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Triangulation

e LetP = {py,..,p,} S R? be afinite set of points in the plane.

« Atriangulation of P is a simple, plane (i.e., planar embedded),
connected graph T=(P,E) such that

— every edge in E is a line segment,
— the outer face Is bounded by edges of CH(P),
— all inner faces are triangles.



Dual Graph

« LetG = (V,E) be aplane graph. The dual graph G* has
— a vertex for every face of G,

— an edge for every edge of G, between the two faces incident to the
original edge



Delaunay Triangulation

« Let G be the plane graph for the VVoronoi diagram VD(P) . Then the
dual graph G* is called the Delaunay Triangulation DT (P).

Canonical straight-line embedding for DT(P):

 If P isin general position (no three points on a line, no four points on a
circle) then every inner face of DT(P) is indeed a triangle.

« DT(P) can be stored as an abstract graph, without geometric
information. (No such obvious storing scheme for VD(P).)
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Straight-Line Embedding

« Lemma: DT(P) is a plane graph, i.e., the straight-line edges do not
Intersect.

* Proof: D
« pp’isanedge of DT(P) << There is an ¥ A pc < V(p)
empty closed disk D, with p and p’ on its Q e V()
boundary, and its center c on the bisector. X pecVp
/

« Let be another Delaunay edge that
intersects pp’

= g and q’ lie outside of D, therefore 5 | 4 qc’ < V()
q "also intersects pc or p’c :

- . . e
« Symmetrically, pp " also intersects gc " or 6
qg'c’ .

= (pcor p’c’) and (gc’ or ¢ ’c’) intersect
= The edges do not lie in different VVoronoi
cells.

— Contradiction U



Characterization of DT(P)

Lemma: Let p,q,reP let A be the triangle they define. Then the
following statements are equivalent:

a) Abelongsto DT(P)
b) The circumcenter c of A is a vertex in VD(P)
c) The circumcircle of A is empty (i.e., contains no other point of P)

Proof sketch: All follow directly from the definition of DT(P) in
VD(P). By definition of VD(P), we know that p,q,r are c’s nearest
neighbors.

Characterization I: Let T be a triangulation of P.
Then T=DT(P) < The circumcircle of any triangle in T is empty.

non-empty circumcircle



Application in scientific computing

Commonly used in finite element mesh generation to generate a mesh after some other
method (e.g. quadtrees, week 3) has been used to place points for vertices
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Application in geographic information systems

Triangulation of points with elevations = surface in 3d

Given irregularly placed measurements of ground elevation, connect to form 3d model
of ground surface

Called a “triangulated irregular net”




Application in face recognition

“DeepFace”: used by Facebook to
recognize people in photos from 2014
to 2021 (stopped for legal reasons, not
technical problems)

Uses six points (2 X eyes, nose,
3 X mouth) to fit 3d generic model

Map 67 “fiducial marks” on 3d model
back to 2d image; Delaunay triangulate

Linearly map each triangle to warp to
symmetric “frontal” appearance

Result is passed to a deep neural net

[Taigman et al. 2014]
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Euclidean minimum spanning tree

Connect given points by a tree of minimum total edge length
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Applications of minimum spanning tree

Original application: making physical connections between geographic locations (power
grid) with low construction cost

Clustering: delete longest edge = two clusters as far from each other as possible
Generating a one-dimensional approximation to the shape of a cloud of points

Approximating traveling salesperson tour
(tree traversal order gives tour of length < 2 x optimal length)
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Minimum spanning tree property

Every edge of the minimum spanning tree is in the DT

.
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All Nearest Neighbors

 All nearest neighbors: Find for each p<P its nearest neighbor geP; g=p.

/

— Empty circle property: p,qeP are connected by an edge in DT(P)
< there exists an empty circle passing through p and g.
Proof: “=": For the Delaunay edge pq there must be a VVoronoi edgg.
Center a circle through p and g at any point on the VVoronoi edge,
this circle must be empty.

<": If there is an empty circle through p and g, then its center c

has to lie on the VVoronoi edge because it is equidistant to p and g
and there is no site closer to c.

— Claim: In DT(P), every peP is adjacent to its nearest neighbors.
Proof: Let qeP be a nearest neighbor adjacent to p in DT(P). Then q
the circle centered at p with g on its boundary has to be empty, so
the circle with diameter pg is empty and pqg is a Delaunay edge.

— Algorithm: Find all nearest neighbors in O(n) time: Check for
each peP all points connected to p with a Delaunay edge.
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DT and 3D CH

Theorem: Let P={p,,....p} with p,;=(a;, b;,0). Let p*;=(a;, b;, a%+ b?) be the
vertical projection of each point p; onto the paraboloid z=x?+ y2. Then DT(P)

IS th? orthogona}l projection onto the plane z=0 of the lower convex hull of
*— * *
=P 1P nr

P*
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Pictures generated with Hull2VD tool available at http://www.cs.mtu.edu/~shene/NSF-2/DM2-BETA
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p'ip’i p’forma (triangular) face
of LCH(P")
S
The plane through p’; p’ p'x
ororferty 1€AVES all remaining points of P
of bnit @above It
parabploid —
The circle through p; p; py leaves
all remaining points of P in its

exterior
&

Pi P;. P« form a triangle of DT(P)

Slide adapted from slides by Vera Sacristan.
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