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Abstract

This paper introduces and presents a solution to the “Escherization”
problem: given a closed figure in the plane, find a new closed fig-
ure that is similar to the original and tiles the plane. Our solution
works by using a simulated annealer to optimize over a parameter-
ization of the “isohedral” tilings, a class of tilings that is flexible
enough to encompass nearly all of Escher’s own tilings, and yet
simple enough to be encoded and explored by a computer. We also
describe a representation for isohedral tilings that allows for highly
interactive viewing and rendering. We demonstrate the use of these
tools—along with several additional techniques for adding decora-
tions to tilings—with a variety of original ornamental designs.
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1 Introduction

Tilings are as old as civilization. Our ancestors’ earliest experience
with tilings probably arose out of the quest for regularity in the
construction of walls, floors, and ceilings. This regularity could at
once simplify the task of construction and lend a sense of order and
uniformity to the objects being constructed.

Historical uses of ornamental tilings abound; numerous examples
from as early as the twelfth century survive today [15]. Perhaps the
most renowned example is the Alhambra palace in Granada, Spain.
The Moors who built the Alhambra became masters of geometric
ornament, covering every surface of the palace with intricate tilings
of astonishing beauty.

Figure 1 M.C. Escher
in a self-portrait.M.C. Es-

cher’s “Self-portrait” c©2000
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By the time the Dutch graphic artist
M.C. Escher began studying the reg-
ular division of the plane in the first
half of the twentieth century, tiling as
an art form had passed mostly into
history, to be replaced by the grow-
ing development of a systematic math-
ematical theory. Escher was deeply in-
spired by the interlocking geometric
forms of the Moors but felt it a pity
that they were forbidden by their reli-
gion from depicting real-world objects
in their art [20]. He undertook as a per-
sonal quest the reinvention of geomet-
ric art, substituting easily-recognized
motifs such as animal forms for the pu-
rity of the Moorish rosettes and poly-
gons. Escher arrived at each of his interlocking animal forms after a
great deal of tinkering and manipulation. Over the years, he became
more proficient at inventing new arrangements of motifs, develop-
ing his own “layman’s theory” of tilings to track the ground he had
covered and suggest new directions for exploration. He managed
over his career to produce a notebook with more than a hundred of
these ingenious, playful designs [18].

Figure 2 Escher’s Escher Escherized.

Taking our inspiration from Escher and his elegant work, we at-
tempt to solve the following problem in this paper:

Problem (“ESCHERIZATION”): Given a closed plane
figureS (the “goal shape”), find a new closed figureT
such that:

1. T is as close as possible toS; and
2. copies ofT fit together to form a tiling of the

plane.

This problem is tricky in that for a sufficiently large perturbation of
the goal shape, it is always possible to find a tiling in a trivial sense.
(LetT , for example, be a square.) We need to formalize the measure
of “closeness” in such a way that it both preserves the “essence” of
the goal shapeS and at the same time produces new shapesT that
are known to tile.

This paper presents a solution to the Escherization problem that
is able to find reasonable-looking tiles for many real-world shapes
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(see, for example, the “Escherized” version of Escher’s own self-
portrait, shown in Figure 2). Creating such tilings requires solving
a number of subproblems, which we discuss in this paper. The first
difficulty is in selecting a set of tiling types that are both simple
enough to be encoded and manipulated by a computer, and flexible
enough to express most of the ornamental designs we would like to
create. A second problem is in finding consistent and complete pa-
rameterizations for these tilings—that is, parameterizations that are
always guaranteed to produce correct tilings of a given type (“con-
sistent”) and that are furthermore capable of producing all tilings of
that type (“complete”). Though fundamental to the analysis of pat-
terns and tilings, to our knowledge this problem has never before
been addressed for the types of tilings we consider. A third prob-
lem is in choosing a good measure of closeness. A fourth challenge
is in designing an optimizer to search over all possible tiling types,
their parameterizations, and tile shapes in order to find a good ap-
proximation to the goal tile. A fifth problem is in creating a repre-
sentation for these tilings that allows for highly interactive viewing
and editing. A final problem is in decorating and rendering the re-
sulting tiles.

Unlike most research projects in computer graphics, this one is mo-
tivated more by intellectual curiosity than by practical import. Nev-
ertheless, a solution to the Escherization problem does have certain
applications in the real world. Tilings are of course useful as floor
and wall coverings. In manufacturing, the outlines of tiles can be
cut repeatedly out of stone using a process known as water-jet cut-
ting. Automatically-designed tilings could just as easily be carved
out of wood or even sewn into a quilt. This suggests a further ap-
plication, proposed by Chow [5]: a tiling program could be used to
lay out copies of a part to be cut out a sheet of some material. If
the copies are arranged in a tiling, they can be cut from the sheet
without creating any waste material (except around the outer edges
of the sheet).

1.1 Related Work

Several authors have explored the possibility of creating ornament
in various forms by computer. A paper at the second annual SIG-
GRAPH conference featured a system for drawing figures con-
strained to the seventeen planar symmetry groups [1]. More re-
cently, Glassner examined the synthesis of frieze patterns [8] and
aperiodic tilings [9, 10], which can be used for generating orna-
ments for bands and for the 2-D plane, respectively. Wonget al. in-
vestigated algorithms for computer-generated floral ornament [21]
and surveyed other previous work in creating these kinds of orna-
mental designs.

