
@ Q Computer Graphics, Volume 25, Number 4, July 1991

Generating Textures on Arbitrary Surfaces Using Reaction-Diffusion

Greg Turk

University of North Carolina at Chapel Hill

Abstract

This paper describes a biologically motivated method of texture
synthesis called reacriorr-dlfusion and demonstrates how these
textures can be generated in a manner that directly matches the
geometry of a given surface. Reaction-diffusion is a process in which
two or more chemicals diffuse at unequal rates over a surface and
react with one another to form stable patterns such as spots and
stripes. Biologists and mathematicians have explored the patterns
made by several reaction-diffusion systems. We extend the range of
textures that have previously been generated by using a cascade of
multiple reaction-diffusion systems in which one system lays down
an initial pattern and then one or more later systems refine the pattern.
Examples of patterns generated by such a ca.seade process include the
clusters of spots on leopards known as rosettes and the web-like
patterns found on giraffes. In addition, this paper introduces a
method by which reaction-diffusion textures are created to match tbe
geometry of an arbitrary polyhedral surface. This is accomplished by
creating a mesh over a given surface and then simulating the reaction-
diffusion process directly on this mesh. This avoids the often
difficult task of assigning texture coordinates to a complex surface.
A mesh is generated by evenly distributing points over the model
using relaxation and then determining which points are adjacent by
constructing their Voronoi regions. Textures are rendered directly
from the mesh by using a weighted sum of mesh values to compute
surface color at a given position. Such textures can also be used as
bump maps,

CR Categories and Subject Descriptors: 1.3.3 [Computer
Graphics!: Picture/Image Generation; 1.3.5 [Computer Graphics]:
Three-Dimensional Graphics and Realism - Color, shading,
shadowing and texture; J.3 [Life and Medical Sciences]: Biology.

Additional Keywords and Phrases: Reaction-diffusion,biological
models, texture mapping.

Permission m copy without fee all or part of [his material is granted
provided that [he copies are nnt made or distributed fnr direct
comrrwrcial advantage. the ACM copyright notice and the title of the
publicatimr and ![s date appear, and notice is given that copying is by
permission of the Assceiation for Computing Machinery. Trr copy
ntherwise, or to republish, requires a fee and/or specific permission.

Introduction

Texture mapping was introduced in [Catmull 74] as a method of
adding to the visual richness of a computer generated image without
adding geomet~. There are three fundamental issues that must be
addressed to render textures. First, a texture must be acquired.
Possibilities include creating a texture procedurally, painting a
texture, or digitally scanning a texture from a photograph. Next, we
need to define a mapping from tbe texture space to the space of the
model to be textured. Defining this mapping should not require a
great deal of a user’s time. This mapping should not noticeably
distort tbe texture. Finally, we require a method of sampling the
texture during rendering so that the final image contains no artifacts
due to aliasing or resulting from the underlying texture
representation [Heckberf 891, These three issues are often
interrelated, and this is true of tbe techniques in this paper.

This paper explores a procedural method for texture synthesis and
also introduces anew methed for fitting a texture to a surface. Either
of these techniques can be used separately, but the examples given
here shows the strength of using them together to produce natural
textureson complex models. After a discussion of previous texturing
methods, tbe majority of the paper is divided into two parts, one for
each of these topics.

The first part of this paper describes a chemical meehanism for
pattern formation know as reaction-diffusion. This mechanism, first
described in [Turing 52], shows how two or more chemicals that
diffuse across a surface and react with one another can form stable
patterns. A number of researchers have shown bow simple patterns
of spots and stripes can be created by reaction-diffusion systems
[Bard 8 [; Murray 8 l; Meinhardt 82]. We begin by introducing the
basics of how a reaction-diffusion system can form simple patterns.
We then introduce new results that show how more complex patterns
can he generated by having an initial pattern set down by one
chemicals ystem and further refined by later chemical systems. llt is
widens the range of patterns that can be generated by reaction-
diffusion to include such patterns as tbe rosettes found on leopards
and tbe multiple-width stripes found on some fish and snakes. These
patterns could be generated on a square grid and then mapped onto
an object’s surface using traditional techniques, but there are
advantages to synthesizing the pattern directly on tbe surface to be
textured in a manner that will be described next.

The second part of this paper presents a method of generating a mesh
over tbe surface of a polyhedral model that can be used for texture
synthesis. The approach uses relaxation to evenly distribute points
across tbe model’s surface and then divides the surface into cells
centered at these points. We can simulate reaction-diffusion systems
directly on this mesh to create textures. Because there is no mapping
from texture space to the object, there is no need to assign texture

(’)199] ACM-()-X9791-436-S/91/fX)7/02fW WO.75 289



SIGGRAPH ’91 Las Vegas, 28 July-2 August 1991

coordinates to polygons and there is no distortion of the textures. At
no time is the texture stored in some regular m x n grid, as are most
textures. It is likely that other texture generation methods in addition
to reaction-diffusion could also make use of such a mesh. Images of
surfaces that have been textured using a mesh do not show aliasing
artifacts or visual indication of the underlying mesh structure. These
textures can also be used for bump mapping, a technique introduced
in [Blinn 78] to give the appearance of a rough or wrinkled surface.
The three steps involved in texturing a model as in Figures 4,5 and
6 are: (1) generate a mesh that fits the polyhedral model,(2) simulate
a reaction-diffusion system on the mesh (solve a partial differential
equation) and (3) use the final values from the simulation to specify
surface color while rendering the polygons of the model.

Artificial Texture Synthesis

A great strength of procedurally generating textures is that each new
method can be used in conjunction with already existing functions.
Several methods have been demonstrated that use composition of
various functions to generate textures. Gardner introduced the idea
of summing a small number of sine waves of different periods, phases
and amplitudes to create a texture [Gardner 85]. Pure sine waves
generate fairly bland textures, so Gardner uses the values of the low
period waves to alter the shape of the higher period waves. This
method gives textures that are evocative of patterns found in nature
such as those of clouds and trees. Perlin uses band-limited noise as
the basic function from which to construct textures [Perlin 85]. He

has shown that a wide variety of textures (stucco, wrinkles, marble,
fire) can be created by manipulating such a noise function in various
ways. [Lewis 89] describes several methods for generating isotropic
noise functions to be used for texture synthesis. A stunning example
of using physical simulation for texture creation is the dynamic cloud
patterns of Jupiter in the movie 2010 (Yaeger and Upson 86].

