (on top of the SAS
user library) for the both the Outlook and Eudora [31] mailers.

Using Eudora as an example, the sender simply clicks on the plug-in button when composing emails.
When ready to send, the plug-in reads the user’s SAS certificate and extracts the SEM’s address. It then
communicates with the SEM to obtain a SAS signature on the email message. The resulting signed email is
verified automatically by the Eudora plug-in on the receiver’s side. Even if the receiver does not use Eudora,
the SAS-signed email can be verified by any S/MIME capable email client such as Netscape Messenger or Mi-
crosoft Outlook. The verification, however, requires the receiver (verifier) to install a stand-alone SAS email
verifier program. This program is registered as the viewer for the new MIME type (‘‘x.SAS-signature’’).

To conserve space we omit the depiction of a user trying to sign email with a revoked certificate. In this
case, the plug-in displays an error message informing the user of his certificate’s demise. Further details on
SAS implementation can be found in Appendix A.

9 Benefits and Drawbacks

In summary, the SAS signature scheme offers several important benefits as described below:
Efficient Signatures. As follows from the protocol description and our experimental results, the SAS sig-
nature scheme significantly speeds up signature computation for slow, resource-limited devices. Even where

16

speed-up is not as clearly evident (e.g., with small key sizes), SAS signatures conserve CPU resources and,
consequently, power, for battery-operated devices.

Fast revocation. To revoke a SAS certificate, it is sufficient for the CA to communicate to the correct
SEM. This can be achieved, for example, by the CA simply issuing a new CRL and sending it to the SEM.
Thereafter, the SEM will no longer accept SAS signature requests for the revoked certificate.

We remark that, with traditional signature schemes, the user who suspects that his key has been com-
promised can ask the CA to revoke the relevant public key certificate. However, the adversary can continue
ad infinitum to use the compromised key and the verification burden is placed on all potential verifiers who
must have access to the latest CRL. With SAS, once the SEM is notified of a certificate’s revocation, the
adversary is no longer able to interact with the SEM to obtain signatures. Hence, potential compromise
damage is severely reduced.

More secure signatures. Since only SEMs perform expensive RSA operations (key generation, signature
computation), they can do so with stronger RSA keys and better randomness than would otherwise be used
by the users. Indeed, a small PDA-like device is much less likely to generate high-quality (or sufficiently
long) RSA factors (p, q) and key-pairs than a much more powerful and sophisticated SEM.

Signature Causality. Total order can be imposed over all SAS signatures produced by a given user. This is
a direct consequence of the hash chain construction and the SAS Invariant. In other words, total ordering
can be performed using the monotonically increasing signature counter included in each SAS signature.

Clear Dispute Resolution. Signature Causality and timestamps from SEM can be combined to provide
unambiguous dispute resolution in the case of a private key compromise. Recall that the compromise of a pri-
vate key in a traditional signature scheme results in chaos. In particular, all prior signatures become worthless
unless the use of a secure timestamping service is explicitly mandated for all signers and signatures. In SAS,
once the time of compromise is established, signatures can be easily sorted into pre- and post-revocation piles.

Attack Detection. As discussed in Section 7, an adversary can succeed in obtaining a single fraudulent
half-signature (not a full SAS signature) by substituting a message of its own choosing in the user’s signature
request. This essentially closes the door for the adversary, since it is unable to obtain further service (short
of inverting the hash function). The real user will detect that an attack has taken place the next time it
tries to run the SAS signature protocol with its SEM.

Limited Damage (if Renewal is not allowed). Even if the entire SAS hash chain is compromised, i.e.,
an adversary obtains the seed of the hash chain, the damage is contained since the adversary can generate at
most n signatures. Furthermore, a user whose hash chain is compromised will detect the compromise the very
next time she attempts to contact the SEM. This is because the SEM will reply with its last half-signature
ostensibly computed for the requesting user.

Alas, the SAS scheme has some notable drawbacks as well:
• Each SEM is a single point of failure and a performance bottleneck for the users it serves. The hand-off
protocol mitigates the problem to a certain extent.

• As discussed in Section 7, a SEM signs a response to every well-formed signature request. This feature can
be exploited by an adversary in order to mount a DoS attack. However, even the best attack can succeed in
making a SEM sign at most once for each user it serves. Of course, an adversary can still flood any SEM,
like other online servers, with malformed requests which can render a SEM unavailable to legitimate users.