In addition, software created specifically for allowing users to con-
struct tilings of the plane has been around for at least twenty years.
Chow had a very successful FORTRAN program [4] that let the
user input the portion of the tile that is independent,i.e., not ex-
pressed in terms of some other portion of the tile. The program
then filled in the remaining part of the tile and replicated it in the
plane. Reptiles [14], by Huson and Friedrichs, is a complex system
that understands a large class of mathematically-interesting tilings.
Reptiles has since been expanded into Funtiles, an even more so-
phisticated tool that can create tilings in non-Euclidean geometries.
Lee’s TesselMania! is a marvelous program for giving children an
understanding of symmetry and tilings.

A number of individuals are actively designing new Escher-like
tilings, aided by illustration software. Crompton [6] has compiled
an extensive list of recent contributions to tesselation-based art.

Still, none of these earlier efforts attempt in any way to find tilings
automatically whose tiles approximate a particular goal shape, the
work we describe here.

1.2 Overview

We begin with background on the mathematical theory of tilings,
leading into a description of the “isohedral” tilings (Section 2), on
which the rest of this work is based. We then address each of the
remaining subproblems in turn: parameterizing the isohedral tilings
(Section 3); developing a measure of “closeness” between two tiles
(Section 4); designing an optimizer for finding the best tiles (Sec-
tion 5); representing the resulting tilings for efficient editing and
viewing (Section 6); and decorating and rendering the tiles (Sec-
tion 7). We end with a discussion of our results (Section 8) and
ideas for future work (Section 9).

2 Mathematical theory of tilings

In this section, we present background on only the parts of tiling
theory necessary to understand the research work presented in the
rest of this paper. Readers seeking a more in-depth analysis of
tilings should consult the highly accessible treatise on tiling theory,
Grünbaum and Shephard’sTilings and Patterns[11].

2.1 Tilings

A tiling of the planeis a collection of shapes, calledtiles, that cover
the plane without any gaps or overlaps. That is, every point in the
plane is contained in at least one tile, and the intersection of any
two tiles is a set with zero area (we regard tiles as closed sets, and
allow them to intersect along their boundaries).

Given certain natural analytic restrictions on the shapes of tiles [11,
sec 3.2], the intersection of any set of tiles will either be empty, a
point, or a simple curve. When the intersection is a curve, we call
that curve atiling edge. When the intersection is a point, in which
case that point will necessarily be a meeting place of at least three
tiles, we call that point atiling vertex.

Every tile can be decomposed, based on intersections with its neigh-
bours, into a sequence of tiling vertices joined by tiling edges.
These must be distinguished from the vertices and edges of thetiles

A

B

C

(if the tiles are in fact polygons),
which we will call shape vertices
and shape edges, respectively, to
differentiate them from their tiling
counterparts. Although the fea-
tures of the tiling occupy the same
positions as the features of the
tiles, they may break down differ-
ently. For the blue tile in the tiling
on the right,A is a shape vertex
but not a tiling vertex,B is a tiling
vertex but not a shape vertex, andC is both a tiling vertex and a
shape vertex. We will also make use of thetiling polygon, the poly-
gon formed by joining the tiling vertices that lie on a given tile,
shown here as a red dashed line. This polygon is important in de-
scribing the structure of the tiling.

In many of the tilings we see every day on walls and streets, the tiles
all have the same shape. If any given tile in a tiling is congruent to
any other through a rigid motion of the plane, we say that the tiling
is monohedral. Similarly, ak-hedraltiling is one in which every tile
is congruent to one ofk different prototiles. Whenk = 2, we also
use the termdihedral to describe the tiling.

2.2 Isohedral tilings

A symmetryof a figure in the plane is a rigid motion of the plane
that maps the figure onto itself. Every figure in the plane necessarily
has an associated set of symmetries, even if it is just the trivial set
containing the “identity” motion. It is easy to see that the symme-
tries of a figure have a natural group structure under composition of
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A B

Figure 3 Both of these tilings are monohedral, but the one on the left is iso-
hedral and the one on the right is not. The reflection that maps tileA onto tile
B is not a symmetry of the tiling on the right.

IH41 IH43 IH44

IH61IH55 IH71

Figure 4 An isohedral tiling type imposes a set of adjacency constraints on
the tiling edges of a tile. When the bottom edge of the square deforms into the
dashed line, the other edges must respond in some way to preserve the tiling.
The six resulting tiles here are from six different isohedral types.

rigid motions. The set of symmetries of a figure is therefore called
thesymmetry groupof that figure. If the symmetry group of a fig-
ure contains linearly independent translations, we call that figure
periodic.

For two congruent tilesA andB in a tiling, there will be some rigid
motion of the plane that carries one onto the other (there may in fact
be several). A somewhat special case occurs when the rigid motion
is also a symmetry of the tiling. In this case, whenA andB are
brought into correspondence, the rest of the tiling will map onto
itself as well. We then say thatA andB aretransitively equivalent.

Transitive equivalence is an equivalence relation that partitions the
tiles into transitivity classes. When a tiling has only one transitiv-
ity class, we call the tilingisohedral. More generally, ak-isohedral
tiling hask transitivity classes. An isohedral tiling is one in which
a single prototile can cover the entire plane through repeated appli-
cation of rigid motions from the tiling’s symmetry group. Note that
an isohedral tiling must be monohedral, though the converse is not
true [11, p. 31], as Figure 3 illustrates.