Recent work on texture synthesis using reaction-diffusion is
described in [Witkin and Kass 9 I ]. They show the importance of
anisotropy by introducing a rich set of new patterns that are generated
by anisotropic reaction-diffusion. In addition, they demonstrate how
reaction-diffusion systems can be simulated rapidly using fast
approximations to Gaussian convolution.

A texture can be created by painting an image, and the kinds of
textures that may be created this way are limitless. An unusual
variant of this is to paint an “image” in the frequency domain and then
take the inverse transform to create the final texture [Lewis 84].
Lewis demonstrates how textures such as canvas and woodgrain can
be created by this method. An extension todigitalpainting, described
in [Hanrahan and Haeberli 90], shows how use of a hardware z-buffer
can allow a user to paint interactively onto the image of a three-
dimensional surface.

Mapping Textures onto Surfaces

Once a texturehas been created,a method is needed to map it onto
the surface to be textured. This is commonly cast into the problem
of assigning texturecoordinates(u,v) from a rectangle to the vertices
of the polygons in a model. Mapping texture coordinates onto a
complex surface is not easy, and several methods have been proposed
to accomplish this. A common approach is to define a mapping from
the rectangle to the naturaI coordinate system of the target object’s
surface. For example, latitude and longitude can be used to define a
mapping onto a sphere, and parametric coordinates can be used when
mapping a texture onto a cubic patch [Catmull 74]. In some cases an
object might be covered by multiple patches, and in these instances
care must be taken to make the edges of the patches match. A
successful example of this is found in the bark texture for a model of
a maple tree in [Bloomenthal 85].

290

Another approach to texture mapping is to project the texture onto the
surface of the object. One example of this is to orient the texture
square in R3(Euclidean three-space) and perform a projection from
this square onto the surface [Peachey 85]. Related to this is atwo-step
texture mapping method given by [Bier and Sloan 86]. The first step
maps the texture onto a simple intermediate surface in Rs,such as a
box or cylinder. The second step projects the texture from this
surface onto the target object. A different method of texture mapping
is to make use of the polygonal nature of many graphical models. In
this approach, taken by [Samek 86], the surface of a polyhedral object
is unfolded onto the plane one or more times and the average of the
unfolded positions of each vertex is used to determine texture
placement. A user can adjust the mapping by specifying where to
begin the unfolding of the polyhedral object.

Each of the above methods has been used with success for some
models and textures. There are pitfalls to these methods, however.
Each of the methods can cause a texture to be distorted because there
is often no natural map from the texture space to the surface of the
object. This is a fundamental problem that comes from defining the
texture pattern over a geometry that is different than that of the object
to be textured. Some of these techniques also require a good deal of
user intervention. One solution to these problems for some images
is the use of solid textures. A solid texfure is a color function defined
over a portion of RJ,and such a texture is easily mapped onto the
surfaces of objects [Peachey 85; Perlin 85]. A point (x,y,z) on the
surface of an object is colored by the value of the solid texture
function at this point in space. This method is well suited for
simulating objects that are formed from a solid piece of material such
as a block of wood or a slab of marble. Solid texturing is a successful
technique because the texture function matches the geometry of the
material being simulated, namely the geometry of Rs. No
assignment of texture coordinates is necessary.

Quite a different approach to matching texture to surface geometry
is given in [Ma and Gagalowicz 85]. They describe several methods
for creating a local coordinate system at each point on the surface of
a given model. Statistical properties of a texture are then used to
synthesize texture on the surface so that it is oriented to the local
coordinate system.

Part One: Reaction-Diffusion

This section describes a class of patterns that are formed by reaction-
diffusion systems, These patterns are an addition to the texture
synthesist’s toolbox, a collection of tools that include such
procedural methods as Perlin’s noise function and Gardner’s sum-of-
sine waves. The reaction-diffusion patterns can either be u~d alone
or they can be used as an initial pattern that can be built on using other
procedures. This section begins by discussing reaction-diffusion as
it relates to developmental biology and then gives specific examples
of patterns that can be generated using reaction-diffusion.

A central issue in developmental biology is how the cells of an
embryo arrange themselves into particular patterns. For example,

how is itthat the cells in the embryo of a worm become organized into
segments? Undoubtedly there are many organizing mechanisms
working together throughout the development of an animal. One
possible mechanism, first described by Turing, is that two or more
chemicals can diffuse through an embryo and react with each other
until a stable pattern of chemical concentrations is reached [Turing
52]. These chemical pre-pattems can then act as a trigger for cells of
different types to develop in different positions in the embryo. Such
chemical systems are known as reaction-diflusion systems, and the
hypothetical chemical agents are called morphogens. Since the
introduction of these ideas, several mathematical models of such
systems have been studied to see what patterns can be formed and to
see how these matched actual animal patterns such as coat spotting



@ @ Computer Graphics, Volume 25, Number 4, July 1991

Figure 1: One-dimensional example of reaction-diffusion.
Chemical concentration is shown in intervals of 400 time steps.

and stripes on mammals [Bard81; Murray 81]. Only recently has an

actual reaction-diffusion system been observed in the laboratory
[Lengyel and Epstein 91 ]. So far no direct evidence has been found
to show that reaction-diffusion is the operating mechanism in the
development of any particular embryo pattern. This should not be
taken as a refutation of the model, however, because the field of
developmental biology is still young and very few mechanisms have
been verified to be the agents of pattern formation in embryo
development.

