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Computational Geometry

Delaunay Triangulations
Michael Goodrich

with slides from Carola Wenk and David Eppstein
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Triangulation

• Let 𝑃 = 𝑝1, … , 𝑝𝑛 ⊆ 𝑅2 be a finite set of points in the plane.

• A triangulation of P is a simple, plane (i.e., planar embedded), 
connected graph T=(P,E) such that

– every edge in E is a line segment,

– the outer face is bounded by edges of CH(P),

– all inner faces are triangles.



3

Dual Graph

• Let 𝐺 = (𝑉, 𝐸) be a plane graph. The dual graph G* has

– a vertex for every face of G,

– an edge for every edge of G, between the two faces incident to the 
original edge
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Delaunay Triangulation

• Let G be the plane graph for the Voronoi diagram VD(P) . Then the 
dual graph G* is called the Delaunay Triangulation DT(P).

VD(P)

P

DT(P)

Canonical straight-line embedding for DT(P):

• If P is in general position (no three points on a line, no four points on a 
circle) then every inner face of DT(P) is indeed a triangle.

• DT(P) can be stored as an abstract graph, without geometric 
information. (No such obvious storing scheme for VD(P).)
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Straight-Line Embedding

• Lemma: DT(P) is a plane graph, i.e., the straight-line edges do not 
intersect.

• Proof: p

p’

c
• pp’ is an edge of DT(P)  There is an 

empty closed disk Dp with p and p’ on its 
boundary, and its center c on the bisector.

• Let qq’ be another Delaunay edge that 
intersects pp’

 q and q’ lie outside of Dp , therefore 
qq’ also intersects pc or p’c 

• Symmetrically, pp’ also intersects qc’ or 
q’c’

 (pc or p’c’) and (qc’ or q’c’) intersect

  The edges do not lie in different Voronoi 
cells.

 Contradiction

Dp

q

q’

q

q’

c’

Dq

p

p’

pc  V(p)

p’c  V(p’)

qc'  V(q)

q’c’  V(q’)
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Characterization of DT(P)
• Lemma: Let p,q,rP let  be the triangle they define. Then the 

following statements are equivalent:

a)   belongs to DT(P)

b)  The circumcenter c of  is a vertex in VD(P)

c)  The circumcircle of  is empty (i.e., contains no other point of P)

Proof sketch: All follow directly from the definition of DT(P) in 
VD(P). By definition of VD(P), we know that p,q,r are c’s nearest 
neighbors.

• Characterization I: Let T be a triangulation of P. 
Then T=DT(P)  The circumcircle of any triangle in T is empty. 

pi

pl

pj

pk

non-empty circumcircle
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All Nearest Neighbors

• All nearest neighbors: Find for each pP its nearest neighbor qP; qp.

– Empty circle property: p,qP are connected by an edge in DT(P) 
 there exists an empty circle passing through p and q.
Proof: “”: For the Delaunay edge pq there must be a Voronoi edge. 
Center a circle through p and q at any point on the Voronoi edge, 
this circle must be empty. 
“”: If there is an empty circle through p and q, then its center c 
has to lie on the Voronoi edge because it is equidistant to p and q 
and there is no site closer to c.

– Claim: In DT(P), every pP is adjacent to its nearest neighbors.
Proof: Let qP be a nearest neighbor adjacent to p in DT(P). Then
the circle centered at p with q on its boundary has to be empty, so 
the circle with diameter pq is empty and pq is a Delaunay edge.

– Algorithm: Find all nearest neighbors in O(n) time: Check for 
each pP all points connected to p with a Delaunay edge. 

p

q

qp
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DT and 3D CH
Theorem: Let P={p1,…,pn} with pi=(ai, bi,0). Let p*

i =(ai, bi, a
2
i+ b2

i) be the 
vertical projection of each point pi onto the paraboloid z=x2+ y2. Then DT(P) 
is the orthogonal projection onto the plane z=0 of the lower convex hull of 
P*={p*1,…,p*n} .

Pictures generated with Hull2VD tool available at http://www.cs.mtu.edu/~shene/NSF-2/DM2-BETA

P

P*
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2
i+ b2

i) be the 
vertical projection of each point pi onto the paraboloid z=x2+ y2. Then DT(P) 
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Slide adapted from slides by Vera Sacristan.

p’i, p’j, p’k form a (triangular) face 
of LCH(P’)

 

The plane through p’i, p’j, p’k 
leaves all remaining points of P 
above it
 

The circle through pi, pj, pk leaves 
all remaining points of P in its 
exterior
 

pi, pj, pk form a triangle of DT(P)

property 

of unit

paraboloid
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