We use the isohedral tilings as a mathematical basis for our explo-
ration of computer generation of ornamental tilings. They achieve
a satisfying balance between flexibility and convenience. On the
one hand, they are capable of representing a wide subjective range
of tilings. Of all the monohedral tilings in Escher’s notebook, only
one is not isohedral (the exception is based on a special mono- but
not isohedral tiling first shown to Escher by Roger Penrose). More-
over, in Escher’s dihedral tilings, tiles of each of the two motifs
can be paired up to form a single “supertile” that tiles that plane
isohedrally. On the other hand, the isohedral tilings can be clas-
sified into a small number of symbolically-encoded families (the
following subsections give more details about this classification). It
is therefore fairly easy to create a system to manipulate and render
them.

2.3 Isohedral families

By definition, an isohedral tiling is bound by a set of geometric
constraints: congruences between tiles must be symmetries of the

tiling. Grünbaum and Shephard showed that those geometric con-
straints can be equated with a set ofcombinatoricconstraints ex-
pressing the adjacency relationship between edges of a tile. They
proved that these constraints yield a division of the isohedral tilings
into precisely 93 distincttypesor families,1 referred to individually
as IH1, . . . , IH93 and collectively as IH [11, sec. 6.2]. Each family
encodes information about how a tile’s shape is constrained by the
adjacencies it is forced to maintain with its neighbours. A defor-
mation in a tiling edge is counterbalanced by deformations in other
edges; which edges respond and in what way is dependent on the
tiling type, as shown in Figure 4.

Isohedral tilings have the property that if you list the valence of
each tiling vertex as you move around any given tile, the list will be
consistent across all tiles in the tiling. This list is fundamental to the
topological structure of the tiling and is called itstopological type.

T1

T2

For example, the topological type
of IH16, shown on the left, is36,
since there are 6 different tiling
vertices around each tile, each of
valence 3. Every isohedral tiling
belongs to one of eleven different
topological types [11, sec. 2.7].

In any periodic tiling, it is pos-
sible to identify a collection of
tiles that together cover the plane
using only the translations from
the tiling’s symmetry group. Any
such collection that is connected

and minimal in size is called atranslational unit of the tiling.
Within a translational unit, all tiles must have different orientations,
which are referred to as theaspectsof the tiling. IH16 has three
aspects, shown in varying shades of blue above. These three tiles
comprise one possible translational unit, with translation vectors
T1 andT2.

2.4 Incidence symbols

The adjacency constraints between the tiling edges of a tile are sum-
marized by anincidence symbol. Given a rendering of a tiling, the
incidence symbol can be constructed in a straightforward way.
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[a+b+c+c–b–a–;a–c+b+] [a+b+c+c–b–a–;a–c+b+] [a+b+c+c–b–a–;a–c+b+] [a+b+c+c–b–a–;a–c+b+] [a+b+c+c–b–a–;a–c+b+]

Figure 5 Five steps in the derivation of a tiling’s incidence symbol.

Figure 5 shows five steps in the derivation of the incidence sym-
bol for our sample tiling. To obtain the first part of the incidence
symbol, pick an arbitrary tiling edge as a starting point, assign that
edge a single-letter name, and draw an arrow pointing counterclock-
wise around the tile (step 1). We then copy the edge’s label to all
other edges of the tile related to it through a symmetry of the tiling
(step 2). Should the edge get mapped to itself with a reversal of di-
rection, it is given a double-headed arrow and becomes undirected.
We then proceed counterclockwise around the tile to the next un-
labeled edge (if there is one) and repeat the process (step 3). The
first half of the symbol is obtained by reading off the assigned edge

1In tiling theory, seemingly arbitrary numbers like 93 are not uncom-
mon; enumerations of families of tilings tend to have sets of constraints that
collapse certain cases and fracture others.

501



IH1 IH64 IH58 IH17

Figure 6 Examples (from left to right) ofJ, U, S andI edges. In each case,
the tiling edge with the given shape is highlighted in red.

names (step 4). A directed edge is superscripted with a sign indi-
cating the coherence of its arrow with the traversal direction. Here,
a plus sign is used for a counterclockwise arrow and a minus sign
for a clockwise arrow.

The second half of an incidence symbol records how, for each dif-
ferent name, a tiling edge of that name is related to the correspond-
ing edge of the tile adjacent to it. To derive this part of the symbol,
we copy the labeling of the tile to its neighbours (step 5). Then, for
each unique edge letter assigned in the first step, we write down
the edge letter adjacent to it in the tiling. If the original edge was
directed, we also write down a plus or minus sign, depending on
whether edge direction is respectively preserved or reversed across
the edge. A minus sign is used if the arrows on the two sides of
an edge are pointing in the same direction and a plus sign is used
otherwise. For the running example, the incidence symbol turns out
to be[a+b+c+c−b−a−; a−c+b+]. Note that the incidence symbol
is not unique; edges can be renamed and a different starting point
can be chosen. But it can easily be checked whether two incidence
symbols refer to the same isohedral type.

Every isohedral type is fully described in terms of a topological
type and an incidence symbol. Enumerating all possible topologi-
cal types and incidence symbols and then eliminating the ones that
do not result in valid tilings or that are trivial renamings of other
symbols leads to the classification given by Gr¨unbaum and Shep-
hard.