• Unlike other mediated or multi-party signature methods (such as mRSA or 2-party DSA), SAS signatures
are not compatible with any other basic signature type. Therefore, all potential verifiers must avail them-

17

selves of at least the SAS verification method.

• SAS involves ongoing state retention for regular users and SEMs. This burden is particularly heavy for
SEMs since they must keep complete signature histories for all users served. However, it is not as heavy for
users because they can off-load their state periodically.

Acknowledgements

We thank Dan Boneh for some useful discussions, Ignacio Solis for early prototyping of the SAS library and
Yongdae Kim for comments on the draft of this paper. We thank anonymous reviewers for constructive
comments.

References

[1] N. Asokan, G. Tsudik, and M. Waidner, “Server-supported signatures,” Journal of Computer Security,
vol. 5, no. 1, 1997.

[2] R. C. Merkle, “A digital signature based on a conventional encryption function,” in Advances in Cryp-
tology – CRYPTO ’87 (C. Pomerance, ed.), no. 293 in Lecture Notes in Computer Science, (Santa
Barbara, CA, USA), pp. 369–378, Springer-Verlag, Berlin Germany, Aug. 1988.

[3] S. Even, O. Goldreich, and S. Micali, “On-line/off-line digital signatures,” Journal of Cryptology, vol. 9,
no. 1, pp. 35 – 67, 1996.

[4] A. Shamir and Y. Tauman, “Improved online/offline signature schemes,” in Advances in Cryptology –
CRYPTO ’2001, pp. 355–367.

[5] N. Modadugu, D. Boneh, and M. Kim, “Generating rsa keys on a handheld using an untrusted server,”
in RSA Conference, Cryptography Track, 2000.

[6] D. Boneh, X. Ding, G. Tsudik, and B. Wong, “Instanteneous revocation of security capabilities,” in
Proceeding of USENIX Security Symposium 2001, Aug. 2001.

[7] X. Ding, G. Tsudik, and S. Xu, “Leak-free group signatures with immediate revocation,” in Proccedings
of IEEE ICDCS 2004.

[8] P. MacKenzie and M. K. Reiter, “Networked cryptographic devices resilient to capture,” in Proceedings
of the 2001 IEEE Symposium on Security and Privacy, pp. 12–25, May 2001.

[9] P. MacKenzie and M. K. Reiter, “Two-party generation of dsa signatures,” in Advances in Cryptology
– CRYPTO ’01 (J. Kilian, ed.), no. 2139 in Lecture Notes in Computer Science, pp. 137–154, Springer-
Verlag, Berlin Germany, Aug. 2001.

[10] R. Ganesan, “Argumenting kerberose with pubic-key crytography,” in Symposium on Network and
Distributed Systems Security (T. Mayfield, ed.), (San Diego, California), Internet Society, Feb. 1995.

[11] P. Kocher, “On certificate revocation and validation,” in Financial Cryptography – FC ’98, Lecture
Notes in Computer Science, Springer-Verlag, Vol. 1465, pp. 172–177, 1998.

[12] M. Naor and K. Nissim, “Certificate revocation and certificate update,” in Proceedings 7th USENIX
Security Symposium (San Antonio, Texas), Jan 1998.

[13] M. Goodrich, R. Tamassia, and A. Schwerin, “Implementation of an authenticated dictionary with skip
lists and commutative hashing,” in Proceedings of DARPA DISCEX II, 2001.

18

[14] L. Lamport, “Password authentication with insecure communication,” Communications of the ACM,
vol. 24, pp. 770–772, Nov. 1981.

[15] A. Perrig, R. Canetti, D. Song, and D. Tygar, “Efficient and secure source authentication for multicast,”
in Proceedings of NDSS 2001.

[16] A. Perrig, “The biba one-time signature and broadcast authentication protocol,” in Proceedings of ACM
CCS 2001.

[17] K. Bicakci and N. Baykal, “Server assisted signatures revisited,” in Proceedings of RSA Conference’
Cryptography Track 2004.

[18] X. Ding, D. Mazzocchi, and G. Tsudik, “Experimenting with server-aided signatures,” in Proceedings
of NDSS 2002.

[19] V. Goyal, “More efficient server assisted one time signatures,” available at
http://eprint.iacr.org/2004/135.

