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QuickHull

Find a point, p € S, with minimum X-coordinate, and a point, r
€ S, with maximum x-coordinate. Clearly, p and r are on the
convex hull of S.

For each recursive call, we have a set of points, S' € S, inside
a triangle with base pr, for which Quickhull determines the
point, g in S, that is farthest from the segment pr. Then we
prune away points inside the triangle (p, q, r)

Partition the remaining points of S’ into those above pq and qr
and in bounding triangles defined by the
tangents,respectively, and we recursively solve the problem
for each of these subsets if they are nonempty.
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QuickHull Analysis

» Hopefully, we split evenly in each recursive
call, which would lead to a running time of
O(n log n), but this is not guaranteed.

* Worst-case running time: O(nh).
« Example: (x,x?) for x=2', i=1,2,3,...
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Randomized QuickHull

Find a point, p € S, with minimum Xx-coordinate, and a point, r €
S, with maximum x-coordinate. Clearly, p and r are on the
convex hull of S.

For each recursive call, choose a point, g, uniformly at random.

Shoot a ray perpendicular to pr and find the bridge edge, (s,t),
Intersected by this ray.

Partition the remaining points of S’ into those above ps and gt
and in bounding triangles and we recursively solve the problem
for each of these subsets if they are nonempty.
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Ray Shooting — Randomized

Let (s,t) + (g,q) be our initial candidate convex hull (degenerate) bridge edge.
Let (s,t) initially define a horizontal line, st, through g.

Let R; denote the left halfplane defined by the vertical line through gq.

Let R, denote the right halfplane defined by the vertical line through g¢.

Let S; = S, = {q} be the set of points processed so far that are respectively in R; and R,.

Randomly permute the points in S = {p1,p2,...,pPn}-
for 2 < 1 ton do
if p; is above the line st then
if p; is in K] then

Find the point, ¢/, in S, such that p;#’ minimizes the angle with the z-axis.

Let (s,t) = (pi, ).

else

Find the point, s’, in 5; such that sp; minimizes the angle with the z-axis.

Let (s,t) = (s',pi)-
if p; € R; then add p; to 5;.

if p; € R, then add p; to S;.
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Ray Shooting — Analysis

Theorem 2. Algorithm RayShoot performs at most 2n orientation tests in expectation.

Proof: The running time analysis follows by a simple backwards analysis. Let X; be a 0-1 random
variable that is 1 if and only if the condition in line 8 in the ray-shooting algorithm is true. Since
the searching operations in lines 10 and 13 use an orientation test for each member of S, (resp.,
S;), the total number of orientation tests performed by RayShoot is at most

n
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where P; is the probability that the point p; is above the line st. Now consider the iterations of
RayShoot backwards, and note that p; will satisfy the condition in line 8 if it is one of the two
points that defines the edge of the convex hull of gU {p1,pa, ..., pi} intersecting R. Thus, P; <2 /1,
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which implies that the expected number of orientation tests performed by RayShoot is

n
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Theorem 3. Given a set, S, of n points in the plane, the randomized Ray-shooting Quickhull
algorithm constructs the conver hull of S in O(nlogh) ezpected time, where h is the number of
points of S on the convexr hull.

Proof: The proof is an adaptation of an analysis of the expected running time of the Quicksort
algorithm [1,19,21]. Let T'(n, k) denote the expected running time of the randomized Ray-shooting
Quickhull algorithm on an instance of size n > 2 with hull size h > 2. Also, to simplify the
notation, let T'(0, k) = 0 and T'(1, ) = 0. Then, by the way a problem instance in the randomized
Ray-shooting Quickhull algorithm is divided, there is a constant ¢ > 1, such that the general case

is as follows:
n—1

T(n, h)(cn—i—l hl_:l‘_lf?.}{ {T(i,h1)+T(n—1i—1,ha)},

where, by Theorem 2, ¢ = 2 if we are focused on counting orientation tests. We claim that there is a
constant, d > 1, such that T'(n,h) < dn, for n > 2 and h = 1,2, and T'(n, h) < dnlog h otherwise;!
hence, by this induction hypothesis,

n—2
T(n,h) <cn+ L] (2d(n —1)log(h—1) + Z max {dz logh; +d(n—i—1)log hg})
n hi+ha=
By elementary calculus, the righthand side is maximized with hy = ¢2h/n and hy = (n —i — 1)h/n.
Thus,

i=2

n—2
T(n,h) < en+ g (2(1’1 —1)log(h—1) + Z (ilog(ih/n) + (n —i—1)log((n —i— l)h/’n)))
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By another application of calculus,

n—1

T
Zilogi < ] (zlogz)dz < (n?/2)logn —n?/441/4.
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Also, it is well-known that Z::ll i =n(n — 1)/2. Therefore,

en+dnlogn —dn/2+d/(2n) +d(n —1)logh —d(n —1)logn

T(n,h) <
< dnlogh,

for d = 2¢ + 1. [ ]
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