2.5 Tile shapes

Within a single isohedral type, tilings are distinguished from each
other by their shapes, consisting of the positions of the tiling ver-
tices and the shapes of the curves that join them. In the next section,
we will address the question of finding, for each isohedral type, a
parameterization of the tiling vertices that yields all and only those
tiling polygons compatible with the type. To our knowledge, this
problem has not been previously explored.

On the other hand, the constraints on the shapes of tiling edges are
simple to describe. Although the underlying choice of how to rep-
resent a “curve” is left open, the tiling’s symmetries imply a large
reduction in the tiling edges’ degrees of freedom. These constraints
can be extracted directly from the tiling’s incidence symbol. We
enumerate four cases for the structure of a tiling edge. For each
case, Figure 6 gives a tiling with such an edge.

If some directed edge is adjacent to itself without a flip, then a tile’s
neighbour across that edge is adjacent through a half-turn. This ro-
tation forces the edge shape to itself be symmetric through a half-
turn about its centre. We call such an edge anS edge as a visual
mnemonic. Only half of anS edge is free; the other half must com-
plete the rotational symmetry.

An undirected edge must look the same starting from either end,
meaning it must have a line of mirror symmetry through its mid-
point. If the edge is adjacent to an edge other than itself, it is free to
take on any curve with this mirror symmetry. We call it aU edge.
Again, only half of aU edge is free.

If an undirected edge is adjacent to itself, or if a directed edge is
adjacent to itself with a change in sign, that edge must have both
S symmetry andU symmetry. The only shape that has both is a
straight line, leading us to call such an edge anI edge.

The remaining case is when a directed edge is adjacent to some
other directed edge. Such an edge is free to take on any shape, and
we call it aJ edge.

Note also that if an edgex is adjacent to an edgey, thenx and
y have the same shape (even though they have different names).
In this case, we need only specify one tiling edge, since the other
is entirely constrained to it. Thus, the tiling edges of IH16 can be
summarized by one curve: the shape of the edge labeledb. Edges
labeleda are I edges and have no degrees of freedom, and edges
labeledc are constrained tob.

3 Parameterizing the isohedral tilings

Like the shape vertices, tiling vertices cannot move independently
of each other. Moving one tiling vertex forces the others to move to
preserve the tiling. The exact nature of this movement depends on
the tiling type in question. The incidence symbol for a tiling type
implies a set of constraints on the tiling polygon’s edge lengths and
interior angles. Any tile of that type will have a tiling polygon that
obeys those constraints.

If we hope to build a generative model of isohedral tilings, it is not
sufficient to merely recognize the constraints on the shape vertices:
we need a way to explicitly navigate the space of legal tiling poly-
gons. For each isohedral type we need a parameterization of the
tiling vertices for tilings of that type. The parameterization should
becomplete, in the sense that for every legal configuration of tiling
vertices, there is a set of parameters that generates that configura-
tion. We also require it to beconsistent, in the sense that every set
of parameters generates legal tiling vertices. To our knowledge, no
tiling vertex parameterizations have ever been given for IH. They
represent a nontrivial extension to the table of information about IH
found in Grünbaum and Shephard.

We have developed a set of consistent and complete parameteriza-
tions for the isohedral types (of course, the history of tiling theory
has experienced its share of imperfect analyses [11, Sec. 6.6]). They
were derived by determining angle and length constraints from the
incidence symbols and parameterizing the unconstrained degrees
of freedom. In some cases, parameterizations are shared between
tiling types: nine tiling types have squares as tiling polygons (im-
plying a parameterization with zero parameters), and seven have
parallelograms (implying two parameters). These easy parameter-
izations are balanced by tiling types with one-of-a-kind structure
that can take some thought to derive. In all, the 93 isohedral types
require 45 different parameterizations. Diagrams of the parameter-
izations appear in full in Figures 9 and 10.

To give the flavor of these parameterizations, here is a sketch of the
derivation for our running example, IH16 (see Figure 7). We begin
by placing at least enough tiles to completely surround one central
tile, and marking up the tiles with the labels from the tiling’s inci-
dence symbol. Now consider the situation at tiling vertexA. This
vertex is surrounded by three copies of the same angle from three
different tiles, namely6 FAB, the angle between thea edges. It fol-
lows that the tiling polygon must have a120◦ angle at that vertex.
The same observation applies to verticesC andE. Thus,4FAB,
4BCD, and4DEF are all 120◦ isosceles triangles. Because
these isosceles triangles can be constructed given only the edge op-
posite the120◦ angle, the tiling polygon depends entirely on the
“skeleton” triangle4BDF . Furthermore, the incidence symbol re-
veals a line of bilateral symmetry in the tile acrossAD, forcing
4BDF to be isosceles. The only degrees of freedom left in the
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Figure 7 The diagram used to establish a tiling vertex parameterization for
IH16. For simplicity, the arrows indicating edge direction have been left out
of the diagram.

tiling polygon are the lengths ofAD andBF . However, as dis-
cussed in the next section, the shape comparison metric that we
would like to use is independent of scale. We can factor out the de-
pendence on scale by fixing||BF || = 1 and keeping just a single
parameter:v0 ≡ ||AD||. Figure 8 shows tilings of type IH16 that
can result from different values of this single parameter.

v0 = 1
2

v0 = 1 v0 = 2√
3

v0 = 2

Figure 8 Some examples of IH16 with different values for the single param-
eter in its tiling vertex parameterization.

