Computational Geometry

d-Dimensional Linear Programming

Michael T. Goodrich

with some slides adapted from David Eppstein, licensed under Creative Commons Attribution 4.0 International License

Review: 2D Linear Programming

Find values for some variables

 X, Y

Obey linear inequalities, called "constraints"

$$
x \ge 0
$$

$$
y \ge 0
$$

$$
x + y \ge 1
$$

$$
x + y \le 4
$$

Minimize or maximize a linear "objective function"

 $max 2x + y$

Think of variables as coordinates

"Feasible region": convex set, points obeying constraints

Min or max is a vertex

Application – Machine Learning

Given red points and blue points with coordinates (x_i, y_i)

Variables: m, b representing the line $y = mx + b$

Constraints:

 $y_i \geq mx_i + b$ (for red points) $y_i \leq mx_i + b$ (for blue points)

With one more variable, can maximize vertical distance to line \Rightarrow idea behind support vector machine learning

3-Dimensional Linear Programming

Solve this linear programming problem.

Application – Linear Regression

Regression: Fit a line $y = mx + b$ to a set of data points x_i, y_i minimizing some combination of errors $|(mx_i + b) - y_i|$

> L_{∞} : Minimize max error; variables *m*, *b*, *e*, constraints $-e \le (mx_i + b) - y_i \le e$, objective min e

More useful in metrology (how close to flat is this set of measurements of a surface) than statistics, because L_2 regression (least squares) is easier, less sensitive to outliers

Application – 3D Machine Learning

- Given red points and green points with coordinates (x_i, y_i, z_i)
- Variables: s, t, b representing the plane $z = sx + ty + b$
- Constraints:

 $z_i \geq sx_i + ty_i + b$ (for red points) $z_i \leq sx_i + ty_i + b$ (for green points)

With one more variable (in 4D), we can maximize vertical distance to plane

Seidel's Algorithm for d-dimensional LP

To solve a d-dimensional linear program:

```
Randomly permute the constraints
```
Choose coordinates $\pm\infty$ for an optimal solution point (whichever of $+\infty$ or $-\infty$ is better for objective function)

For each constraint $\sum a_i x_i \leq b$, in a random order:

Check whether solution point obeys the constraint

If not, solve recursively a $d-1$ -dimensional LP and replace solution point by the result

The recursive problem works in the $(d-1)$ -dimensional subspace of points $\sum a_i x_i = b$, and uses the constraints that have already been added, restricted to that subspace, in a new random order

Backwards Analysis

After processing the *i*th constraint, what is the probability that you had to make a recursive call for it?

In any d-dimensional LP, some subset of d constraints is exactly satisfied, and determine the solution

- \triangleright Solution is solution to d linear equations in d variables
- Eewer constraints \Rightarrow can move solution in a linear subspace and get better in some direction
- More constraints \Rightarrow some of them are redundant and not needed to determine solution

If you just made a recursive call, the last constraint you processed was one of these d constraints

Random permutation \Rightarrow Happens with probability $\leq d/i$ (Can be $\langle d/i \rangle$ if $d > i$ or for multiple sets of d right constraints)

Expected Running Time

Let $T(d, n)$ denote the expected time to solve a d-dimensional LP with *n* constraints

Expected time for *i*th constraint: $O(d)$ to check constraint, plus (probability of making a recursive call) \times (time if we make the call)

Sum this time over all constraints:

$$
\mathcal{T}(d,n)\leq O(dn)+\sum_{i=1}^n\frac{d}{i}\mathcal{T}(d-1,i-1)
$$

Prove by induction that $T(d, n) = O(d!n)$ Induction hypothesis \Rightarrow sum becomes $\sum d(d-1)!(i-1)/i < d!n$

Minimum-area Enclosing Annulus

• Find the minimum-area annulus, which is defined by 2 concentric circles, such that all *n* points are between the two circles.

Minimum-area Enclosing Annulus

 $P = 2D$ point set

Let us write this as an optimization problem in the variables $c = (c_1, c_2) \in \mathbb{R}^2$ (the center) and $r, R \in \mathbb{R}$ (the small and the large radius).

minimize $\pi(R^2 - r^2)$ subject to $r^2 \le ||p - c||^2 \le R^2$, $p \in P$. (by squaring the distance)

This neither has a linear objective function nor are the constraints linear inequalities. But a variable substitution will take care of this. We define new variables

$$
u := r^2 - ||c||^2, \tag{11.3}
$$

$$
v := R^2 - ||c||^2. \tag{11.4}
$$

Omitting the factor π in the objective function does not affect the optimal solution (only its value), hence we can equivalently work with the objective function $v - u = R^2 - r^2$. The constraint $r^2 \leq ||p - c||^2$ is equivalent to $r^2 \leq ||p||^2 - 2p^Tc + ||c||^2$, or

 $u + 2p^{T}c \le ||p||^{2}$.

11 from https://ti.inf.ethz.ch/ew/lehre/CG12/lecture/Chapter%2011%20and%2012.pdf

Minimum-area Enclosing Annulus

 $P = 2D$ point set

In the same way, $||p - c|| \le R$ turns out to be equivalent to

 $v + 2p^Tc \ge ||p||^2$.

This means, we now have a *linear* program in the variables u, v, c_1, c_2 .

maximize $u - v$ subject to $u + 2p^T c \le ||p||^2$, $p \in P$ $v + 2p^Tc \ge ||p||^2$, $p \in P$.

From optimal values for u, v and c, we can also reconstruct r^2 and R^2 via (11.3) and (11.4). It cannot happen that r^2 obtained in this way is negative: since we have $r^2 \leq ||p - c||^2$ for all p, we could still increase u (and hence r^2 to at least 0), which is a contradicition to $u - v$ being maximal.

Reference

• Raimund Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete & Computational Geometry, 6(5):423–434, 1991. doi: 10.1007/BF02574699.