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Review: 2D Linear Programming

Find values for some variables

X, Y

Obey linear inequalities, called
“constraints”

x>0
y=>0
X4y =1
x+y<4

Minimize or maximize a linear
“objective function”

max2x + y

x+y<4

X +y= 1 ECaSIe

Think of variables as
coordinates

“Feasible region”: convex set,
points obeying constraints

x>0

region

Y

x=4,y=0

Min or max is a vertex



Application — Machine Learning

Given red points and blue °
points with coordinates (x;, y;) e ® .

Variables: m, b representing ®
the line y = mx + b

Constraints:
yi > mx; + b (for red points)
yi < mx; + b (for blue points)

With one more variable, can O
maximize vertical distance to O o
line = idea behind support O
vector machine learning



3-Dimensional Linear Programming

Solve this linear programming problem.

Maximize P = 20xy + 10x; + 15x3 D(0,0,10)
. C(3.75,0,8.75)
Subject to: 3x1 + 2xp + 5x3 <€ 55 »
2)(1 + X2 + X3 £ 26 B(508)
X{ + Xp + 3x3 £ 30 £0.155)
9X4 + 2X9 + 4x3 < 57 _
XX , X , X3 2 0 e 1(1.8,20.8,1.6)
¢ . F(0,25,1)
A(11.4,0,0) . .
H(5,16,0) G(0,26,0)

Image from https://people.richland.edu/james/ictcm/2006/3dsimplex.html 4



Application — Linear Regression

Regression: Fit a line y = mx + b to a set of data points x;, y; minimizing some
combination of errors |(mx; + b) — yi

Loo: Minimize max error; variables m, b, e,
constraints —e < (mx; + b) — y; < e, objective mine

y=mx+b+e

More useful in metrology (how close to flat is this set of measurements of a surface)
than statistics, because L, regression (least squares) is easier, less sensitive to outliers
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Application — 3D Machine Learning

« Given red points and green points
with coordinates (x;, Vi, z;)

« Variables: s, t, b representing the
planez=sx+ty+b

« Constraints:
Z, 2 sx;, + ty, + b (for red points)
Z; < sx; + ty; + b (for green points)

N
0

« With one more variable (in 4D), we
can maximize vertical distance to
plane

Image from https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca4 7 6



Seidel’s Algorithm for d-dimensional LP

To solve a d-dimensional linear program:
Randomly permute the constraints

Choose coordinates 00 for an optimal solution point
(whichever of 400 or —oo is better for objective function)

For each constraint ) | ajx; < b, in a random order:
Check whether solution point obeys the constraint
If not, solve recursively a d — 1-dimensional LP

and replace solution point by the result

The recursive problem works in the (d — 1)-dimensional subspace of points ) ajx; = b,
and uses the constraints that have already been added, restricted to that subspace, in
a new random order



Backwards Analysis

After processing the ith constraint, what is the probability that you had to make a
recursive call for it?

In any d-dimensional LP, some subset of d constraints is exactly satisfied, and
determine the solution

» Solution is solution to d linear equations in d variables

» Fewer constraints = can move solution in a linear subspace and get better in
some direction

» More constraints = some of them are redundant and not needed to determine
solution

If you just made a recursive call, the last constraint you processed was one of these d
constraints

Random permutation = Happens with probability < d/i
(Can be < d/i if d > i or for multiple sets of d right constraints)



Expected Running Time

Let T(d, n) denote the expected time to solve a d-dimensional LP with n constraints

Expected time for ith constraint: O(d) to check constraint, plus
(probability of making a recursive call) x (time if we make the call)

Sum this time over all constraints:

n

T(d,n) < O(dn)+)
=1

9 d—1,i—1)

/

Prove by induction that T(d,n) = O(d!n)
Induction hypothesis = sum becomes » d(d — 1)!(i —1)/i < d!n



Minimum-area Enclosing Annulus

* Find the minimum-area annulus, which is
defined by 2 concentric circles, such that all
n points are between the two circles.

P = 2D point set
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Minimum-area Enclosing Annulus

P = 2D point set

Let us write this as an optimization problem in the variables ¢ = (cq,cy) € R? (the
center) and r,R € R (the small and the large radius).

minimize 7t(R? — r?)
subject to > < |lp—c||?<R? peP. (bysquaring the distance)

This neither has a linear objective function nor are the constraints linear inequalities.
But a variable substitution will take care of this. We define new variables

el (11.3)
v 2 el (11.4)

Omitting the factor 7t in the objective function does not affect the optimal solution (only
2

its value), hence we can equivalently work with the objective function v —u = R? — 2.
The constraint 12 < ||p — c||? is equivalent to 12 < ||p||? —2p'c + ||c||?, or

u+2p'e < |p|% 1
from https://ti.inf.ethz.ch/ew/lehre/CG12/lecture/Chapter%2011%20and% 2012. pdf



Minimum-area Enclosing Annulus

P = 2D point set

In the same way, ||p — c|| < R turns out to be equivalent to

T 2
v+2p ez |p|*
This means, we now have a linear program in the variables u,v, cq, Co:

maximize u—vV
subject to u+2p'c < |p|?, peP
v+2pTe > [pl?, peP.

From optimal values for u, v and c, we can also reconstruct r and R? via (I1.3)) and (11.4).
It cannot happen that r? obtained in this way is negative: since we have 1 < ||p — c||?
for all p, we could still increase u (and hence 12 to at least 0), which is a contradicition

to u — v being maximal.

from https://ti.inf.ethz.ch/ew/lehre/CG12/lecture/Chapter%2011%20and% 2012.pdf 12
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