4 The shape metric

The Escherization problem raises the difficult question of how to
compare two shapes. An answer should be in the form of a metric
that would take two outlines and return a nonnegative real number;
zero would mean that the outlines are identical, and higher posi-
tive values would denote shapes that are increasingly dissimilar. To
simplify the rest of the Escherization algorithm, we would also like
the metric to be insensitive to rigid motion or scale of either of the
shapes.

Fortunately, such metrics have been developed by computer vision
researchers. We use the metric created by Arkinet al.for comparing
polygons [2]. Their metric represents the input polygons asturning
functions, functions that map fraction of arc length in a polygon to
the angle of the polygon at that point. Turning functions are nat-
urally translation and scale independent. Translation of a turning
function corresponds to rotation of the polygon and movement of
the point where the measurement of arc length begins. They com-
pute the minimalL2 distance between all translations of the two
turning functions by proving that only a small number of such trans-
lations need to be checked.

Their algorithm is efficient and has a predictable run time:
O(n2 log n) in the total number of verticesn. The algorithm also
corresponds fairly well to a subjective notion of the distance be-
tween two shapes. It is limited in its ability to cope with varying
levels of detail across the shapes (which is a form of what they call
“non-uniform noise”), but it is acceptable for our purposes.

We use the polygon comparison metric for both polygons and sub-
division curves. In the case of subdivision curves, we first approx-
imate the curve as a polygon with a large number of vertices and
then make a call to the same routine.

5 Optimizing over the space of tilings

Armed with a set of tilings (the isohedral tiles), parameterizations
over those tilings, and a good shape metric, we are now ready to
address the problem of building an optimizer that can search over
the space of those tilings to find an instance whose tiles are close to
the goal shape.

Our optimizer is based on simulated annealing. It works roughly as
follows:

function FINDOPTIMALTILING (GOALSHAPE, FAMILIES ):
INSTANCES← CREATEINSTANCES(FAMILIES )

while ||INSTANCES|| > 1 do
for each i in INSTANCES do

ANNEAL(i, GOALSHAPE)

end for
INSTANCES← PRUNE(INSTANCES)

end while
return CONTENTS(INSTANCES)

end function

The optimizer takes as input a goal shape and a set of isohedral fam-
ilies in which to search for an optimal tiling. The optimizer begins
by creating a set of multiple instances of tilings from each isohe-
dral family. It then calls a re-entrant simulated annealing procedure
to improve each one of these instances. (This ANNEAL() proce-
dure is discussed in more detail below.) After each of the instances
has been optimized to some degree, the instances are evaluated ac-
cording to the shape metric, and the worst ones are removed. The
annealing is continued on the remaining instances. This iterative
process of alternately pruning the search space and then improving
the remaining instances is repeated until just a single tiling instance
is left. This tiling is returned as the optimal tiling.

The annealer is a re-entrant procedure, which works roughly like
this:

procedure ANNEAL(TILING , GOALSHAPE):
for j = 1 to N do

while T > Tmin do
OPTIMIZETILING (TILING , GOALSHAPE, T )

T ← REDUCE(T )

end while
SMOOTHEDGESHAPES(TILING )

SPLITEDGESHAPES(TILING )

(T, Tmin)← UPDATESCHEDULE(T, Tmin)

end for
suspend

end procedure

The annealer takes a given tiling instance and a goal shape as in-
put. It loops for a constant number of iterations to improve the
tiling and then exits, maintaining its state, so that upon re-entry
it can continue from where it left off, in the same cooling sched-
ule. Within each iteration of the outer loop, the procedure takes a
number of cooling steps, reducing the “temperature” at each step.
Within this inner loop, it makes a call to a procedure that we have
termed OPTIMIZETILING(). This procedure implements the “mul-
tidimensional minimization by simulated annealing combined with
the downhill simplex method,” as described by Presset al.[17]. The
procedure attempts to improve all of the parameters of the tiling,
including the parameterizations of the tiling vertices (discussed in
Section 3) and the positions of the shape vertices of the tile. The
procedure always accepts a downhill step (one that improves the
tiling instance) and sometime accepts an uphill step, with proba-
bility depending on the temperatureT . Once the temperature has
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Figure 9 The complete set of tiling vertex parameterizations for the isohedral tilings, part one. In each tile, the edge marked with a red line is the first edge in the
tiling type’s incidence symbol. When that first edge is directed, the red line has an arrowhead. Labelled dotted lines represent parameter values, and are horizontal
or vertical (with the exception of one guide line in the diagram for IH30). Since the diagrams are scale independent, distances that do not depend on parameters
can be taken to have unit length. Tile edges cut with the same number of short lines have the same length, and edges cut with chevrons are additionally parallel. A
single arc, a small square, and a double arc at vertices represent60◦, 90◦, and120◦ angles, respectively.
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Figure 10 The complete set of tiling vertex parameterizations for the isohedral tilings, part two.

cooled to some minimum temperatureTmin, we exit this inner loop.
At this stage, we run through the vertices of the tile and remove any
vertices that are nearly collinear with their neighbors, thereby elim-
inating any unnecessary degrees of freedom that may have been
introduced into the tiling instance. Next, we subdivide each edge of
the tiling, essentially doubling the number of variables over which
we optimize in the next stage. Finally, we restart the cooling sched-
ule, generally with some slightly lower temperaturesT andTmin.