The basic form of a simple reaction-diffusion system is to have two
chemicals (call them a and b) that diffuse through the embryo at
different rates and that react with each other to either build up or break
down a and b. These systems can be explored in any dimension. For
example, we might use a one-dimensional system to look at segment
formation in worms, or we could look at reaction-diffusion on a
surface for spot-pattern formation. Here are the equations showing
the general form of a two-chemical reaction-diffusion system:

au
;= F(a,b) + Da v2a

*= G(a,b) + Dh V2b

af

The first equation says that the change of the concentration of a at a
given time depends on the sum of a function F of the local

concentrations of a and b and the diffusion of a from places nearby.
‘I?reconstant D. says how fast a is diffusing, and the Laplacian V2 a
is a measure of how high the concentration of a is at one location with
respect to the concentration of a nearby. If nearby places frave a
higher concentration of a, then V* a will be positive and a diffuses
toward this position. If nearby places have lower concentrations,
then V~a will be negative and a will diffuse away from this position.

The key to pattern formation based on reaction-diffusion is that an
initial small amount of variation in the chemical concentrations can

cause the system to be unstable initially and to be driven to a stable
state in which the concentrations of a and b vary across the surface.
A set of equations that Turing proposed for generating patterns in one
dimension provides a specific example of reaction-diffusion:

As, =.!(16-a, b,) +Do (a,+, +a,l –b,)

Ab, = s (a, b, - b, - ~,) + Dh (b,+, + b, , - 2b,)

These equations are given for a discrete model, where each a, is one
“cell” in a line of cells and where the neighbors of this cell are a,, and
a,+,. The values for fl, are the sources of slight irregularities in
chemical concentration across the line of cells. Figure I illustrates
the progress of the chemical concentration of b across a line of 60
cells as its concentration varies over time. Initially the values of a,
and b, were set to 4 for all cells along the line. The values of ~, were
clustered around 12, with the vahresvarying randomly by ~0.05. The
diffusion constants were set to Da = .25 and D~ = .0625, which means
that a diffuses more rapid] y than b, ands = 0.03125. Notice how after
about 2000 iterations the concentration of b has settled down into a
pattern of peaks and valleys. The simulation results look different in
detail to this when a different random seed is used for ~,, but such
simulations have the same characteristic peaks and valleys with
roughly the same scale to these features.

Reaction-Diffusion on a Grid

The reaction-diffusion system given above can also be simulated on
a two-dimensional field of cells. The most common form for such a
simulation is to have each cell be a square in a regular grid, and have
a cell diffuse to each of its four neighbors on the grid. The discrete
form of the equations is:

Aa,J = s (I6 – a,,, b,,) + Da (a,+,,, + a, ,,, + a,,+l + a,, , – 4U,J)

Ah,, =s (a,,, b,, - b,, - ~,,)+ Dh (b,+,,,+ b,,, + b,,+, + b,., - 4b,,,)

In this form, the value of V2a at a cell is found by summing each of
the four neighboring values of a and subtracting four times the value
of a at the cell. Each of the neighfxrring values for a are given the
same weight in this computation &cause the length of the shared
edge between any two cells is always the same on a square grid. This
will not be the case when we perform a similar computation on a less
regular grid, where different neighbors will be weighted differently
when calculating V~a.

Figure 2 (upper left) shows the result of a simulation of these

equations on a 64 x 64 grid of cells. Notice that the valleys of

concentration in b take the form of spots in two dimensions. It is the
nature of this system to have high concentrations for a in these spot

regions where b is low. Sometimes chemical a is called an inhibifor
because highvaluesfor a in a spot region prevent other spots from
forming nearby. In two-chemical reaction-diffusion systems the
inhibitor is always the chemical that diffuses more rapidly.

We can create spots of different sizes by changing the value of the
constants for this system. Small values for .r (.s= 0.05 in Figure 2,
upper left) cause the reaction part of the system to proceed more
slowly relative to the diffusion and this creates larger spots. Larger
values fors produce smaller spots (.s= 0.2 in Figure 2, upper right).
The spot patterns at the top of Figure 2 were generated with ~,, = 12
+0. 1. If the random variation of P,J is increased to 12+ 3, the spots
become more irregular in shape (Figure 3, upper left). The patterns
that can be generated by this reaction-diffusion system were
extensively studied in [Bard and Lauder 74] and [Bard 81].

Reaction-diffusion need not be restricted to two-chemical systems.
For the generation of striped patterns, Meinhardt has proposed a
system involving five chemicals that react with one another
[Meinhardt 82]. See the appendix of this paper for details of
Meinhardts’s system. The result of simulating such a system on a
two-dimensional grid can be seen in Figure 3 (Iowerleft). Notice that
the system generates random stripes that tend to fork and sometimes
form islands of one color or the other. This pattern is like random
stripes found on some tropical fish and is alsasimilar to the pattern
of right eye and left eye regions of the ocular dominance columns
found in mammals [Hubel and Wiesel 79]. 291



: SIGGRAPH ‘91 Las Vegas,  28 July-2  August 1991

Figure 2: Reaction-diffusion  on a square grid. Large spots,
small spots, cheetah and leopard patterns.

Complex Patterns

This section shows  how  we can generate more complex patterns
using reaction-diffusion  by allowing  one chemical  system to set
down an initial pattern and then  having this pattern refined by
simulating a second  system. One model  ofembryogenesis  of the fruit
fly shows how  several reaction-diffusion  systems might lay down
increasingly  refined stripes to give a final pattern that matches the
segmentation  pattern in the embryo  [Hunding 90). Bard has
suggested that  such a cascade  process might  be responsible for some
of the less regular coat patterns of some  mammals [Bard  811,  but  he
givesno  details about  how two chemical systems might interact. The
patterns shown  in this section are new  results that  are inspired by
Bard’s idea of cascade processes.

The upper portion  of Figure  2 shows  how we can change  the spot size
of a pattern by changing the size parameter  s of Turing’s reaction-
diffusion system from 0.05 to 0.2. The  lower left portion of Figure
2 demonstrates that  these  two systems can be combined to create the
large-and-small  spot pattern found  on cheetahs. We can make this
pattern by running the large spot simulation,  “freezing”  part of this
pattern, and then  running  the small spot simulation in the unfrozen
portion of the computation mesh.  Specifically,  once the large spots
are made (using s = 0.05)  we set a boolean flagfrozen to TRUE  for
each cell that has a concentration for chemical  h between 0 and 4.
These  marked cells are precisely  those  that  form the dark spots in the
upper left of Figure 2. Then  we run the spot forming mechanism
again using s = 0.2 to form  the smaller  spots. During this second
phase all of the cells marked as frozen retain their old values for the
concentrations  of a and b. These marked cells must still participate
in the calculation  of the values of the Laplacian for a and b for
neighboring cells. This allows the inhibitory nature of chemical a to
prevent  the smaller spots from forming  too near the larger spots. This
final image is more natural  than  the image we would  get if we simply
superimposed  the top two images of Figure 2.

