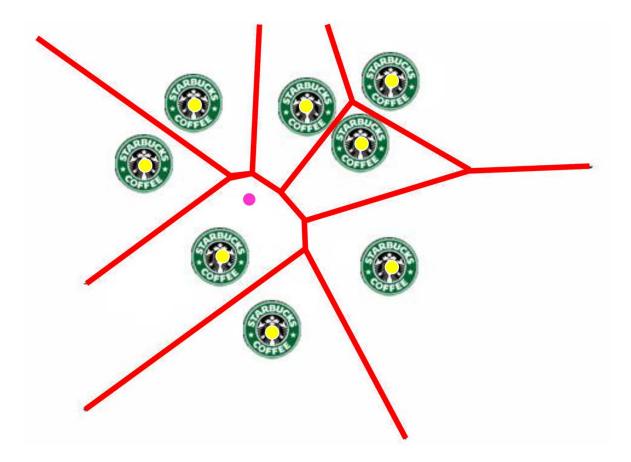
Computational Geometry

Michael T. Goodrich Introduction Convex Hulls

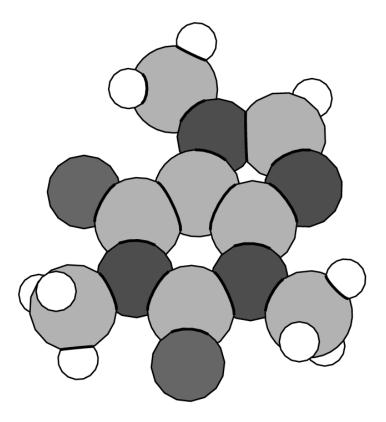
Definition

• **Computational geometry** involves the design, analysis and implementation of efficient algorithms for solving geometric problems, e.g., problems involving points, lines, segments, triangles, polygons, etc.

Application: Location Data

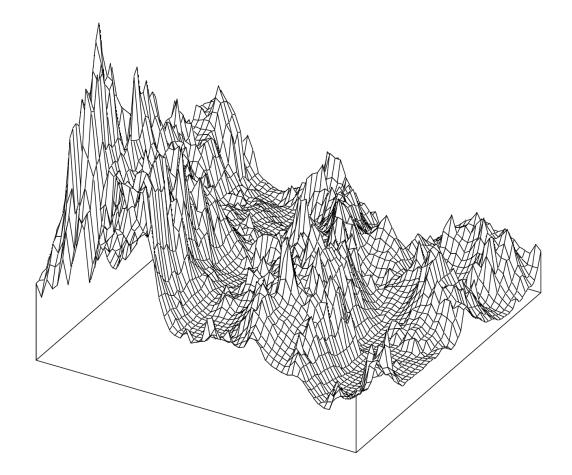


Application: Science

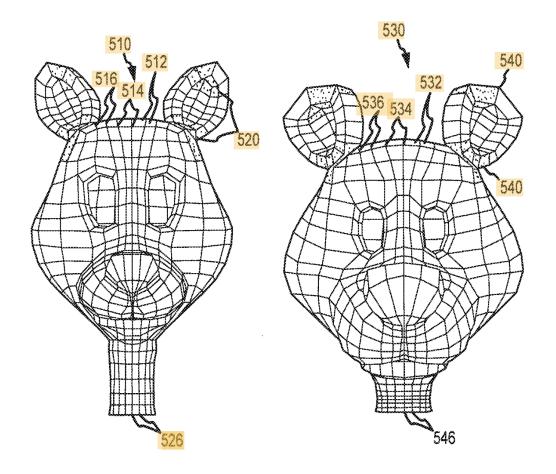


caffeine

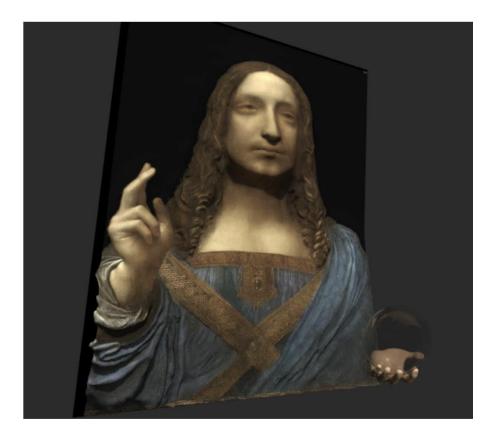
Application: Geographic Information Systems (GIS)