[20] X. Wang and H. Yu, “How to break md5 and other hash functions,” in Advances in Cryptology –
EUROCRYPT ’2005.

[21] S. Goldwasser, S. Micali, and R. Rivest, “A digital signature scheme secure against adaptive chosen-
message attacks,” SIAM J. Computing, vol. 17, no. 2, 1998.

[22] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining digital signatures and public-key
cryptosystems,” Journal of the ACM, vol. 21, pp. 120–126, Feb. 1978.

[23] RSA Laboratory, “PKCS #1v2.1: RSA cryptography standard,” June 2002.

[24] C. P. Schnorr, “Efficient identification and signatures for smart cards,” in Advances in Cryptology –
CRYPTO ’89, pp. 239–252.

[25] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for message authentication,” in
Advances in Cryptology – CRYPTO ’96 (N.Koblitz, ed.), no. 1109 in Lecture Notes in Computer Science,
pp. 1–15, Springer-Verlag, Berlin Germany, 1996.

[26] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams, “RFC2560: Internet public key in-
frastructure online certicate status protocol - OCSP,” June 1999.

[27] S. Boeyen, T. Howes, and P. Richard, “RFC 2559: Internet x.509 public key infrastructure operational
protocols - LDAPv2,” 1999.

[28] C. Adams, P. Cain, D. Pinkas, and R. Zuccherato, “Internet x.509 public key infrastructure time stamp
protocol (tsp), draft-ietf-pkix-time-stamp-15.txt,” May 2001.

[29] S. Micali, “Enhanced certificate revocation system,” Tech. Rep. TM-542b, MIT/LCS, May 1996.

[30] “SAS plug-in web page,” available at: http://sconce.ics.uci.edu/sucses/.

[31] “Qualcomm eudora mailer,” available at: http://www.eudora.com.

[32] R. Housley, W. Ford, W. Polk, and D. Solo, “RFC 2459: Internet x.509 public key infrastructure
certificate and crl profile,” Jan. 1999.

[33] “The openssl project web page,” http://www.openssl.org.

19

Appendix A: The Security of SAS Signatures

Theorem 1 The SAS protocol in Section 5 is secure against existential forgery under adaptive chosen mes-
sage attacks.

Proof: Suppose there exists an algorithm F which succeeds in forging a SAS signature with probability
P . Then, we are able to construct a simulator S which is allowed to access an RSA signature oracle O and
succeeds in forgery with the same probability.

To forge an RSA signature with respect to key d, S runs F and simulates a SAS signature scheme where
the SEM’s key is set as d. S simulates users by computing hash chains for every simulated user. To simulate
SEM and handle F ’s signature queries, S utilizes O as follows:

• For any SAS signature request needed by F , S checks its legitimacy as in the SAS protocol. If valid,
it is forwarded to O as an RSA signature query. The reply from O is returned to F . Otherwise, an
error message is returned as in the SAS protocol.

• For any RSA signature query from F , it is forwarded to O, whose reply is forwarded to F accordingly.

When F halts, it outputs a forged SAS signature {r, [m, k, SKk]d} corresponding to message m and a user’s
i-th private key. If [m, k, SKk] has never been sent to O, S outputs [m, k, SKi]d as an RSA signature. It
contradicts the fact that RSASSA-PSS has been proven secure under an adaptive chosen message attack,
assuming reverting RSA function is hard under the random oracle model. Otherwise, F either reverses
the one-wayness of the hash function, if SKk−1 is not revealed yet, or finds a second pre-image of SKk, if
SKk−1 6= r. However, both contradict our assumption on hash function.
¤

Appendix B: SAS Certificate

To support SAS attributes, we extended X509v3 handling [32] in the popular Openssl library [33]. In addition
to the usual X509v3 fields, a SAS certificate also certifies the following:

• SASHashType: DigestAlgorithmIdentifier – identifies the hash algorithm used in generating the
hash chain;

• SASPublicKeyIdentifier: OCTET STRING – root public key in the hash-chain.

• SASPublicKeyPara: INTEGER – length of the hash-chain.

• SASServerName: STRING – SEM’s host name. This field indicates the location of SEM and has no
security meaning.

• SASSerialNumber: INTEGER – SEM’s certificate serial number. (Here it is assumed that the SEM and
the user share the same CA). Uniquely identifies SEM’s certificate and the corresponding public key.

20

