Computational Geometry

Delaunay Triangulations **Michael Goodrich**

with slides from Carola Wenk and David Eppstein

Triangulation

- Let $P = \{p_1, ..., p_n\} \subseteq R^2$ be a finite set of points in the plane.
- A **triangulation of** *P* is a simple, plane (i.e., planar embedded), connected graph $T=(P,E)$ such that
	- every edge in E is a line segment,
	- the outer face is bounded by edges of CH(*P*),
	- all inner faces are triangles.

Dual Graph

- Let $G = (V, E)$ be a plane graph. The dual graph G^* has
	- a vertex for every face of *G*,
	- an edge for every edge of *G*, between the two faces incident to the original edge

Delaunay Triangulation

• Let *G* be the plane graph for the Voronoi diagram VD(*P*) . Then the dual graph G^* is called the **Delaunay Triangulation** $DT(P)$.

- If *P* is in general position (no three points on a line, no four points on a circle) then every inner face of $DT(P)$ is indeed a triangle.
- DT(*P*) can be stored as an abstract graph, without geometric information. (No such obvious storing scheme for VD(*P*).)

Delaunay Triangulation

• Let *G* be the plane graph for the Voronoi diagram VD(*P*) . Then the dual graph G^* is called the **Delaunay Triangulation** $DT(P)$.

Canonical straight-line embedding for DT(P):

- If *P* is in general position (no three points on a line, no four points on a circle) then every inner face of $DT(P)$ is indeed a triangle.
- DT(*P*) can be stored as an abstract graph, without geometric information. (No such obvious storing scheme for VD(*P*).)

Straight-Line Embedding

- Lemma: $DT(P)$ is a plane graph, i.e., the straight-line edges do not intersect. *q*
- **Proof:** $\begin{bmatrix} p \end{bmatrix}$
	- \overline{pp} is an edge of $DT(P) \Leftrightarrow$ There is an empty closed disk D_p with p and p' on its boundary, and its center \vec{c} on the bisector.
	- Let \overline{q} be another Delaunay edge that intersects *pp'*

 \Rightarrow *q* and *q*['] lie outside of *D_{<i>p*}</sub>, therefore *qq '* also intersects *pc* or *p'c*

- Symmetrically, *pp'* also intersects *qc'* or $\overline{q'c}$
- \Rightarrow (*pc* or $\overline{p'c'}$) and (*qc*' or $\overline{q'c}$) intersect
- \Rightarrow The edges do not lie in different Voronoi cells.
- \Rightarrow Contradiction

Characterization of DT(P)

- Lemma: Let $p, q, r \in P$ let Δ be the triangle they define. Then the following statements are equivalent:
	- a) \triangle belongs to $DT(P)$
	- b) The circumcenter *c* of Δ is a vertex in $VD(P)$
	- c) The circumcircle of Δ is empty (i.e., contains no other point of *P*)

Proof sketch: All follow directly from the definition of DT(*P*) in VD(*P*). By definition of VD(*P*), we know that *p,q,r* are *c*'s nearest neighbors.

• **Characterization I**: Let *T* be a triangulation of *P*. Then $T=DT(P) \Leftrightarrow$ The circumcircle of any triangle in *T* is empty.

Application in scientific computing

Commonly used in finite element mesh generation to generate a mesh after some other method (e.g. quadtrees, week 3) has been used to place points for vertices

Application in geographic information systems

Triangulation of points with elevations \Rightarrow surface in 3d

Given irregularly placed measurements of ground elevation, connect to form 3d model of ground surface

Called a "triangulated irregular net"

Application in face recognition

"DeepFace": used by Facebook to recognize people in photos from 2014 to 2021 (stopped for legal reasons, not technical problems)

Uses six points $(2 \times e$ yes, nose, $3 \times$ mouth) to fit 3d generic model

Map 67 "fiducial marks" on 3d model back to 2d image; Delaunay triangulate

Linearly map each triangle to warp to symmetric "frontal" appearance

Result is passed to a deep neural net

[Taigman et al. 2014]