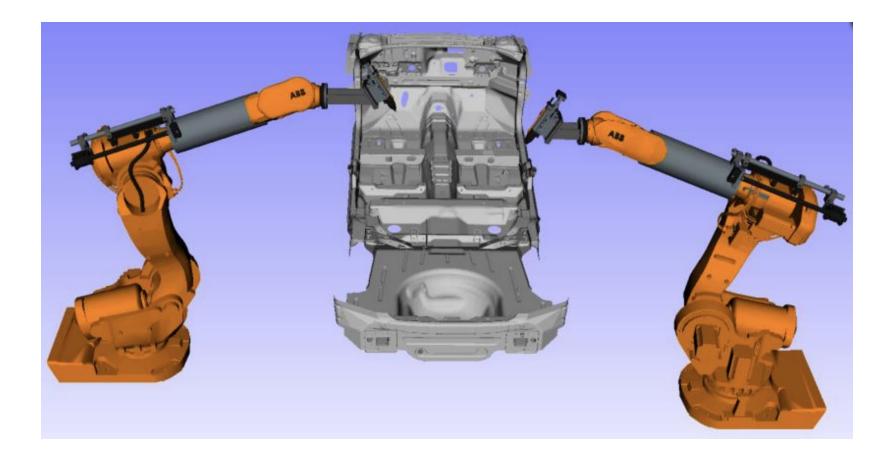
Application: Solid Modeling



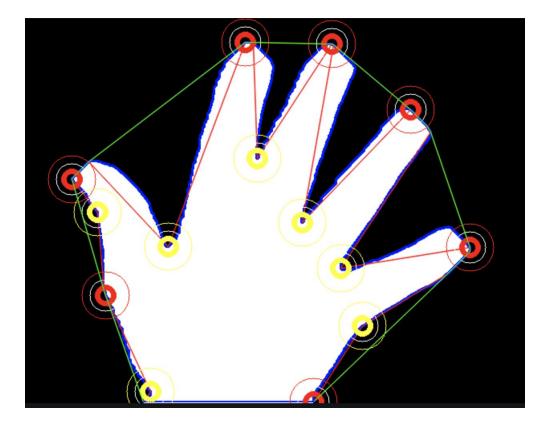
Application: Computer Graphics



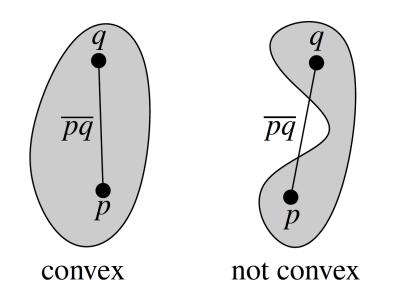
Application: Motion Planning and Robotics



Application: Shape Analysis and Computer Vision

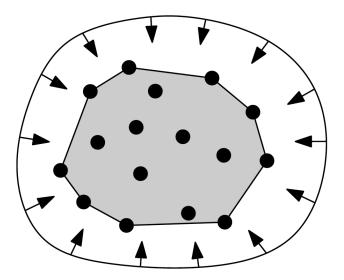


Convexity



Convex hull

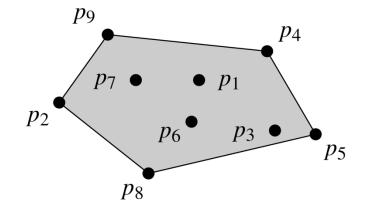
• Smallest convex set containing all *n* points



Convex hull

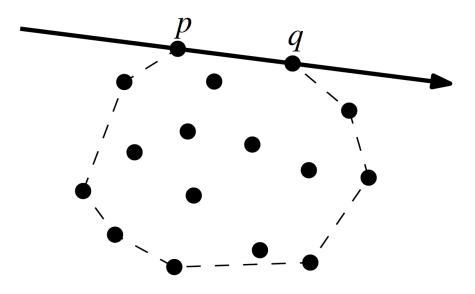
• Smallest convex set containing all *n* points

input = set of points: $p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9$ output = representation of the convex hull: p_4, p_5, p_8, p_2, p_9



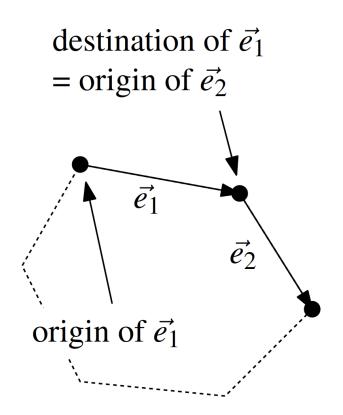
Useful Primitives

Sidedness



Useful Primitives

• Orientation test: right turn or left turn



Computing Orientations

orientation
$$(p, q, r) = \operatorname{sign} \left(\det \begin{bmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{bmatrix} \right) =$$

$$= \operatorname{sign} \left((q_x - p_x) (r_y - p_y) - (q_y - p_y) (r_x - p_x) \right),$$
where point $p = (p_x, p_y), \dots$

$$= \operatorname{third\ coordinate\ of} = (\vec{u} \times \vec{v}),$$
Three points