We can create the leopard spot pattern of Figure 2 (lower right) in
much  the same  way as we created the cheetah spots. We lay down
the overall plan for this pattern by creating the large spots as in the
upper left of Figure 2 (s = 0.05).  Now,  in addition to marking as
frozen  those  cells that  form the large spots, we also change the values
of chemicals  u and hip be 4 at these marked cells. When we run the

292

Figure  3: Irregular  spots, reticulation,  random stripes
and mixed large-and-small  stripes.

second system to form smaller  spots (s = 0.2)  the small spots tend to
form  in the areas adjacent  to the large spots. The  smaller  spots can
form near the large spots because the inhibitor  a is not high at the
marked cells. This texture can also be seen  on the horse  model in
Figure 4.

In a manner  analogous  to the large-and-small spots  of Figure  2 (lower
left) wecancreate  a pattern  with small stripes running  between  larger
stripes. The  stripe pattern of Figure 3 (lower right) is such  a pattern
and is modelled after the stripes found  on fish such as the liontish. We
can make  the large stripes that  set the overall structure of the pattern
by running  Meinhardt’s stripe-formation  system with diffusion rates
of Dx  = 0.1 and  DS  = 0.06  (see Appendix).  Then  we mark those cells
in the white stripe regions as frozen and run a second stripe-forming
system with  D, = 0.008  and DS = 0.06.  The  slower diffusion of
chemicals  R, and g2 (a smaller  value for D8) causes thinner stripes to
form  between the larger stripes.

We can use both the spot and stripe formation systems together to
form the web-like pattern  called reticulation  that  is found  on giraffes.
Figure 3 (upper right) shows the result of first creating slightly
irregular  spots as in Figure 3 (upper left) and then  using  the stripe-
formation system to make stripes between the spots. Once  again we
mark as frozen those cells that  comprise  the spots. We also set the
concentrations  of the five chemicals  at the frozen cells to the values
found in the white regions of the patterns made by the stripe-
formation system. This causes black stripes to form  between the
marked ceils when  the stripe-formation  system is run as the second
step in the cascade process. Figure 5 is an example of how  such  a
texture looks on a polyhedral  model.

Regular  Stripe  Patterns

The chemical  system that produces random stripes like those in
Figure 3 (lower left) can also be used to produce more regular  stripe
patterns. The  random stripes are a result of the slight random
perturbations  in the “substrate”  for the chemical  system. If these
random perturbations  are. removed so the system starts with  a
completely  homogeneous  substrate,  then  no stripes  will form
anywhere. Regular stripes will form on a mesh  that is homogeneous
everywhereexcept  at a few “stripe initiator”cells,  and the stripes will



@Q Computer Graphics, Volume 25, Number 4, July 1991

radiate from these special cells. One way to create an initiator  cell is
to slightly raise or lower the substrate value at that  cell. Another way
is to mark the cell as frozen  and set the value of one of the chemicals
to be higher or lower than  at other cells. The  pseudo-zebra  in Figure
6 was created in this  manner.  Its stripes were  initiated by choosing
several cells on the head and one cell on each  of the hooves, marking
these  cells as frozen  and setting the initial value of chemical R, at
these cells to be slightly higher than  at other cells.

Varying  Parameters  Across  a Surface

On many animals  the size of the spots or stripes  varies across  the coat.
For example, the stripes on a zebra are more broad on the hind
quarters than  the stripes on the neck  and legs. Bard has suggested
that, after the striped pattern  is set, the rate of tissue growth may vary
at different locations on the embryo [Bard  771.  This effect can be
approximated  by varying the diffusion rates of the chemicals  across
the computation mesh.  The pseudo-zebra  of Figure 6 has wider
stripes near the hind  quarters than  elsewhere on the model. This was
accomplished  by allowing the chemicals  to diffuse mote rapidly  at
the places where  wider stripes were desired.

Part Two: Mesh  Generation  and Rendering

This section describes how to generate a mesh  over a polyhedral
model that  can be used for texture synthesis and that  will lend itself
to high-quality image generation. The  strength  of this technique is
that  no explicit  mapping from texture space to an object’s surface is
required. There  is no texture distortion.  There  is no need for a user
to manually assign texture coordinates  to the vertices of polygons.
Portions of this section will describe how such  a mesh  can be used to
simulate a reaction-diffusion  system for an arbitrary  polyhedral
model. lhis mesh  will serve as a replacement  to the regular square
grids used to generate Figures 2 and 3. We will create textures by
simulating a reaction-diffusion  system directly  on the mesh.  It is
likely that  these  meshes can also be used for other forms  of texture
synthesis. Such  a mesh  can be used for texture generation wherever
a texture creation method  only requires the passing of information
between neighboring texture elements (mesh  cells).

There are a wide variety of sources for polyhedral  models in
computer graphics. Models generated by special-effects  houses are
often  digitized  by hand  from a scale model.  Models taken  from CAD
might be created by conversion from constructive  solid geometry to
a polygonal boundary representation. Some models are generated
procedurally,  such as fractals used to create mountain ranges and
trees. Often  these  methods will give us few guarantees about the
shapes  of the polygons, the density of vertices across the surface or
the range  of sizes of the polygons. Sometimes such  models will
contain very skinny polygons  or vertices where  dozens of polygons
meet.  For these  reasons it is unwise  to use the original polygons as
the mesh  to be used for creating textures. Instead, a new mesh  needs
to be generated that  closely  matches the original model but that has
properties that  make  it suitable for texture synthesis. This mesh-
generation method  must  be robust  in order to handle the wide variety
of polyhedral  models used in computer  graphics.