One additional part of the optimization, which is not shown in the
pseudocode and which is optional, is to automatically convert the
vertices of the tiles into control points for B-spline subdivision
curves after a certain stage in the optimization. We can then ad-
ditionally optimize over weights on each vertex that control the
smoothness of the curve near that point.

Our use of simulated annealing is subject to the usual practicalities.
First, the success of the optimization for a single instance of a single
tiling type depends on the initial shape of the tiling polygon and the
initial positions of the shape vertices. We therefore generally start
with multiple instances for each tiling type. As with any simulating
annealing algorithm, the choice of cooling schedule can also make
a difference. We use a very simple approach where the tempera-
tureT is multiplied by a factor ofφ after everyN iterations, with
T = 0.1, N = 250, andφ = 0.9 to start. When the temperature
reaches 5% of its initial value (Tmin = 0.05T ), the optimization
resets, lowering the starting and minimum temperatures by a factor
of 0.6, increasing the number of iterationsN by a factor of1.2, and
reducing the temperature multiplierφ by a factor of0.1. We did
not spend a lot of time “optimizing” this cooling schedule, so other
reasonable choices would probably work equally well or better.

6 Representation of isohedral tilings

We have developed a computer representation of isohedral tilings
that allows us to express our Escherization algorithm efficiently and
naturally. The key is to factor out the constraints on the tile imposed
by adjacencies and internal symmetries, and to store only the mini-
mal set of free parameters that encode the tile shape.

We break down the information associated with a tile into two com-
ponents: thetiling templateand thetile instance. The tiling template
contains information about a tiling type in general. The tile instance
refers to a template and contains a set of parameters for the tiling
vertex parameterization, along with the minimal set of information
required to reproduce the edge shapes. We first describe each of

template IH16 {
topology 3ˆ6 [1]
symbol [a+b+c+c-b-a-;a-c+b+] [2]
colouring 3 (1 2 3) (1 2 3) (1 2 3) [3]
aspects 3 [4]
rules [5]

aspect 2 1 [6]
aspect 3 6 [7]
translate T1 1,4 [8]
translate T2 1,2 [9]

}

Figure 11 The tiling type information stored for IH16

these components in detail, and then show how they can be used to
support efficient editing and viewing in an interactive system.

6.1 Tiling templates

Tiling templates are computed once ahead of time, and stored in a
master file that is read in when the tile library is initialized. Fig-
ure 11 shows a sample entry from the template file. The complete
set of templates is available on the proceedings CD-ROM.

Along with the topological type and incidence symbol (lines 1 and
2), we store additional static information that increases the effi-
ciency and functionality of our system.

First, we add acolouring field (line 3) that provides a default
rule for filling the interiors of tiles with colours. Ann-colouringof
a tiling is a set of symbols{c1, . . . , cn}, together with a function
f that assigns a colourci to each tile in the tiling. Aperfect colour-
ing is a colouring that respects the tiling’s symmetry in the sense
that symmetries act as permutations of the colours. Every perfect
colouring of an isohedral tiling can be conveniently encoded as an
assignment of different colours to the different aspects in a single
translational unit, along with an assignment of different colour per-
mutations to each of the two translation vectors. The colouring field
in the template gives, in order, the number of colours, the assign-
ment of colours to aspects, and the permutations of the assignment
associated with the two translation vectors. This encoding can ex-
press a superset of the perfect colourings. In the case shown here,
the permutations are both the identity. (In all of his drawings, Es-
cher was careful to ensure that no two adjacent tiles ever shared the
same colour. He also used the minimum number of colours neces-
sary to satisfy this condition. The default colourings we provide in
our tiling templates have both of these properties.)
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Another line of the template (line 4) specifies the number of aspects
in the tiling, in this case, 3.

The rules section (lines 5 through 9) gives a collection of rules
that, when applied to a tiling polygon, yield transform matrices for
all the aspects of a translational unit, as well as the two transla-
tion vectors. These transforms cannot be computed ahead of time,
as they depend on the tiling polygon. Each rule is expressed as a
sequence of hops across edges, starting from the first aspect in the
translational unit at the origin.

Aspect 1 is always given the identity matrix as its transform, and the
other aspect transforms are computed from it. In this example, the
first rule (line 6) says that the transform for creating aspect 2 from
the first aspect is just the transform that creates the symmetry across
edge 1 of the first aspect in the tiling—that is, a reflection about the
first edge, labelleda+, in the incidence symbol. Similarly, the sec-
ond rule (line 7) says that the transform for creating aspect 3 from
the first aspect is the transform that creates the symmetry across
edge 6 of the first aspect in the tiling—here, a reflection about the
edge labelleda- . Sometimes, more than a single hop is required.
For instance, the rule “aspect 2 1,2,3 ” would specify a se-
quence of hops: first, across edge 1 of the first aspect in the tiling,
then across edge 2 of the first aspect’s neighboring tile, then across
edge 3 of that neighbor’s neighbor.

The two translation vectors are specified in the same way. Thus,
following across edge 1 of the first aspect in the tiling, then across
edge 4 of the first aspect’s neighboring tile, gives the translation
vectorT1.

One piece of per-tiling-type information missing from the template
file is the set of tiling vertex parameterizations. The parameteriza-
tions are more easily described in code than in a table-driven for-
mat, and are embedded in the source code, each as a C++ class. A
Python file that implements the parameterizations is available on
the CD-ROM.

6.2 Tile instances

The tile is stored as a set of parameters for the tiling vertex parame-
terization, along with a hierarchical model whose leaves arefunda-
mental edge shapes—the portions of the tiling edges that cannot be
further decomposed by symmetries.