$$= \operatorname{lie\ on\ common\ line} = 0$$

$$= \operatorname{lie\ on\ common\ line} = 0$$

$$= \operatorname{form\ a\ left\ turn} = +1 (\operatorname{positive})$$

$$= -1 (\operatorname{negative})$$

A First Convex Hull Algorithm

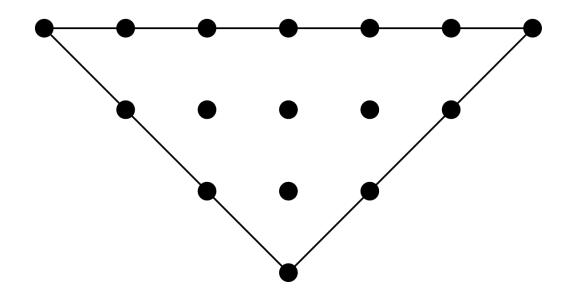
Algorithm SLOWCONVEXHULL(*P*)

Input. A set P of points in the plane.

Output. A list \mathcal{L} containing the vertices of $C\mathcal{H}(P)$ in clockwise order.

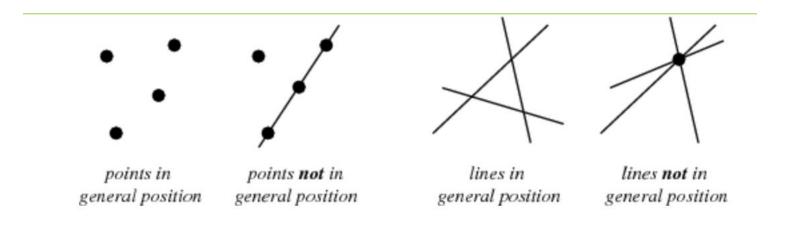
- 1. $E \leftarrow \emptyset$.
- 2. for all ordered pairs $(p,q) \in P \times P$ with p not equal to q
- 3. **do** *valid* \leftarrow **true**
- 4. **for** all points $r \in P$ not equal to p or q
- 5. **do if** r lies to the left of the directed line from p to q
- 6. **then** $valid \leftarrow false$.
- 7. **if** *valid* **then** Add the directed edge \overrightarrow{pq} to *E*.
- 8. From the set *E* of edges construct a list \mathcal{L} of vertices of $\mathcal{CH}(P)$, sorted in clockwise order.

Degeneracies



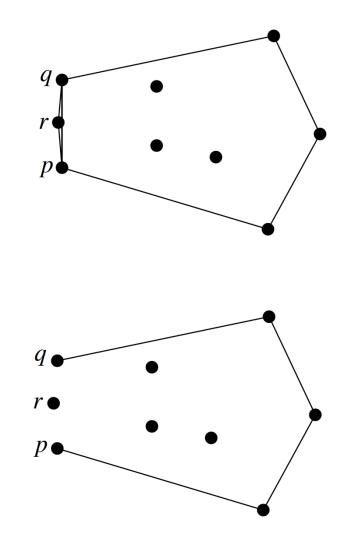
Dealing with Degeneracies

 Assume input is in general position and go back later to deal with degeneracies



Robustness

 Computing geometric primitives can introduce errors, e.g., if computations are done using floating point



Floating Point Numbers are not exact

a) Limited numerical precision of real numbers

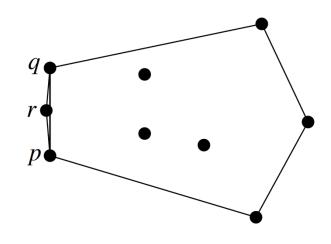
Numbers represented as normalized

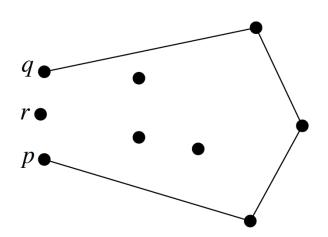
				31	30	23 22	2	0
		± <i>m</i> 2 ^{<i>e</i>}		S	exp.		mantisa	
				single	precision			
63	62		52 51					0
S		exponent			mantisa	a		
double precision				[http://cs.wikipedia.org/wiki/Soubor:Single_double_extended2.oif]				

- The mantissa m is a 24-bit (53-bit) value whose most significant bit (MSB) is always 1 and is, therefore, not stored.
- Stored numbers (results) are rounded to 24/53 bits mantissa – lower bits are lost

Dealing with Robustness

- Assume all arithmetic is **exact**.
 - Can be simulated using floating point filters,
 which we might discuss later if there is time
 - Gives rise to a computational model known as the Real RAM





Real RAM Model

• Not:

Real RAM Model

- A <u>"Random Access Machine</u>":
 - a stored program
 - a computer memory: an array of cells
 - a central processing unit
 - Each memory cell or register can store a real number.
- Allowed operations include addition, subtraction, multiplication, and division, as well as comparisons.
- Some people also include things like square-roots and rounding to integers, but this is sometimes considered "cheating".
- When analyzing algorithms for the real RAM, each allowed operation is typically assumed to take <u>constant time</u>.