Mesh  generation is a common problem in finite-element  analysis,
and a wide variety of methods have  been  proposed to create meshes
[Ho-Le  881.  Automatic mesh  generation is a difficult  problem in
general, but the requirements of texture synthesis will serve to
simplify the problem. We only require that  the model be divided  up
into relatively evenly-spaced regions. The mesh-generation
technique  described below  divides a polyhedral surface  into cells that
abut one another and fully tile the polyhedral  model. The  actual
description ofacell consistsof a position in R’, a list of adjacent cells
and a list of scalar values  that  tell how much diffusion occurs  between
this cell and each of its neighbors. No explicit geometric

Figure  4: Leopard-Horse

Figure  5: Giraffe

Figure  6: Pseudo-Zebra 293



: SIGGRAPH ‘91 Las Vegas,  28 July-2 August 1991

(4

69

(cl

Figure  7: Mesh construction.

representation  of the boundaries of these cells is necessary. Given a
value for cell density,  the mesh-generation  method first randomly
distributes  the appropriate  number of points on the surface of the
polyhedral  model. A relaxation procedure then moves these points
across the surface until they are fairly evenly spaced from one
another.  At this  stage,  each point gives an (xy,z)  position that  is a part
of the description of a single cell. The  region surrounding each  point
is examined to determine which  pairs of cells will diffuse to one
another, and the result of this step gives the adjacency  information
and the diffusion coefficients  that  complete the cell’s  description.
The  only user-supplied  parameter  for this mesh-generation  method
is the desired density of cells in the mesh.

Relaxation  of Random  Points

The first step in mesh  generation  is to distribute n points randomly on
the model’s surface. In order to distribute points randomly over a
polyhedral model, care must  be takensothat  the probability  ofhaving
a point deposited at any one location is the same everywhere  on the
surface. To place a random point on the model we need to make an
area-weighted  choice of the polygon on which  a point should be
placed. This  can be accomplished using  a binary search  through  a list
of partial sums  of the polygon areas in the model. Now a random
point on this polygon can be chosen [Turk  901.

Once the proper number of points has been randomly placed across
the surface, we need to move the points around until they are
somewhat regularly  spaced. This  is accomplished  using  relaxation.
Intuitively,  themethod  haseachpointpusharoundotherpointson the
surface by repelling  neighboring points. The method requires
choosing a repulsive force and a repulsive radius for the points. We
use a repulsive force that falls off linearly with distance. Two points
that are greater  than  the repulsive radius r from one another  do not
affect each other.  The  relaxation method also requires a method for
moving a point that is being pushed across the surface, especially  if
the point is pushed  off its original polygon. Here  is an outline of the
relaxation  process:

294

loop  k times
for each  point P on surface

determine  nearby points  to P
map  these nearby points onto  the plane

containing  the polygon of P
compute  and store the repulsive  forces  that the

mapped  points  exert  on P
for each  point P on surface

compute  the new position  of P based  on the
repulsive  forces

Each  iteration moves the points into a more even distribution  across
the polyhedron.  Figure 7b shows an initially  random distribution  of
1000  points over a polyhedral  model, and Figure 7c gives  the
positions of the same points with k = 40 iterations of the relaxation
procedure. The  underlying polygons of the model are outlined in
Figure 7a.

The repulsive radius of the points should be chosen based on the
average density of the points across the whole surface. The  meshes
used in this paper were created using a radius of repulsion given by:

r =26K
u = area of surface
n = number of points on surface

The above value for r gives a fixed average number of neighboring
points to any point, independent  of the number of points on the
surface and independent of surface geometry.  This is important
because uniform spatial  subdivision  can then  be used to find
neighboring points quickly.

To compute how  nearby points repel a given point P on polygon  A,
these other points are mapped onto the plane containing polygon  A.
Points that  already  lie on polygon  A remain where  they are. Points



@ @ Computer Graphics, Volume 25, Number 4, July 1991

on polygons that share an edge with A are rotated about the common
edge until they lie within the given plane. Points on more remote
polygons are first rotated about the nearest edge of A and then
projected onto the plane, We use this method for mapping nearby
points onto the plane because of its simplicity. A different method,
at the cost of execution speed and algorithm complexity, would be to

search for a geodesic path between P and a given nearby point and
then to unfold along this path.

Making (he points repel one another becomes straightforward once
we can map nearby points onto a given point’s plane. For each point
P on the surface we need to determine a vector.$ that is the sum of all
repelling forces from nearby points. The new position for the point
P on polygon A will be P’ = P + M, where A-is some small scaling
value. In many cases the new point P’ will lie on A, [fP’ is not on
A, it will often not even he on the surface of the polyhedron. In this

case, we determine which edge of A that P’ was “pushed” across and
also find which polygon (call it B) that shares this edge with A. The
point P’ can be rotated about the common edge between A and B so
that it lies in the plane of B. This new point may not lie on the polygon
B, but we can repeat the procedure to move the point onto the plane
of a polygon adjacent to B. Each step of this process brings the point
nearer to lying on a polygon and eventually this process will
terminate. Most polygons of a model should have another polygon
sharing each edge, but some polygons may have no neighbor across
one or more edges. If a point is “pushed” across such an edge, the
point should be moved back onto the nearest position still on the
polygon.

Mesh Cells from Voronoi Regions

The positions of these points become the locations of the mesh cells
once relaxation has evened out the distribution of points on the
surface. Now regions need to be formed around each point to
determine adjacency of cells and to give the diffusion coefficients
between adjacent cells. In keeping with many finite-element mesh-
generation techniques. we choose to use the Voronoi regions of the
points to form the regions surrounding the points. A description of
Voronoi regions can be found in a book on computational geometry,
e.g., IMelhom X4]. Given a set of points .S in a plane, the Voronoi
region of a particular point P is that region on the plane where P is the

closest point of all points in S. For points on a plane, the Voronoi
regions will always be bounded by line segments Wsitioned halfway
between pairs of points. When we simulate a diffusing system on
such a set of cells, we will use the lengths of the edges separating pairs
of cells to determine how much of a given chemical can move
between the two cells, Figure 7d shows the Voronoi regions for the
set of points shown in Figure 7c,