The fundamental edge shapes are simply stored as arrays of points.
Each fundamental edge shape implicitly begins at(0, 0) and ends
at (1, 0). By default, the points are interpreted as a sequence of
line segments, but to increase the aesthetic appeal of our tilings we
have implemented the ability to treat them as control points for a
subdivision curve. As a further enhancement, each control point has
an associated weight. The higher the weight, the more subdivision
steps will go by before that point is averaged with its neighbours.
In effect, the weight controls the sharpness of the curve near the
control point, with maximum weight yielding a sharp corner that
interpolates the control point.

To rebuild the tile shape, we apply the parameterization to obtain
the positions of the tiling vertices, and transform the edge shapes
into place between them.

There are at most three levels of transformation between a funda-
mental edge shape and a point on the outline of the tile. The first
level takes into account the symmetries ofU andS edges. Half of
the U or S edge comes directly from the fundamental edge. The
other half is derived from the first half as needed through rotation
or reflection.J edges are passed unmodified through this level, and
since I edges are immutable, all tiles share a single system-wide
copy of anI edge.

At the next level up, we recognize that edges with different names
in the incidence symbol may still have related shapes. In IH16, for

example, the edge namedb+ is adjacent toc+ , forcing the two edge
shapes to be congruent. In this case, the two edges share the same
shape passed up from the level below.

Finally, the topmost level maps the unit interval to an edge of the
tiling polygon; this mapping will move an edge shape from its nor-
malized coordinate system into a portion of the tile’s outline. At this
level, all edges with the same name in the incidence symbol share
a lower-level shape object.

Specific tiles are stored in tile files, which are simply XML docu-
ments.

6.3 Interactive tools

To provide a convenient interface to the Escherization algorithm,
and to explore the mathematical and aesthetic properties of iso-
hedral tilings in general, we have constructed several graphical
tools on top of the tile library and optimizer, using the free toolkits
GTK+ [19] andGTK-- [12].

The simplest of these tools is a utility for tracing goal shapes from
images. An image can be loaded into a viewer where the user can
trace an outline of an image by hand. The outline can then be saved
and passed to the optimizer.

The more sophisticated tool is a rich viewer and editor for tile
files. The editor is highly responsive, running at interactive rates
on an off-the-shelf Linux system with no graphics acceleration. Be-
cause of the deep sharing of information in the tile representation,
when a part of the tile is edited, the system
provides immediate feedback by showing all
parts of the tile (and tiling) that are affected
by the change.

When subdivision-based edges are enabled,
we provide a novel gauge-based interface for
editing weights on control points. The gauge
pops up at the vertex location and is set with
a radial motion. Setting weights integrates very comfortably with
the general process of editing the vertices.

6.4 Filling a region with tiles

The most basic drawing operation for a tiling is to fill a region of
the plane with copies of the tile. Beginning with a tile in its local
coordinate system and a viewing region, we need to find the rigid
motions to apply to the tile that replicate it across the region.

To find these motions, we project the viewing region’s corners into
the coordinate system formed by the tiling’s translation vectors, de-
rived from the template’s rules. In that coordinate system, the trans-
lational units become lattice squares; the lattice squares that inter-
sect the projection of the viewing region are the ones that need to
be drawn. For each needed translation, we place a tile relative to the
rigid motion formed by composing the translation with each of the
aspect transforms in turn.

7 Decorations and rendering

The output of the core Escherization algorithm is a geometric de-
scription of a tile, not a finished ornamental design. To complete the
Escherization process, we need to surround the core algorithm with
tools to add decorations to tiles and create high-quality renderings
of the results. We have explored the use of both vector-based and
image-based decorations and rendering styles.

A tile maintains a set ofmarkings, sequences of weighted subdi-
vision control points with various drawing attributes. Markings can
be open, closed or filled, polygonal or subdivided, and have variable
line thickness, line colour and fill colour. The line and fill colours
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Figure 12 Timelines for two sample Escherization runs. Each step shows the current best tile in the system (in red) overlaid on the goal shape. The caption indicates
the elapsed time, the score for that tile, and its isohedral type. The second goal shape is the penguin from Figure 15(c).

can also be mapped according to the tiling’s colouring. The mark-
ings can be created and edited from within the interactive tool, and
are stored in the tile file as fragments of XML. The editor can also
render a tiling decorated with markings as PostScript.

It may also be desirable to fill the interior of a tile with image-based
markings. We have implemented an image-based tiling renderer us-
ing libart , a freely-available image manipulation library [16]. The
renderer takes a tile file and a set of images to serve as backdrops.
For each tile in a region, it starts with the image backdrop for that
tile’s colour, applies a transparent wash of the tile colour, rasterizes
the markings, draws an outline, and transforms the composited tile
into its position in the final rendering.

The natural choice for an image-based marking is the interior of
the goal shape in the image that was originally traced. Using the
correspondence provided by the polygon comparison metric, we do
a Beier-Neely style image warp [3] to deform the interior of the
goal shape in the source image into the interior of the Escherized
tile shape. When the deformation is not too great, we end up with
an attractive tiling out of motifs that resemble the original image.
When the automatically-determined correspondence produces too
much distortion (which can happen when the goal shape and tile
shape differ in level of detail), it can be edited by hand to create a
better match.

