Computational Geometry

d-Dimensional Linear Programming

Michael T. Goodrich

with some slides adapted from David Eppstein, licensed under Creative Commons Attribution 4.0 International License

Review: 2D Linear Programming

Find values for some variables

x, y

Obey linear inequalities, called "constraints"

$$x \ge 0$$
$$y \ge 0$$
$$x + y \ge 1$$
$$x + y \le 4$$

Minimize or maximize a linear "objective function"

 $\max 2x + y$

Think of variables as coordinates

"Feasible region": convex set, points obeying constraints

Min or max is a vertex

Application – Machine Learning

Given red points and blue points with coordinates (x_i, y_i)

Variables: m, b representing the line y = mx + b

Constraints:

 $y_i \ge mx_i + b$ (for red points) $y_i \le mx_i + b$ (for blue points)

With one more variable, can maximize vertical distance to line \Rightarrow idea behind support vector machine learning

3-Dimensional Linear Programming

Solve this linear programming problem.

Maximize	Ρ	=	20x ₁	+	10x ₂	+	15x ₃			
Subject to:			3x ₁	+	2x ₂	+	5x ₃	≤	55	
			2x ₁	+	x ₂	+	x ₃	≤	26	
			x ₁	+	x ₂	+	3x ₃	≤	30	
			5x ₁	+	2x ₂	+	4x ₃	≤	57	
			x ₁	,	x ₂	,	x ₃	≥	0	

Application – Linear Regression

Regression: Fit a line y = mx + b to a set of data points x_i, y_i minimizing some combination of errors $|(mx_i + b) - y_i|$

 L_{∞} : Minimize max error; variables m, b, e, constraints $-e \leq (mx_i + b) - y_i \leq e$, objective min e

More useful in metrology (how close to flat is this set of measurements of a surface) than statistics, because L_2 regression (least squares) is easier, less sensitive to outliers

Application – 3D Machine Learning

- Given red points and green points with coordinates (x_i, y_i, z_i)
- Variables: s, t, b representing the plane z = sx + ty + b
- Constraints:

 $z_i \ge sx_i + ty_i + b$ (for red points)

- $z_i \le sx_i + ty_i + b$ (for green points)
- With one more variable (in 4D), we can maximize vertical distance to plane

Seidel's Algorithm for d-dimensional LP

To solve a *d*-dimensional linear program:

```
Randomly permute the constraints
```

Choose coordinates $\pm \infty$ for an optimal solution point (whichever of $+\infty$ or $-\infty$ is better for objective function)

For each constraint $\sum a_i x_i \leq b$, in a random order:

Check whether solution point obeys the constraint

If not, solve recursively a d - 1-dimensional LP and replace solution point by the result

The recursive problem works in the (d-1)-dimensional subspace of points $\sum a_i x_i = b$, and uses the constraints that have already been added, restricted to that subspace, in a new random order

Backwards Analysis

After processing the *i*th constraint, what is the probability that you had to make a recursive call for it?

In any d-dimensional LP, some subset of d constraints is exactly satisfied, and determine the solution

- Solution is solution to d linear equations in d variables
- ► Fewer constraints ⇒ can move solution in a linear subspace and get better in some direction
- More constraints ⇒ some of them are redundant and not needed to determine solution

If you just made a recursive call, the last constraint you processed was one of these d constraints

Random permutation \Rightarrow Happens with probability $\leq d/i$ (Can be < d/i if d > i or for multiple sets of d right constraints)

Expected Running Time

Let T(d, n) denote the expected time to solve a d-dimensional LP with n constraints

Expected time for *i*th constraint: O(d) to check constraint, plus (probability of making a recursive call) \times (time if we make the call)

Sum this time over all constraints:

$$T(d,n) \leq O(dn) + \sum_{i=1}^{n} \frac{d}{i} T(d-1,i-1)$$

Prove by induction that T(d, n) = O(d!n)Induction hypothesis \Rightarrow sum becomes $\sum d(d-1)!(i-1)/i < d!n$

Minimum-area Enclosing Annulus

• Find the minimum-area annulus, which is defined by 2 concentric circles, such that all *n* points are between the two circles.

Minimum-area Enclosing Annulus

P = 2D point set

Let us write this as an optimization problem in the variables $c = (c_1, c_2) \in \mathbb{R}^2$ (the center) and $r, R \in \mathbb{R}$ (the small and the large radius).

 $\begin{array}{ll} \mbox{minimize} & \pi(R^2-r^2) \\ \mbox{subject to} & r^2 \leqslant \|p-c\|^2 \leqslant R^2, \quad p \in \mathsf{P}. \end{array} \mbox{ (by squaring the distance)} \end{array}$

This neither has a linear objective function nor are the constraints linear inequalities. But a variable substitution will take care of this. We define new variables

$$u := r^2 - ||c||^2,$$
 (11.3)

$$\nu := R^2 - \|c\|^2. \tag{11.4}$$

Omitting the factor π in the objective function does not affect the optimal solution (only its value), hence we can equivalently work with the objective function $\nu - \mu = R^2 - r^2$. The constraint $r^2 \leq \|p - c\|^2$ is equivalent to $r^2 \leq \|p\|^2 - 2p^Tc + \|c\|^2$, or

 $\mathfrak{u} + 2\mathfrak{p}^{\mathsf{T}}\mathfrak{c} \leq \|\mathfrak{p}\|^2.$

from https://ti.inf.ethz.ch/ew/lehre/CG12/lecture/Chapter%2011%20and%2012.pdf 11

Minimum-area Enclosing Annulus

P = 2D point set

In the same way, $\|p - c\| \leqslant R$ turns out to be equivalent to

 $\nu + 2p^{\mathsf{T}}c \geqslant \|p\|^2.$

This means, we now have a *linear* program in the variables u, v, c_1, c_2 :

maximize u - vsubject to $u + 2p^{T}c \leq ||p||^{2}$, $p \in P$ $v + 2p^{T}c \geq ||p||^{2}$, $p \in P$.

From optimal values for u, v and c, we can also reconstruct r^2 and R^2 via (11.3) and (11.4). It cannot happen that r^2 obtained in this way is negative: since we have $r^2 \leq ||p - c||^2$ for all p, we could still increase u (and hence r^2 to at least 0), which is a contradicition to u - v being maximal.

Reference

 Raimund Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete & Computational Geometry, 6(5):423–434, 1991. doi: 10.1007/BF02574699.