Finding the exact Vorcmoi regions of the points on a polyhedral
surface is not simple since one of these regions might be parts of
several different polygons. Instead of solving this exactly, a planar
variation of the exact Voronoi region for a point is used to determine
the lengths of edges between cells. Using the same procedure as
before, all points near a given point P are mapped onto the plane of
the polygon A containing P. Then the planar Voronoi region of P is
constructed and the lengths of the line segments that form the region
are calculated. It is the lengths of these segments that are used as the
diffusion coefficients between pairs of cells. In general, computing
the Voronoi regions for n points in a plane has a computational
complexity of CS(nlog n) [Melhom 84]. However, the relaxation
process distributes points evenly over the surface of the object so that
all points that contribute to the Voronoi region of a point can be found
by looking only at those points within a small fixed distance from that
point. in practice we have found that we need only consider those
points within 2rof a given point to construct a Voronoi region, where
r is the radius of repulsion used in the relaxation process. Because
unifomr spatial subdivision can be used to find these points in a

constant amount of time, constructing the Voronoi regions is of O(n)
complexity in this case.

The above construction of the Voronoi regions assumes that the
diffusion over a surface is isotropic (has no preferred direction). The
striking textures in [Witkin and Kass 9 I ] show that simulation of
aoisotropy can add to the richness of patterns generated with
reaction-diffusion. Given a vector field overa polyhedral surface, we
can simulate anisotropic diffusion on the surface if we take into
account the anisotropy during the construction of the Voronoi
regions. This is done by contracting the positions of nearby points in
the direction of anisotropy after projecting neighboring points onto
a given point’s plane. Then the Voronoi region around the point is
constructed based on these new positions of nearby points. ‘flse
contraction affects the lengths of the line segments separating the
cells, and thus affects the diffusion coefficients between cel 1s. This
contraction will also affect which cells are neighbors. Ftgure 8 shows
that anisotropic diffusion creates spots that are stretched when
Turing’s system is simulated on the surface of a model.

Reaction-Diffusion on a Mesh

We can create any of the reaction-diffusion patterns described earlier
on the surface of any polyhedral model by simulating the appropriate
chemical system directly on a mesh for the model. The square cells
of a regular grid are now replaced by the Voronoi regions that
comprise the cells of the mesh. Simulation proceeds exactly as
before except that calculation of the Laplacian terms now takes into
account that the segments that form the boundaries of the cel 1sare not
all the same length. These boundary lengths are the diffusion
coefficients, and the collection of coefficients at each cell should be
normalized so they sum to one. V2a is computed at a particular cell
by multiplying each diffusion coefficient of the cell by the value of
a at the corresponding neighboring cell, summing these values for all
neighboring cells, and subtracting the value of a at the given cell.
This value should then be multiplied by four to match the feature
sizes generated on the regular square grid. When the simulation is
complete, we have a concentration for each participating chemical at
each cell in the mesh. The next section tells how these concentrations
are rendered as textures.

Rendering

Once the simulation on a mesh is finished, we require a method for
displaying the resulting chemical concentrations as a texture. First,
we need a smooth way of interpolating the chemical concentrations
across the surface. The chemical value can then be used as input to
a function that maps chemical concentration to color. We have
chosen to let the chemical concentration at a location be a weighted
sum of the concentrations at mesh points that fall within a given
radius of the location. If the chemical concentration at a nearby mesh
cell Q is v(Q), the value v’(P) of an arbitrary point P on the surface
is:

~v(Q)w(lP -Q1/.Y)

v’(P) =Qmarp
~w(lP -Q1/.r)

Q lEar P

The weighting function w can be any function that monotonically
decreases in the range zero to one, The function used for the images
in this papw is:

w(d)= 2d-3d2+l if OSd Sl
W(d)=o ifd> 1

This function falls smoothly from the value I down to O in the range
[0, 1], and its first derivative is zero at O and at I [Pedin and Hoffert
891. Any similar function that falls off smoothly could be used for

295



5 SIGGRAPH ‘91 Las Vegas,  28 July-2  August 1991

Figure 8: Anisotropic  diffusion

Figure  9: Blur levels for anti-aliasing

296
Figure  10:  Bump  mapping

the weighting function. The  images in this paper have been made
using a value of s = 2r, where r is the repulsive radius from the
relaxation  method. Much  smaller  values for s make the individual
mesh points noticeable,  and values much  larger than  this will blur
together  the values of more nearby mesh points. Uniform spatial
subdivision  makes finding nearby mesh points a fast operation
because only those mesh  points within a distance s contribute  to a
point’s value. Figure 7e shows the individual  cell values from a
pattern  generated by reaction-diffusion,  where the chemical
concentrations  have been mapped to a color gradation from blue to
white.  Figure 7f shows the surface colors given by the weighted
average for v’(P)  described  above.

The method described  above gives smooth changes of chemical
concentration  across the surface of the model, and rendered images
do not show  evidence of the underlying mesh  used to create the
texture. Aliasing  of the texture can occur, however, when  a textured
object  is scaled down small enough that  the texture features, say
stripes,  are about the same width as the pixels  of the image. Super-
sampling of the texture  is one possible way to lessen  this  problem, but
computing the texture  value many times to find the color at one pixel
is costly.  A better  approach is to extend the notion of levels of
increasingly  blurred textures [Williams  83) to those textures defined
by the simulation mesh.

The blurred versions of the texture  are generated using  the simulation
mesh,  and each mesh  point has associated with it an RGB (red, green,
blue) color triple for each blur level. Level 0 is an unblurred version
of the texture  and is created by evaluating the concentration-to-color
function at the mesh  points for each concentration  value and storing
thecolorasanRGB  tripleateachmeshpoint.  Blurlevels  1 andhigher
are created by allowing these  initial color values to diffuse across the
surface.  When  the values of a two-dimensional  gray-scale  image are
allowed  to diffuse across the image, the result is the same as
convolvingtheoriginal imagewithaGaussianfiher.  Largeramounts
of blurring (wider Gaussian filters)  are obtained by diffusing  for
longer periods of time. Similarly,  allowing the RGB values at the
mesh  points to diffuse across the mesh  results in increasingly blurred
versions of the texture given on the mesh. The relationship  between
diffusion  for a time I and convolution  with  a Gaussian kernel of
standard deviation  r~ is t = a2 / 2 [Koenderink 841.  The  blur levels of
Figure 9 were generated so that each level’s  Gaussian kernel has a
standard deviation  twice that of the preceding blur level.