To further increase the appeal of an image-based rendering, we ap-
ply various painterly effects to the warped tile image before replica-
tion. This post-processing step gives the artist creative control over
the appearance of the final tiling, and can bring the result closer to
the informal hand-drawn style of Escher’s notebook drawings.

8 Results

We have used our Escherization implementation and decoration
tools to produce a number of ornamental tilings from various
sources of imagery.

Figure 12 shows snapshots from two sample runs of the Escherizer.
The goal shape in the first run is a simple test polygon, part of a
series used to verify and tune the optimizer. The second goal shape
is a more typical outline traced from an image. The more compli-
cated shape takes longer to run, and the convergence is not quite as
complete (as should be expected from a real-world outline).

Figure 13 A comparison between the tile returned by the optimizer and the
same tile with user modifications. Note also that the second tile has subdivi-
sion enabled.

Figure 13 shows the tile result produced by the optimizer for a
teapot image, followed by the tile after a small amount of hand-
tweaking in the interactive editor. Even when manual intervention
improved the overall appeal of a tiling, Escherization did the hard
work of determining how to make the goal shape fit together with
itself in the first place. The edits shown here took a minute or two to
perform and were fairly typical of our experience in creating tilings
in this fashion.

The remaining results can be seen in Figures 14 and 15. Figures 15
(d) is rendered as line art, and the remaining examples use the
image-based renderer. In all cases, the optimizer generated a tile
shape that was then modified slightly in the editor. The source im-
age was warped into the tile shape, and copies of the warped image
were recoloured and edited to make the final rendering. The user
intervention was primarily to exert creative control, and rarely to
guide the optimization process. On some occasions, it was helpful
to watch the optimizer discover a tiling type suitable for a given
goal shape, then stop and restart it with many tilings of that type,
resulting in a narrower and deeper search.

9 Discussion

Most outlines are not tiles. For just about any goal shape, an Escher-
izer will have to produce an approximation, and a better Escherizer
will produce a closer approximation. A perfect Escherizer would
determine the smallest distance over all possible tile shapes, and
return the tiling that achieves that bound. Our imperfect optimizer,
by contrast, coarsely samples the space of isohedral tilings in a di-
rected fashion and returns the best sample it finds. Consequently,
there are seemingly easy cases, such as the one in Figure 16 that
our algorithm cannot successfully Escherize.
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(a)Dogs; Dogs Everywhere(IH4) (b) Pigs in 2-Space(IH3)

(c) Tea-sselation(IH28) (d) Twisted Sisters(IH86)

Figure 14 Some examples of Escherized images and the tilings they generate. Hamm the pig appears courtesy of Disney/Pixar.
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(a)Sketchy Dogs(IH6) (b) A Plague of Frogs(IH6)

(c) Tux-ture mapping(IH6) (d) Bubbles the Cat(IH1)

Figure 15 More examples of Escherization. Tux the Penguin appears courtesy of Larry Ewing (lewing@isc.tamu.edu ). Sketchy Dog appears courtesy of Disney/Pixar.
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Figure 16 A tile for which Escherization performs badly, and a tiling that can
be generated from it.

In practice, our Escherization system performs well on convex or
nearly convex shapes. The shapes that tend to fail are the ones with
long, complicated edges between the tiling vertices. It is difficult
for the optimizer to come up with just right the sequence of vertex
adjustments to push a tendril of detail out, especially when con-
strained by the “no non-uniform noise” condition of the metric.
Furthermore, in our shape comparison metric, the importance of
a section of outline is directly proportional to its fraction of the
perimeter of the goal shape, even if from our own perspective out-
lines may obey different measures of significance. For example, the
precise profile edge of a face in silhouette, descending along eyes,
nose, and mouth, is much more important to us than the hairline.
But to the current shape metric these might be relatively insignifi-
cant details. It would be valuable to investigate an extension to the
polygon comparison metric wherein a section of outline could be
assigned a measure of importance, a weight controlling which parts
of the polygon should match more closely.

Moreover, although Escher’s tiles are almost always immediately
recognizable as particular kinds of animals, they generally bear lit-
tle actual resemblance to a real image: they are more like conven-
tionalizations, or cartoons. Our optimizer does not “understand” the
shapes it is manipulating, so it has no way to deform them while
preserving their essential recognizability. It must instead rely on a
purely geometric notion of proximity.

All this being said, the Escherizer we have built performs remark-
ably well on many different shapes for which no tiling is obvious.
Who would have guessed that a teapot could tile the plane? We cer-
tainly couldn’t. Even when the optimizer fails to find an ideal tiling,
it often finds a tiling that is close enough that it is easily converted
into an acceptable result. Thus, it allows us to work in much the
same way that Escher did, only with a very close starting point and
more helpful interactive tools.

This research suggests many future directions, including general-
izing our algorithms to handle multihedral and aperiodic tilings,
parquet deformations [13, Chap. 10], or tilings over non-Euclidean
domains, such as the hyperbolic plane [7]. Another intriguing idea
is to allow some flexibility in the goal shape as well. For instance,
instead of a 2D shape, we might use a 3D (and potentially parame-
terized) model and attempt to automatically discover a camera po-
sition from which the view of the model is most easily Escherized.
Finally, along the lines of creating Escher tilings automatically is
the problem of “automatic conventionalization”: somehow creating
not just the tile boundaries, but the line-art graphical decorations
that go inside the tilings, more or less automatically from a refer-
ence image.
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