Euclidean minimum spanning tree

Connect given points by a tree of minimum total edge length

Applications of minimum spanning tree

Original application: making physical connections between geographic locations (power grid) with low construction cost

Clustering: delete longest edge \Rightarrow two clusters as far from each other as possible

Generating a one-dimensional approximation to the shape of a cloud of points

Approximating traveling salesperson tour (tree traversal order gives tour of length $\leq 2 \times$ optimal length)

Minimum spanning tree property

Every edge of the minimum spanning tree is in the DT

All Nearest Neighbors

- All nearest neighbors: Find for each $p \in P$ its nearest neighbor $q \in P$; $q \neq p$.
	- **Empty circle property:** $p, q \in P$ are connected by an edge in $DT(P)$ \Leftrightarrow there exists an empty circle passing through *p* and *q*. **Proof:** " \Rightarrow ": For the Delaunay edge *pq* there must be a Voronoi edge. Center a circle through *p* and *q* at any point on the Voronoi edge, this circle must be empty. " \leftarrow ": If there is an empty circle through p and q, then its center c

has to lie on the Voronoi edge because it is equidistant to *p* and *q* and there is no site closer to *c*.

- **Claim:** In $DT(P)$, every $p \in P$ is adjacent to its nearest neighbors. **Proof:** Let $q \in P$ be a nearest neighbor adjacent to p in $DT(P)$. Then the circle centered at p with q on its boundary has to be empty, so the circle with diameter *pq* is empty and *pq* is a Delaunay edge.
- **Algorithm:** Find all nearest neighbors in $O(n)$ time: Check for each $p \in P$ all points connected to p with a Delaunay edge.

p

q

p q

Theorem: Let $P = \{p_1, \ldots, p_n\}$ with $p_i = (a_i, b_i, 0)$. Let $p^*_{i} = (a_i, b_i, a_i^2 + b^2)$ \mathbf{h}) be the vertical projection of each point p_i onto the paraboloid $z=x^2+y^2$. Then $DT(P)$ is the orthogonal projection onto the plane $\zeta = 0$ of the lower convex hull of $P^* = \{p^*_{1}, \ldots, p^*_{n}\}$.

Pictures generated with Hull2VD tool available at http://www.cs.mtu.edu/~shene/NSF-2/DM2-BETA

Theorem: Let $P = \{p_1, \ldots, p_n\}$ with $p_i = (a_i, b_i, 0)$. Let $p'_i = (a_i, b_i, a_i^2 + b^2)$ \mathbf{h}) be the vertical projection of each point p_i onto the paraboloid $z=x^2+y^2$. Then $DT(P)$ is the orthogonal projection onto the plane $z=0$ of the lower convex hull of $P' = \{p'_{1}, \ldots, p'_{n}\}$.

Pictures generated with Hull2VD tool available at http://www.cs.mtu.edu/~shene/NSF-2/DM2-BETA

Theorem: Let $P = \{p_1, \ldots, p_n\}$ with $p_i = (a_i, b_i, 0)$. Let $p'_i = (a_i, b_i, a_i^2 + b^2)$ \mathbf{h}) be the vertical projection of each point p_i onto the paraboloid $z=x^2+y^2$. Then $DT(P)$ is the orthogonal projection onto the plane $\vec{z}=0$ of the lower convex hull of $P' = \{p'_{1}, \ldots, p'_{n}\}$.

Pictures generated with Hull2VD tool available at http://www.cs.mtu.edu/~shene/NSF-2/DM2-BETA

Theorem: Let $P = \{p_1, \ldots, p_n\}$ with $p_i = (a_i, b_i, 0)$. Let $p'_i = (a_i, b_i, a_i^2 + b^2)$ \mathbf{h}) be the vertical projection of each point p_i onto the paraboloid $z=x^2+y^2$. Then $DT(P)$ is the orthogonal projection onto the plane *z*=0 of the lower convex hull of $P' = \{p'_{1}, \ldots, p'_{n}\}$.

Slide adapted from slides by Vera Sacristan.