The texture color at a point is given by a weighted average between
the colors  from two blur levels. The choice of blur levels and the
weighting  between  the levels at a pixel is derived from an
approximation  to the amount of textured surface that is covered  by
the pixel. This estimate  of surface area can be computed from the
distance to the surface and the angle the surface normal makes with
the direction  to the eye. The  natural unit  of length for this area is r.
the repulsion radius for mesh  building. The  proper blur level at a
pixel is the base two logarithm of the square  root of a, where  (I is the
area of the surface  covered by the pixel in square  units  of r. We have
produced short animated sequences using this anti-aliasing
technique and they show  no aliasing  of the textures.

Bump  mapping is a technique used to make a surface appear rough
or wrinkled without explicitly altering the surface geometry [Blinn
781.  The rough appearance is created from a gray-scale  texture by
adding  a perturbation  vector to the surface normal and then
evaluating  the lighting model based on this new surface normal.
Perlin showed that the gradient of a scalar-valued  function in R3 can
be used as a perturbation  vector to produce convincing surface
roughness [Perlin  851.  We can use the gradient of the values v’(P)  of
a reaction-diffusion  simulation to give a perturbation vector at a
given point P:



@ @ Computer Graphics, Volume 25, Number 4, July 1991

The

d=r/ loo
,qr = (v’(P) - v’(P + 140,0])) / d
gy = (v’(P) - v’(P + [O,d,O])) / d

~:= (},’(P) - v’(P + [O,O,dJ)) / d

perturbation vector = [k * g.x,k * g-y,k * g:]

above method for computing the gradient of v’ evaluates the
function at P and at three nearby points in each of the x, y and I
directions. The value d is taken to be a small fraction of the repulsive
radius r to make sure we stay close enough to P that we get an accurate
estimate for the gradient. The gradient can also be computed directly
from the definition of\’ by calculating exactly the partial derivatives
in x, y and z. The scalar parameter k is used to scale the bump features,
and changing k’s sign causes bumps to become indentations and vice
versa. Figure 10 shows bumps created in this manner based the
results of a reaction-diffusion system.

Implementation and Performance

Creatinga textureusing reaction-diffusionfor a given model can b
a CPU-intensive task. Each of the textures in Figures 4,5 and 6 took
several hours to generateonaDEC3100 workstation. These meshes
contained 64,000 points. Perhaps there is some consolation in the
thought that nature requires the same order of magnitude in time to
lay down such a pattern in an embryo. Such texture synthesis times
would seem to prohibit much experimenting with reaction-diffusion
textures. It is fortunate that a given reaction-diffusion system with
a particular set of parameters produces the same texture features on
small square grids as the features from a simulation on much larger
meshes. The patterns in this paper were first simulated on a 64 x 64
grid of cells where the simulations required less than a minute to
finish. These simulations were mn on a Maspar MP-1, which is a
SIMD computer with 4096 processing elements connected in a two-
dimensional grid. A workstation such as a DEC 3100 can perform
similar simulations on a 32 x 32 grid in about two minutes, which is
fast enough to explore new textures. Once a texture is generated by
reaction-diffusion, the time to render the model with a texture is
reasonably fast. The image in Figure 4 required 70 seconds to render
at 512 x 512 resolution without anti-aliasing on a DEC 3100. The
same horse without texture takes 16 seconds to render.

Future Work

The cascade processes that formed the textures in this paper are just
a few of the patterns that can be generated by reaction-diffusion.
More exploration should be made on how one chemical system can
leave a pattern for later systems. For example, one chemical system
could affect the random substrate of a second system. What patterns
can be formed if one system causes different rates of diffusion in
different locations in a second system?

Other methods of pattern creation could be performed on the meshes
used for texture synthesis. Examples that might be adapted from
cellular automata [Toffoli and Margolus 87] include two-
dimensional annealing, diffusion-limited aggregation and the
Belousov-Zhabotinskii reaction.

Acknowledgments

1 would like to thank those people who have offered ideas and
encouragement for this work. These people include David Banks,
Henry Fuchs, Albert Harris, Steve Molnar, Brice Tebbs, and Turner
Whitted. Thanks also for the suggestions provided by the
anonymous reviewers. Linda Houseman helped cleanup my writing
and David Ells worth provided valuable photographic assistance.
Thanks to Rhythm& Hues for the horse, Steve Speer for the giraffe
and Apple Computer’s Vivarium Program for the sea-slug.

This work was supported by a Graduate Fellowship from IBM and by
the Pixel-Planes project. Pixel-Planes is supported by the National
Science Foundation (MIP-9000894) and the Defense Advanced
Research Projects Agency, Information Science and Technology
Office (Order No. 7510).

Appendix: Meinhardt’s Stripe-Formation System

The stripes of Figure 3 (lower images) and Figure 6 were created with
a five-chemical reaction-diffusion system given in [Meinhardt 82].
The equations of Meinhardt’s system are as follows:

In this system, the chemicals gl and gz indicate the presence of one
or the other stripe color (white or black, for instance). The
concentration of r is used to make sure that only one of g, and gz are
present at any one location. Chemicals .s}and .S1assure that the
regions of g, and g2 are limited in width. A program written in
FORTRAN to simulate this system can be found in [Meinhardt 82].

References

[Bard 77] Bard, Jonathan, “A Unity Underlying the Different Zebra
Striping Patterns,” Journal of Zoology. Vol. 183, No. 4, pp.
527-539 (December 1977).

[Bard 81] Bard, Jonathan B. L., “A Model for Generating Aspects of
Zebra and Other Mammalian Coat Patterns,” Journal of
Theoretical Bio/ogy, Vol. 93, No. 2, pp. 363–385 (November
1981).

[Bard and Lauder 74] Bard, Jonathan and Ian Lauder, “How Well
Does Turing’s Theory of Morphogenesis Work?,” Journal ~~
Them-etica/ Biology, Vol. 45, No. 2, pp. 501-531 (June 1974).

