Convex Hulls

Michael T. Goodrich

Review: Convexity

Convex hull

• Smallest convex set containing all *n* points

Convex hull

• Smallest convex set containing all *n* points

input = set of points: $p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9$ output = representation of the convex hull: p_4, p_5, p_8, p_2, p_9

Orientation Test

• right turn or left turn (or straight line)

A Better Convex Hull Algorithm

Plane-Sweep Technique

- We "sweep" the plane with a vertical line
- Stop at event points
- Maintain a partial solution for the sweptover area

Graham Scan Algorithm

• Each point determines an event

Graham Scan Upper Hull Algorithm

Algorithm CONVEXHULL(*P*)

Input. A set P of points in the plane.

Output. A list containing the vertices of CH(P) in clockwise order.

- 1. Sort the points by x-coordinate, resulting in a sequence p_1, \ldots, p_n .
- 2. Put the points p_1 and p_2 in a list \mathcal{L}_{upper} , with p_1 as the first point.
- 3. for $i \leftarrow 3$ to n
- 4. **do** Append p_i to \mathcal{L}_{upper} .
- 5. **while** \mathcal{L}_{upper} contains more than two points **and** the last three points in \mathcal{L}_{upper} do not make a right turn
- 6. **do** Delete the middle of the last three points from \mathcal{L}_{upper} .
- 7. Put the points p_n and p_{n-1} in a list \mathcal{L}_{lower} , with p_n as the first point.

- What is the running time?
- What if the points are already sorted and we can skip step 1?

Lower Bound for Convex Hull

- A reduction from sorting to convex hull is:
 - Given *n* real values x_i , generate *n* 2D points on the graph of a convex function, e.g. (x_i, x_i^2) .
 - Compute the (ordered) convex hull of the points.
 - The order of the convex hull points is the numerical order of the x_i .
- So CH time is $\Omega(n \log n)$

Convex Hull – Gift Wrapping

• Jarvis March Algorithm:

- Find a point p_1 on the convex hull (e.g. the lowest point).
- Rotate counterclockwise a line through p₁ until it touches one of the other points (start from a horizontal orientation).
 - Repeat the last step for the new point.
 - Stop when p_1 is reached again.

Jarvis March Gift Wrapping

- Running time is **output sensitive**
 - The time depends on both the size of the input and the size of the output

Time Complexity: O(nh), where n is the input size and h is the output (hull) size.

Divide-and-Conquer Convex Hull

- 1: if $n \leq 1$ then
- 2: return U = S.
- 3: Divide step: Divide S into S_1 and S_2 of size at most $\lceil n/2 \rceil$ each, such that the points of S_1 have smaller x-coordinates than those in S_2 .
- 4: Conquer step:
- 5: Recursively call ClassicalUpperHull(S_1, U_1).
- 6: Recursively call ClassicalUpperHull(S_2, U_2).
- 7: Combine step:
- 8: Find a **bridge** upper tangent edge, e = (v, w), such that $v \in S_1$ and $w \in S_2$ no point of S is above the line \overline{vw} .
- 9: Remove all points from U_1 (resp., U_2) below e and concatenate the list of remaining points of U_1 with e and the remaining points of U_2 , returning this as U.

Divide-and-Conquer Analysis

 Assume we can find the bridge edge in O(n) time (more on this later):

- T(n) = 2T(n/2) + n
- Implies T(n) is O(n log n)

Dynamic Upper Hulls

- Insert or delete points
- Maintain a tree of the recursive calls made in the divide-and-conquer algorithm

Double Binary Search Upper Hull

 Compute the bridge edge in O(log n) time given two upper hulls:

Dynamic Convex Hulls

- Insert/delete in O(log² n) time
- Upper hull queries in O(log n) time
 - split with vertical line
 - compute 2 hulls recursively => O(lg n) levels
 - find bridges -- O(lg n)
 - cut+merge hull trees -- O(lg n)
 => t_u=O(lg²n)
 - examine bridges
 - recurse left or right

 $=> t_q = O(\lg n)$