[Bier and Sloan 86] Bier, Enc A. and Kenneth R. Sloan, Jr., “Two-
Part Texture Mapping,” IEEE Computer Graphics and
App/icariorr.s, Vol. 6, No. 9, pp. 4W53 (September 1986).

[Blinn 78] Blinn, James F., “Simulation of Wrinkled Surfaces,”
Computer Graphics, Vol. 12. No. 3 (SIGGRAPH ‘78), pp.
286-292 (August 1978).

[Bloomenthal 85] Bloomenthal, Jules, “Modeling the Mighty
Maple,” Compufer Graphin, Vol. 19, No. 3 (SIGGRAPH ‘85),

PP. 305-3 I I (holy 1985).

[Catmull 74] Catmull, Edwin E., “A Subdivision Algorithm for
Computer Display of Curved Surfaces,” Ph.D. Thesis,
Department of Computer Science, University of Utah (December
1974).

297



SIGGRAPH ’91 Las Veaas. 28 JuIY-2 Auaust 1991

[Gardner 85] Gardner, Geoffrey Y., “Visual Simulation of Clouds;
Computer Graphics, Vol. 19, No. 3 (SIGGRAPH ‘85), pp.
297-303 (July 1985).

[Hanrahan and Haeberli 90] Hanrahan, Pat and Paul Haeberli,
“Direct WYSIWYG Painting and Texturing on 3D Shapes,”
Computer Graphics, Vol. 24, No. 4 (SIGGRAPH ‘90), pp.
2 15–223 (August 1990).

[Heckbert 89] Heckbert, Paul S., “Fundamentals of Texture
Mapping and Image Warping,” M.S. Thesis, Department of
Electrical Engineering and Computer Science, University of
California at Berkeley (June 1989).

[Ho-Le 88] Ho-Le, K., “Finite Element Mesh Generation Method*
A Review and Classification: Computer Aided Design, Vol. 20,
No. 1, pp. 27-38 (January/February 1988).

[Hubel and Wiesel 79] Hubel, David H. and Torsten N. Wiesel,
“Brain Mechanisms of Vision,” Scien@7c American, Vol. 241,
No. 3, pp. 150-162 (September 1979).

[Hunding 90] Hunding, Axel, Stuart A. Kauffman, and Brian C.
Goodwin, “Drosophila Segmentation: Supercomputer
Simulation of Prepattem Hierarchy,” Journal of Theoretical
Biology, Vol. 145, pp. 369-384 (1990).

[Koenderink 84] Koenderink, Jan J., “The Structure of Images,”
Biological Cybernetics, Vol. 50, No. 5, pp. 363–370 (August
1984).

[Lengyel and Epstein 91] Lengyel, Istvfi and Irving R. Epstein,
“Modeling of Turing Structures in the Chlorite-Io&de-Malonic
Acid–Starch Reaction System,” Science, Vol. 251, No. 4994, pp.
650-652 (Febmary 8, 1991).

[Lewis 84] Lewis, John-Peter, “Texture Synthesis for Digital
Painting:’ Computer Graphics, Vol. 18, No. 3 (SIGGRAPH ‘84),
pp. 245–252 (holy 1984).

[Lewis 89] Lewis, J. P., “Algorithms for Solid Noise Synthesis~
Computer Graphics, Vol. 23, No. 3 (SIGGRAPH ‘89), pp.
263-270 (July 1989).

[Ma and Gagalowicz 85] Ma, Song De and Andre Gagalowicz,
“Determination of Local Coordinate Systems for Texture
Synthesis on 3-D Surfaces,” Eurographics ’85, edited by C. E.
Vandoni.

[Meinhardt 82] Meinhardt, Hans, Models of Biological Pattern
Formation, Academic Press, London, 1982.

[Melhom 84] Melhom, Kurt, Multi-dimensional Searching and
Computational Geometry, Springer-Verlag, 1984.

[Murray 81] Murray, J. D., “Gn Pattern Formation Mechanisms for
Lepidopteran Wing Patterns and Mammalian Coat Markings,”
Philosophical Transactions of the Royal Society B, Vol. ‘295,pp.
473496.

[Peachey 85] Peachey, Darwyn R., “Solid Texturing of Complex
Surfaces,” Computer Graphics, Vol. 19, No. 3 (SIGGRAPH ‘85),
pp. 279-286 (July 1985),

[Perlkr 85] Perlin, Ken, “An Image Synthesizer,” Computer
Graphics, Vol. 19, No. 3 (SIGGRAPH ‘85), pp. 287-296 (July
1985).

298

[Perlin and Hoffert 89] Perlin, Ken and Eric M. Hoffert,
“HypertexturevC omputerGraphics, Vol. 23,N0. 3 (SIGGRAPH
‘89), pp. 253-262 (July 1989).

[Samek 86] Samek, Marcel, Cheryl SIean and Hank Weghorst,
“Texture Mapping and Distortion in Digital Graphics; The Visual
Computer, Vol. 2, No. 5, pp. 313-320 (September 1986).

[Toffoli and Margolus 87] Toffoli,Tommaso and Norman Margolus,
Cellular Automata Machines, MIT Press, 1987.

[Turing 52] Turing, Alan, “Tire Chemical Basis of Morphogenesis,”
Philosophical Transactions of the Royal Society B, Vol. 237, pp.
37-72 (August 14, 1952).

[Turk 90] Turk, Greg, “Generating Random Points in Triangles,” in
Graphics Gems, edited by Andrew Glassner, Academic Press,
1990.

[Williams 83] Williams, Lance, “PyrarnidalParametncs,’’Computer
Graphics, Vol. 17, No. 3(SIGGRAPH‘83),pp.1-11 (July 1983).

[Witiln ~d Kass91] Witiln, Andrew and Michael Kass, “Reaction-
Diffusion Textures,” Computer Graphics, Vol. 25 (SIGGRAPH
‘91).

[Yeager and Upson] Yeager, Larry and Craig Upson, “Combining
Physical and Visual Simulation — Creation of the Planet Jupiter
for the Film 2010,” Computer Graphics, Vol. 20, No. 4
(SIGGRAPH ‘86), pp. 85-93 (August 1986).


